Anonymous Referee #1

I appreciate the revision. The authors have addressed most of my concerns. However, I still find a few issues that were not clarified and I listed them below.

Major concern:
Please provide more details of how Q1 and Q99 were calculated? Is Q1 the 1% quantile of the monthly minimum TMP, and is Q99 the 99% quantile of the monthly maximum TMP? Why use the “extreme” value instead of mean monthly minimum/maximum TMP? For the results before Table 4 and Figure 6, are those minimum (maximum) TMPs the Q1 (Q99), or mean monthly minimum (maximum) TMPs?

Response: Many thanks for your queries. Indeed, Q1 is the 1% quantile of the monthly minimum TMP in time series, and Q99 is the 99% quantile of the monthly maximum TMP in time series. In the manuscript, we want to use them to present the extreme minimum and maximum TMP. However, after we see your queries, we think the “Q1” and “Q99” are not suitable for the monthly TMPs, because they are often used in the analysis of the daily TMP.

For a reasonable representation of annual climatology in minimum/maximum TMP in this study, we will use the mean annual minimum and maximum TMPs. Specifically, annual minimum TMP is the minimum value of the monthly minimum TMPs in a year, and annual maximum TMP is the maximum value of the monthly maximum TMPs in a year.

Compared with the mean monthly minimum/maximum TMP in a year, the minimum value of monthly minimum TMPs and the maximum value of monthly maximum TMPs in a year could more represent their annual climatology.

We have recalculated the results of climatology in minimum/maximum TMP and revised the Table 4 and Figures 6-7. The implications of these results are the same as the meaning mentioned in the previous manuscript. According to the new results, we have revised the related contents as following.

Page 8 Lines 27-29 “Specifically, the averaged climatology differences between the 0.5’ downscaled and observed data equaled −0.12 °C for the annual minimum TMP, −0.12 °C for the annual maximum TMP, 0.01 °C for the annual mean TMP, and −0.5 mm for the annual total PRE.”

Page 9 Lines 6-9 “The mean annual minimum TMP for China ranged from −47.44 to 18.70 °C, with an average of −13.19 °C, and the lowest value corresponded to a location in the western part of the Qinghai–Tibet Plateau (Fig. 7a). The mean annual maximum TMP ranged from −17.53 to 42.23 °C, with an average of 26.70 °C, and the highest value was observed at a location in the Turpan Basin (Fig. 7b).”

In addition, the annual trend analysis of minimum/maximum TMP employed the “Q1” and “Q99” in a year for presenting their annual values. We have recalculated the their annual values as above. The results show that the minimum value of monthly minimum TMPs in a year is equal to its “Q1”, and the maximum value of monthly maximum TMPs in a year is equal to its “Q99”. Thus, annual trend analysis results of minimum/maximum TMP are reasonable, and we have clarified the related introduction of how to calculate the annual minimum/maximum TMP in Page 7 Lines 4-7.
“Specifically, the annual minimum TMP was the minimum value of monthly minimum TMPs in a year, the annual maximum TMP was the maximum value of the monthly maximum TMPs in a year, the annual mean TMP was the mean of the monthly mean TMPs in a year, and the annual PRE was the sum of the monthly precipitations in a year.”

Specific comments:
1. There are a few typos of “WordClim”. The authors should check the manuscript carefully before their resubmission.
 Response: Many thanks for your attentions. We have revised the typos in the revision.

2. P1, L23: “the downscaling procedure used data from CRU and WordClim and did not incorporate observations” - I may understand what the authors mean, but this statement is not accurate. First, CRU and WorldClim have already incorporated observations. Second, if their “observations” mean the observations from 496 weather stations, the downscaling procedure itself never uses any of those station observations even for the period 1951-2016. The quality of the new datasets throughout the period 1901-2017 depends on the quality of the CRU and WorldClim datasets.
 Response: Yes, you are right. We have revised this statement in Page 1 Lines 27-31.
 “Although the new dataset was not evaluated before 1950 owing to data unavailability, the quality of the new dataset in the period of 1901–2017 depended on the quality of the original CRU and WorldClim datasets. Therefore, the new dataset was reliable, as the downscaling procedure further improved the quality and spatial resolution of the CRU dataset, and was concluded to be useful for investigations related to climate change across China.”

