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Abstract. Estimates of greenhouse gas emissions, quantified at fine space and time scales, has become a critical 

component of new multi-constraint flux information systems in addition to providing relevant information to 

decisionmakers when considering GHG mitigation opportunities. The ‘Vulcan Project’ is an effort to estimate 

bottom-up fossil fuel emissions and CO2 emissions from cement production (FFCO2) for the entire United States 

landscape at space and time scales that satisfy both scientific and policy needs. Here, we report on version 3.0 of the 

Vulcan emissions which quantifies FFCO2 emissions for the U.S. at a spatial resolution of 1km x 1km and hourly 

temporal resolution for the 2010-2015 time period. We provide a complete description of the updated methods, data 

sources, results, and comparison to a global gridded FFCO2 data product. We estimate FFCO2 emissions for the year 

2011 of 1589.3 TgC with a 95% confidence interval of 1299/1917 TgC (+18.3%/-20.6%), implying a one-sigma 

uncertainty of ~ ±10%. We find that per capita FFCO2 emissions are larger in states dominated by the electricity 

production and industrial sectors and smaller in states dominated by onroad and residential/commercial building 

emissions. The center of mass (CoM) of FFCO2 emissions in the US are located in the state of Missouri with mean 

seasonality that moves on a NE/SW near-elliptical path. Comparison to ODIAC, a global gridded FFCO2 emissions 

estimate shows large differences in both total emissions (100.1 TgC for year 2011) and spatial patterns. The spatial 

correlation (R2) between the two data products was 0.38 and the mean absolute difference at the individual gridcell 

scale was 80.04%. The Vulcan v3.0 FFCO2 emissions data product offers an immediate high-resolution estimate of 

emissions in every city within the U.S., providing a large potential savings of time and effort for cities planning to 

develop self-reported city inventories. The Vulcan v3.0 annual gridded emissions data product can be downloaded 

from the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) 

(https://doi.org/10.3334/ORNLDAAC/1741, Gurney et al., 2019).

1 Introduction   1	

Global emissions of carbon dioxide from the combustion of fossil fuels (FFCO2) comprise the largest net flux of 2	
carbon into the Earth’s atmosphere and remain the primary driver of anthropogenic climate change (IPCC 2013; 3	
USGCRP 2018). Improving our quantitative understanding of FFCO2 fluxes remains a critical component of climate 4	
change research and climate policy. For example, scientific understanding of the global carbon cycle and how it 5	
interacts with climate change rests on accurate quantification of FFCO2 emissions at multiple scales (LeQuere, 6	
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2018). This, in turn, improves the reliability of future projections of climate change and specifies the emissions 1	
reductions necessary to meet specific targets, such as limiting the rise of global mean temperature to 1.5 C (IPCC 2	
2018). Understanding FFCO2 sources also assists in understanding the composition, driving factors, and 3	
responsibility for emissions, making mitigation options better-targeted, equitable and ultimately more effective 4	
(Durant et al., 2011; Janssens-Maenhout et al., 2013; Bellassen et al., 2015). 5	

Quantification of FFCO2 emissions began as efforts to capture total emissions at the global and national spatial 6	
scales aiming to quantify anthropogenic fluxes to better understand the drivers of climate change and the global 7	
carbon cycle. Employing accounting approaches that rely on national statistics of energy production and 8	
consumption, a number of national and international institutions produce and archive estimates of FFCO2 emissions, 9	
often disaggregated to economic sector and fuel type (see reviews by Andres et al., 2012; Macknick, 2011). In 10	
response to the advances in carbon cycle observations and modeling studies, many of these FFCO2 inventory 11	
products began to increase their spatial and temporal resolution below the nation-state, often representing emissions 12	
in regularized gridded format (Marland et al., 1985; Andres et al., 1996; Olivier et al., 1999). Gridded output was 13	
especially important when used within systems that solve carbon fluxes through inversion of atmospheric transport 14	
constrained by atmospheric concentration measurements (Gurney et al., 2002; 2005; Peylin et al., 2011; Liu et al., 15	
2014; Yadav et al., 2016; Gaubert et al., 2019). Most often these sub-national representations of FFCO2 emissions 16	
used proxy information, such as population statistics or remotely-sensed nighttime lights, to distribute the 17	
national/global emissions to smaller space/time scales (Andres et al., 1999, Olivier et al., 2005; Rayner et al., 2010; 18	
Ghosh et al., 2010, Oda and Maksyutov, 2011; Ou et al., 2015). Recent research has employed a mixture of global 19	
“bottom-up” information such as powerplant databases with remote-sensing information (Wang et al., 2013; Oda et 20	
al., 2018  etc), sometimes within optimization frameworks to more mechanistically distribute emissions in space and 21	
time in addition to offering more formal uncertainty estimation (Asefi et al., 2014).  22	

In addition to the globally gridded representations, research effort has also aimed at specific national and regional 23	
domains often with additional detail on the emitting process (Gregg and Andres, 2007; Gregg et al., 2009; Bun et al., 24	
2007; 2018; Gately et al., 2017; Kurokawa et al., 2013; Ivanova et al., 2017; Denier et al., 2017; Cai et al., 2018) 25	
with some studies focussed on an individual sector or source type (Petron et al., 2008; Gately et al., 2013; Zheng et 26	
al., 2014; Wang et al., 2014; Liu et al., 2015). These national and regional efforts were often modeled after work in 27	
local air pollution inventories (Cooke et al., 1999; Baldesano et al., 2008; O’Hara et al., 2007; Hoesly et al., 2017). 28	
In addition to focusing on different national domains with unique datasets, many of these past research efforts reflect 29	
different methodological approaches to data interpretation, downscaling and modeling. Many of these efforts, 30	
however, follow the general approach established in the pioneering work of the Vulcan Project, the first attempt to 31	
generate a completely bottom-up space/time-explicit national estimate of all FFCO2 emission sources (Gurney et al., 32	
2009). The Vulcan Project, which estimated FFCO2 emissions at the “native” resolution of emission points, lines, 33	
and polygons, produced US FFCO2 emissions on a 10km x 10km spatial grid at hourly time resolution for the year 34	
2002. Used in a variety of research and applied policy settings, the Vulcan Project has spawned additional efforts at 35	
downscaling into the urban domain, where resolution has gone to the scale of individual buildings and street 36	
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	 3	

segments for whole urban areas (VandeWeghe and Kennedy 2007; Shu and Lam 2011; Zhou and Gurney 2011; 1	
Gurney et al., 2012; Wilson et al., 2013; Pincetl et al., 2014; Patarasuk et al. 2016; Gurney et al., 2018; 2019b).  2	

All of the FFCO2 emissions reviewed thus far are categorized as “scope 1” or “in-boundary” emissions. They are an 3	
accounting of emissions that reflects physical emission of CO2 molecules from the geography resolved (e.g. gridcell, 4	
state, province). This is in contrast to quantification of fluxes that assign emissions to consumptive activity such as 5	
using electricity or consuming food (Davis and Caldeira, 2010). The two accounting perspectives are identical at the 6	
whole-planet scale but diverge as one considers scales at the nation-state or below. Consumption-based FFCO2 7	
emissions quantification has a long history at scales ranging from the nation-state to the city, but has only recently 8	
begun to systematically resolve (e.g. in gridded form) FFCO2 emissions below the nation-state scale (Jones and 9	
Kammen, 2011; 2013; Zhang et al., 2014; Minx et al., 2013; Moran et al., 2018). The current study emphasizes in-10	
boundary emissions because these can be directly used with atmospheric monitoring, a critical element in 11	
evaluation/validating the estimated fluxes and a motivation for the research reported here (NRC 2010). 12	

In this paper, we introduce a significant update to the Vulcan Project estimation of high-resolution US fossil fuel 13	
carbon dioxide emissions and CO2 emissions from cement production (collectively referred to here as “FFCO2“). 14	
We report here on improvements in methodology, resolution, uncertainty estimation, in addition to more 15	
contemporaneous, multiyear output. We present some of the fundamental results of the Vulcan output and compare 16	
to the only commensurate resolved FFCO2 emissions data product covering the entire U.S. landscape, the ODIAC 17	
global data product. We show results associated with a few zoomed urban locations, suggesting that the Vulcan 18	
FFCO2 emissions data product has a role to play in providing U.S. cities with a sub-city resolved scope 1 CO2 19	
emissions inventory.  20	

Version 3.0 of the Vulcan data product and associated documentation is publicly available and annual, gridded, 21	
multiyear results can be downloaded from the Oak Ridge National Laboratory Distributed Active Archive Center 22	
(ORNL DAAC) (https://doi.org/10.3334/ORNLDAAC/1741). 23	

This paper is structured as follows: In section 2, we describe the data and model processes used to generate the 24	
Vulcan version 3.0 (v3.0) FFCO2 emissions data product including those used for spatial and temporal distribution. 25	
In section 3.0, we present the results, the uncertainties and a series of descriptive statistics at various scales of 26	
aggregation. In section 4, we compare Vulcan to the ODIAC data product, and discuss the potential use and 27	
relevance of this work, known gaps and weaknesses, in addition to next steps and future work.  28	

2 Methods 29	

The Vulcan version 3.0 FFCO2 emissions data product represents total FFCO2 emissions resulting from the 30	
combustion of fossil fuel (coal, petroleum and natural gas) and the CO2 from cement production in the 50 United 31	
States and District of Columbia for 2010-2015 time period (Gurney et al., 2019). It is constructed from numerous 32	
public datasets that generate emissions magnitude, the spatial representation, and temporal representation of those 33	
emissions. The FFCO2 emissions are initially estimated at their “native” spatial and temporal resolution (e.g. 34	

https://doi.org/10.5194/essd-2019-154

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 28 November 2019
c© Author(s) 2019. CC BY 4.0 License.



