
Dear reviewers and editor, 

Thank you for your guidance and information. A point-by-point reply to the 
comments has been made in annotated pdf file given by reviewer, and a marked-up 
manuscript version has been uploaded.  

The reviewer gave very good suggestions for revision, and we tried our best to 
revise it. Although the current global or regional temperature data sets have been 
improved, it is still difficult to solve all the problems well. We can only make some 
further improvements on the basis of the predecessors combined with the current data 
and technology. We all know that many people who do research on urban heat island 
effect use TM or ASTER data of one scene or several scenes to study the changes in 
space and time. It is difficult for one scene or several scenes to fully represent a city in 
space and time (seasons). But this is much better than relying on the weather station's 
interpolation accuracy in the past. There is no better choice, and this is already the 
best choice. The MODIS surface temperature product provides two data during the 
day and two at night, respectively. This is the best data from satellite remote sensing 
at present analyzing for spatiotemporal change of global and local regions (much 
better than purely relying on weather station data interpolation) , and our research is 
based on the current technical conditions, which still has some shortcomings. For 
example, the data at four time points represent the average temperature value 
throughout the day. Although there are some shortcomings, it can satisfy the analysis 
of the temporal and spatial change trend of temperature under current conditions. 

To be honest, it is not that we are unwilling to provide relevant information. 
Usually, the data measurement department only provides the maximum, minimum and 
average values. We also did a lot of work in private to get the hourly surface 
temperature data, and we are asked not to make it public or transfer it to others. The 
number of meteorological stations has increased by more than 2,000 from the original 
700, which has changed a lot over the years. For old observing sites, even at the same 
site, not only the type of the ground surface has changed, but also the observation 
instruments have been changed. We do not fully grasp this information, nor can we 
elaborate on it, please understand our difficulties. There are obvious errors in the data 
of some sites, due to the aging of the instrument or lack of maintenance. The 
representativeness and location of the site data are indeed a problem and an important 
source of error. For large-scale research, this has always been a common issue and has 
not been well resolved. In some places, too much value is lacking, and there is not 
much choice for us because the number of sites is limited and the data are very 
precious. After manual screening, elimination or correction, we can use them as much 



as possible. 

We have already answered last time that in large-scale situations, consideration of 
elevation plays a limited role in improving accuracy, and you know better than us that 
it is very difficult to evaluate for this, and the conclusions drawn in different seasons 
and places are different because it is impossible to obtain real data at this scale for 
reference. Thus we have no made more evaluations. But in the case that other 
methods cannot solve the lack of value, using this as a supplementary correction is 
also an option. 

Thanks to the reviewers for their guidance. Let me talk about my views on passive 
microwave and thermal infrared retrieval of surface temperature. I have been working 
on passive microwave data retrieval of surface temperature and soil moisture about 15 
years. I have some experience: Passive microwave is mainly suitable for retrieving 
soil moisture. The fundamental reason is that soil moisture is very sensitive to 
emissivity (dielectric constant), which means that as long as the soil moisture changes 
slightly, the emissivity will change and the magnitude of the change will be relatively 
large. This conflicts with the retrieval of surface temperature, which requires 
relatively stable emissivity, otherwise the coefficients of the retrieval equation cannot 
be fixed. Therefore, conventional methods for retrieval of surface temperature from 
passive microwave data are only suitable for local areas and short-term periods when 
soil moisture does not change much. This can be also reflected from another aspect 
that there is no long-term surface temperature product retrieved from passive 
microwave, because the error is too large. In the case of large changes in soil moisture, 
whether with or without clouds, the average error of passive microwave inversion will 
exceed 5K. If the average error exceeds 3K, I think this product has little meaning. Of 
course, in a local area, when the soil moisture does not change much, the error is 
much smaller. 

In addition, the temperatures of passive microwave and thermal infrared retrieval 
are not the same thing, which have been determined by different wavelengths of 
different penetrating power of thermal and passive microwave remote sensing. The 
thermal infrared retrieves the surface temperature (the skin temperature), while the 
passive microwave retrieves the three-dimensional surface temperature. Where the 
surface is bare soil, the representative temperature from microwave remote sensing is 
deeper than the thermal infrared. Where there is vegetation, temperature from 
microwave remote sensing contains the temperature inside the vegetation and the 
ground surface. It is difficult to put two different temperatures together, and the 
mechanism is inconsistent. Putting the same temperature together, the error can be 



regarded as a systematic error, but when different temperatures are put together, it is 
difficult to evaluate. This is the reason that we have been struggling with over the 
years, so I don’t recommend putting the temperature retrieved by thermal infrared and 
passive microwave together, because I think that the surface temperature error of 
conventional passive microwave inversion may be larger than that of the observation 
data from the surface meteorological station. 

There are still many problems in the retrieval of surface temperature and the 
solution of missing temperature values under cloud conditions, which cannot be 
solved perfectly in the short term. There are always problems of one kind or another. 
My opinion is not necessarily correct, thanks for the reviewers’ and editor’s guidance. 
Your suggestions have improved the quality of our articles a lot. Thanks again. 

Sincerely, 
Kebiao et al. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Dear kebiao mao, 
 

We are pleased to inform you that the Topical Editor report for the following ESSD 
manuscript is now available: 
 
Title: A combined Terra and Aqua MODIS land surface temperature and 
meteorological station data product for China from 2003–2017 
Author(s): Bing Zhao et al. 
MS No.: essd-2019-155 
MS Type: Data description paper 
Iteration: Major Revision 
 
The Topical Editor has decided that Major Revisions are necessary before the review 
process can be continued. Please log in using your Copernicus Office user ID 530652 
to find the Topical Editor report at: 
https://editor.copernicus.org/ESSD/ms_records/essd-2019-155 
 
We kindly ask you to revise your manuscript accordingly and to upload the revised 
files, a point-by-point reply to the comments, and a marked-up manuscript version 
showing the changes made no later than 08 Sep 2020 at: 
https://editor.copernicus.org/ESSD/file_manager/essd-2019-155 
 
Please find all information on manuscript submission at: 
https://www.earth-system-science-data.net/for_authors/submit_your_manuscript.html 
 
Your revised manuscript will be reviewed again and you will be informed about the 
outcome by separate email. 
 
Besides adjustments requested by the Topical Editor or Referees, please check your 
manuscript carefully for typos, missing co-authors and their affiliations, terminology, 
updates of data in tables, or updates of variables in equations. All these have to be 
clarified with the Topical Editor and therefore have to be included before you submit 
your revised manuscript. Should your manuscript be finally accepted it will not be 
possible to include such rather substantial changes anymore when your manuscript is 
in final production (proofreading). 
 
Please note that all Referee and editor reports, the author's response, as well as the 
different manuscript versions of the peer-review completion (post-discussion review 
of revised submission) will be published if your paper will be accepted for final 
publication in ESSD. 
 
You are invited to monitor the processing of your manuscript via your MS overview 
at: https://editor.copernicus.org/ESSD/my_manuscript_overview 
 

 

https://editor.copernicus.org/ESSD/ms_records/essd-2019-155
https://editor.copernicus.org/ESSD/file_manager/essd-2019-155
https://www.earth-system-science-data.net/for_authors/submit_your_manuscript.html
https://editor.copernicus.org/ESSD/my_manuscript_overview


In case any questions arise, please do not hesitate to contact me. Thank you very 
much for your cooperation. 
 
Kind regards, 
 
Natascha Töpfer 
Copernicus Publications 
Editorial Support 
editorial@copernicus.org 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Dear authors, 
dear editor, 
 
the manuscript has improved in at least one central part - which is the illustration of how the new 
LST data compare to the old ones which were excluded as unreliable due to a too large error. This 
has - in my eyes - shifted the manuscript away from rejection. 
 
Still there are several points which need to be clarified to avoid misunderstandings when using the 
data set which, in the sum, call for major revisions and a re-review.  
 
On the one hand, the majority of the information with respect to the LST infilling and the 
methodology is much clearer now - despite the fact that it is not clear what the reference time of 
the product is; my understanding is that LST data from four different local times (day and night 
for Terra and day and night but shifted by 3 hours for Aqua) are merged into ONE LST value ... 
which is valid for which time of the day? 
On the other hand, the information provided for the key data set used for the infilling, the 
meteorological station observations, is still quite rudimentary. The authors need to clarify the 
temporal sampling information (because currently they provide contradictory information in their 
response to my previous review). The authors need to give information about (the diversity of) the 
LST measurement technique and hence the consistency of the input data. While the authors cannot 
re-do their analysis with respect to the already two-times mentioned issue of station 
representativity, I can ask the authors to more clearly state in their manuscript that this issue has 
not been considered, is a source of error and is something which should be considered in a future 
version of the data set. The same applies to potential inconsistencies in the data coverage already 
mentioned by the authors. Finally, I have to mention that it is a pity that the authors denied to 
present inter-mediate results of the infilling approach to illustrate how well their approach works 
and to increase the credibility of the combination of pure station infilling versus GWR versus 
elevation-LST-regression based product enhancement. 
 