3. P1, L25: The authors should mention the evaluation of the input data (CRU and WorldClim) at the beginning, then discuss the quality of their downscaling products.
 Response: Thanks for your suggestion. We have revised the Abstract in Page 1.
 “High-spatial-resolution and long-term climate data are highly desirable for understanding climate-related natural processes. China covers a large area with a low density of weather stations in some (e.g., mountainous) regions. This study describes a 0.5’ (~1-km) dataset of monthly air temperatures at 2 m (minimum, maximum, and mean TMPs) and precipitation (PRE) for China in the period of 1901–2017. The dataset was spatially downscaled from the 30’ climatic research unit (CRU) time series dataset with the climatology dataset of WorldClim using Delta spatial downscaling and evaluated using observations collected in 1951–2016 by 496 weather stations across China. Prior to downscaling, we evaluated the performances of the WorldClim data with different spatial resolutions and the 30’ original CRU dataset using the observations, revealing that their qualities were overall satisfactory. Specifically, WorldClim data exhibited better performance at higher spatial resolution, while the 30’ original CRU dataset had low biases and high performances. Bicubic, bilinear, and nearest-neighbor interpolation methods employed in downscaling processes were compared, and bilinear interpolation was found to exhibit the best performance to generate the downscaled dataset. Compared with the evaluations of the 30’ original CRU dataset, the mean absolute error of the new dataset (i.e., of the 0.5’ dataset downscaled by bilinear
interpolation) decreased by 35.4–48.7 % for TMPs and by 25.7 % for PRE, the root-mean-square error decreased by 32.4–44.9 % for TMPs and by 25.8 % for PRE, the Nash–Sutcliffe efficiency coefficients increased by 9.6–13.8 % for TMPs and by 31.6 % for PRE, and correlation coefficients increased by 0.2–0.4 % for TMPs and by 5.0 % for PRE. The new dataset could provide detailed climatology data and annual trends of all climatic variables across China, and the results could be well evaluated using observations at the station. Although the new dataset was not evaluated before 1950 owing to data unavailability, the quality of the new dataset in the period of 1901–2017 depended on the quality of the original CRU and WorldClim datasets. Therefore, the new dataset was reliable, as the downscaling procedure further improved the quality and spatial resolution of the CRU dataset, and was concluded to be useful for investigations related to climate change across China. The dataset presented in this article has been published in the Network Common Data Form (NetCDF) at http://doi.org/10.5281/zenodo.3114194 for precipitation (Peng, 2019a) and http://doi.org/10.5281/zenodo.3185722 for air temperatures at 2 m (Peng, 2019b) and includes 156 NetCDF files compressed in zip format and one user guidance text file.”

4. P6, L10: Evaluation criteria -> Evaluation metrics
Response: Adopted.

5. P6, L20: is n the number of stations, or the number of months? I assume it is about the number of stations, so Pi is the climatology of the original or downscaled values, and Oi is the climatology of observed values? Because the authors mentioned “time series” in the results, this information should be clarified to avoid confusion.
Response: Many thanks for your attentions. This study evaluated the original CRU and downscaled datasets in the time series, and evaluated the WorldClim data in the geographic space. The evaluation presented here is for the original CRU and downscaled datasets. We have revised this section and added the introduction of how to evaluate the WorldClim data in Page 6 Lines 22-28.

“where Pi is the original or downscaled value in the time series, Oi is the observed value in the time series, and n is the number of months. Evaluations of the original CRU and downscaled datasets were carried out at each independent station to be mapped in geographic space, and the obtained results were averaged over all independent stations to compare the overall performances of original CRU and downscaled datasets.

In addition, WorldClim data at different spatial resolutions were evaluated using MAE and Cor indices, which were calculated according to the paired climatology values from WorldClim and observed data for the same geographic position. The sample size was the number of independent stations.”

6. P7, L16: What does “averaged evaluation” mean? Do the authors mean “evaluation of climatology of the downscaled monthly TMPs and PRE averaged over independent weather stations”?
Response: Many thanks for your queries. This section presented the evaluations of downscaled datasets. The evaluations of the downscaled datasets were carried out at each independent station, and then averaged over all independent stations. We have revised this sentence in Page 8 Lines 2-3.

“Table 3 presents the averaged evaluation over independent weather stations, based on the evaluation result at each station for the downscaled monthly TMPs and PRE in the time series (1951–2016) at different spatial resolutions.”

7. P9, L13: time correlation -> temporal correlation
Response: Adopted.

8. Figure 9: add hatching on the trend map to show the significance instead of plotting individual significance maps.
Response: Adopted. We have revised the Figure 9 as following.

Figure 9: Spatial patterns of the annual trends in TMPs and PRE from 1901 to 2017 across China obtained using the 0.5’ downscaled data with bilinear interpolation. (a)–(d) correspond to the annual minimum, maximum, and mean TMPs as well as the annual PRE, respectively. Purple zones indicate locations where trends are significant at the 95% confidence level.

After above revisions, we found a professional English editor to improve the language quality of manuscript.
Anonymous Referee #2

The manuscript by Peng et al presents a valuable monthly climatic dataset across China by downscaling CRU data. This dataset has a high spatial resolution and cover a long time period. The evaluations by comparing this dataset with WorldClim data at different spatial resolution et al have demonstrated that the new dataset is reasonable. The analysis of climatology and annual trend further show that the new dataset could be used for investigations related to climate change across China. Overall, the paper is very well written and the data would be very useful for scientific communities. Here I have some specific suggestions to improve this paper.

Specific Comments

1. In the introduction, it may be useful to mention or introduce ERA5 climate data, which has very high time resolution (hourly data).