	 4	

counties, points, lines, annual, hourly) depending upon the characteristics of the incoming data sources. Additional 1	
spatial and temporal “conditioning” (e.g. downscaling, interpolation, proxy surrogates), where needed, is used to 2	
arrive at an hourly representation for six complete calendar years (2010-2015) at the spatial resolutions of a US 3	
Census block-group or finer (e.g. points, lines). The FFCO2 emissions are further processed to regularized hourly 4	
grids at a resolution of 1 km x 1 km, for the contiguous United States and Alaska. The FFCO2 emissions represent 5	
all fossil fuel combustion extending 12 nautical miles from the coastal boundary of the United States. 6	

2.1 Data and processing 7	

The data sources for the FFCO2 emissions estimation are organized here by data source type and/or the economic 8	
sector in accordance with original data collection/categorization (see Table 1). This paper describes the scientific 9	
methodology used to generate the Vulcan v3.0 FFCO2 emissions but should be considered in combination with the 10	
published results for the earlier version 2.0 Vulcan results (Gurney et al., 2009; Zhou et al., 2011) and the Vulcan 11	
version 2.0 documentation (http://vulcan.rc.nau.edu/assets/files/Vulcan.documentation.v2.0.online.pdf).  12	

Uncertainty quantification relies on the characterization of a 95% confidence interval (CI). Due to the considerable 13	
runtime of the Vulcan codebase, only the boundaries of the upper and lower CI are estimated (referred to as “hi” and 14	
“lo” CI bounds). Future versions of the Vulcan data product will quantify the complete uncertainty distribution of 15	
the Vulcan FFCO2 emissions output. 16	

Table 1: Overview of data sources used in generating the space/time-resolved Vulcan v3.0 FFCO2 emissions 17	
(footnotes provide acronym explanations). 18	

Sector/type Emissions Data 
Source 

Original spatial 
resolution/information 

Spatial distribution Temporal 
distribution 

Onroad EMFAC a CO2, EPA NEIb 
onroad CO2 

County, road class, vehicle class FHWA AADTc CCSe 

Electricity 
production 

CAMDf CO2, DOE/EIAg 
fuel, EPA NEI point CO 

Lat/lon, fuel type, technology EPA/EIA NEI Lat/Lon, 
Google Earth  

CAMD, EIA and EPA 

Residential 
nonpoint buildings 

EPA NEI nonpoint CO County, fuel type FEMA HAZUSd, DOE RECS 
NE-EUIh 

eQUESTi model 

Nonroad NEI nonpoint CO County, vehicle class EPA spatial surrogates 
(vehicle class specific) 

EPA temporal 
surrogates (by SCCj) 

Airport EPA NEI point CO Lat/lon, aircraft class Lat/Lon LAWA & OPSNETk 
Commercial 
nonpoint buildings 

EPA NEI nonpoint CO County, fuel FEMA HAZUS, DOE 
CBECS NE-EUIl 

eQUEST model 

Commercial point 
sources 

EPA NEI point CO Lat/lon, fuel type, combustion 
technology 

EPA NEI Lat/Lon, Google 
Earth  

eQUEST model 

Industrial point 
sources 

EPA NEI point CO Lat/Lon, fuel type, combustion 
technology 

EPA NEI Lat/Lon, Google 
Earth  

EPA temporal 
surrogates (by SCC) 

Industrial nonpoint 
buildings 

EPA NEI nonpoint CO County, fuel type FEMA HAZUS, DOE MECS 
NE-EUIm 

eQUEST model 

Commercial 
Marine Vessels 

EPA NEI nonpoint CO County, fuel type, port/underway EPA port and shipping lane 
shapefiles 

Flat time structure 

Railroad EPA NEI nonpoint CO, 
EPA NEI point CO 

County, fuel type, segment EPA NEI rail shapefile and 
density distribution 

Point records: EPA 
temporal surrogates (by 
SCC). Nonpoint: flat 
time structure 

Cement Portland Cement 
Association, USGS 

Lat/lon PCA lat/lon checked in 
Google Earth 

Flat time structure 

a. Emissions Factors Model 19	
b. Environmental Protection Agency, National Emissions Inventory 20	
c. Federal Highway Administration, Annual Average Daily Traffic 21	
d. Federal Emergency Management Agency 22	
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	 5	

e. Continuous Count Stations 1	
f. Clean Air Markets Division 2	
g. Department of Energy/Energy Information Administration 3	
h. Department of Energy Residential Energy Consumption Survey, non-electric energy use intensity 4	
i. Quick Energy Simulation Tool 5	
j. Source Classification Code 6	
k. Los Angeles World Airport, The Operations Network 7	
l. Department of Energy Commercial Energy Consumption Survey, non-electric energy use intensity 8	
m. Department of Energy Manufacturing Energy Consumption Survey, non-electric energy use intensity 9	

2.1.2  Nonpoint sources  10	

The area or nonpoint source emissions (dominated by residential and commercial economic sectoral categories) are 11	
stationary sources that are not inventoried at the individual facility-level and can be thought of as representing 12	
“diffuse” or dispersed sources within a geographic area. Vulcan nonpoint FFCO2 emissions are estimated using a 13	
number of data sources. Foremost among these are the Environmental Protection Agency (EPA) National Emission 14	
Inventory (NEI) nonpoint reporting for carbon monoxide (CO) emissions, version 2 for the year 2011 (USEPA 15	
2015a). The NEI is a comprehensive inventory of all criteria air pollutants (CAPs) and hazardous air pollutants 16	
(HAPs) across the United States (USEPA 2005a). The NEI now includes greenhouse gases for select sectors 17	
(onroad, nonroad). The NEI is a data structure with which the EPA can meet mandates established by the Clean Air 18	
Act (CAA). The CAP emissions, the component of emissions used by the Vulcan system (other than onroad, 19	
nonroad, and electricity production), are collected under the Air Emissions Reporting Rule (40 CFR Part 51) (CFR, 20	
2008). The NEI can be used to track progress, drive air quality modeling, enable emissions trading, and ensure 21	
comprehensive reporting and compliance. 22	

The emissions data within the NEI are collected from state, local, and tribal (SLT) agencies and augmented by 23	
numerous federal data sets such as the Toxics Release Inventory (TRI), the Acid Rain Program (ARP), and the 24	
Federal Highway Administration (FHWA) traffic counts. 25	

The EPA provides recommendations to SLT agencies on how to collect nonpoint source emissions information and 26	
the SLT agencies are given a number of options in forming the basis of the reported information (ERG 2001). The 27	
EPA prefers emissions to be estimated by extrapolating from a sample set of data for the activity to the entire 28	
population, but a number of other approaches are allowed including material balance, mathematical models, and 29	
emission factors (EFs). This means that the method employed will vary by location. The EPA will augment the 30	
submitted data as a result of recognized data gaps, QA/QC procedures, or in consultation with SLT agencies. 31	

The 2011 NEIv2 nonpoint data used in the Vulcan emissions estimation is composed of two core data files. These 32	
data files share common, required key fields. The fundamental nonpoint “unit”, as pertains to the Vulcan 33	
calculations, is a reported combustion process emitting carbon monoxide (CO) identified by a single source 34	
classification code (SCC) in a single US county burning an identified fossil fuel. The numerical SCC (USEPA, 35	
1995) and FIPS values (which identifies the state and county via numerical ID) are critical common IDs. Reporting 36	
associated with fugitive emissions (non-combustion), chemical or “in-process”, or resulting from the combustion of 37	
biogenic fuel sources are removed. An exception to this is the in-process emissions associated with cement 38	
production, however these emissions are generated with different data outlined in a later section. Fuels considered in 39	
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the Vulcan nonpoint FFCO2 estimation along with their thermodynamic heat value, default CO emission factor (EF), 1	
and CO2 EF are provided in Table 2. 2	

Table 2: Heat value, carbon monoxide emission factor, and carbon dioxide emission factor for emission 3	
sources. Square brackets denote instances in which different emission factors are used in application to point 4	
versus nonpoint data. 5	

Sector Fuel 
HV 

(e6btu/unit) Unit 
CO EF 

(lbs/e9btu)ƒ 
CO2 EF 

(tC/e9btu) 
Electricity Production Bituminous Coal 26.50z Tonne 247 25.4 
Electricity Production Subbituminous Coal 19.30z Tonne 344 25.9 
Electricity Production Bituminous/Subbituminous Coal 22.90z Tonne 295 25.9 
Electricity Production Coal 22.90z Tonne 29 25.9 
Electricity Production Anthracite 27.49z Tonne 24 28.2 
Electricity Production Lignite 14.29z Tonne 39 26.2 
Electricity Production Natural Gas 1032.00¶ e6ft3 63 14.5 
Electricity Production Distillate Oil 139.93§ e3gal 36 19.8 
Electricity Production Residual Oil 149.97§ e3gal 33 21.3 
Electricity Production Liquified Petroleum Gas (LPG) 94.00§ e3gal 28 16.9 
Electricity Production Process Gas 1068.57¶ e6ft3 33 15.3 
Electricity Production Coke 30.82§ tonne 21 27.6 
Electricity Production Distillate Oil (Diesel)/Diesel 137.06§ e3gal 929 20.0 
Electricity Production Oil 138.69¶ e3gal 36 19.8 
Electricity Production Jet Fuel 120.19§ e3gal 751 19.2 
Electricity Production Refinery Gas 1068.57¶ e6ft3 33 15.3 
Industrial Bituminous Coal " " 250 25.4 
Industrial Subbituminous Coal " " 343 25.9 
Industrial Bituminous/Subbituminous Coal " " 296 25.9 
Industrial Coal " " 289 25.9 
Industrial Natural Gas " " 81 14.5 
Industrial Anthracite " " 24 28.2 
Industrial Waste Oil 138.69¶ e3gal 14 20.0 
Industrial Distillate Oil " " 36 19.8 
Industrial Residual Oil " " 33 21.3 
Industrial Liquified Petroleum Gas (LPG) [nonpoint/point] " " 85à/36 16.9 
Industrial Coke [nonpoint/point] " " 21/24 27.6 
Industrial Process Gas " " 33/10 15.3 
Industrial Kerosene 134.91§ e3gal 37 19.5 
Industrial Jet Fuel 120.19§ e3gal 54 19.2 
Industrial Gasoline 129.88§ e3gal 60820 19.2 
Industrial distillate oil (no 2) 139.93§ e3gal 36 19.8 
Industrial Distillate Oil (Diesel) “ “ 48 20.0 
Industrial Refinery Gas “ “ 33 15.3 
Industrial jet A fuel 120.19§ e3gal 54 19.2 
Industrial jet naptha 120.19§ e3gal 54 19.7 
Industrial Oil “ “ 36 19.8 
Industrial blast furnace gas 92Õ e6ft3 5554 56.3 
Industrial coke oven gas 574Õ e6ft3 1836 11.1 
Industrial Propane 90.42§ e3gal 35à 17.0 
Commercial Anthracite Coal “ " 240 “ 
Commercial Bituminous Coal “ " 250 “ 
Commercial Subbituminous Coal “ " 343 “ 
Commercial Bituminous/Subbituminous Coal “ " 296 “ 
Commercial Coal “ " 530 “ 
Commercial Natural Gas “ " 81 “ 
Commercial Distillate Oil “ " 36 “ 
Commercial Residual Oil “ " 33 “ 
Commercial Liquified Petroleum Gas (LPG) [nonpoint/point] “ “ 85à/21 “ 
Commercial Kerosene " " 37 “ 
Commercial Diesel [nonpoint/point] 137.06§ e3gal 36à/929 20.0 
Commercial Gasoline “ “ 60820 “ 
Commercial Jet fuel “ “ 19 “ 
Commercial Process gas “ “ 33 “ 
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	 7	

Commercial Propane “ " 21à “ 
Commercial Anthracite culm 27.49z tonne 12 “ 
Residential Bituminous Coal “ " 11441 “ 
Residential Subbituminous Coal “ " 15705 “ 
Residential Bituminous/Subbituminous Coal “ " 13573 “ 
Residential Coal “ " 13238 “ 
Residential Anthracite “ " 11028 “ 
Residential Natural Gas [nonpoint/point] “ " 39à/63 “ 
Residential Distillate Oil “ " 36 “ 
Residential Residual Oil “ " 33 “ 
Residential Liquified Petroleum Gas (LPG) “ " 21 “ 
Residential Kerosene “ " 37 “ 
Residential Propane “ " 21 “ 
Railroad Diesel “ " 428à “ 
Railroad Distillate Oil (diesel) * * 811 “ 
Marine vessels Diesel “ " 428à “ 
Marine vessels Residual Oil “ " 33 “ 
Marine vessels Gasoline “ * 60820 “ 
Nonroad Gasoline “ * 60820 “ 
Nonroad Distillate Oil (diesel) “ * 929 “ 
Nonroad Liquified Petroleum Gas (LPG) “ * 28 “ 

z Average heating value estimated at the state scale using a volume-weighted average. Source: Department of Energy/Energy Information Administration, 1	
Electric Power Monthly, 2011. Form EIA-423, "Monthly Cost and Quality of Fuels for Electric Plants Report;" Federal Energy Regulatory Commission, FERC 2	
Form 423, "Monthly Report of Cost and Quality of Fuels for Electric Plants." 3	