This time I annotated the pdf-version of the manuscript which I uploaded down below. I will also 
send (or upload if possible) my comments to the reply of the authors to my latest review. This will 
be in the same form, i.e. an annotated pdf file. 
 
Best regards 
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Abstract. Land surface temperature (LST) is a key variable for high temperature and drought monitoring and climate and 

ecological environment research. Due to the sparse distribution of ground observation stations, thermal infrared remote 15 

sensing technology has become an important means of quickly obtaining ground temperatures over large areas. However, 

there are many missing and low-quality values in satellite-based LST data because clouds cover more than 60 % of the 

global surface every day. This article presents a unique LST dataset for China from 2003-2017 that makes full use of the 

advantages of MODIS data and meteorological station data to overcome the defects of cloud influence via a reconstruction 

model. We specifically describe the reconstruction model, which uses a combination of MODIS daily data, monthly data and 20 

meteorological station data to reconstruct the LST in areas with cloud coverage, and the data performance is then further 

improved by establishing a regression analysis model. The validation indicates that the new LST dataset is highly consistent 

with in situ observations. For the six natural subregions with different climatic conditions in China, verification using ground 

observation data shows that the root mean squared error (RMSE) ranges from 1.24 °C to 1.58 °C, the mean absolute error 

(MAE) varies from 1.23 °C to 1.37 °C, and the Pearson coefficient (R2) ranges from 0.93 to 0.99. The new dataset 25 

adequately captures the spatiotemporal variations in LST at annual, seasonal and monthly scales. From 2003-2017, the 

overall annual mean LST in China showed a weak increase. Moreover, the positive trend was remarkably unevenly 

distributed across China. The most significant warming occurred in the central and western areas of the Inner Mongolia 

Plateau in the Northwest Region, and the average temperature change is greater than 0.1K (R >0.71, P < 0.05), and a strong 

negative trend was observed in some parts of the Northeast Region and South China Region. Seasonally, there was 30 

significant warming in western China in winter, which was most pronounced in December. The reconstructed dataset 

exhibits significant improvements and can be used for the spatiotemporal evaluation of LST in high temperature and drought 

monitoring studies. The data are available through Zenodo at https://doi.org/10.5281/zenodo.3528024 (Zhao et al., 2019). 
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1 Introduction 

Land surface temperature (LST), which is controlled by land–atmosphere interactions and energy fluxes, is an essential 35 

parameter for the physical processes of the surface energy balance and water cycle at regional and global scales (Li et al., 

2013; Wan et al., 2014; Benali et al., 2012). LST datasets are not only required for high temperature and drought research over 

various spatial scales but also important elements for improving global hydrological and climate prediction models. In particular, 

LST directly influence glaciers and snow on the Qinghai-Tibet Plateau (Tibetan Plateau), which is known as the “World Water 

Tower”. In turn, these changes directly affect the living conditions of nearly 40 % of the world's population (Xu et al., 2008). 40 

Therefore, LST research at regional and global scales is crucial for further improving and refining global hydroclimatic and 

climate prediction models. LST is measured by meteorological stations which have the advantages of high reliability and 

long time series. However, the meteorological station data collected as point data with very limited spatial coverage are often 

sparsely and/or irregularly distributed, especially in remote and rugged areas (Neteler, 2010; Hansen et al., 2010; Gao et al., 

2018). To obtain spatially continuous LST data, various geostatistical interpolation approaches are commonly applied to 45 

achieve spatialization, such as kriging interpolation and spline function methods. However, the smoothed spatial pattern 

obtained after interpolation may suffer from low reliability because the ground station density is far from sufficient in most 

regions. 

In contrast to ground-based observations with their limited availability and discrete spatial information, images captured 

by satellite thermal infrared instruments have become reliable alternative data sources with the advantages of detailed 50 

spatialized surfaces and near real-time data access (Vancutsem et al., 2010). For instance, for the study of uniform 

continuous surface temperatures over large-scale areas, such as at regional and global scales, satellite remote sensing is the 

only efficient and feasible method (Xu et al., 2013). Satellite remote sensing obtains global LSTs based on a variety of 

mature retrieval algorithms that have been proposed since the 1970s for use with data from thermal infrared channels 

(McMillin, 1975). Due to its optimal temporal and its global coverage, the Moderate Resolution Imaging Spectroradiometer 55 

(MODIS) sensor has become an excellent data source for satellite-derived LST data, and the MODIS LST values are widely 

used in regional and global climate change and environmental monitoring models (Tatem et al., 2004; Wan et al., 2014). 

However, satellite-derived LST data are frequently and strongly affected by data gaps and cloud cover, which affect the 

quality of LST product. Cloud cover is frequent, and the locations of cloud cover are often uncertain. On average, at any one 

time, approximately 65 % of the global surface is obscured by clouds, leading directly to missing values over large, unevenly 60 

distributed areas in an image (Crosson et al., 2012; Mao et al., 2019). Although the integrity of the data has been greatly 

improved, the 8-day and monthly synthetic data still contain a number of low-quality pixels because the derived from daily 

LST pixels. Invalid and low-quality surface temperature data make temperature products discontinuous in time and space, 

which leads to great restrictions on the use of temperature products. Thus, reconstruction of these missing and low-quality 

LST pixels is necessary for satellite-derived LST applications. 65 
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Two categories of methods have commonly been applied to reconstruct cloud-low-quality pixels from satellite-derived 

data in previous studies. The first category includes methods that directly reconstruct missing and low-quality values using 

neighboring information with high similarity over temporal and spatial scales. Most temporal interpolation methods 

reconstruct missing and low-quality LST values based on the periodic behavior of data, such as time series harmonic 

analysis (HANTS), S-G filtering, and Fourier transform (Xu and Shen, 2013; Na et al., 2014; Scharlemann et al., 2008). 70 

Crosson (2012) used another temporal interpolation method to reconstruct the LST data from the Aqua platform (afternoon 

overpass) using LST data from the Terra platform (morning overpass). Regarding spatial interpolation methods, previous 

methods have focused on geostatistical interpolation, including kriging interpolation, spline interpolation and their variants. 

Some researchers have also carried out other attempts; for example, Yu et al. (2015) introduced a method using a transfer 

function with the most similar pixels to estimate invalid pixels. These methods, which estimate missing MODIS LST data 75 

using only adjacent high-quality MODIS LST data, take advantage of the similarity and interdependence of the available 

temporal/spatial attributes of neighboring pixels. To some extent, these methods have the advantage of simplicity and 

reliability. However, this category of methods are often not as reliable as expected especially in complex topographical 

regions and areas with many missing data, because data coverage is too sparse for a reliable reconstruction. The second 

category of methods solves these data gap problems by establishing correlation models for cloud-low-quality pixels and 80 

corresponding auxiliary data pixels. Neteler (2010) used a digital elevation model (DEM) as an auxiliary predictor to 

reconstruct MODIS LST data from nine years of data on temperature gradients, which achieved reliable results in 

mountainous regions. Ke et al. (2013) built a regression model that included many auxiliary predictors—latitude, longitude, 

elevation, and the normalized difference vegetation index (NDVI)—to estimate 8-day composite LST products. Fan et al. 

(2014) used multiple auxiliary maps, including land cover, NDVI, and MODIS band 7, to reconstruct LST data in flat and 85 

relatively fragmented landscape regions. Other similar algorithms have drawn support by employing many factors that affect 

LST, including elevation, NDVI, solar radiation, land cover, distance from the ocean, slope and aspect. Considering the 

complexity of the terrain and the nonuniformity of the spatial distribution of large-scale LST patterns, a reconstruction model 

with auxiliary data that provides rich information for missing pixels can improve the accuracy of the interpolation result. 

The above studies greatly improved the usability of MODIS LST data and further added value to long-term LST trend 90 

analyses. However, despite the use of various techniques to reconstruct the LST value, existing techniques focus on the 

retrieval of the LST value under the assumption of clear-sky conditions. However, clouds reduce night-time surface cooling 

and day-time surface warming due to solar irradiance. These effects are not taken into account using this assumption and 

therefore the derived LST values are likely biased towards clear-sky conditions. To address this issue, some scholars have 

also used microwave temperature brightness (TB) data, which are mostly derived from high-frequency channels (≥85 GHz), 95 

to obtain the LSTs under clouds (André et al., 2015; Prigent et al., 2016). Although microwave remote sensing is more 

capable of penetrating clouds than thermal remote sensing, the physical mechanisms of the current microwave LST retrieval 

models are not very mature (Mao et al. 2007, 2018). Moreover, due to the difference in the surface properties of the land, the 

depth of the radiation signal detected by the microwave will differ at different locations, and it will deviate from the retrieval 
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results of thermal infrared remote sensing when used to estimate LST values. Thus, new reconstruction methods for LST 100 

data need to be proposed to compensate for this deficiency. 