Response: Thanks for your suggestion. Although the ERA5 climate data has a very high time resolution, available ERA5 climate data starts from 1979. This study focused on the generation of long term monthly climate data, and thus several > 100 years monthly climate datasets were reviewed in the Introduction section. Accordingly, we insist the original statement for a clear understanding. Based on your suggestion, we will focus on the downscaling of ERA5 climate data to a high spatial resolution in our future work for a generation of high-time and spatial resolution dataset. Again, we appreciate your suggestion very much.

2. P6, 3.2 Evaluation criteria. This part focused on the evaluation of original/downscaled dataset. Authors should present a brief description for the evaluation of WorldClim data.

Response: Thanks for your suggestion. We have added a brief description in Page 6 Lines 26-28.

“In addition, WorldClim data at different spatial resolutions were evaluated using MAE and Cor indices, which were calculated according to the paired climatology values from WorldClim and observed data for the same geographic position. The sample size was the number of independent stations.”

3. P8, L9. Authors introduced the climatic variables for the climatology analysis in the Result section. These introductions should be placed in the Method section.

Response: Thanks for your suggestion. We have added a subsection in the Method to describe how to evaluate the climatology and trends for the downscaled dataset and introduce the related variables in Page 7 Line 1.

“3.3 Evaluations of climatology and trends for the downscaled dataset

We also evaluated the climatology and trends for the 0.5’ downscaled dataset by comparison with the 30’ original CRU and observed datasets. The mean annual value of each climatic variable was used to represent climatology, and the annual trend was employed to indicate temporal variation. Specifically, the annual minimum TMP was the minimum value of monthly minimum TMPs in a year, the annual maximum TMP was the maximum value of the monthly maximum TMPs in a year, the annual mean TMP was the mean of the monthly mean TMPs in a year, and the annual PRE was the sum of the monthly
precipitations in a year. For annual trend analysis, linear regression relationships between climatic variables and year were established to calculate the trend magnitude.”

4. P27, Figure 8. Authors used the 1% and 99% quantiles of monthly temperatures in a year to represent the annual minimum and maximum temperatures. Why didn’t use the minimum (maximum) value of monthly minimum (maximum) temperatures in a year to indicate the annual minimum (maximum) temperature? Although they should be the same values as my experience, I think that the later is more widely used.

Response: Yes, you are right. We recalculated the annual minimum/maximum temperature as your suggestion. The results show that they are the same values in a year. We have revised the related statement for these two variables throughout the text as your suggestion.

5. P28, Figure 9. The significance levels in the right column should be integrated into the trends the left column, using recognizable lines. Besides, in the P9 L16, authors have stated the 95% significance level was adopted for the significance. Thus, only the 95% Significance level in the Figure 9 should be presented.

Response: We have revised Figure 9 as your suggestion. The revised Figure is as following.
Figure 9: Spatial patterns of the annual trends in TMPs and PRE from 1901 to 2017 across China obtained using the 0.5’ downscaled data with bilinear interpolation. (a)–(d) correspond to the annual minimum, maximum, and mean TMPs as well as the annual PRE, respectively. Purple zones indicate locations where trends are significant at the 95 % confidence level.

6. Authors should carefully check the typos, such as “WordClim” in P1 L24 25,
Response: Many thanks for your attention. We have corrected the typos throughout the text.

After above revisions, we found a professional English editor to improve the language quality of manuscript.
1-km monthly temperature and precipitation dataset for China from 1901–2017

Shouzhang Peng¹,², Yongxia Ding³, Wenzhao Liu¹,², Zhi Li³

¹ State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China
² Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China
³ School of Geography and Tourism, Shaanxi Normal University, Xi’an, 710169, China

Correspondence to: Wenzhao Liu (wzliu@ms.iswc.ac.cn); Zhi Li (lizhibox@nwafu.edu.cn); szp@nwafu.edu.cn