¶ Natural gas heat value is sourced to EPA 2018, Annex 2, Table A-46, page A-76. Petroleum fuels heat values sourced to EPA 2018, Annex 2, Table A-50, page 4	
A-83.  5	

§ Values from Table 3-5, "Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Gas Industry, American Petroleum Institute, February 2005. 6	
There is an updated document and it is API 2009: Table 3-8 on page 3-21. 7	

ƒ All values reported in Gurney et al., (2009) unless specified otherwise. 8	
à Value retrieved from self-reported data (see main text). 9	
Õ http://www.engineeringtoolbox.com/heating-values-fuel-gases-d_823.html 10	

Fossil fuel CO2 emissions are created from NEI-reported county-scale CO reporting through the application of CO 11	
and CO2 emission factors as follows: 12	

 (1) 13	

where , are the CO2 emissions for a process n (e.g. industrial 10 MMBTU boiler, industrial gasoline 14	

reciprocating turbine) and fuel f (e.g. natural gas, bituminous coal);  are the equivalent amount of CO 15	

emissions for a process n and fuel f;  is the CO emission factor for a process n and fuel f; and  is 16	

the CO2 EF for a process n and fuel f. The CO EF is retrieved from two categories of source information: 1) “self-17	
reported” values (supplied by state or federal air quality specialists submitting the CO emissions reporting: 18	
ftp://newftp.epa.gov/air/nei/2011/doc/2011v2_supportingdata/nonpoint/)1 or 2) “default” values generated from a 19	
combination of values retrieved from the EPA WebFIRE EF database (https://cfpub.epa.gov/webfire/) and values 20	
accumulated through literature review (see Table 2 and table footnotes for details). The self-reported CO EF values 21	
are assessed for reliability and replaced by a default value if the self-reported value is less than 0.1 or greater than 5 22	
times the identified default value.  23	

	
1 The file “NonPoint_Activity2011V2.csv” is no longer archived and/or available from the United States Environmental Protection Agency. 

n, f
CO2E = n, f

COE
n, f
COEF n, f

CO2EF ×Ox%

n, f
CO2E

n, f
COE

n, f
COEF n, f

CO2EF
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	 8	

The state total FFCO2 emissions calculated as described above are compared to sector and fuel-specific fuel 1	
consumption totals reported by the Department of Energy/Energy Information Administration (DOE/EIA) State 2	
Energy Data System (DOE/EIA, 2018). The EIA SEDS consumption data are gathered to create a historical time 3	
series of energy production, consumption, prices and expenditures for members of congress, federal and state 4	
agencies and the general public in addition to supporting EIA energy modeling analysis. The consumption in energy 5	
units are converted to FFCO2 using CO2 EFs for each fuel type category (natural gas, petroleum, coal) from values 6	
supplied in Table 2.	Because the EIA SEDS does not separately report nonpoint versus point sources for a given 7	
sector/fuel combination, the sum of the Vulcan nonpoint and point (see next section) FFCO2 emissions are compared 8	
to the EIA/SEDS totals. Adjustment of the Vulcan state/sector/fuel totals are made to the nonpoint residential and 9	
commercial sectors only and for natural gas and petroleum fuel (aggregate) only. This is driven by the understanding 10	
that the survey sampling performed by the EIA SEDS in the industrial sector is more uncertain due to the variety of 11	
fuel consumption circumstances and idiosyncratic contractual arrangements made between utilities/fuel suppliers 12	
and industrial entities. Furthermore, industrial facilities have the capability to “stockpile” fuel, making use of annual 13	
consumption data difficult to interpret without stockpile information. This, and the fact that the coal-based emissions 14	
are small to non-existent in the residential and commercial sectors, is why adjustment is not made for coal fuel 15	
values. The adjustments made to the nonpoint residential and commercial FFCO2 emission amounts are shown in the 16	
supplementary material, Table S1. 17	

Sub-county distribution of the county/sector/fuel-specific FFCO2 emissions to US Census block-groups uses the 18	
total floor area (m2) of buildings (specific to a building class) within each US Census block-group combined with 19	
estimates of energy use intensity (EUI). The general approach follows: 20	

𝑇𝐸#$,&
'( = 𝑇𝐹𝐴#,

'( 	×	𝐸𝑈𝐼#1,&
23 	{𝑛6 → 𝑛8 → 𝑛9}  (2) 21	

where the total emissions, TE, associated with a building of type, n, using fuel, f, in a block-group, bg, is equal to the 22	
product of the total floor area, TFA, and the energy use intensity, EUI, of buildings in a census division, cd. Because 23	
the data sources have somewhat different building type classification schemes, a crosswalk between the various 24	
categories must be achieved. 25	

Building floor area is retrieved from HAZUS General Building Stock data collected and compiled by the Federal 26	
Emergency Management Agency (FEMA, 2017). Using multiple sources including the US Census and the DOE, the 27	
FEMA floor area provides an estimate of the building floor area for each US Census block-group specific to a 28	
classification of building types in the residential, commercial and industrial sectors. The data sources are primarily 29	
reflective of conditions in 2010. 30	

The non-electric energy use intensity (NE-EUI; joules/m2) values are compiled by the DOE from building 31	
consumption energy surveys in different regions of the US. The NE-EUI values were calculated from data in the 32	
DOE/EIA Commercial Buildings Energy Consumption Survey (CBECS, 2016), Manufacturing Energy 33	
Consumption Survey (MECS, 2010), and Residential Energy Consumption Survey (RECS, 2013) microdata which 34	
represent regional (9 US Census Divisions) surveys of building energy consumption categorized by building type, 35	
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	 9	

fuel, and age cohort. The three data sources represent survey conditions in 2012, 2009, and 2010, respectively. A 1	
crosswalk is created linking the FEMA building types to the DOE/EIA building types (supplementary material, 2	
Table S2). For the industrial sector, data is insufficient to support specificity to US Census Division. Hence, the 3	
national average results are used but specific to industrial NAICS category and fuel category.  4	

Where insufficient data existed to support Census Division-specific NE-EUI values in any of the three sectors, an 5	
average was calculated using all other Division/building type/fuel-specific NE-EUI values. 6	

The product of the total building area for a given Census block-group/sector/building type combination and the 7	
sector/building type/fuel NE-EUI values act as a distributional fraction of the county total county/sector/fuel FFCO2 8	
to each Census block-group. Hence this acts to provide a relative distribution of building FFCO2 emission within a 9	
US county only. 10	

The time distribution of the annual FFCO2 emissions for the nonpoint data source uses a building energy model, 11	
eQuest, to generate simulated building energy consumption which, in turn, is used to represent hourly time patterns 12	
(Hirsch & Associates, 2004). The eQuest simulations are based on a series of building prototypes which must be 13	
related to the FEMA building typology (in turn, related to the final Vulcan building types – see Table S2) of the 14	
Vulcan system. This relationship is shown in supplementary material, Table S3. 15	

To capture the local weather/climate conditions, the eQuest model is additionally driven by the 1020 “TMY3 16	
weather station datasets (http://doe2.com/Download/Weather/TMY3/) from the DOE (Marion and Urban, 1995). 17	
The weather statistics reflect the 1991-2005 climatological mean conditions. The resulting simulations are used to 18	
generate hourly fractional energy consumption for each of the weather station locations and for each of the building 19	
types listed in Table S3. The closest weather station location to each of the Census block-group centroids is used to 20	
assign these hourly fractional time series to a given block-group/building type combination. 21	

Uncertainty 22	

Nonpoint source uncertainty is applied to the reported CO emissions, the CO EF, and the CO2 EF. For the reported 23	
CO emissions, an uncertainty value of ±12.8% was used, a value reported by Gately et al. (2017) for the residential 24	
sector (which dominates the nonpoint sources) and based on a state-scale difference between ACES and EIA state 25	
residential fuel consumption. We interpret this as a 95% confidence interval given that this is estimated from a 26	
measure of difference by Gately et al. (2017).  27	

For the EF uncertainty, the CO and CO2 EFs were adjusted in combination such that the outcome achieves the hi and 28	
lo CI, respectively. For example, the upper/lower CI bound for the CO EF was combined with the lower/upper CI 29	
bound for the CO2 EF to achieve the hi/lo FFCO2 emissions output CI bound.  30	

An uncertainty of ±20% is applied to both the default and self-reported CO EFs regardless of fuel type. An 31	
exception to this is for the “blast furnace gas” and “coke oven gas” fuel types in which the adjustment is ±35% 32	
(Table 3). The CO EF adjustment is based on estimates of the range found in the WebFIRE database and the self-33	
reported CO emission factors. The CO2 EF uncertainty for coal is derived from the work of Quick (2010) while 34	
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	 10	

uncertainty for petroleum fuels and natural gas are derived from USEPA Greenhouse Gas Inventory, Annex 2 1	
(USEPA, 2017).  2	

Table 3: Upper and lower confidence interval values for the CO and CO2 emission factors. 3	

Sector Fuel 
CO EF lo/hi 
(lbs/e9btu)ƒ 

CO2 EF lo/hi 
(tC/e9btu) 

Electricity Production Bituminous Coal 296 / 196 24.7 / 26.1 
Electricity Production Subbituminous Coal 413 / 275 25.5 / 26.4 
Electricity Production Bituminous/Subbituminous Coal 354 / 236 25.1 / 26.8 
Electricity Production Coal 34.8 / 23.2 23.8 / 28.0 
Electricity Production Anthracite 28.8 / 19.2 26.3 / 30.0 
Electricity Production Lignite 46.8 / 31.2 25.4 / 27.1 
Electricity Production Natural Gas 75.6 / 50.4 13.8 / 15.2 
Electricity Production Distillate Oil 43.2 / 28.8 19.0 / 20.5 
Electricity Production Residual Oil 39.6 / 26.4 19.2 / 23.4 
Electricity Production Liquified Petroleum Gas (LPG) 33.6 / 22.4 15.9 / 17.9 
Electricity Production Process Gas 39.6 / 26.4 11.3 / 19.3 
Electricity Production Coke 25.2 / 16.8 25.9 / 29.2 
Electricity Production Distillate Oil (Diesel)/Diesel 1114 / 743 19.3 / 20.8 
Electricity Production Oil 43.2 / 28.8 17.8 / 21.8 
Electricity Production Jet Fuel 901 / 601 18.4 / 19.9 
Electricity Production Refinery Gas 39.6 / 26.4 11.3 / 19.3 
Industrial Bituminous Coal 300 / 200 * 
Industrial Subbituminous Coal 412 / 274 * 
Industrial Bituminous/Subbituminous Coal 355 / 237 * 
Industrial Coal 347 / 231 * 
Industrial Natural Gas 97.2 / 64.8 * 
Industrial Anthracite 28.8 / 19.2 * 
Industrial Waste Oil 16.8 / 11.2 18.0 / 22.1 
Industrial Distillate Oil 43.2 / 28.8 * 
Industrial Residual Oil  * 

Industrial Liquified Petroleum Gas (LPG) [nonpoint/point] 
101 / 67.8à  
43.4 / 28.9 * 