On this premise, China is used as an example due to its large coverage area, heterogeneous landscape and complex 

climatic conditions. This paper presents a new long-term spatially and temporally continuous MODIS LST dataset for China 

from 2003 to 2017 that filters out invalid pixels (missing-data influence by cloud and rainfall) and low-quality pixels 

(average LST error > 1 K) and reconstructs them based on multisource data. We describe a data reconstruction process that 105 

is fully integrated with the benefits of the high reliability of surface observations, consistency and high accuracy of daily 

valid pixels and spatial autocorrelation of similar pixels. The process compensates for the insufficiency of reconstructing 

pixels under clear-sky conditions instead of under clouds in previous studies. The validation using data from the China 

Meteorological Administration observations indicates the robustness of the LST data after interpolation. The dataset is 

ultimately used to capture the annual, seasonal and monthly spatiotemporal variations in the LST in six natural subregions in 110 

China. It is envisioned that this dataset will help capture changes in surface temperature and will be useful for studies on 

high temperatures, drought and food security. 

2 Study area 

In order to obtain a set of continuous spatial and temporal data sets of surface temperature in China and explore the temporal 

and spatial characteristics of China's LSTs, the study area is divided into six natural subregions based on China's three major 115 

geographical divisions: climatic conditions, landform types and tectonic movement characteristics. The eastern region is 

topographically characterized by plains and low mountains. This region has a variety of monsoon climate zones, which, from 

south to north, include tropical, subtropical and temperate monsoon climate zones. Therefore, we divide the eastern region 

into the following four regions, as shown in figure. 1. (I) The Northeast Region, which mainly covers the area to the east of 

Daxing'anling. This region has a temperate monsoon climate with an average annual precipitation of 400~1000 mm, and rain 120 

and heat are prevalent in the same period. (II) The North China Region lies to the south of the Inner Mongolia Plateau, to the 

north of the Qinling Mountains and Huaihe River, and to the east of the Qinghai-Tibet Plateau. The region is dominated by a 

temperate monsoon climate and a temperate continental climate with four distinct seasons. This area is characterized by flat 

plains and plateau terrain. (III) The Central-Southwest China Region extends from the eastern part of the Qinghai-Tibet 

Plateau to the western parts of the East China Sea and South China Sea, south to the Huaihe River - Qinling Mountains, and 125 

north to the area where the daily average temperature is greater than or equal to 10 °C. The accumulated temperature in this 

region is 7500 °C. This region is commonly dominated by a subtropical monsoon climate. (IV) The South China Region is 

located in the southernmost part of China and is characterized by a tropical and subtropical monsoon climate with hot and 

humid conditions. The area has abundant rainfall, and the average annual precipitation is approximately 1900 mm. 
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 130 

Figure 1. The study area is divided into six natural subregions (I, II, III, IV, V, and VI), and the spatial distribution of the meteorological 

stations in the subregions is shown. The red circles mark key areas where the temperature has changed significantly, and meteorological 

station from Subset (2) located these areas are used to validate the accuracy of the new LST dataset (a, b, c, d, e, and f). 

The western region is divided into 2 natural subregions. (V) The Northwest Region includes the northern Qilian 

Mountain-Altun Mountains-Kunlun Mountains, the Inner Mongolia Plateau and the western part of the Greater Khingan 135 

Range. This region is located in the continental interior and features complex terrain conditions, dominated by plateau basins 

and mountainous areas. This region has a tropical dry continental climate with rare rainfall. Consequently, this area features 

large areas of barren land, with a desertified land area of 2.183 million km2, accounting for 81.6 % of China's desertified 

land area (Deng, 2018). Moreover, the Taklimakan Desert in this region is one of the 10 largest deserts in the world. (VI) 

The Qinghai-Tibet Plateau Region is mainly located on the Qinghai-Tibet Plateau, which is the highest-elevation plateau in 140 

the world. This region is mainly described as having an alpine plateau climate, with relatively high temperatures and an 

extensive grassland meadow area. 
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3 Data and methods 

3.1 MODIS data 

MODIS is a key sensor of the Earth Observing System (EOS) program that provides a unified grid product with global 145 

coverage of the land, atmosphere and oceans. MODIS covers 36 spectral bands in the visible, near-infrared and 

thermal infrared ranges (from 0.4 to 14.4 um), so it is extensively used to study global marine, atmospheric, and 

terrestrial phenomena (Wan et al., 1997). The MODIS instruments are aboard two NASA satellites, Terra and Aqua, which 

were launched in December 1999 and May 2002, respectively. As both the Aqua and Terra satellites are polar orbiting 

satellites flying at an altitude of approximately 705 km in sun-synchronous orbit, they provide data twice daily. The Terra 150 

satellite passes through the equator at approximately 10:30 am and 10:30 pm local solar time and is called the morning star. 

The Aqua satellite passes through the equator at approximately 1:30 am and 1:30 pm and is called the afternoon satellite 

(Christelle and Ceccato, 2010). Each satellite can cover the global twice a day and transmit observation data to the ground in 

real time. 

MODIS LST data are retrieved with two algorithms: the generalized split-window algorithm (Wan and Dozier, 1996; Wan 155 

et al., 2002) and the day/night algorithm (Wan and Li, 1997). The split-window algorithm is advantageous for removing 

atmospheric effects because the signal difference between the adjacent thermal and middle infrared channels (channel 31 

with a wavelength of 10.78–11.28 μm and channel 32 with a wavelength of 11.77–12.27 μm) is caused by the differential 

absorption of radiation in the atmosphere (Wan et al., 2002). We use MOD11C1/MYD11C1 and MOD11C3/MYD11C3 that 

this is the last generation of V006 products which utilizes the day/night algorithm. The day/night LST algorithm exhibits 160 

great advantages in retrieving LST: it not only optimizes atmospheric temperature and water vapor profile parameters for 

optimal retrieval but also does not require complete reversal of surface variables and atmospheric profiles (Wan, 2007; Ma et 

al., 2000, 2002). A comprehensive sensitivity and error analysis was performed for the day/night algorithm, which showed 

that the accuracy was very high, with an error of 1–2 K in most cases (0.4-0.5 K standard deviation over various surface 

temperatures for mid-latitude summer conditions) (Wan and Li, 1997, Wang and Liang, 2009; Wang et al., 2007). The 165 

datasets include daytime and nighttime surface temperature data provided by NASA. These data are the new collection 6 

series data provided in 2017, which has been fixed and substantially improved compared to the collection 5 data used in 

many previous studies. In collection 6 data, the identified cloud-low-quality LST pixels were removed from the MODIS 

Level 2 and Level 3 products, and the classification-based surface emissivity values were adjusted (Wan. 2014). Both 

datasets provide the global LSTs generated by the day/night algorithm with a spatial resolution of 0.05°×0.05° 170 

(approximately 5600 m at the equator), which is provided in an equal-area integerized sinusoidal projected coordinate 

system. The composited 8-day (MOD11C2/MYD11C2) and monthly (MOD11C3/MYD11C3) data are deduced from daily 

global data (MOD11C1/ MYD11C1) without cloud contamination.  
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3.2 Supplementary data 

LST records at the hourly intervals from 2399 meteorological ground stations in China from 2003-2017 were used in this 175 

study, and they were provided and subjected to strict quality control and evaluation by the China Meteorological 

Administration (CMA). Meteorological station data were randomly divided into two completely independent subsets by the 

jackknife method (Benali et al., 2012). Subset (1): the number of ground stations used for the reconstruction process was 

1919, accounting for 80 % of the total number of ground stations. Subset (2): the number of sites used for verification was 

480, accounting for 20 % of the total. Then, the data used for the reconstruction process for subset (1) were created by 180 

extracting meteorological station LST data at local overpass times. For the verification process, six key areas where 

positive/negative trends were the most significant (i.e., shown in the red ellipses a-f in Fig. 1 and Table 1) were selected as a 

representative area. All meteorological ground station data were tested for temporal and spatial consistency, which included 

identifying and rejecting extreme values and outliers. It is worth noting that the key areas marked by red circles contain site 

data from subset (1) and subset (2). Generally, there are more stations in the red circle than the sites used for verification in 185 

Table 1, especially in the Eastern China where there are a large number of stations. The surface types of most sites are bare 

land, grassland and agricultural land. Elevation data with 1 km resolution are obtained from the NASA Space Shuttle Radar 

Terrain Mission (SRTM) V4.1 for reconstruction of cloud-low-quality data (http://srtm.csi.cgiar.org/). 