Abstract: High-spatial-resolution and long-term climate data are highly desirable for understanding climate-related natural processes. China covers a large area with a low density of weather stations in some (e.g., mountainous) regions, especially in mountainous regions. This study describes a 0.5° (~1-km) dataset of monthly air temperatures at 2 m (minimum, maximum, and mean TMPs) and precipitation (PRE) for China from the period of 1901–2017. The dataset was spatially downscaled from the 30’ climatic research unit (CRU) time series dataset with the climatology dataset of WorldClim by using Delta spatial downscaling and evaluated using observations collected during in 1951–2016 from by 496 weather stations across China. Before the Prior to downscaling, this study we evaluated the performances of the WorldClim data with different spatial resolutions and the 30’ original CRU dataset using the observations, and revealing that their qualities were overall satisfactory. Specifically, the WorldClim data exhibited better performance at higher spatial resolution, while the 30’ original CRU dataset had low biases and high performances. Bicubic, bilinear, and nearest-neighbor interpolation methods employed in the downscaling processes. Moreover, the bicubic, bilinear, and nearest-neighbor interpolation methods were compared in the downscaling processes. Among the three interpolation methods, the bilinear interpolation was found to exhibited the best performance to generate the downscaled dataset. Compared with the evaluations of the 30’ original CRU dataset, the mean absolute error of the new dataset (i.e., of the 0.5’ downscaled dataset downscaled with the bilinear interpolation) relatively decreased by 35.4–48.7% for TMPs and by 25.7–% for PRE, the root-mean-square error relatively decreased by 32.4–44.9% for TMPs and by 25.8% for PRE, the Nash–Sutcliffe efficiency coefficients relatively increased by 9.6–13.8% for TMPs and by 31.6% for PRE, and the correlation coefficients relatively increased by 0.2–0.4% for TMPs and by 5.0% for PRE. Further, the new dataset could provide detailed climatology data and annual trends of each climatic variable across China, and the results could be well evaluated using observations at the station. Although the evaluation of the new dataset was not carried out evaluated before 1950 owing to a lack of data unavailability, the downscaling procedure used data from CRU and WorldClim and did not incorporate observations. Thus, the quality of the new dataset throughout in the period of 1901–2017 depended on the quality of the original CRU and
WorldClim datasets before 1950 mainly depended on that of the CRU and WordClim datasets. Therefore, the new dataset is was reliable, because the evaluations showed that the overall quality of the CRU and WordClim datasets was satisfactory, and the downscaling procedure further improved the quality and spatial resolution of the CRU dataset, and was concluded to be. The new dataset will be useful in for investigations related to climate change across China. The dataset presented in this article has been published in the Network Common Data Form (NetCDF) at http://doi.org/10.5281/zenodo.3114194 for precipitation (Peng, 2019a) and http://doi.org/10.5281/zenodo.3185722 for air temperatures at 2 m (Peng, 2019b). (Peng, 2019b) and The dataset includes 156 NetCDF files compressed with in zip format and one user guidance text file.

1 Introduction

High-spatial-resolution and long-term climate data are required for accurate investigations of changes in climate and climate-related phenomena that affect hydrology, vegetation cover, and crop production (Gao et al., 2018; Caillouet et al., 2019; Peng et al., 2018; Peng and Li, 2018). Although meteorological observation networks are increasingly incorporating data from a greater number of weather stations and contributions from an increasing number of governments and researchers around the world, observation networks still suffer from a low station density and spatial resolution (Caillouet et al., 2019; Peng et al., 2014), especially in mountainous areas (Gao et al., 2018; (Gao et al., 2018), where The installation and maintenance of weather stations in mountainous areas are challenging (Rolland, 2003). Accordingly, several interpolation methods such as inverse distance weighting, kriging methods, and regression analysis are usually used to generate meteorological data for those such ungauged areas (Li et al., 2010; Li et al., 2012; Zhao et al., 2004; Atta-ur-Rahman and Dawood, 2017; Peng et al., 2014). However, as the accuracy of the corresponding results of these interpolation methods depends on station density (Gao et al., 2018; Peng et al., 2014) (Gao et al., 2018; Peng et al., 2014). Therefore, it is necessary one needs to use climatic proxy data to generate long-term and high-spatial-resolution climate data.

Proxy monthly temperature (TMP) and precipitation (PRE) data products are released by several climate research organizations, such as the General Circulation Models (GCMs) of Intergovernmental Panel on Climate Change (Brekke et al., 2013), the Climatic Research Unit (CRU) of the University of East Anglia (Harris et al., 2014), the Global Precipitation Climatology Centre (GPCC) (Becker et al., 2013), and Willmott & Matsuura (W&M) (Matsuura and Willmott, 2015a, b). These products have a long time series (>100 years) and moderate spatial resolution (≥30’). Compared with GCM products, CRU, GPCC, and W&M products ones are generated from the data obtained from observational stations, and thus, they have are more reliable higher reliability. Furthermore, compared with GPCC and W&M products, CRU products include several TMP and PRE variables such as monthly mean TMP, maximum TMP, minimum TMP, and PRE. Therefore, CRU products have therefore been widely employed to investigate climate effects globally (Kannenberg et al., 2019; Lewkowicz and Way, 2019; Bellprat et al., 2019). Although CRU products offer the advantage of reflecting long-term climate effects, their low spatial resolution (30’, approximately 55 km) limits their ability to reflect the effects of complex
topographies, land surface characteristics, and other processes on climate systems (Xu et al., 2017; Peng et al., 2018). This drawback also prevents CRU data from providing realistic and reliable climate change information on fine scales, which is imperative when developing adaptation and mitigation strategies that are suitable for use on local scales (Giorgi et al., 2009; Peng et al., 2019). Therefore, it is necessary to spatially downscale and correct CRU climate data.