Industrial Coke [nonpoint/point] 
25.2 / 16.8 
43.4 / 28.9 * 

Industrial Process Gas 
39.6 / 26.4 
120 / /80.3 * 

Industrial Kerosene 44.4 / 29.6 18.8 / 20.3 
Industrial Jet Fuel 648 / 432 * 
Industrial Gasoline 72984 / 48656 18.3 / 20.0 
Industrial distillate oil (no 2) * 19.0 / 20.5 
Industrial Distillate Oil (Diesel) 57.6 / 38.4 * 
Industrial Refinery Gas 39.6 / 26.4 * 
Industrial jet A fuel 648 / 423 18.4 / 19.9 
Industrial jet naptha 648 / 432 18.9 / 20.5 
Industrial Oil * * 
Industrial blast furnace gas 7498 / 3610 41.5 / 71.0 
Industrial coke oven gas 2479 / 1194 8.18 / 13.9 
Industrial propane 42.5 / 28.3à 16.0 / 18.1 
Commercial Anthracite Coal * * 
Commercial Bituminous Coal 300 / 200 “ 
Commercial Subbituminous Coal 412 / 274 “ 
Commercial Bituminous/Subbituminous Coal 355 / 237 “ 
Commercial Coal 636 / 424 “ 
Commercial Natural Gas 97.2 / 64.8 “ 
Commercial Distillate Oil * “ 
Commercial Residual Oil * “ 

Commercial Liquified Petroleum Gas (LPG) [nonpoint/point] 
102 / 67.8à 
25.5 / 17.0 “ 

Commercial Kerosene * “ 

Commercial Diesel [nonpoint/point] 
43.8 / 29.2à 

111 / 74.3 * 
Commercial Gasoline * “ 
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	 11	

Commercial Jet fuel * “ 
Commercial Process gas * “ 
Commercial Propane 25.2 / 16.8à “ 
Commercial Anthracite culm 14.4 / 9.62 “ 
Residential Bituminous Coal 13729 / 9153 “ 
Residential Subbituminous Coal 18846 / 12564 “ 
Residential Bituminous/Subbituminous Coal 16288 / 10858 “ 
Residential Coal 15886 / 10590 “ 
Residential Anthracite 13234 / 8822 “ 

Residential Natural Gas [nonpoint/point] 
46.5 / 31.0à 
79.6 / 50.4 “ 

Residential Distillate Oil * “ 
Residential Residual Oil * “ 
Residential Liquified Petroleum Gas (LPG) 25.5 / 17.0 “ 
Residential Kerosene * “ 
Residential Propane * “ 
Railroad Diesel 514 / 343à “ 
Railroad Distillate Oil (diesel) 973 / 649 “ 
Marine vessels Diesel 514 / 343à “ 
Marine vessels Residual Oil 39.6 / 26.4 “ 
Marine vessels Gasoline 72984 / 48656 “ 
Nonroad Gasoline 72984 / 48656 “ 
Nonroad Distillate Oil (diesel) 1115 / 743 “ 
Nonroad Liquified Petroleum Gas (LPG) 33.6 / 22.4 “ 

2.1.3 Point data 1	

The point emissions represent facilities with a physically identifiable emission “stack” or point location and exceed 2	
a specific criteria air pollution threshold (USEPA 2015c). The NEI point source data files are primarily comprised of 3	
processes associated with the industrial and airport sectors but emissions from the commercial, railroad, nonroad, 4	
and electricity production sectors are present as well (USEPA 2015a). 5	

A number of key fields that define a point location for the purposes of the Vulcan FFCO2 emissions estimation 6	
within the point database and include the state and county FIPS code, the “state facility identifier” (which identifies 7	
the individual emitting facility) and the tribal code (used in place of the FIPS in tribal lands). Each site or facility 8	
can have multiple emission points (different “stacks”), units (different buildings or portions of a complex facility or 9	
site), or emission processes (e.g. energy production, heaters, engines). Some of the emitting points/units/processes 10	
can have different geocoded locations and these are retained in the Vulcan processing. Hence, exact latitude and 11	
longitude is critical for allocation to the physical US landscape. Corrections to location information were made in 12	
urban domains associated with the Hestia Project : the Los Angeles Basin, Baltimore, Salt Lake City, and 13	
Indianapolis (e.g. Gurney et al., 2018; 2019b). 14	

Each point emission record is also associated with an SCC which is used to retrieve the needed CO and CO2 EFs to 15	
enact the same procedure outlined in the description of the nonpoint source processing. In the case of the point 16	
sources, no self-reported EFs are supplied. Separation is first made between airport point sources (processing of 17	
which is described in a later section) and non-airport point sources. The non-airport point sources are matched to a 18	
CO EF via the SCC from the EPA’s WebFIRE EF database as the first choice for the CO EF. Where no match is 19	
found, default CO EF values are used, themselves archived from literature review (see Table 2) and determined 20	
through a combination of the sector and fuel.  21	
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	 12	

All point source emission records designated as industrial, railroad, and nonroad are distributed to hourly temporal 1	
resolution from the 2011 annual total using SCC-specific temporal surrogate profiles provided by the EPAs 2	
Clearinghouse for Inventories and Emissions Factors (CHIEF) (USEPA, 2015c). The temporal surrogate profiles are 3	
constructed from monthly, weekly and diurnal cycles (data available at: 4	
ftp://newftp.epa.gov/air/emismod/2011/v3platform/ancillary_data/ge_dat_for_2011v3_temporal.zip). These 5	
temporal surrogates are comprised of three cyclic time profiles (diurnal, weekly, monthly) specific to SCC that are 6	
combined to generate hourly SCC-specific time fractions for an entire calendar year. Records which do not have an 7	
SCC match are distributed as a constant hourly emission.  8	

Uncertainty 9	

Point source uncertainty is applied to the reported CO emissions, the CO EF, and the CO2 EF. For the reported CO 10	
emissions, an uncertainty value of ±7.8% is used, a value reported by Gately et al. (2017) for the industrial and 11	
commercial sectors (which dominate the point sources) and based on a state-scale difference between ACES and 12	
EIA state industrial+commercial fuel consumption. We interpret this as a 95% confidence interval given that this is 13	
estimated from a measure of difference by Gately et al. (2017).  14	

For the default EF uncertainty, the CO and CO2 EFs were adjusted in combination in a fashion similar to that 15	
described in the nonpoint source section and the same percentage numerical boundaries described there were used. 16	
For the records that use the WebFIRE CO EFs, an uncertainty value of ±20% is used for the 95% CI bounds. 17	

2.1.4 Electricity Production 18	

Three sources of data are used to estimate the FFCO2 emissions at electricity production facilities, all are geocoded 19	
to a physical location. The first is the Environmental Protection Agency’s Clean Air Markets Division (CAMD) data 20	
(USEPA, 2015b). The second is the Department of Energy’s Energy Information Administration (EIA) reporting 21	
data (DOE/EIA, 2003). The third is the reporting done within the NEI point source reporting (described previously). 22	
Overlap exists between these three data sources (corrected in the processing here) which is corrected according to 23	
the prioritization in the order listed above. A detailed comparison made between the CAMD and EIA FFCO2 24	
emissions along with greater detail regarding data sources, data processing and procedures can be found in Gurney 25	
et al. (2016). 26	

The CAMD data is collected under the Acid Rain Program (ARP), which was instituted in 1990 under Title IV of 27	
the Clean Air Act (CFR 2008; USEPA 2005b; USEPA 2010). Though the CAMD dataset does not include all power 28	
plants in the US, it accounts for a very large proportion. The CAMD data used in Vulcan are reported as hourly CO2 29	
emissions monitored from an emitting stack or through a calculation, based on records of fuel consumption 30	
(ftp://ftp.epa.gov/dmdnload/emissions/hourly/monthly/). The annual reporting is also used for additional information 31	
related to the facility (http://ampd.epa.gov/ampd). 32	

The EIA dataset is derived from the EIA reporting form 923, which reports monthly data on receipts and cost of 33	
fossil fuel, fuel stocks, generation, consumption of fuel for generation, and environmental data at each power plant 34	
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	 13	

(http://www.eia.gov/electricity/data/eia923). Fuel consumption is reported as a heat input value (e.g. british thermal 1	
units). CO2 emission factors are then utilized to calculate the quantity of CO2 emitted. In order to maintain 2	
consistency with the data source, the CO2 emission factors used by the EIA are adopted to estimate the FFCO2 3	
emissions from these facilities (DOE, 2011). 4	

Some manual corrections are performed to the geocoordinates of both the CAMD and EIA electricity production 5	
data, as a result of searching in Google Earth or via alternative online information resources (e.g. utility websites). 6	

A hierarchy was employed given that there was overlap between the two datasets. This was performed at the unit 7	
level given that a single facility might have individual power units reporting to CAMD and another only reporting to 8	
the EIA. Where overlap did exist at this scale, preference was made to retain the CAMD data. Further details and 9	
rationale can be found in Gurney et al. (2016).  10	

The CAMD reporting data is archived at the hourly temporal scale and directly used in Vulcan. The EIA electricity 11	
production reporting is resolved at the monthly scale. This is transformed into hourly reporting using a “flat” time 12	
profile or a constant level such that the monthly integral matches the reported monthly emissions data. The 13	
electricity production facilities reported in the NEI as point sources also use a flat time profile but instead of 14	
distribution over each of the reported months, the emissions are held constant over an entire year. 15	

Table 4 provides a summary of the electricity production data totals for the three data sources. 16	

Table 4: Summary information for 2011 electricity production facilities in Vulcan version 3.0. 17	
Data source Number of facilities Total FFCO2 emissions 

(MtC/year) 
CAMD 1479 592.1 
EIA 2255 40.00 
NEI 11832 8.87 
Total 15566 641.0 

Uncertainty 18	

Gurney et al., (2016) found that one-fifth of US power plants had monthly FFCO2 emission differences exceeding -19	
6.4%/+6.8% for the year 2009 (the closest analyzed year to the 2011 base year presented here). The emissions 20	
distribution of the two datasets were not normally distributed nor were the differences. Hence, a typical gaussian 21	
uncertainty estimate cannot be made – rather, the difference distribution was represented by quintiles of percentage 22	
difference. Hence, these values cannot be cast within the context of other normally-distributed errors. However, we 23	
conservatively consider the quintile value (the positive and negative tails) as a one-sigma value and ±13% as a 95% 24	
CI boundary value. 25	

2.1.5 Onroad 26	

County scale FFCO2 emissions are retrieved from the 2011 EPA NEIv1 onroad results (USEPA, 2011). The 2011 27	
NEI onroad results report emissions for every US county by 13 vehicle types (designating vehicle class and fuel) 28	
and 12 road types, including urban and rural distinctions. It is based on simulations using the Motor Vehicle 29	
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	 14	

Emissions Simulator (MOVES) model with inputs supplied to a county database (CDB) by SLT agencies (USEPA, 1	
2012; USEPA, 2015a). Version 1.0 of the 2011 NEI includes 1,363 CDB submissions out of a total of 3,234 2	
counties. In order to generate results for all counties in the US, the EPA used multiple data and modeling tools to 3	
estimate county-specific FFCO2 emissions including identifying “representative” counties among the data supplied 4	
by SLT agencies to best match those there were not reported.  5	