Table 1 Basic information for some of the meteorological stations in key zones 

Region Key zone ID 
North 

Latitude (°) 

East 

Longitude (°) 
Elevation (m) 

I Northeast Region a 50758 47.10 125.54  249 

I Northeast Region a 50658 48.03 125.53  237 

I Northeast Region a 50756 47.26 126.58  239 

I Northeast Region a 50656 48.17 126.31  278 

I Northeast Region a 50548 49.05 123.53  282 

II North China Region b 54525 117.28 39.73  5 

II North China Region b 54527 117.05 39.08  3 

II North China Region b 54518 116.39 39.17  8 

II North China Region b 54511 116.19 39.57  52 

II North China Region b 54624 117.21 38.22  7 

II North China Region b 54623 117.43 38.59  6 

IV South China c 59431 22.63 108.22  122 

IV South China c 59242 23.45 109.08  85 

IV South China c 59037 23.93 108.10  170 

IV South China c 59228 23.32 107.58  108 
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IV South China c 59446 22.42 109.30  66 

V Northwest Region d 53336 41.40 108.48 1275 

V Northwest Region d 53446 40.34 109.50 1044 

V Northwest Region d 53602 38.52 105.34 1561 

V Northwest Region d 53513 40.48 107.30  1039 

V Northwest Region e 51730 40.33 81.19 1012 

V Northwest Region e 51716 39.48 78.34 1117 

V Northwest Region e 51810 38.56 77.40 1178 

V Northwest Region e 51811 38.26 77.16 1231 

VI Qinghai-Tibet Plateau Region f 55279 31.48 89.40 4700 

VI Qinghai-Tibet Plateau Region f 55591 29.42 91.08 3648 

VI Qinghai-Tibet Plateau Region f 55598 29.15 91.47 3560 

VI Qinghai-Tibet Plateau Region f 56106 31.53 93.48 4022 

 190 

3.3 LST data restoration method 

Although thermal infrared remote sensing technology can quickly obtain large-area surface temperature information, it can 

still be affected by factors such as clouds and rainfall. It is difficult to fill data gaps caused by clouds in LST data products 

based on satellite infrared imagery with data of the same quality as the clear-sky LST observations. Therefore, we create a 

reconstruction model that combines meteorological station data and daily and monthly MODIS LST data to reconstruct a 195 

high-precision monthly dataset that takes into account the actual LST under both clear-sky and cloudy conditions. The 

reconstruction model effectively preserves the highly accurate pixels in the original daily and monthly data, reconstructs 

only the low-quality daily data, and finally, replaces low-quality pixels with the composite average pixel value in the 

monthly data. To better describe the data processing, Figure 2 shows a summary flowchart for the reconstruction of MODIS 

monthly LST data. The reconstruction model we propose is divided into two general steps: LST pixel filtering and LST data 200 

restoration. Low-quality pixel values were first identified and set to missing values for all input monthly LST images based 

on pixel quality filtering (see section 3.3.1 for details). Both missing pixels and low-quality pixels are considered invalid 

pixels that need to be reconstructed. For each invalid pixel in the monthly images, we first determined the invalid pixels in 

daily LST images at the same location for all days of the respective month. And then we reconstructed these invalid daily 

pixels. The reconstruction process for the invalid daily pixels is divided into three steps (see section 3.3.2 for details): 1) 205 

Where possible we filled invalid grid cells with co-located in situ observations of the LST, 2) In case in situ observations are 

lacking, we employed the geographically weighted regression (GWR) method to interpolate invalid pixels based on similar 

pixels from multiple sources, and 3) The remaining invalid grid cells we filled with LST values reconstructed based on 

regression of the elevation temperature gradient. Finally, we averaged over all daily data of the respective month and replace 
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the invalid data in the original monthly LST product with the new monthly LST value based on the reconstructed LST time 210 

series of that month. 
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Figure 2. (a) The summary flowchart for reconstructing MODIS monthly LST data, (b) the detailed flowchart for 215 

reconstructing reconstruct missing daily pixels in (a). 

3.3.1 Filtering of MODIS LST 

MODIS LST data are retrieved from thermal infrared bands in clear-sky conditions and contain many missing values and 

low-quality values caused by factors such as clouds and aerosols. Generally, the cold top surface of a thin or subpixel cloud 

is difficult to detect, and the LST retrieved under such conditions usually leads to an underestimation of LST (Neteler, 2010; 220 

Markus et al., 2010; Jin and Dickinson, 2010; Benali et al., 2012). Moreover, other factors can also contaminate the 

observation signal and cause the data to be unavailable, such as aerosols, observation geometry and instrumental problems 

(Wan, 2014). MODIS surface temperature products provide detailed product quality information, which is very convenient 

for us to judge and identify. 
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Cloud cover is extensive and inevitable in daily weather conditions. Statistical calculations were performed and showed 225 

that missing values for daily data reached approximately 50 % for Terra and Aqua satellites. Figure 3 shows an example 

representing the distribution of valid pixel values in the daytime for winter and summer. The coverage of pixels with missing 

data in the study area at 10:30 am during the daytime on January 1, 2017, and July 1, 2017, for the Terra platform reached 

44.9 % and 51.7 %, respectively. The spatial gaps in the daily data are characterized by an arbitrary distribution and 

generally large aggregations. In fact, the emergence of a large number of missing values every day makes it difficult to 230 

reconstruct high-precision LST under clouds using current techniques due to such a paucity of information, especially for 

areas with complex climates. 

However, the random occurrence of cloud-covered areas has a much smaller impact on monthly composite products, 

which makes these products a reliable source for building a high-precision monthly LST dataset. Compared with daily and 8-

day composite data, spatiotemporal integrity and consistency have been greatly improved in monthly composite LST data. 235 

However, for many regions, the lack of data or quality degradation caused by clouds is still common even in monthly 

composite data(Fig. 4). A reliable method for removing low-quality pixels is implemented using the data quality control 

information for MODIS LST data. The data quality control information is statistically calculated and stored in the 

corresponding QA layer and is represented by an 8-bit unsigned integer and can be found in the original MODIS LST HDF 

files. Therefore, we use the quality control labels for daily and monthly files as mask layers to identify low-quality pixels to 240 

ensure the quality of the LST data. For monthly LST data, grid cells with QA layer labels of “the average LST error <=1 K”, 

“LST produced, good quality” and “the average emissivity error <=0.01” are considered to be high-quality data, and the 

remaining pixels are low-quality pixels and are set to missing values. Since there are too many pixels with missing value in 

the daily LST data (as shown in Fig. 3), in order to ensure the data quality and the number of effective pixels, all pixels with 

LST error> 3 K in daily LST data are rejected. Our aim is to reconstruct the LST for all these grid cells with invalid data. A 245 

summary flowchart of the process used to construct the LST data model is schematically illustrated in Figure. 2. 

The spatial distribution pattern of invalid Terra LST data after filtering by the QA layer is shown in figure 4. The low-

quality pixel coverage rates for January and July 2017 were 23.45 % and 19.68 %, respectively. There are more missing 

values in winter than in summer in the northeastern region, which may be affected by the confusion resulting from large 

areas of snow cover and clouds in the winter. However, the missing values are mainly concentrated in southern China in 250 

summer, which is closely related to the increased cloud cover in the hot summers in South China. 
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Figure 3. Spatial distribution of valid data for daily MODIS LST data from Terra during the daytime on (a) January 1, 2017, 

and (b) July 1, 2017. Areas of missing data are blank.  

 255 

Figure 4. Spatial distribution of valid data after pixel filtering for monthly MODIS LST data from Terra during the daytime 

on (a) January and (b) July. Areas of invalid data are blank. 

3.3.2 LST data restoration 

In the reconstruction model, we first filter each monthly image, and the locations of the cloud-low-quality pixels (i.e., the 

missing and low-quality monthly pixels) are determined. Then, for each month, we filter all daily images of the respective 260 

month by determining all missing and low-quality grid cells. The valid pixels �̅�𝑖  in the daily data are retained, the low-

quality daily data are reconstructed, and the low-quality pixels in the monthly data are replaced with the average LST 

derived from the gap-filled daily LST time series of the corresponding month (Fig. 2). Missing daily pixel is defined as the 
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target pixels 𝑇𝑡, the image contains the target pixel 𝑇𝑡 is target image. The reconstruction process for the target pixels 𝑇𝑡 is 

as follows. 265 

During the daytime, the actual LST values in pixels obscured by clouds are usually lower than the values in the adjacent 

unaffected pixels, and at night it is the opposite. Factors that affect reconstruction accuracy mainly include NDVI, elevation, 

latitude and longitude, etc. Grid cells with invalid LST values were co-located with meteorological stations. Invalid pixels 

were filled using the values from valid in situ LST data at the same location at the same time, and these filled pixels were 

marked. Then, for the invalid pixels without ground meteorological station data, we used a combination of two strategies to 270 

reconstruct the missing LST data to improve the accuracy of the result. The first strategy identified the most similar pixels by 

using adaptive thresholds and reconstructed them by using a GWR method. 

GWR is a common and reliable method for estimating missing pixels, which quantifies the contribution of each similar 

pixel to contaminated pixels. This method assumes that similar pixels that are spatially adjacent to the target pixel are close 

in the spectrum and should be given more weight. Due to the high temporal variability of thermal radiation emitted from the 275 

land surface and atmospheric state parameters, satellite sensors that measure the thermal radiation energy from different 

phase images at the same locations often produce different values even when the same thermal infrared sensor is used. Some 

of the most common regular changes in surface features, such as the vegetation spectrum changes due to plant growth, can 

be predicted using auxiliary information of surface meteorological observation stations. 