Previous studies have shown that the Delta downscaling framework, using low-spatial-resolution monthly time series data and high-spatial-resolution reference climatology data as inputs, performs well in climate data downscaling (Mosier et al., 2014; Peng et al., 2018; Peng et al., 2017; Wang and Chen, 2014; Brekke et al., 2013). This framework uses a low-spatial-resolution monthly time series data and high-spatial-resolution reference climatology data as inputs. The high-spatial-resolution climatology data must be physically representative and have a fine-scale distribution of meteorological variables over the landscape of interest (Mosier et al., 2014; Peng et al., 2017). As a result of incorporating high-spatial-resolution reference climatology data, downscaled results often have higher accuracy compared with that of original data with respect to weather station data, especially monthly mean TMP and PRE (Peng et al., 2018). Thus, the Delta downscaling framework can downscale and correct low-resolution climate data.

China has a large area and includes many mountainous areas. As a result, even the establishment of additional weather stations has not made it possible to fully satisfy the requirements for long-term, high-spatial-resolution climate data, especially at finer geographical scales and for mountainous areas. Furthermore, most weather stations in China were established after 1950, and thus, long-term observational climate data are insufficient (Peng et al., 2018). These shortcomings limit the types of studies that can be conducted on long-term climate change and the effects of climate change at fine geographical scales across China.

The objective of this study was to generate a long-term climate dataset having high spatial resolution for China by downscaling CRU time series data with a high-spatial-resolution reference climatology dataset. The specific generated climate data types included monthly air TMPs at 2 m (mean, maximum, and minimum TMPs) and PRE variables with a spatial resolution of 0.5’ (approximately 1 km) from January 1901 to December 2017. First, the reference climatology data with different spatial resolutions and the 30’ original CRU time series data were evaluated through observations. Second, the 30’ original CRU time series data were spatially downscaled to four spatial resolutions (e.g., 10’, 5’, 2.5’, and 0.5’), corresponding to the spatial resolutions of the reference climatology data by using the Delta downscaling framework. The downscaled data were validated through observations. In addition, the accuracy of the 0.5’ downscaled data was compared with that of the downscaled data with other spatial resolutions, in order to demonstrate the performance of the downscaling framework and 0.5’ downscaled data. Finally, the climatology data and annual trends in TMPs and PRE were investigated using the 30’ original CRU, 0.5’ downscaled, and observed data to demonstrate the performance of the 0.5’ downscaled data.
2 Data

2.1 CRU time series data

The monthly mean, maximum, and minimum air TMPs at 2 m as well as PRE were obtained for January 1901 to December 2017 with a spatial resolution of 30’. These variables were obtained from the CRU TS v. 4.02 dataset (http://www.cru.uea.ac.uk) (Harris et al., 2014). Methodologies used by the CRU group to construct the 30’ time series dataset are similar to the Delta downscaling framework employed herein (see section 3.1). First, more than 5000 weather stations were employed, and each station series was converted to anomalies by subtracting (for temperatures) or dividing (for precipitation) the 1961–1990 normal from the station’s data. Then, the station anomaly time series data were linearly interpolated into 30’ grids covering the global land surface. Finally, the grid anomaly time series data were transformed back to absolute monthly values by using the 30’ reference climatology dataset during 1961–1990. Specifically, the 30’ reference climatology dataset used by the CRU group contained the climatology data for each month and was obtained from New et al. (1999). This climatology data were generated by a function considering the latitude, longitude, and elevation, based on 3615–19800 weather stations located globally. Elevation data used in this climatology dataset had a spatial resolution of 30’, which was a mean result of the global 5’ digital elevation model. Specifically, elevation at each 30’ grid was the mean of 36 grids of the 5’ digital elevation model (New et al., 1999). Therefore, the CRU dataset could represent the orographic effects on climate variation at 30’ spatial resolution. Compared with similar gridded products, the CRU dataset exhibited better performance. In addition, 323 weather stations across China region were employed by the CRU group to generate CRU time series data (Harris et al., 2014) (Fig. 1).

2.2 WorldClim data

To downscale CRU TMPs and PRE time series data to higher spatial resolutions, we obtained four high-resolution reference datasets at spatial resolutions of 10’, 5’, 2.5’, and 0.5’ from WorldClim v. 2.0 (http://worldclim.org) (Fick and Hijmans, 2017). The reference datasets consisted of monthly averages of climatic variables (mean, maximum, and minimum air TMPs at 2 m as well as PRE) for 1970–2000, generated based on 9000–60000 weather stations located globally by using the thin-plate splines interpolation method. Thus, for each climatic variable was associated with 12 climatology layers representing climatology data ranging from January to December. Remarkably, the interpolation considered co-variation with latitude, longitude, elevation, distance to the nearest coast, and three satellite-derived covariates: the maximum and minimum land surface temperature and cloud cover, obtained from the MODIS satellite platform. Thus, these reference data reflected orographic effects and observed climate information for each month. Moreover, cross-validation correlations indicated that these reference data exhibited good performance globally because of the introduction of satellite-derived and distance to the nearest coast covariates. In addition, weather stations over China used in the WorldClim were the same as those used in the CRU group (Fick and Hijmans, 2017) (Fig. 1). Herein, for an independent evaluation of the downscaled dataset in this study, these weather stations were excluded.
2.3 Observations