The state of California did not report FFCO2 to the 2011 NEI. Hence, the Vulcan onroad FFCO2 emissions for 6	
California used the 2011 results from the Emissions FACtors 2014 model (EMFAC2014), produced by the 7	
California Air Resources Board (CARB, 2014). The EMFAC2014 model estimates vehicle miles traveled (VMT) 8	
and FFCO2 emissions for 27 vehicle types (reduced here to 13 via aggregation) using emissions rates 9	
(FFCO2/distance traveled) and data on the California vehicle fleet and activity statistics such as VMT, speed 10	
distributions, and idle times (CARB, 2015). Distribution to sub-state scales uses annual vehicle counts from the 11	
Highway Performance Monitoring System (HPMS). The HPMS is a spatial road network database managed by the 12	
FHWA to monitor and record Average Annual Daily Traffic (AADT) counts (FHWA, 2014). By considering 13	
vehicle registration in combination with the HPMS data, EMFAC also accounts for inter-regional travel.  14	

County-scale FFCO2 emissions for all US states are spatially assigned to road segments via a road basemap that best 15	
represents the entirety of the road surface occupied by onroad vehicles. Vulcan uses a combination of the 2011 16	
Highway Performance Monitoring System (HPMS, 2017) road network and Open Street Map (OSM; 17	
http://download.geofabrik.de/) road network. The Census Urbanized Areas boundary 18	
(https://www.fhwa.dot.gov/policyinformation/hpms/shapefiles.cfm) was used to assign an urban/rural distinction to 19	
each of the 7 original HPMS road classes making them compatible with the onroad NEI road classes (supplementary 20	
material, Table S4). 21	

The distribution of the county-scale road/vehicle-specific FFCO2 emissions along the complete length of road class 22	
in a county, is achieved through the use of the 2011 AADT data from the FHWA’s HPMS 23	
(http://www.fhwa.dot.gov/policyinformation/hpms/shapefiles.cfm; state scale data files were used). AADT counts 24	
are collected using short-term and continuous counting methods. Most data are collected by individual states and 25	
reported to the FHWA, but some data are also collected by the FHWA directly. Very little AADT data was collected 26	
on local roads (urban local, rural local). For those segments in our merged basemap that do not have an AADT 27	
value, gap-filling was used (see supplementary material for details on gap-filling methods).  28	

With a complete US map of AADT values and road segment length, the vehicle miles traveled (VMT) can be 29	
estimated. The fraction of a non-local road class-specific road segment’s VMT within a county acts as the 30	
distribution means to allocate county-scale onroad FFCO2. For local roads, given the paucity of AADT data, the 31	
fraction of a road segment’s length out of all local roads within a county acts as the allocation method. Hence, the 32	
local roads have no spatial gradients along the local roads (at the sub-county scale). However, there are FFCO2 33	
emissions gradients in space that are determined by the spatial density of local roads.  34	

In order to use the spatial distribution methods employed by the Vulcan system and be compatible with the NEI 35	
results for the other US states, the vehicle class/county-specific California onroad FFCO2 emissions must be 36	
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translated to the 6 vehicle classes and 14 road classes (7 of urban and rural sub-types) in the NEI. This is performed 1	
via the use of Federal Highway Administration (FHWA) state-scale VMT data by road class and the proportion of 2	
VMT by vehicle class. Details are provided in the supplementary material.  3	

Carrying out the spatialization procedure across all counties in the United States, it became clear that there were 4	
some mismatches between NEI road class VMT and the AADT on the HPMS road network. For example, there 5	
were instances in which onroad FFCO2 emissions were present in a county for a particular road class, but for which 6	
no AADT data existed and vice-versa. These mismatches could be due to the demarcation of urban versus rural 7	
roads. As noted previously the roads were divided into urban and rural classes based on the US Census Urbanized 8	
Areas. This may differ from the choices made when state officials were generating the county database inputs for the 9	
EPA (if the NEI estimate uses state-supplied data in the MOVES onroad emissions estimate, for example). While 10	
the HPMS AADT data has an urban code, we used the US Census Urbanized Areas to divide a road classes so that 11	
the urban/rural classification would be consistent between the OSM and HPMS basemaps.  12	

In cases where emissions were reported for a road class in NEI, but for which there were no physical roads in our 13	
AADT gap-filled basemap, the emissions reported in NEI were moved to the next closest road class with AADT. 14	
The closest road class is the urban or rural counterpart within the same class-size, and the second-closest being the 15	
road class that is the next class-size down. In cases where AADT was present for a road class, but no NEI FFCO2 16	
emissions were reported for that road class, FFCO2 emissions were redistributed from the next closest road class, 17	
proportional to VMT. For example, if the NEI reports emissions for urban interstates, but VMT was estimated for 18	
both urban and rural interstates, then the NEI reported emissions would be redistributed from urban interstates to 19	
rural interstates proportional to the VMT in each road class.  20	

In the state of California, the EMFAC results were crosswalked from county-scale, vehicle class-specific FFCO2 21	
emissions to totals that include road class. These FFCO2 emissions were distributed onto road segments in the same 22	
manner as done for other states. However, unlike other states, there were no cases in which the EMFAC onroad 23	
FFCO2 emissions needed to be “shuffled” to partner road classes. 24	

Hourly traffic volume data for the years 2011-2013 were obtained from the FHWA Continuous Count Stations 25	
(CCS) dataset (previously known as the Automatic Traffic Recorder; ATR) (Jessberger, 2016). The CCS stations 26	
measure hourly traffic volume at a fixed location in space and we use the station’s latitude and longitude as a unique 27	
station identifier. Corrections were made to the Connecticut station coordinates based on data from the Connecticut 28	
Department of Transportation (http://www.ct.gov/dot/cwp/view.asp?a=1383&q=330402).  29	

For each station, the direction(s) and lane(s) of traffic are recorded but are aggregated to estimate the total traffic 30	
volume moving through a station across all lanes and directions. The result is a single measure of traffic volume per 31	
hour that is traveling through a station in any direction and on any lane with a unique location. Any station with 32	
greater than six months total (either contiguous or not) of missing traffic monitoring data, were removed from the 33	
dataset. This left a total of 5106 traffic volume monitoring stations in the year 2011, 5172 in 2012 and 5527 in 2013. 34	
2011 contained 141 stations that were not present in either 2012 or 2013. 2012 contained 57 stations that were not 35	
present in either 2011 or 2013. 2013 contained 511 stations that were not present in either 2011 or 2012. Each year 36	

https://doi.org/10.5194/essd-2019-154

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 28 November 2019
c© Author(s) 2019. CC BY 4.0 License.



	 16	

of the traffic monitoring data (for which there are no instances of gaps exceeding six months) are gap-filled 1	
individually, maintaining the cyclic integrity of the hour of day and day of the week. Details are provided in the 2	
supplementary material.  3	

After combining the 2011, 2012 and 2013 CCS data into a single average year dataset, there were a total of 6047 4	
CCS measurement locations including Alaska and Hawaii. There are 5890 stations in the Continental US and these 5	
are used for the construction of the temporal profiles.  6	

In order to distribute the temporal distribution measured at the gap-filled CCS measurement stations to all road 7	
segments in the US, interpolation/extrapolation of the traffic patterns is required. Given the paucity of traffic 8	
measurement stations relative to the total area of the US landscape and the fact that the temporal distribution of 9	
traffic is less related to road class than space, it was determined to aggregate the eight road classes to four, 10	
“temporal” road classes for purposes of spatial interpolation. There is evidence that interstates have unique traffic 11	
patterns from all other road classes due to the preponderance of interstate trucking commerce. Furthermore, 12	
interstate usage in cities is a mix of passenger vehicles and commercial trucking while rural interstates are 13	
dominated by commercial trucking. Hence, the road classes chosen for the purposes of temporal interpolation were: 14	
rural interstate, urban interstate, rural non-interstate, and urban non-interstate. Figure 1 shows the CCS measurement 15	
locations aggregated to these four temporal road classes.  16	
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 1	

a)       b) 2	

 3	

c)      d) 4	
Figure 1: Distribution of CCS measurements stations separated into four road classes. a) rural interstate; b) 5	
urban interstate; c) rural non-interstate; d) urban non-interstate. 6	

Inverse Distance Weighted (IDW) interpolation was performed for each of the four temporal road classes separately, 7	
and only for grid cells that are occupied by roads of that road class. The two inputs are the gap-filled CCS traffic 8	
data, and the locations of road segments for each of the four road classes. The IDW used the default number of 9	
neighbors (all neighbors), and the default power function (2), making this an inverse distance squared method.  10	

Uncertainty 11	

The uncertainty in the onroad sector uses the results from Gately et al., (2017) which, in turn, references Gately et 12	
al., (2013) and Mendoza et al., (2013). This uncertainty was estimated at ±7.1% for a presumed 1-sigma uncertainty. 13	
Here, we have assigned ±14.2% to the 95% CI boundaries for all road types.  14	
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2.1.6 Nonroad 1	

The nonroad sector CO2 emissions estimates are retrieved from the 2011 EPA NEIv2 which uses the NONROAD 2	
model to estimate emissions (ftp://ftp.epa.gov/EmisInventory/2011/2011neiv2_nonroad_byregions.zip) across a 3	
large number of mobile sources that travel “off-road” (USEPA, 2015a) except locomotives, airplanes and 4	
commercial marine vessels (CMV) which are taken up in separate sections in this document. The NONROAD 5	
model results, in turn, are based on output from the National Mobile Inventory Model (NMIM) which relies on data 6	
inputs from the National County Data base (NCD) (USEPA 2005c; 2005d). Both the NMIM and the NCD were 7	
described previously (Gurney et al., 2009). The EPA updated data within the NCD from 12 SLT agencies along with 8	
EPA default values to generate the results in the 2011 NEIv2 (for a description of these updates see 9	
ftp://ftp.epa.give/EmisInventory/2011/doc/2011neiv2_supdata_nonroad). 10	

As with the onroad sector, California presents a special case. The CO emissions are reported comprehensively using 11	
California’s OFFROAD model (www.arb.ca.gov/msei/offroad/offroad.htm ) but no CO2 was reported. Hence, we 12	
scaled the California CO emissions by the mean SCC-specific CO2/CO ratio from all other US counties.  13	

Spatial distribution uses the spatial surrogates generated by the EPA reflecting a series of spatial representations 14	
such as the mines, golf course and agricultural land (The shapefiles can be found here: 15	
ftp://ftp.epa.gov/EmisInventory/emiss_shp2003/us/ or 16	
ftp://ftp.epa.gov/EmisInventory/2011v6/v1platform/spatial_surrogates/shapefiles/). There were instances in which 17	
nonroad FFCO2 emissions could not be associated with a spatial entity due to missing data. These emissions are 18	
spatialized by first aggregating all the unassociated sub-county emission elements to the county scale for a given 19	
spatial shape (e.g., golf courses, mines) and then distributing these emissions evenly across the county.  20	

The sub-annual temporal distribution of the nonroad FFCO2 emissions uses SCC-specific temporal surrogate 21	
profiles provided by the EPAs Clearinghouse for Inventories and Emissions Factors (CHIEF) (USEPA, 2015c). The 22	
temporal surrogate profiles are constructed from monthly, weekly and diurnal cycles (data available at: 23	
ftp://newftp.epa.gov/air/emismod/2011/v3platform/ancillary_data/ge_dat_for_2011v3_temporal.zip). 24	

These temporal surrogates are comprised of three cyclic time profiles (diurnal, weekly, monthly) specific to SCC 25	
that are combined to generate hourly SCC-specific time fractions for an entire calendar year. There are 5 SCC codes 26	
present in the NEI 2011 nonroad data file but not found in the temporal surrogate files (2260006035, 2265006035, 27	
2267006035, 2270006035, 2268006035) - these were given a “flat” or constant time profile in the absence of any 28	
specified temporal distribution. 29	