Because the factors that influence surface temperature (vegetation cover, sun zenith angle, microrelief, etc.) vary greatly 280 

among different regions, the differences of adjacent pixels in different areas may also vary greatly. Thus, there will be large 

deviations in the similar pixel decision criteria if a fixed similarity threshold is used. Here, we use an adaptive threshold 

φ𝜏 to determine similar pixels for each invalid pixel (Eq. 3). The adaptive threshold  φ𝜏  calculated from the standard 

deviation indicates the local area smoothness. Local area is a certain size area centered on similar pixel, which is located in 

the three reference images. The closer the pixel is, the more similar the environment is, so the smoother the local area will be. 285 

For example, the jth valid pixel in the target image is determined to be a similar pixel of the target pixel i only when the 

relationship described in Eq. (2) is satisfied in the reference image τ. Simultaneously, similar pixels were determined based 

on all valid pixels in the image rather than a sliding window because missing values are often arbitrarily clustered in a large 

area rather than scattered. 

|𝑃𝑠
𝜏 − 𝑃𝑡

𝜏| ≤ 𝜑𝜏 ,                                                     (1) 290 

𝜑𝜏 = √∑ (𝑃𝑠
𝜏 − ɛ)2𝑛

𝑖=1 ,                                                  (2) 

where P𝑠
𝜏 and P𝑡

𝜏 are the values of pixels corresponding to the position of the similar pixel and the target pixel in the 

reference image, respectively. φ𝜏 is the threshold used to determine similar pixels. ɛ is the mean value of all pixels in local 

area. τ is the reference image (value=1, 2, 3). Here, we set the range of the local area to 5 pixels by 5 pixels centered on the 

target pixel (Zeng et al., 2013). In this paper, the number of similar pixels of the target pixel in the target image should be 295 

greater than 4 to apply the GWR method to reduce the error due to an insufficient number of similar pixels. 
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After determining similar pixels, the LST values of the pixels low-quality by clouds are reconstructed through GWR. In 

theory, LST data from meteorological stations are the most reliable record, even in the case of thick cloud coverage. If there 

is ground observation site data, similar pixels are obtained directly from ground stations which are the most representative 

and can better reflect the LST under clouds than under clear-sky conditions. In the process of reconstructing missing pixels, 300 

the regression weight coefficient of a similar pixel is determined by its Euclidean distance from the target pixel. In addition，

we assign a related weight multiplier to the marked ground station data based on the GWR. After selecting some of the 

marked pixels as experiments, it was found that the target pixels could be more accurately estimated when the relative 

multiweight values of the ground stations were set to 3 in this paper. Therefore, the weighting coefficients of similar pixels 

are determined by Eqs. (5) and (6). 305 

         𝐷 = √(𝑥 − 𝑥𝑡)2 + (𝑦 − 𝑦𝑡)2,                                                       (3) 

𝑊𝑖 =

𝑀𝑐
𝐷𝑖

∑
𝑀𝑐
𝐷𝑖

+∑
𝑀𝑔

𝐷𝑗

𝑛
𝑗=1

𝑚
𝑖=1

,                                                          (4) 

𝑊𝑗 =

𝑀𝑔

𝐷𝑗

∑
𝑀𝑐
𝐷𝑖

+∑
𝑀𝑔

𝐷𝑗

𝑛
𝑗=1

𝑚
𝑖=1

,                                                          (5) 

where D represents the Euclidean distance from the similar pixel (i，j) to the target pixel t, x, y, x𝑡 and 𝑦𝑡  describe the 

locations of the similar pixel and target pixel. i and j represent similar pixels used to estimate the low-quality LSTs, i is a 310 

pixel that is not low-quality by clouds, and j is a pixel assigned by the ground station. 𝑊𝑖  and 𝑊𝑗  describe the weight that 

similar pixels i and j contribute to the target pixels, respectively. m is the number of similar pixels that are not low-quality by 

clouds, and n is the number of similar pixels that are assigned by ground stations. Mc and Mg represent the weight 

coefficients of clear sky  pixels and ground station assignment pixels, respectively. In this paper, Mc and Mg are set at 1 and 

3, respectively. 315 

Therefore, the GWR method can be represented as follows 

                                                                                          

𝑇𝑡 = ∑ 𝑊𝑖 ∙ 𝑇𝑖 + ∑ 𝑊𝑗 ∙ 𝑇𝑗
𝑛
𝑗=𝑚+1

𝑚
𝑖=1  ,                                  (6)                                                                         

where 𝑇𝑡 is the reconstructed LST value of a target pixel, Ti and Tj represent LST values for the similar pixel i and j,  the 

sum of  W𝑖  and W𝑗 values is 1. 320 

For another strategy, the elevation temperature gradient regression method was used to reconstruct the remaining low-

quality pixels that did not have enough similar pixels. In general, the elevation has a particularly significant effect on the 

spatial variation of the LST at the regional scale. Elevation is recognized as the most important factor that characterizes the 

overall spatial trend of LST (Sun, et al., 2016). DEM data and LST data are used to construct linear regression relationships 

for invalid pixels based on the clear sky pixels in the neighborhood of a certain window size; these data are then used to 325 
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In order to ensure the accuracy of the results, the above reconstruction process is repeated for each pixel to be reconstructed. This is a calculation done by developing and writing a program based on the interactive data language IDL.
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predict the missing value pixels by linear interpolation (Yan et al, 2020). After several simulations of the experimental pixel 

window size, the noise was found to be minimized when a sliding window of 19 by 19 pixels was used, and this window size 

was considered to have the best complement value. 

𝑇𝑖 = 𝛼 × ℎ𝑖 + 𝛽,                                                       (7) 

where T𝑖  is the surface temperature data after interpolation (units: °C); h𝑖 is the elevation value of pixel i (units: m); α is 330 

the influence coefficient of the elevation on the surface temperature, which is the regression coefficient; β is the estimated 

intercept. Finally, we accurately crop the image to a China-wide image to ensure that the sliding pixel window reaches the 

edge of the study area.  

3.4 Analysis of the LST time series trend 

In this study, the slope of a linear regression describes the rate of LST cooling/warming and is calculated by Eq. (8). The 335 

slope value and correlation coefficient (R), calculated with Eq. (9), were selected to quantify the temporal and spatial 

patterns in the LST variations. 
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 ,                                        (9) 

where i is the number of years, Ti is the average LST of year i, and n is the length of the LST time series; here, n is 15. A 340 

positive slope indicates an increase in LST (warming); a negative slope indicate a decrease in LST (cooling).  The R values 

range from -1 to 1. An R value greater than 0 means that the LST is positively correlated with the time series, and an R value 

less than 0 means that the LST is negatively correlated with the time series. Meanwhile, the larger the absolute value of R is, 

the stronger the correlation with the time series changes. 

4 Results 345 

MODIS exhibits good performance in retrieving LST data, which has been verified by various studies (Wan et al., 2004, 

Wan, 2008, Wan and Li, 2011, Wan, 2014). Furthermore, to better evaluate the accuracy of the new dataset, we performed 

verification for the original data, low-quality data, and reconstructed data in different regions of China. In this study, three 

statistical accuracy measures are used to evaluate the accuracy of the calibration: the square root of the Pearson coefficient 

(R2), root mean squared error (RMSE) and mean absolute error (MAE). In addition, we use the reconstructed data products 350 

to do application analysis to indirectly prove the accuracy of the data and its practical application value. 
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4.1 Evaluation of the original product 

We conducted a comparative analysis based on the distribution of six natural subregions (I, II, III, IV, V, and VI) in figure 1. 

Figure 5 shows scatter diagrams relating ground station data and original MODIS LST monthly data (MOD11C3 / 

MYD11C3) without QA filtering. It can be seen from figure 5 that for each region, the deviation of some points causes the 355 

distribution of points to be more discrete. Validation using ground observation data shows that the root mean squared error 

(RMSE) ranges from 1.39 °C to 1.61 °C, the mean absolute error (MAE) varies from 1.25 °C to 1.52 °C, and the Pearson 

coefficient (R2) ranges from 0.91 to 0.98. It can be seen from the error distribution that the more cloud regions, the lower the 

accuracy of LST monthly products, especially in China's Southeast Coast. 

 360 

Figure 5. Scatter diagrams of original MODIS LST monthly data (MOD11C3 / MYD11C3) against ground station data, the 

statistical accuracy measures (R2, RMSE, and MAE) are also indicated.  

4.2 Evaluation of the new product 

In order to separately evaluate the improved accuracy of the low-quality area pixels of MODIS LST monthly products, we 

made a comparative analysis by partition. Figure 6 is scatter plots of the low-quality MODIS LST data and reconstructed 365 

results versus their corresponding ground station data which show the accuracy comparison of low-quality pixels before and 

after reconstruction more clearly. The detailed comparative analysis of the partitions can be seen from figure 6 that the 
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overall result between the reconstructed MODIS LST data and the ground station data presents a better linear relationship, 

with more clustered distribution on both sides of the 1: 1 line. The accuracy of the reconstructed data in different low-quality 

regions is that the root mean squared error (RMSE) ranges from 1.52 °C to 1.65 °C, the mean absolute error (MAE) varies 370 

from 1.4 °C to 1.51 °C, and the Pearson coefficient (R2) ranges from 0.94 to 0.98, which is improved by more than 0.5 °C 

compared with the original value.  