To evaluate the performance of the downscaling procedure, the observed long-term monthly TMPs (i.e., mean, maximum, minimum air TMPs at 2 m) and PRE variables across China were obtained from the National Meteorological Information Center of China (http://data.cma.cn/en). This dataset included observations from 496 national weather stations (Fig. 1) during 1951–2016. These stations were not considered in the generations of CRU time series and WorldClim data. Figure 2 shows the orographic statistical information (e.g., elevation, slope, and aspect) of China and the 496 independent weather stations. The results indicated that the proportion of independent weather stations in different orographic gradients almost corresponded to that in China, except areas with elevations exceeding 4500 m, which indicated that these weather stations could represent climate variation over China and be used for validating the downscaled dataset. This exception is inevitable because of the observability, installation, and maintenance of weather stations over those areas. In addition, although China had a few weather stations during 1901–1950, all of these stations were used to generate CRU time series data before 1950. Therefore, this study would aimed to evaluate the downscaled dataset during 1951–2016 by using 496 independent and representative stations.

3 Methods

3.1 Spatial downscaling

Delta downscaling was employed to generate monthly TMPs and PRE for the period 1901–2017 at spatial resolutions of 10’, 5’, 2.5’, and 0.5’. The employed Delta downscaling framework used in this study includes the following four steps (Peng et al., 2018).

First, a climatology dataset was constructed for each month and each climatic variable based on 30’ CRU time series. In this step, the annual averages at each month for TMPs (i.e., mean, maximum, and minimum TMPs) and PRE variables were constructed based on CRU TMPs and PRE time series data. Specifically, the constructed climatology dataset had a spatial resolution of 30’, which is the same as the CRU dataset. Moreover, to match the period of high-resolution reference datasets from WorldClim, the 30’ climatology dataset was constructed for the period 1970–2000. Thus, for each climatic variable, the dataset would have featured 12 climatology layers during 1970–2000 with a spatial resolution of 30’.

Second, the 30’ anomaly time series data were derived for each climatic variable based on the 30’ CRU time series data and the constructed climatology dataset. In this step, the TMP anomaly time series data were calculated as the difference between the TMP time series and the TMP climatology data in the corresponding month, while the PRE anomaly time series data were calculated as the ratio of the PRE time series to the PRE climatology data in the corresponding month. The specific calculation equations are introduced as follows:

\[
\text{An_TMP} (yr, m) = \text{TMP} (yr, m) - \text{CRUClim_TMP} (m),
\]

\[
\text{An_PRE} (yr, m) = \frac{\text{PRE} (yr, m)}{\text{CRUClim_PRE} (m)},
\]
where AN_TMP(yr, m) and AN_PRE(yr, m) are the anomaly for temperatures and precipitation, respectively; TMP(yr, m) and PRE(yr, m) are the absolute temperatures and precipitation values, respectively, at m month and yr year; CRUClim_TMP(m) and CRUClim_PRE(m) are the 30’ climatology for temperatures and precipitation, respectively, at m month, and yr correspond to month (January–December) and year, respectively, m ranges from January to December.

Third, the 30’ anomaly time series dataset was spatially interpolated to a higher spatial resolution. In this step, the 30’ anomaly grids at each time step are interpolated to four spatial resolutions (i.e., 10’, 5’, 2.5’, and 0.5’) to match the spatial resolutions of the reference datasets from WorldClim. Specifically, three interpolation methods are employed in this step, including bicubic interpolation, bilinear interpolation, and nearest-neighbor interpolation methods. This study would compare the performances of these methods to select a reasonable interpolation approach.

Finally, the high-spatial-resolution anomaly time series dataset was transformed to an absolute climatic time series dataset based on the reference datasets from WorldClim at the corresponding spatial resolutions. In this step, the anomaly is undone at each time. Therefore, addition is used for TMPs, while multiplication is used for PRE. The specific calculation equations are introduced as follows:

\[
\begin{align*}
\text{TMP}(yr, m, res) &= \text{AN_TMP}(yr, m, res) + \text{WorldClim_TMP}(m, res), \\
\text{PRE}(yr, m, res) &= \text{AN_PRE}(yr, m, res) \times \text{WorldClim_PRE}(m, res),
\end{align*}
\]

where \(m \) and \(yr \) are defined as above; \(res \) represents the spatial resolution, i.e., 10’, 5’, 2.5’, and 0.5’; \(\text{TMP}(yr, m, res) \) and \(\text{PRE}(yr, m, res) \) are the absolute temperatures and precipitation values with a spatial resolution of \(res \), respectively, at m month and yr year; \(\text{AN_TMP}(yr, m, res) \) and \(\text{AN_PRE}(yr, m, res) \) represent anomalies with a spatial resolution of \(res \) for temperatures and precipitation, respectively, at m month and yr year; \(\text{WorldClim_TMP}(m, res) \) and \(\text{WorldClim_PRE}(m, res) \) represent climatology dataset from WorldClim at a spatial resolution of \(res \) for temperatures and precipitation, respectively, at m month.