Uncertainty 30	

Nonroad records other than those derived from the point source data files (which follow the point source uncertainty 31	
estimation described in the point source section) are assigned a 95% CI boundary of ±3.8% for the FFCO2 emission 32	
value. This was derived from examination of the range of carbon content and fuel density uncertainties as outlined in 33	
EPA (2017), Annex 2, page A-86. This is consistent with the point source uncertainty for nonroad distillate fuel 34	
consumption.  35	
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2.1.7 Airport 1	

As described in the point source section, the airport FFCO2 emissions are estimated from the 2011 NEI point source 2	
reporting for CO. The emission factors used (Table 5) convert the reported CO emissions to FFCO2 and are specific 3	
to aircraft class and fuel, consistent with the reporting in the NEI which often listed multiple processes (aircraft 4	
class/fuel) for a single airport facility. The fuel type implied by the CO2 EF values uses jet fuel except where 5	
explicitly indicated in the SCC description (NG, LPG, diesel, gasoline). 6	

Table 5: SCC, description, CO EF and CO2 EF values for the airport sources. 7	

SCC description 
CO EF¡ 

(lbs/e6btu) 
CO2 EF 

(tC/e6btu) 
2275060011 Aircraft /Air Taxi /Piston 0.751 0.019 
2275060012 Aircraft /Air Taxi /Turbine 0.751 0.019 
2275070000 Aircraft /Aircraft Auxiliary Power Units /Total 0.5396 0.019 
2268008005 Airport Ground Support Equipment, CNG 0.081 0.014 
2267008005 Airport Ground Support Equipment, LPG 0.085 0.017 
2270008005 Airport Ground Support Equipment, Diesel 0.828 0.020 
2265008005 Airport Ground Support Equipment, 4-Stroke Gasoline 30.34 0.019 
2275020000 Aircraft /Commercial Aircraft /Total: All Types 1.083 0.019 
2275050011 Aircraft /General Aviation /Piston 0.751 0.019 
2275050012 Aircraft /General Aviation /Turbine 0.751 0.019 
2275001000 Aircraft /Military Aircraft /Total 1.083 0.019 
27505011 Aircraft /Civil /Jet Engine: Jet A 1.083 0.019 
27505001 Aircraft /Civil /Piston Engine: Aviation Gas 0.751 0.019 
27502011 Aircraft /Commercial /Jet Engine: Jet A 1.083 0.019 
27501015 Aircraft /Military /Jet Engine: JP-5 1.083 0.019 
2275060011 Aircraft /Air Taxi /Piston 0.751 0.019 

¡ CO emission factors are retrieved from the Intergovernmental Panel on Climate Change Guidelines on National Greenhouse Gas Inventories (IPCC 2006). The 8	
values reflect a 50/50 mixture of new versus old aircraft fleet characteristics in addition to a 67/33 mixture of domestic and interntional flight characteristics. The 9	
emission factors for domestic aviation have been derived from an average of a number of typical aircraft. For domestic aircraft, the average fleet is represented 10	
by Airbus A320, Boeing 727, Boeing 737-400, Mc Donell Douglas DC9 and MD 80 aircraft. The old fleet is represented by Boeing B737 and Mc Donell Douglas 11	
DC9. For international traffic the average fleet is represented by Airbus A300, Boeing 767, B747 and Mc Donell Douglas DC10, whilst the old fleet is represented 12	
by the Boeing B707, Boeing 747 and Mc Donell Douglas DC8.  13	
The airport FFCO2 emissions are only associated with the taxi & takeoff/landing sequences. FFCO2 emissions 14	
associated with non-aircraft processes such as building operations and non-aircraft mobile sources are reported as 15	
emissions in other sectors (e.g. commercial, nonroad). The airports are geocoded to the airport location in the NEI 16	
though some manual adjustments have been made to the original coordinates using manual inspection in Google 17	
Earth. The emission point, in these instances, is placed in the middle of the central runway.  18	

Temporal distribution of the FFCO2 airport emissions use a series of datasets. The Los Angeles World Airports 19	
(LAWA) dataset reports hourly flight volume for three airports in the LA Basin domain: Los Angeles International 20	
airport (LAX), Ontario airport (ONT), and Van Nuys airport (VNY) (Hastings, 2014). The Operations Network 21	
(OPSNET) dataset from the FAA reports total date-specific, daily flight volume (365 values) at specific airports 22	
(https://aspm.faa.gov/opsnet/sys/Default.asp). An hourly time profile was constructed by combining the LAWA 23	
diurnal profile and the OPSNET annual profile. The three LAWA airports constituted the diurnal cycle (Figure 2) at 24	
all US airports with the LAX assigned to international airports, the ONT to non-international airports and the VNY 25	
to local airports.  26	

Airports were matched with a Federal Aviation Administration (FAA) international airport database (FAAINTL) by 27	
airport code to determine whether an airport is international 28	

https://doi.org/10.5194/essd-2019-154

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 28 November 2019
c© Author(s) 2019. CC BY 4.0 License.

The same as the first row

I.e. an assumption... all emissions at the airport and around are assigned to the point source...



	 20	

(https://hub.arcgis.com/datasets/4782d6f5aa844591a16d46df635b7af4_1). Airports which could not be matched to 1	
the OPSNET data by airport code/airport name were assigned a temporal invariant (“flat”) hourly time structure. 2	

 3	
Figure 2: Average hourly flight volume fractions at LAX, VNY and ONT 4	

FAAINTL, OPSNET, and two additional airport databases (the National Airport Atlas (NAA; 5	
https://catalog.data.gov/dataset/airports-of-the-united-states-direct-download) and AIRNAV; www.airnav.com) 6	
were used to determine whether an airport was an airport or a helipad. The name/code of each airport was searched 7	
in these airport databases. An airport which could not be identified in any of the aforementioned airport databases 8	
would be categorized as a helipad. A temporally invariant time structure was applied to all helipads. 9	

A portion of the Vulcan v3.0 CMV FFCO2 emissions would be considered “bunker” fuel combustion (i.e. consumed 10	
as part of international travel) under the IPCC reporting methodology within the UNFCCC process. Vulcan does not 11	
separate bunker from non-bunker fuel consumption and a portion of the airport sector emissions (particularly 12	
international air flights) would be considered as such were the IPCC reporting categorization applied here. No 13	
attempt has been made to limit or seperately report airport emissions that would be considered part of the bunker 14	
fuel definition. 15	

Uncertainty 16	

The uncertainty in the airport sector is derived from the point source processing as described previously (magnitude 17	
and EF-based uncertainty) except that the CO2 EFs are specific to the mix of aviation fuels associated with the 18	
emission records and are based on uncertainty estimation from the USEPA (2017), Annex 2, pages 85 & 89. 19	

2.1.8 Railroad 20	

The FFCO2 emissions associated with railway activity are derived from the 2011 NEIv2 CO emissions reporting 21	
which, in turn, were developed for the 2008 NEI (ERG 2011) and scaled to 2011 values (ERG 2012). Emissions 22	
related to the railroad sector were reported as a mixture of nonpoint and point emissions and hence, these were 23	
managed separately but combined when represented as spatial entities. The CO emissions were converted to FFCO2 24	
following the procedures outlined in the nonpoint and the point sections, respectively. 25	
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The two NEI source categories imply different spatial representations, however. The point source railroad emissions 1	
are associated with rail yards and related geo-specific locales and are placed in space according to the provided 2	
latitude and longitude. The railroad FFCO2 emissions associated with the nonpoint NEI reporting contain an ID 3	
variable that links to a spatial element (rail line segment) in the EPA railroad GIS shapefile 4	
(https://www.epa.gov/sites/production/files/2015-06/railway_20140730.zip). A large number of railroad emission 5	
records have no railroad segment match and are spatialized using freight statistics described in supplementary 6	
material.  7	

The annual railroad FFCO2 emissions are distributed to the hourly timescale with no additional temporal structure (a 8	
“flat” time distribution), unless they originated from point source data for which the SCC-specific time profiles, 9	
previously described, are used.  10	

Uncertainty 11	

The uncertainty for the railroad emissions is directly inherited from the uncertainty estimation described for the 12	
point and nonpoint source processing, respectively. The only difference related to the the CO magnitude uncertainty 13	
(±3.8%) which was derived from examination of the range of carbon content and fuel density uncertainties outlined 14	
in EPA (2017), Annex 2, page A-86 for distillate fuels, the dominant fuel used in railroad. 15	

2.1.9 Commercial Marine Vessels 16	

The FFCO2 emissions associated with commercial marine vessels (CMV) rely on nonpoint NEIv2 CO emissions 17	
reporting and follow the same emission factor-related conversion outlined in the nonpoint source section. CMV 18	
includes vessels directly or indirectly involved in commerce or military activity. The emissions encompass 19	
maneuvering, hoteling, cruise and reduced speed zone travel and are specific to geographically located ports and 20	
shipping lanes that extend 12 nautical miles from the US shoreline. Private or “pleasure” craft are not included as 21	
part of the CMV emissions but are captured in the nonroad reporting. As with the nonroad reporting, the EPA used a 22	
mixture of SLT data submissions and default values, in collaboration with the Office of Transportation and Air 23	
Quality to generate an estimate of CO emissions for CMV. A portion of the Vulcan v3.0 CMV FFCO2 emissions 24	
would be considered “bunker” fuel combustion (i.e. consumed as part of international trade) under the IPCC 25	
reporting methodology within the UNFCCC process. Vulcan does not separate bunker from non-bunker fuel 26	
consumption and a portion of the CMV sector emissions (particularly ship travel directed towards international 27	
waters) would be considered as such were the IPCC reporting categorization applied here. No attempt has been 28	
made to limit or seperately report CMV emissions that would be considered part of the bunker fuel definition. 29	

The spatialization utilized the EPA shapefiles that delineate US ports and US shipping lanes through spatial IDs 30	
associated with the emission records (https://www.epa.gov/sites/production/files/2015-06/ports_20140729.zip; 31	
https://www.epa.gov/sites/production/files/2015-06/shippinglanes_072914.zip). In the instance that no spatial entity 32	
is identified for an emission record, a simple spatial alternative is employed whereby all the unlinked port (or 33	
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“underway”) emissions are summed within a county and evenly distributed to the shapes that are identified within 1	
that county (either ports or shipping lanes). 2	

The CMV sector has no data allowing for the designation of hourly time structure. Hence, the emissions are 3	
temporally invariant over all hours of the year (“flat” distribution). 4	

Uncertainty 5	

The uncertainty of the CMV emissions is directly inherited from the uncertainty estimation described for the point 6	
and nonpoint source processing, respectively. The only difference related to the the CO magnitude uncertainty 7	
(±10.0%) which was derived from examination of the range of carbon content and fuel density uncertainties outlined 8	
in EPA (2017), Annex 2, page A-87 for residual fuels, the dominant fuel used in CMV. 9	

2.1.10 Cement 10	

CO2 is emitted from cement manufacturing as a result of fuel combustion and as process-derived emissions 11	
(Andrew, 2018). The emissions from fuel combustion are captured in the point source reporting. The process-12	
derived CO2 emissions result from the chemical process that converts limestone to calcium oxide and CO2. This 13	
occurs during “clinker” production (clinker is the raw material for cement which is produced by grinding the clinker 14	
material). 15	