 

Figure 6. The scatter diagrams of the low-quality MODIS LST data and reconstructed results versus their corresponding 

ground station data in six natural subregions (I, II, III, IV, V, and VI). The gray points indicate low-quality LST pixel values 375 

in original MODIS LST data. The blue points represent the values in new LST dataset, and the statistical accuracy measures 

(R2, RMSE, and MAE) are also indicated. 

Figure 7 is an overall evaluation of the new data set, which shows the statistical results of the difference between the two 

types of data in the six natural subregions (shown in blue in the scatterplot). According to the scatterplots of the ground 

station data and the reconstructed monthly MODIS LST data shown in blue in figure 7, we employed a correction model that 380 

uses the results of linear regression analysis between the two datasets to further improve the accuracy. The goal of the 

calibration model is to reduce or eliminate the combined error introduced by various variables. Therefore, the six subregions 

with different climatic conditions are corrected separately to obtain better calibration results for the study area. Additionally, 
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to eliminate contrasts at the boundaries among the six regions, smooth constraints are imposed on some edge pixels with 

significant differences to guarantee consistency among the regions. The comparisons of the corrected LST data with the 385 

ground station data are indicated by the gray points in figure 7. In this study, the main reason for adopting the regression 

analysis model is the reality that a linear model can further improve the robust reconstruction results have been obtained 

through a large amount of work. The results show that the model reconstruction results are highly consistent with the ground 

station data; thus, the problem of underestimation of MODIS LST data in some areas has been reduced. 

All subregions showed good agreements between MODIS LST and meteorological station data. The R2 values varied from 390 

0.93 to 0.99, with an average of 0.97. The MAE varied from 1.23 °C to 1.37 °C, with an average of 1.30 °C. The RMSE 

ranged from 1.24 °C to 1.58 °C, with an average of 1.39 °C. A relatively large RMSE between the reconstructed LST and 

ground-based LST appeared in some sites in the Qinghai-Tibet Plateau Region, indicating that the temperature exhibited 

great spatial heterogeneity over the complex terrain. As shown in figure 1, there are relatively few meteorological stations in 

western China. Under the same conditions, the accuracy in western China is lower than that in areas with dense weather 395 

stations when using surface meteorological stations to reconstruct LST values under cloudy conditions. The east and south of 

China are connected to the Pacific Ocean, so the amount of water vapor (clouds) in the sky is higher than in the west (like 

Fig. 3 and 4). In this case, the number of days in which LST values can be obtained from the remote sensing images in a 

month is much smaller in eastern China than in western China. In this study, the accuracy evaluation is based on the monthly 

scale. The accuracy is mainly determined by the number of days of effective pixels on the monthly and annual scales, and 400 

our analysis indicates that the more days of available pixels corresponding to the pixels on the monthly scale, the higher the 

accuracy. These results indicate that the reconstructed MODIS LST dataset is robust and accurate due to its high consistency 

with the in situ data. Therefore, we believe that the accuracy of LST data can be improved by this method. 



19 

 

 

 405 

Figure7. The scatter diagrams in six natural subregions (I, II, III, IV, V, and VI) between the ground station data and the 

monthly MODIS LST data. The blue points represent the verification results of the reconstructed MODIS LST, and the 

statistical accuracy measures (R2, RMSE, and MAE) are also indicated. The results of the corrected linear model are 

indicated in gray. 

To further understand the credibility of the data and clarify the limitations of the use of this method, we further assess the 410 

performance in terms of the seasonal bias and compare it with the original seasonal LST data. Verification ground stations in 

representative areas are selected to help illustrate the distribution of the error in the reconstructed data. Six key zones are 

identified, corresponding to the areas a, b, c, d, e, and f shown by the red circles in figure 1, and an overview of the ground 

stations can be found in Table 1. The six key zones are selected, including the three most significant regions for warming (b, 

d, and f), the two most significant regions for cooling (a and c), and the zone located in Xinjiang Province (see Fig. 6a for 415 

details). Zone (a) located in the Northeast Region and zone (b) located in the North China Region experienced the strongest 

negative trend and significant warming, respectively. In particular, special attention has been given to the area around the 

Taklimakan Desert (e) in Xinjiang, which has complex terrain and extensive heterogeneity. 

Seasonal-scale verification was performed using the RMSEs between the MODIS data (including the original LST and 

reconstructed LST data) and ground-based LSTs for comparison in the six key zones, as shown in Table 2. The original 420 
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MODIS monthly LST data were used directly without filtering quality flags. For the original MODIS LST images, we 

averaged the LST data of the month corresponding to the season, and obtained the seasonal LST images. The pixels with 

missing LST values in original MODIS LST images for the corresponding months of the season were not used in the 

verification process. Therefore, if there is no missing value for the LST pixel corresponding to the site, each station can have 

a maximum of 15 values in each season. Compared with that of the original LST, the average RMSE of the reconstructed 425 

LST data decreased by 18 % from 1.79 °C to 1.46 °C. Both datasets exhibited the largest RMSE in summer and the smallest 

in autumn, indicating that the original and reconstructed LST data have highly consistent seasonal patterns. For the 

reconstructed LST data, we further found that the RMSE values at some sites in the summer were significantly higher than 

those at other sites. The regions that exhibited high RMSE values were mainly distributed in western regions (Xinjiang, 

Inner Mongolia and the Qinghai-Tibet Plateau), while the values in the other three regions were relatively low. The main 430 

reason for this difference may be that there are relatively few ground observation sites and complex terrain in the western 

region. The average RMSE in autumn was the lowest at 1.07 °C. The winter RMSE ranged from 0.04 to 3.81, with an 

average of 1.45 °C. The distribution of the RMSE varied greatly between the eastern and western regions at the seasonal 

scale. The maximum RMSE values for all stations in the eastern typical zones (i.e., key zone a in the Northeast Region (I) 

and key zone b in the North China Region (II)) occurred in the cold winter, while the highest values for most sites in the 435 

western region occurred during the hot summer months (i.e., the remaining four zones). At the same time, the comparison 

results show that the mean RMSE was significantly higher in the western region than in the eastern region (mean 1.04 °C in 

eastern regions I and II and 1.69 °C in western regions IV, V, and VI). A large RMSE between the reconstructed LST data 

and the ground-based LST data appeared in some locations in Inner Mongolia (i.e., key zone e) in the Northwest Region, 

further indicating that we need to arrange more ground meteorological observation stations in these areas if we want to 440 

further improve the accuracy. 

We also note that the selected ground stations shown in Table 2 located in six key zones are examples of where the local 

LST warming/cooling rate changed by more than the average rate, and these areas actually include areas with greater terrain 

complexity. Moreover, the examples indicate that the reconstruction model proposed here is effective even in the areas of 

complex topography.  445 

Table 2. RMSEs of seasonal LST between monthly LST data (including the original LST data and reconstructed LST data) 

and ground-based LST data (Orig. indicates original LST values at the ground stations. Recon. indicates the reconstructed 

LST values at the ground stations) 

Region Key zone ID Spring Summer Autumn Winter 

   Orig. Recon. Orig. Recon. Orig. Recon. Orig. Recon. 

I Northeast Region a 50758 2.11 1.48 1.36 1.23 1.16 0.61 3.80 3.81 

I Northeast Region a 50658 2.33 1.03 1.61 0.63 0.29 0.27 4.32 3.20 

I Northeast Region a 50756 3.51 0.23 1.03 0.43 0.51 0.26 3.91 3.52 
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I Northeast Region a 50656 0.65 0.65 0.90 0.92 0.42 0.04 3.63 3.67 