To visually present the downscaling processes, Figure 3 illustrates the components and steps of the Delta downscaling framework for obtaining the mean TMP by using the CRU 30’ time series and WorldClim 0.5’ climatology dataset. Specifically, to effectively interpolate the 30’ anomaly time series dataset in China and conveniently implement the downscaling processes in the program code, downscaling was carried out in a rectangular region covering China (Fig. 3).

3.2 Evaluation metrics criteria

Four statistic indices were used to evaluate the original CRU and downscaled datasets--namely, the indexes included the Pearson’s correlation coefficient (Cor), the mean absolute error (MAE), the root-mean-square error (RMSE), and the Nash–Sutcliffe efficiency coefficient (NSE). The Cor was used to evaluate the correlation between original/downscaled and observed values--while the MAE and RMSE assessed the bias between original/downscaled and observed values--based on using Eqs. (5) and (6). The NSE was used to evaluate the performance of original and downscaled datasets--based on using Eq. (7)--, ranging from unity (best fit) to negative infinity (worst fit) (Nash and Sutcliffe, 1970).

Finally, the high-spatial-resolution anomaly time series dataset was transformed to an absolute climatic time series dataset based on the reference datasets from WorldClim at the corresponding spatial resolutions. In this step, the anomaly is undone at each time. Therefore, addition is used for TMPs, while multiplication is used for PRE. The specific calculation equations are introduced as follows:

\[
\begin{align*}
\text{TMP}(yr, m, res) &= \text{AN_TMP}(yr, m, res) + \text{WorldClim_TMP}(m, res), \\
\text{PRE}(yr, m, res) &= \text{AN_PRE}(yr, m, res) \times \text{WorldClim_PRE}(m, res),
\end{align*}
\]

where \(m \) and \(yr \) are defined as above; \(res \) represents the spatial resolution, i.e., 10’, 5’, 2.5’, and 0.5’; \(\text{TMP}(yr, m, res) \) and \(\text{PRE}(yr, m, res) \) are the absolute temperatures and precipitation values with a spatial resolution of \(res \), respectively, at m month and yr year; \(\text{AN_TMP}(yr, m, res) \) and \(\text{AN_PRE}(yr, m, res) \) represent anomalies with a spatial resolution of \(res \) for temperatures and precipitation, respectively, at m month and yr year; \(\text{WorldClim_TMP}(m, res) \) and \(\text{WorldClim_PRE}(m, res) \) represent climatology dataset from WorldClim at a spatial resolution of \(res \) for temperatures and precipitation, respectively, at m month.

To visually present the downscaling processes, Figure 3 illustrates the components and steps of the Delta downscaling framework for obtaining the mean TMP by using the CRU 30’ time series and WorldClim 0.5’ climatology dataset. Specifically, to effectively interpolate the 30’ anomaly time series dataset in China and conveniently implement the downscaling processes in the program code, downscaling was carried out in a rectangular region covering China (Fig. 3).

3.2 Evaluation metrics criteria

Four statistic indices were used to evaluate the original CRU and downscaled datasets--namely, the indexes included the Pearson’s correlation coefficient (Cor), the mean absolute error (MAE), the root-mean-square error (RMSE), and the Nash–Sutcliffe efficiency coefficient (NSE). The Cor was used to evaluate the correlation between original/downscaled and observed values--while the MAE and RMSE assessed the bias between original/downscaled and observed values--based on using Eqs. (5) and (6). The NSE was used to evaluate the performance of original and downscaled datasets--based on using Eq. (7)--, ranging from unity (best fit) to negative infinity (worst fit) (Nash and Sutcliffe, 1970).
\[\text{MAE} = \frac{1}{n} \sum_{i=1}^{n} |P_i - O_i|, \]
\[\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (P_i - O_i)^2}, \]
\[\text{NSE} = 1 - \frac{\sum_{i=1}^{n} (P_i - O_i)^2}{\sum_{i=1}^{n} (O_i - \bar{O})^2}, \]

where \(P_i \) is the original or downscaled value in the time series, \(O_i \) is the observed value in the time series, and \(n \) is the number of months records. Evaluations of the original CRU and downscaled datasets were carried out at each independent station to be mapped in geographic space, and the obtained results were averaged over all independent stations to compare the overall performances of original CRU and downscaled datasets.

In addition, WorldClim data at different spatial resolutions were evaluated using MAE and Cor indices, which were calculated according to the paired climatology values from WorldClim and observed data for the same geographic position. The sample size was the number of independent stations.

3.3 Evaluations of climatology and trends for the downscaled dataset

We also evaluated the climatology and trends for the 0.5° downscaled dataset by comparison with the 30° original CRU and observed datasets. The mean annual value of each climatic variable was used to represent climatology, and the annual trend was employed to indicate temporal variation. Specifically, the annual minimum TMP was the minimum value of monthly minimum TMPs in a year, the annual maximum TMP was the maximum value of the monthly maximum TMPs in a year, the annual mean TMP was the mean of the monthly mean TMPs in a year, and the annual PRE was the sum of the monthly precipitations in a year. For annual trend analysis, linear regression relationships between climatic variables and year were established to calculate the trend magnitude.