Estimation of CO2 emissions from clinker production utilizes two datasets. The first is the data provided by the 16	
Portland Cement Association which provides the annual clinker capacity at individual facilities, postal addresses, 17	
facility name, zip code and contact phone numbers (PCA, 2006). The capacity data reflects conditions for the 18	
calendar year 2006. The other dataset utilized is the Minerals Yearbook produced by the United States Geological 19	
Survey which provides the capacity factor (or percent utilization of capacity) on a statewide or multi-state basis 20	
(some states are quantified individually, others are part of an aggregate) (USGS 2013). The product of capacity and 21	
the capacity factor provides an estimate of clinker production.  22	

Clinker production for 2011 is scaled from the Vulcan version 2.0 (CY 2002) estimate (Gurney et al., 2009) using 23	
the relative annual capacity factor. The CO2 emission factor used in the Vulcan Project is 0.59 metric tonnes 24	
CO2/short ton of clinker produced (IPCC, 2006).  25	

The geolocation for each of the individual facilities was achieved by entering the PCA document’s facility address 26	
into Google Earth and visually inspecting the scene for the primary emitting stack of the cement facility. This 27	
approach succeeded in locating all 105 facilities present in the PCA document. 28	

The EPA estimates cement manufacturing in 2011 to account for 32.2 MtCO2/year (USEPA 2017). These estimates, 29	
in turn, are based upon throughput estimates from the U.S. Geological Survey. Vulcan estimates a total of 34.6 30	
MtCO2/year which compares well with the cement manufacturing estimate from the EPA. 31	

The cement sector has no data allowing for the designation of hourly time structure. Hence, the emissions are evenly 32	
distributed over all hours of the year (a “flat” distribution). 33	
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Uncertainty 1	

The uncertainty in the cement emissions sector is currently prescribed as +/- 10% for the 95% CI. We use a 2	
comparison between the facility-scale sum of clinker production in a state and the USGS state throughput (estimated 3	
from the capacity factor and capacity). The mean percentage difference across all states and multistate aggregates 4	
was 9.8%, which was rounded to 10% and intepreted as a 95% CI value.  5	

2.2 Multiyear estimation 6	

The multiyear (2010-2015) results were achieved using scale factors constructed from the EIA State Energy Data 7	
System (SEDS) database (http://www.eia.gov/state/seds/)..Ratios were constructed relative to the year 2011 in all 8	
SEDS sector/fuel designations for each US state. The crosswalk from the EIA SEDS codes to a sector/fuel 9	
designation is provided in supplementary material, Table S8. 10	

Exceptions to the use of the EIA SEDS database were made for the electricity production, railroad and CMV 11	
multiyear scaling. Electricity production FFCO2 emissions are monitored on an hourly basis for all the output 12	
derived from the CAMD data (92.4% of the total electricity production emissions) and on a monthly basis for all of 13	
the EIA reported data (6.2% of the total electricity production emissions). The remaining NEI reported electricity 14	
production emissions (1.4% of the total electricity production emissions) use the EIA SEDS multiyear ratios. 15	

In the case of the railroad sector, state-scale EIA specific to distillate fuel oil sales to the railroad sector was used 16	
(http://www.eia.gov/dnav/pet/pet_cons_821dsta_a_epd0_val_mgal_a.htm) to construct the year-to-year ratios 17	
relative to 2011. This data is used in generating the results in the EIA SEDS database but is aggregated and thus not 18	
as specific to the railroad sector as needed. Large year-over-year ratio values were found for a few individual years 19	
in low-population states (Nevada, Rhode Island, New Mexico, Hawaii). Values that exceeded 5.0 were replaced by 20	
the year-specific US average ratio. 21	

The procedure for the CMV FFCO2 emissions is similar but combines the EIA data on distillate fuel oil sales for 22	
“vessel bunkering use” (http://www.eia.gov/dnav/pet/pet_cons_821dsta_a_epd0_vab_mgal_a.htm) with residual 23	
fuel oil sales for transportation (http://www.eia.gov/dnav/pet/pet_cons_821rsda_a_eppr_vat_mgal_a.htm). As with 24	
the railroad sector application, large year-over-year ratios were filtered (those exceeding 5.0 were replaced by the 25	
US national average). 26	

The ratio values are applied to the annual totals in each of the sector/fuel categories specific to the state FIPS code to 27	
generate a multiyear time series. 28	

3. Results 29	

Annual sector totals are provided in Table 6 for the 2010-2015 time period. Across all sectors, 2012 is the year with 30	
the least emissions (1529.4 MtC/yr; 95% CI: 1249-1846 MtC/yr). While 2010 was the largest year for total 31	
emissions (1638.2; 95% CI: 1338-1977 MtC/yr), the maximum value was primarily due to large FFCO2 emissions in 32	
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the electricity production sector. The total FFCO2 emissions (plus cement) in 2015, the most recent year in the time 1	
series, were 1543.7 MtC/year (95% CI: 1268, 1857), a decline driven almost entirely by electricity production 2	
FFCO2 emissions. Electricity production is the largest emitting sector in all years, followed by the onroad and 3	
industrial sectors, respectively.  4	

Table 6: Annual sector specific FFCO2 (and cement) emission totals for the United States, 2010-2015, 5	
estimated by Vulcan v3.0. (units: MtC/year) 6	

Sector\Year 2010 2011 2012 2013 2014 2015 
Residential 92.0 89.2 78.5 91.3 95.3 88.0 
Commercial 63.0 62.9 57.1 63.4 66.8 68.5 
Industrial 230.6 228.4 227.2 233.8 237.4 231.4 
Elec Prod 667.3 641.0 604.3 609.0 609.2 574.4 
Onroad 452.0 440.6 436.6 443.1 448.6 452.4 
Nonroad 63.6 62.7 61.8 62.9 64.0 64.6 
Airport 19.8 19.6 20.5 22.3 22.3 21.8 
Rail 11.9 11.9 12.6 13.7 15.1 14.6 
CMV 28.4 23.3 20.9 18.5 16.2 18.1 
Cement 9.5 9.7 9.8 9.8 9.8 9.8 

Total 
1638.2 

(1338, 1977) 
1589.3 

(1299, 1917) 
1529.4 

(1249,1846) 
1567.9 

(1284,1889) 
1584.6 

(1300,1908) 
1543.7 

(1268,1857) 

The order of the 2011 FFCO2 emitting sectors (Figure 3) varies	regionally (US Census Regions) with the electricity 7	
production sector accounting for the largest share in the Midwest (44%) and South (46%) while onroad emissions 8	
account for the largest share in the West (32%) and Northeast (29%). The sum of the commercial and residential 9	
sectors are a larger share of total emissions in the Northeast (22%) than in the other three regions (6%-11%). The 10	
industrial FFCO2 emissions account for the largest industrial share in the West (19%) compared to the other three 11	
regions (13%-14%). Overall, 2011 FFCO2 emissions are largest in the South (652 TgC), followed by the Midwest 12	
(434 TgC), the West (293 TgC) and the Northeast (200 TgC). 13	
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 1	
Figure 3: Sector-specific percentage share of 2011 Vulcan v3.0 FFCO2 emissions for the United States by US 2	
Census Region: a) Northeast; b) Midwest; c) South; d) West. 3	

When examined at the state-scale, the apportioning of the FFCO2 emitting sectors shows a relationship to total 4	
FFCO2 per capita emissions (Figure 4). States with larger per capita emissions tend to be dominated by industrial 5	
and electricity production sector FFCO2 emissions. States with lower per capita total FFCO2 emissions tend to have 6	
lesser industrial and electricity production FFCO2 emissions and a greater share of onroad and 7	
residential/commercial emissions. A few states are notable exceptions to this pattern. For example, the states of 8	
Alaska, Washington, and South Dakota have a relatively large portion of nonroad emissions while Rhode Island and 9	
Washington DC have a relatively large proportion of commercial sector FFCO2 emissions. Tabular results at the 10	
state-scale are provided in supplementary material, Table S9. 11	

Per capita emissions vary across the states, with the largest in the state of Wyoming (38.5 tC/person) and the 12	
smallest in Washington DC (2.11 tC/person) and California (2.81 tC/person). The median total per capita FFCO2 13	
emissions at the county-scale are 3.80 tC/person (see Figure S3 in supplementary material). It is worth noting that 14	
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the population statistics used here define the population as that residing within the state which will influence the 1	
results for Washington DC where there is a large daytime non-resident population. 2	

 3	
Figure 4: Vulcan v3.0 FFCO2 emissions sector share (left y-axis: %) by state and per capita FFCO2 emissions 4	
(right y-axis: tC/person) for year 2011. 5	

The Vulcan FFCO2 emissions are quantified at the sub-national scale according to three general shape types: points 6	
(e.g. electricity production, industrial point reporting), lines (e.g. onroad) and polygons (e.g. nonroad, residential). 7	
For use in atmospheric transport modeling and ease of use in analysis, these results are gridded using a 1km x 1km 8	
regular grid (Figure 5a). The importance of urban areas is clearly demonstrated in the complete US mapped 9	
landscape along with the greater urbanization in the eastern half of the country and along the West coast. Interstates 10	
and other large primary roadways are also evident across the US connecting large population centers. Normalization 11	
by population (Landscan, 2017) offers a dramatically different perspective on U.S. FFCO2 emissions, placing 12	
greater emphasis on the western half of the country (Figure 5b). 13	
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 1	
(a) (b) 2	
Figure 5: Vulcan v3.0 2011 FFCO2 emissions for the United States. a) absolute emissions (1km x 1km 3	
resolution, tC); b) per capita emissions (0.1° x 0.1° resolution, tC; different resolution and projection required 4	
for integration with population data). Copyright Ó National Geographic Society, i-cubed. 5	

A center of mass (CoM) is a useful and compact metric to understand and illustrate the spatial changes in fossil fuel 6	
CO2 emissions over time (Gregg et al., 2009). The CoM summarizes the distribution of emissions in the same way 7	
as the mean summarizes a probability distribution (Asefi et al., 2014). Figure 6 shows both the multiyear and 8	
monthly mean CoM. The multiyear CoM shows a general shift from the East to the West over the six years 9	
examined here with the CoM located in Missouri approximately 70 miles SW of St Louis, MO. The monthly mean 10	
results show a tendency to move along a NE/SW axis with wintertime movement towards the NE driven by greater 11	
heating needs associated with cold/continental conditions. Summertime movement is towards the SW associated 12	
with the rising air-conditioning demand during summer months. The months of May/June/July show movement 13	
towards the SE in May and June, a shift towards the North in July, before resuming the Western shift in August and 14	
September. 15	

The 2011 monthly FFCO2 emissions magnitude exhibits two maxima of roughly equal value over the course of the 16	
year: a winter maximum in the months of December and January and a summer maximum in the months of July and 17	
August. The maxima correspond to the northermost CoM position in the winter and near-southernmost CoM 18	
position in summer which are associated with the demand for heating in the winter, dominated by more northerly 19	
locations, and the demand for cooling in the summer, dominated by more southerly locations.   20	
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 1	

 2	
Figure 6: Vulcan v3.0 FFCO2 emissions center of mass estimate. Red line/symbols denote 2010-2015 annual 3	
time series. Purple line/symbols denote monthly mean FFCO2 emissions. This map was made in ArcMapTM by 4	
Esri using the OpenStreetMap basemap layer (Copyright © Esri, with data from OpenStreetMap 5	
contributers ©). 6	