I Northeast Region a 50548 0.82 0.89 1.09 0.61 0.51 0.40 0.15 0.15 

II North China Region b 54525 3.11 2.26 3.30 2.23 2.11 1.51 2.11 0.94 

II North China Region b 54527 1.30 1.11 1.24 1.25 0.93 0.54 2.36 0.14 

II North China Region b 54518 3.64 1.64 0.52 0.51 0.45 0.15 0.71 0.04 

II North China Region b 54511 1.06 1.26 0.33 0.32 0.50 0.66 1.07 1.27 

II North China Region b 54624 1.99 1.55 1.15 0.49 0.84 0.33 0.40 0.46 

II North China Region b 54623 0.13 0.06 0.48 0.17 1.31 1.06 2.65 2.02 

IV South China c 59431 1.71 2.73 0.12 0.06 1.05 1.02 2.91 2.91 

IV South China c 59242 2.0 1.08 2.52 1.86 0.03 0.09 2.91 2.59 

IV South China c 59037 1.08 0.73 1.26 0.94 0.78 0.78 1.00 1.01 

IV South China c 59228 0.92 0.38 1.99 1.75 1.61 0.84 0.75 0.28 

IV South China c 59446 2.01 1.30 0.97 0.78 0.49 0.49 2.40 2.39 

V Northwest Region d 53336 3.88 3.88 3.04 3.04 3.53 2.81 1.90 1.82 

V Northwest Region d 53446 2.00 2.01 3.78 3.18 1.96 1.65 0.35 0.35 

V Northwest Region d 53602 4.48 4.28 3.91 3.75 3.97 3.47 1.65 1.65 

V Northwest Region d 53513 1.55 1.48 5.33 5.15 5.01 4.93 2.04 2.24 

V Northwest Region e 51730 3.01 2.97 4.09 5.08 1.48 1.06 2.63 2.10 

V Northwest Region e 51716 0.80 0.75 0.47 0.15 0.74 0.09 0.66 0.32 

V Northwest Region e 51810 2.33 1.29 1.20 0.76 0.33 0.32 1.24 0.28 

V Northwest Region e 51811 0.57 0.57 0.52 0.90 0.62 0.36 1.34 0.39 

VI Qinghai-Tibet 

Plateau Region 
f 55279 3.63 3.44 1.37 1.74 1.83 1.45 0.99 0.99 

VI Qinghai-Tibet 

Plateau Region 
f 55591 1.76 1.79 5.56 4.08 2.99 2.59 1.95 0.41 

VI Qinghai-Tibet 

Plateau Region 
f 55598 0.85 0.85 4.37 4.62 2.95 2.91 0.63 0.69 

VI Qinghai-Tibet 

Plateau Region 
f 56106 0.52 0.58 1.44 1.44 0.88 0.68 2.11 1.99 

Average   1.92  1.51  1.96  1.72  1.40  1.12  1.88  1.49  

 

The verification results show that the dataset has reasonable consistency with the in situ measurements, indicating that the 450 

interference of cloud coverage is well eliminated. The dataset obtained after reconstruction is a large-scale, long-term, 

unique surface temperature dataset because it eliminates low-quality pixels caused by factors such as cloud disturbance and 
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achieves complete coverage of the entire study region. The accuracy and spatiotemporal continuity of this dataset are much 

better than those of the original MODIS monthly data. Moreover, in this dataset, the ground surface temperatures under 

cloud coverage are retrieved instead of reconstructing the LST under clear-sky conditions, which is better than the methods 455 

used in many previous studies. 

 

4.3 The application of the product for trend analysis 

We have made a lot analysis in 2017, and found that the mean surface temperature of MODIS surface temperature in 4 time 

periods is close to the annual mean surface temperature because the observation time of MODS sensor is symmetrical, so it 460 

is feasible to use monthly mean instead of annual mean. Detailed derivation and comparative analysis of how to calculate the 

average temperature can be referred to reference (Mao et al. 2017). After LST data restoration data reconstruction, four 

overpass times of images are obtained each month, and seasonal and annual average spatial data are also obtained by adding 

averages. Further, we obtain the corresponding statistical values through equal area projection calculations (Mao et al. 2017). 

Figure 8 shows the annual average LST change in China over the period from 2003-2017. The LST fluctuations in China 465 

exhibited a general weak positive trend. The sliding average of the 5-year unit also showed a weakly fluctuating positive 

trend. The lowest LST in China appeared in 2012 at 7.51 °C. The temperature reached its highest value in 2007 (9.26 °C), 

but after 2012, the LST remained high. This result coincides with the global warming stagnation period that was noticed 

from 1998-2012, and the LST increased significantly after 2012. After analyzing the LST on the seasonal and monthly scales, 

we found that the cooling in 2012 mainly occurred in the winter, as it was concentrated from January-February, and the 470 

cooling in the southern region was more significant than that in the other regions. In 2012, due to the abnormally strong East 

Asian winter monsoon, there was abnormal rainfall in the south in winter. Increased precipitation leads to increased 

evaporation, which leads to a decrease in temperature. We also observed a sudden decrease in LST in 2008 and a sudden 

increase in 2013. In 2008, severe persistent low-temperature snowstorm events in southern China in winter caused a decline 

in LST. The warming in 2013 was mainly affected by the abnormally high temperatures in the middle and lower reaches of 475 

the Yangtze River in summer. These indirectly verify the correctness of the reconstructed data through meteorological events, 

indicating that the reconstructed data can be used to analyze the long-term spatiotemporal changes in surface temperature. 
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Figure 8. Annual mean LST changes in China from 2003 to 2017. 

 480 
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Figure 9. Spatial dynamics of interannual change trends in LST from the slope (a) computed by Eq. (8), the correlation 

coefficient (b) computed by Eq. (9) and frequency distribution of the slope (c) during 2003-2017. In panel c, the different 

temperature trends (slope) are divided into 10 subinterval ranges corresponding to the ranges in panel a. The area to the left 

of the line AB represents the proportion of the area that experienced cooling, and the area to the right represents the 485 

proportion that experienced warming. 

For a more detailed understanding of the spatial patterns and regional differences in the LST changes in different areas, the 

rate of annual average LST change per pixel from 2003 to 2017 was calculated, and the slope (Fig. 9a), correlation 

coefficient (R, Fig. 9b), frequency distribution of the slope (Fig. 9c) and the significance of the trend (P, Fig. A1) are shown. 

From 2003-2017, the annual average LST in China showed a weakly positive trend. The LST exhibited a strong positive 490 

trend in many regions in the north but negative trends in the south, and the positive trend in the west was greater than that in 

the east. Different regions showed significant regional variations. Most of China, accounting for 63.7 % of the study area, 

experienced a positive trend (slope >0) (corresponding to the pale yellow, yellow, light orange, orange, and red parts in Fig. 

9c). Additionally, 20.8 % of the pixels experienced significant warming (slope >0.05, R >0.6, P < 0.05). The areas with 

significant warming were mainly concentrated in the Inner Mongolian Plateau and areas to the south in the northwestern 495 

region. In contrast, 36.25 % of the areas showed a negative trend (slope <0, depicted in green and 4 shades of blue in Fig. 9c). 

The area with a significant cooling pattern (slope <-0.075, R < -0.6, P < 0.05) covered 6.53 % of the study area, and these 

areas were mainly concentrated in the northeast. The specific spatial variation characteristics of LST in different regions are 

summarized as follows. More analysis including monthly and seasonal changes can be found in the appendix. 

6 Data availability 500 

The dataset is needed for most geoscience studies, especially for studying regional climate change and thermal environment 

changes, agricultural drought, crop yield estimation, ecosystems, etc. The LST dataset in China is distributed under a 

Creative Commons Attribution 4.0 License. Dataset name is Land Surface Temperature in China (LSTC), which consists of 
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2 files. One is 00_Metadata for LSTC.docx, and the other is 01_LSTC.zip which contains data of LSTC.). Each folder has 12 

images (one scene per month). Each phase consists of two files, including *.TIF (LSTC image) and *.TFW (TIFF image 505 

coordinate information).The more information and data are freely available from the Zenodo repository 

https://doi.org/10.5281/zenodo.3528024 (Zhao et al., 2019). 

7 Discussion and conclusions 

In 2013, the Intergovernmental Panel on Climate Change (IPCC) noted that climate warming is clear (IPCC et al., 2013). 

However, some areas of the Northeast Region (I) showed a significant warming hiatus over the past 15 years, and these areas 510 

made the greatest contribution to China's negative trend. We observed widespread and relatively strong cooling regimes in 

most areas (i.e., the slope value ranged from -0.06 to less than -0.12, see Fig. 9a, b for details), especially in the north of the 

Northeast Plain (slope < -0.1, R < -0.8, P < 0.05, see Fig. 9a, Fig. 9b and Fig. A1). In the North China Region (II), The North 

China Plain and the Yangtze River Delta in the south both exhibit obvious positive trends, both of which are densely 

populated areas. In addition, the Central-Southwest China Region (III) and the South China Region (IV) also showed 515 

negative trends, but the negative trend was stronger in the South China Region (most area: slope < 0.75, R < -0.8, P < 0.05) 

than in the Central-Southwest China Region. In the Northwest Region (V), some areas in the Tianshan Mountains and the 

Inner Mongolia Plateau experienced significant positive trends (slope > 0.10, R > 0.8, P < 0.01), and this area exhibited the 

strongest positive trend in China over the past 15 years. In the Qinghai-Tibet Plateau Region (VI), the ecological 

environment is complex, and the unique plateau terrain and thermal properties of the surrounding areas play an important 520 

role in regulating the surrounding atmospheric circulation system. Because the Qinghai-Tibet Plateau is extremely sensitive 

to climate change, it is considered to be a key area of global climate change. Therefore, we have also paid close attention to 

the temperature changes on the Tibetan Plateau. As shown in figure 9a and b, an obvious positive trend was captured in the 

southern part of the Qinghai-Tibet region (slope >0.08), which should be emphasized. Additionally, the positive trend in the 

Qaidam Basin in the northeast is significantly higher (slope > 0.1) than that in the surrounding area.  525 

Based on the Terra and Aqua MODIS land surface temperature dataset and meteorological station data, a new LST dataset 

over China was established for the period from 2003-2017. This dataset effectively removed approximately 20 % of the 

missing pixels or low-quality LST pixels from the original MODIS monthly image. A detailed comparison and analysis with 

the in situ measurements shows that the reconstruction results have high precision, the average RMSE is 1.39 °C, the MAE 

is 1.30 °C and the R2 is 0.97. The data are freely available at https://doi.org/10.5281/zenodo.3528024 (Zhao et al., 2019). We 530 

believe that this dataset will be of great use in research related to temperature, such as high temperature and drought studies, 

because it effectively overcomes the limitations of reconstructing the real LST under cloudy conditions in the past and 

achieves good spatiotemporal coverage. 

The constructed high-precision monthly LST dataset for China provides a detailed perspective of the patterns of the spatial 

and temporal changes in LST. The LST dataset was used to analyze the regional characteristics and capture the variations in 535 



26 

 

LST at the annual, seasonal and monthly scales. Our results showed that the LST showed a slight upward trend with a slope 

of 0.026 (approximately 63.7 % and 20.80 % of the pixels underwent warming and significant warming, respectively). There 

were great regional differences in the climate positive trend. The Northwest Region, the Qinghai-Tibet Plateau Region and 

the North China Plain experienced significant positive trends (i.e., the slope ranged from 0.025 to greater than 0.1). The 

impacts of human activities on warming are prominent, such as the increase in greenhouse gases and black carbon aerosol 540 

emissions from urbanization and industrial and agricultural development. Greenhouse gases absorb infrared longwave 

radiation from the ground, which results in an increase in warming. Moreover, the coupling of greenhouse gases and 

monsoon systems can result in changes in the energy budget in the monsoon region, which affect the intensity of monsoon 

circulation. Additionally, the change in temperature in the short term may be caused by the increase in aerosols such as 

scattering aerosols and black carbon emitted along with other atmospheric pollutants. Black carbon aerosol pollution leads to 545 

heating of the air and a reduction of the cooling effect of solar radiation reaching the surface, resulting in local or even global 

climate changes (Kühn et al., 2014). However, scattering aerosols are expected to produce cooling effects by absorbing and 

scattering solar radiation. Consequently, the effect of human activities on global climate change is complex. The impact of 

human activities on temperature trends is expected to be especially pronounced in rapidly expanding urban areas, such as 

North China and the Yangtze River Delta. 550 

Meanwhile, a negative trend was also observed in China: most areas of the Northeast Region and South China Region 

became colder, especially in the Songnen Plains in the middle of the region (i.e., slope=-0.11, R=0.61, P < 0.05). Some areas 

in South China also showed a slight negative trend (P < 0.05). The interannual temperature changes indicated that the 

daytime temperature changed more intensely than the nighttime temperature, which may be closely related to changes in 

solar radiation and the release of large amounts of greenhouse gases from human activities. Seasonal changes are primarily 555 

driven by Earth’s rotation but are also affected by monsoon changes, ocean currents and other factors. The LST trends 

showed significant changes among the different seasons. The positive trend in winter was more significant than that in the 

other three seasons, especially in the northwestern region of the arid and semiarid zone and the Qinghai-Tibet Plateau. As a 

key parameter for different research fields, such as simulating land surface energy and water balance systems, LST provides 

important information for monitoring and understanding high-temperature and drought conditions, which must be taken into 560 

consideration for agricultural production and meteorological research. Therefore, we believe that the LST dataset produced 

in this study can be useful for drought research and monitoring and can be further used for agricultural production and 

climate change research. 

The reconstruction strategy, which combines monthly data with daily data, effectively solves the problem of 

reconstructing real LST data under cloud coverage with very limited information and improves the accuracy of the monthly 565 

data reconstruction results. The final linear correction model improves the consistency of the LST data with terrestrial data. 

We believe that these datasets can be applied to research regional agricultural ecological environments and to monitor 

agrometeorological disasters. On the basis of large-scale remote sensing data, although we make full use of site data to 

obtain as more data information as possible, which improves the spatial and temporal continuity of the data, the ground 
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The discussion lacks a part which tries to explain why the linear bias correction illustrated in Figure 7 for some regions results in an increase of the LST while it results in a decrease of the LST in other regions. This should be discussed.
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surface observation data still has a representative problem, and the accuracy still needs to be improved in some places. The 570 

verification of temperature product data using site observation data also faces the representative problem, and there are still 

uncertainties in accuracy verification. To overcome this difficulty, more ground station and remote sensing data need be 

obtained through technological progress. 
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Figure A1. Significance of the spatial distribution of annual average LST trends based on an independent-samples t-test in China 

from 2003 to 2017.  Note that the symbols ***, **, and * explain that there are increasing/ decreasing tendencies averaged over 

China at the 99 %, 95 % and 90 % confidence level, respectively (same as below). 

Day and night change analysis 730 

To more specifically assess the interannual changes in LST, we further analyzed the day and night trends in LST. The spatial 

distribution of the average annual day and night LST in the time series is shown in A2, and the corresponding significance is 

shown in A3. During the day, the positive trend mainly comes from the eastern part of North China, the central and western 

parts of the northwest, and the southern part of the Qinghai-Tibet Plateau. The annual daytime positive/negative trends of 

LST in most regions from 2003 to 2017 are significantly higher than those in the nighttime; thus, the average LST 735 

positive/negative trends can be attributed to changes during the daytime. The temperature difference between day and night 

also indicates that the trend of LST changes is more likely due to factors such as daytime human production and sunshine 

hours. The effects of changes in solar radiation on the near-surface thermal conditions are the most pronounced. Among 

these changes, the positive trend in the southern part of the Qinghai-Tibet Plateau is obvious (slope >0.09). Duan and Xiao 

(2015) found that since 1998, the amount of daytime cloud cover in the southern part of the Qinghai-Tibet Plateau has 740 

decreased rapidly, resulting in an increase in sunshine hours. The increase in solar radiation during the day will directly lead 

to an increase in surface temperature, which is an important factor leading to an increase in daytime temperature. However, 

compared with the trend during the day, the interannual temperature change trend at night is relatively gentle and can be 

considered stable. 
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A2. (a) Spatial dynamics of day and night LST change trends based on slope, (b) and correlation coefficient. 
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Figure A3. Distribution of diurnal LST change trends significance during 2003 - 2017  

Seasonal change analysis 750 

In addition to analyzing the characteristics of the interannual variation in LST, we also conducted an analysis of the seasonal 

variation characteristics to further reveal the LST variation patterns in detail (see A.4 and A5). The variation characteristics 

are also described by the slope of the change and the correlation coefficient (R) in Section 3.4. The results show that there is 

a significant spatial difference between the seasonal surface temperature trends, reflecting the effect of seasonal temperature 

changes on regional temperature changes. From 2003 to 2017, the positive trend in the four seasons was most significant in 755 

winter, which exhibited the largest warming area (accounting for 70 %), followed by that in spring and summer, and the 

national average LST change in autumn basically did not change. Compared with the global warming hiatus that occurred 

from 1998 to 2002, the positive trends in China showed large differences in the four seasons (Li et al., 2015). 

Specifically, in spring, the warming area is mainly concentrated in the northern areas (I, II, and V), while a weak negative 

trend is observed in the southern areas. The largest positive trend over the northern areas appears in the Inner Mongolia 760 

Plateau (slope >0.18, P < 0.01). In addition, rapid warming also occurred in the North China Plain in the eastern part of the 

North China Region (II) (especially near Beijing and some areas of Hebei Province, slope >0.12, R > 0.6, P < 0.01). 

As shown in A4, compared with the other two seasons, both summer and autumn showed weak positive trends throughout 

the country. In summer (A4. b1, b2 and b3), there were slight increasing trends in most areas of China, while there were still 

negative trends in the Northeast Region (I) (details in A4). Significant increasing trends were mainly observed in the 765 

Qinghai-Tibet Plateau, North China Plain, Inner Mongolia Plateau, Tarim Basin and some areas in the north, with the largest 

positive trend in the Qinghai-Tibet Plateau. In autumn, the negative trends were mainly present in the Northeast Region (I) 
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and the Northern Chinese Tianshan Mountains in the Qinghai-Tibet Plateau Region (VI). In contrast, the Qinghai-Tibet 

Plateau was still controlled by strong positive trends (near Lhasa city, slope=0.09, R=0.60, P < 0.05), especially in the 

southern part of the Tanggula Mountains. 770 

In winter, 69.4 % of the areas experienced warming, which is significantly higher than in other seasons; thus, winter is the 

most important source of interannual increases in the average LST. The most remarkable positive trends in winter were 

observed in the Northwest Region (V) and the Qinghai-Tibet Plateau Region (VI).  

 

Insert Figure 9 here 775 

A4. The interseasonal variability rates (slope) and correlation coefficients (R) of LST in spring (a), summer (b), autumn (c) 

and winter (d) from 2003 to 2017: a1, b1, c1 and d1 are the spatial distributions of the slopes in the four seasons; a2, b2, c2 

and d2 are histograms of the slopes in the four seasons; and a3, b3, c3 and d3 are the spatial distributions of the correlation 

coefficients (R) in the four seasons. 
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Figure A5. Distribution of seasonal LST trends significance during 2003 - 2017. 
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