 7	
Figure 7. Vulcan v3.0 2011 FFCO2 emissions for the United States by month with 95% confidence interval. 8	
Units: TgC/month. 9	
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4. Discussion 1	

The Vulcan approach to quantification of bottom-up granular FFCO2 emissions established a method that has been 2	
since followed by other investigators with useful and instructive variations (e.g. Bun et al., 2019; Gately et al., 3	
2017). Some of the differences are driven by differing national circumstances related to data availability and 4	
collection sources. However, other than the ACES data product, which covers only the NorthEast US domain, there 5	
is no other US-based granular estimate of FFCO2 emissions with which to evaluate the results presented here. As 6	
noted in the introduction, however, numerous global gridded estimates of FFCO2 emissions have been constructed 7	
starting in the 1990s. Currently only the ODIAC estimate is quantified at the same 1km x 1km resolution as found in 8	
Vulcan. Hence, we perform comparison to the ODIAC output over the Vulcan domain in the hope of providing 9	
insight into one or both of the emission estimates. We masked the ODIAC output with a mask that includes all land 10	
surface gridcells and all gridcells offshore for which Vulcan possesses a non-zero emission value. We estimate the 11	
ODIAC emissions to be 1453.7 TgC/year for the year 2011. The same mask applied to Vulcan results in FFCO2 12	
emissions of 1553.8 TgC/yr or a difference of 100.1 MtC/yr (7.6%). We also removed all CMV emissions from 13	
Vulcan due to the fact that the ODIAC 1km x 1km data product does not include any bunker fuels in the emissions. 14	
We make no adjustment to the Vulcan airport emissions, though a portion is also likely in the bunker fuel category. 15	
The inability to precisely isolate the bunker fuel amounts from Vulcan will result in comparison uncertainties but 16	
these are considered small relative to the scale at which the comparison is made.  17	

At the individual gridcell spatial scale, further detail on differences between the two data products can be examined 18	
(Figure 8). Three different relationships appear in the spatial gridcell comparison with an correlation coefficient of 19	
0.69 and a slope of 0.43 (change in ODIAC/change in Vulcan). The first shows good correlation close to the 1:1 line 20	
for large emitting gridcells. These are gridcells dominated by power production facilities and hence, traced to 21	
common regulatory data reporting in the two data products. The second relationship evident in the paired gridcell 22	
comparison shows rough correspondence whereby Vulcan has a larger range of emission values to a narrower 23	
ODIAC range rotated clockwise from the 1:1 line. There is also a well-defined lower threshold of emissions in 24	
ODIAC (~11 tC/yr), likely tied to the threshold associated with low levels of nighttime lighting, a dominant driver 25	
of the ODIAC spatial distribution (Liang et al., 2019). The third discrete relationship is a non-correlated collection 26	
of paired gridcells in the upper range of ODIAC emissions for which the Vulcan counterparts exhibit midrange 27	
emission values. 28	
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 1	
Figure 8. Comparison of log-transformed ODIAC (y-axis) and Vulcan v3.0 (x-axis) FFCO2 emissions (units: 2	
Natural log tC). 3	

When presented explicitly in space, total ODIAC and Vulcan FFCO2 emissions show similar spatial patterns at the 4	
domain-wide scale, characterized by large concentrations in urban centers across the US landscape, particularly 5	
along the Northeastern seaboard and the upper Midwest (Figure 9a, 9c). ODIAC exhibits large numbers of gridcells 6	
in rural areas across the Western U.S. with no emission value, likely due to the lack of a nighttime light signal in 7	
those areas. This is further demonstrated by the emission histogram (Figure 9b, 9d) whereby ODIAC has a distinct 8	
lower cutoff at 11.02 tC/yr (natural log of which is 2.4) compared to Vulcan which has a more continuously 9	
declining low value distribution. The maximum emission frequency bin for ODIAC is centered at 23.3 tC/yr 10	
whereas the equivalent value for Vulcan is 12.8 tC/yr. Vulcan gridcells in these areas have emission values but they 11	
are small in comparison to more populated areas and can be dominated by nonroad emissions which use large spatial 12	
proxies for distribution. In estimating the gridcell-scale relative emissions difference (GRD), these pairs are 13	
excluded. GRD values are high throughout the populated portions of the U.S., particularly in the Eastern half of the 14	
country. There are large spatially continuous areas in which ODIAC emissions exceed Vulcan and vice-versa. Large 15	
differences occur in urban centers, most notably in the Western U.S., with Vulcan often exceeding ODIAC 16	
emissions in the urban core but ODIAC exceeding Vulcan outside of the urban core in these cities. (e.g. Phoenix, 17	
Dallas, Los Angeles, St Louis). 18	
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To provide an average relative difference between the two data products, we calculate the gridcell absolute median 1	
relative difference, GAMRD, the median of a set of individual paired gridcell relative differences, where the 2	
differences are represented in absolute units (i.e. so all GRD values are positive). GAMRD is calculated as, 3	

𝐺𝐴𝑀𝑅𝐷 = 𝑚𝑒𝑑 B
C'DEFG

HIFG
JK

LG
H∓LG

J

1

N (1) 4	

where E represented emissions for the ODIAC (A) and Vulcan (V) for each ith paired gridcell. We only include 5	
gridcell pairs in which neither of the emission values is zero. We find that the GAMRD between the ODIAC and 6	
Vulcan v3.0 FFCO2 emissions at the 1 km x 1 km spatial scale is 80.04%. 7	

 8	
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 1	
Figure 9. Comparison of the ODIAC and Vulcan total FFCO2 emissions as mapped distributions (left) and 2	
frequency histograms (right) for contiguous U.S. only: (a,b) ODIAC total FFCO2 emissions; (c,d) Vulcan total 3	
FFCO2 emissions; (e,f) GRD values ({ODIAC-Vulcan}/Vulcan) (Values larger than 99% and smaller than -4	
99% were excluded from the GRD frequency distribution). 5	

 6	
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The other means by which to assess the Vulcan results is via comparison to recent work using 14CO2 measurements 1	
and an atmospheric inversion approach by Basu et al. (2019). In that study, the mean of the ensemble of atmospheric 2	
CO2 inversion estimates was within 1.4% of the total US Vulcan estimate in the year 2011.  3	

The increased resolution of the Vulcan v3.0 FFCO2 emissions data product (1 km x 1 km) in comparison to the 4	
previous 10 km x 10 km Vulcan v2.0 data product raises the prospect of supplying information that resolves sub-city 5	
spatial scales (e.g. neighborhood) in a comprehensive fashion across the entire U.S. landscape. At this resolution, 6	
most urbanized areas in the U.S. would comprise domains much larger than the 1 km x 1 km resolution and, hence, 7	
have sub-domain information emissions content. In this way, the Vulcan v3.0 FFCO2 emissions data product offers a 8	
scope 1, high-resolution inventory estimate for every urbanized area in the U.S. (Figure 10).  9	

  10	
   a) b) 11	

  12	
   c) d) 13	
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  1	
   e) f) 2	
Figure 10: Vulcan v3.0 FFCO2 emissions for a selected group of U.S. urban areas. a) Washington DC; b) New 3	
York; c) Boston; d) Houston; e) San Francisco; f) Chicago. These maps were made in ArcMapTM by Esri 4	
using the World Imagery basemap layer (Copyright © Esri). 5	

After adopting the US census “urbanized area” boundary definition (https://www.census.gov/programs-6	
surveys/geography/guidance/geo-areas/urban-rural/2010-urban-rural.html), total US FFCO2 emissions within these 7	
urban area boundaries come to 45.1% of the total Vulcan FFCO2 contiguous US emissions in 2011 (709.6 TgC). We 8	
narrow urban emissions to the sum of residential, commercial and onroad in an effort to eliminate emissions sectors 9	
that are often historically artifactual to location within a given urban area (e.g. power plants, industrial facilities) and 10	
hence, less directly related to urban residents and their emitting activities. The sum of these three sectors within the 11	
urbanized area boundary accounts for 65% of the these same three sectors at the national scale, slightly less than the 12	
proportion of the US population within the urbanized area boundary, 73%. This indicates that for the sum of the 13	
residential, commercial and onroad sectors, urban residents emit less per capita than non-urban residents in the 14	
contiguous US.  15	

5 Data availability, policy and future updates 16	

The sector-specific Vulcan v3.0 annual gridded emissions data product can be downloaded from the Oak Ridge 17	
National Laboratory Distributed Active Archive Center (ORNL DAAC) 18	
(https://doi.org/10.3334/ORNLDAAC/1741) and is distributed under Creative Commons Attribution 4.0 19	
International (CC-BY 4.0, https://creativecommons.org/licenses/by/ 4.0/deed.en). The Vulcan v3.0 FFCO2 20	
emissions data product is provided in annual 1 km x 1 km NetCDF file formats, one file for each of the 6 years 21	
(2010-2015). The annual files vary in size (by sector) with the largest individual file being approximately 50 GB. 22	
Separate files are available for Alaska and the contiguous United States (Gurney et al., 2019). 23	

Attempts will be made to update the Vulcan FFCO2 emissions on a roughly bi-annual basis, depending upon support 24	
and the availability of data sources described in this study. 25	
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6 Conclusions 1	

Fossil fuel carbon dioxide (FFCO2) emissions, spanning the years 2010-2015, at a spatial scale of 1km x 1km and an 2	
hourly temporal scale have been completed for the United States under the Vulcan Project. These Vulcan version 3.0 3	
emissions are constructed through a bottom-up approach, gathering and combining data from multiple sources such 4	
as CO emissions reporting, direct flux measurements, and traffic monitoring. We describe the complete Vulcan 5	
version 3.0 methodology here, sector-by-sector in addition to the methods for uncertainty estimation. 6	

We estimate FFCO2 emissions for the year 2011 of 1589.3 TgC with a 95% confidence interval of 1299/1917 TgC 7	
(+18.3%/-20.6%), implying a one-sigma uncertainty of ~ ±10%. The order of the 2011 FFCO2 emitting sectors 8	
shows the electricity production sector accounting for the largest share in the Midwest (44%) and South (46%) while 9	
onroad emissions account for the largest share in the West (32%) and Northeast (29%). Overall, 2011 FFCO2 10	
emissions are largest in the South (652 TgC), followed by the Midwest (434 TgC), the West (293 TgC) and the 11	
Northeast (200 TgC). 12	

We find that per capita FFCO2 emissions are larger in states proportionately dominated by the electricity production 13	
and industrial sectors and smaller in states proportionately dominated by onroad and residential/commercial building 14	
emissions. The center of mass (CoM) of FFCO2 emissions in the US are located in the state of Missouri with mean 15	
seasonality that extends towards the Northeast in the wintertime then moves towards the Southwest in the summer, 16	
likely reflecting the seasonal demand for heating and air-conditioning. Comparison to ODIAC, a global gridded 17	
FFCO2 emissions estimate shows large differences in both total emissions (100.1 TgC for year 2011) and spatial 18	
patterns. The spatial correlation (R2) between the two data products was 0.38 and the mean absolute difference at the 19	
individual gridcell scale was 80.04%.  20	

The Vulcan v3.0 FFCO2 emissions data product offers an immediate high-resolution estimate of emissions in every 21	
city within the U.S., providing a large potential savings of time and effort for cities planning to develop self-reported 22	
city inventories. Research associated with comparison to existing self-reported urban inventories and the addition of 23	
indirect FFCO2 emissions (scope 2 & 3) are underway. 24	
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