4 Results

4.1 Evaluation of WorldClim data at different spatial resolutions

This study evaluated the reliability of the WorldClim dataset employed in this study based on observations from independent weather stations. Overall, the monthly climatology data with respect to temperatures and precipitation exhibited a high performance for representing the monthly climatology data over China region during 1970–2000, and the climatology dataset exhibited good performance at a higher spatial resolution. Specifically, the absolute errors of the WorldClim datasets decreased with increasing spatial resolution (Table 1), and the correlations to the observations increased with increasing spatial resolution (Table 2), especially for the 0.5° WorldClim dataset. Thus, the employed WorldClim datasets could be used as an input for the chosen downscaling processes carried out in this study.
4.2 Evaluation of original CRU temperatures and precipitation data

Before–Prior to downscaling, this study evaluated the performance of the original CRU time series dataset employed in this study herein. Table 3 presents the averaged evaluation over independent weather stations, according to the evaluation result at each station for the original monthly TMPs and PRE variables in the time series (1951–2016) based on using independent observations. The results show that (1) the dataset exhibited good performance with respect to for determining the original monthly TMPs and PRE values; (2) the performance of the NSE and Cor indices in for evaluating the values of TMPs was better than that for evaluating the value of PRE. Specifically, the MAEs of the minimum, mean, and maximum TMPs, as well as of PRE, were equaled 1.766 °C, 1.598 °C, 2.034 °C, and 17.85 mm, respectively; the RMSEs of the minimum, mean, and maximum TMPs, as well as of PRE, were equaled 1.947 °C, 1.759 °C, 2.206 °C, and 29.559 mm, respectively; the NSEs of the minimum, mean, and maximum TMPs, as well as of PRE, were equaled 0.887, 0.888, 0.8, and 0.614 respectively; and the Cor’s of the minimum, mean, and maximum TMPs, as well as of PRE, were equaled 0.994, 0.996, 0.995, and 0.885, respectively.

Figure 4 maps the MAEs of the original TMPs and PRE variables at each independent weather station—showing the results show that (1) the original TMPs had larger biases in the northwest of China, especially at high-elevation regions and the Qinghai–Tibet Plateau; and (2) the original PRE had greater biases in the southern part of Qinghai–Tibet Plateau and China.

4.3 Validation of downscaled CRU temperatures and precipitation data

Table 3 presents the averaged evaluation over independent weather stations, based on the evaluation result at each station for the downscaled monthly TMPs and PRE in the time series (1951–2016) at different spatial resolutions. The results show that (1) compared with the original dataset, the downscaled dataset had lower MAEs and RMSEs values and higher NSEs values; (2) the increased increase of the spatial resolution of the WorldClim reference dataset from 10’ to 0.5’ resulted in a decreased decrease in MAE and RMSE values and an increased increase in NSE values; (3) of among the three interpolation methods employed in the Delta downscaling framework, the downscaled data using the bilinear interpolation method afforded downscaled data with had the lowest MAEs and RMSEs as well as values and the highest NSEs values at each spatial resolution; and (4) the performance of the Delta downscaling framework was better for TMPs than for PRE. Specifically, compared with the original dataset, the MAE of the downscaled minimum TMP at 0.5’ under the bilinear interpolation method decreased to 1.05 °C (relative decrement of by 35.4-%), the RMSE decreased to 1.248 °C (relative decrement of by 35.9-%), the NSE increased to 0.972 (relative increment of by 9.6-%), and the Cor increased to 0.998 (relative increment of by 0.4-%). For the mean TMP, the MAE of the downscaled data at 0.5’ under the bilinear interpolation method decreased to 0.820 °C (relative decrement of by 48.7-%), the RMSE decreased to 0.969 °C (relative decrement of by 44.9-%), the NSE increased to 0.981 (relative increment of by 10.5-%), and the Cor increased to 0.998 (relative increment of by 0.2-%). For the maximum TMP, the MAE of the downscaled data at 0.5’ under the bilinear interpolation method decreased to 1.282 °C
(relative decrement of by 37.0-%), the RMSE decreased to 1.491 °C (relative decrement of by 32.4-%), the NSE increased to 0.91 (relative increment of by 13.8-%), and the Cor increased to 0.997 (relative increment of by 0.2-%). For PRE, the MAE of the downscaled data at 0.5° under the bilinear interpolation method relatively decreased by 25.7-%, the RMSE relatively decreased by 25.8-%, the NSE relatively increased by 31.6-%, and the Cor relatively increased by 5.0-%. Overall, the downscaled datasets had higher accuracy than the original CRU dataset, especially for the 0.5° downscaled dataset downscaled with using the bilinear interpolation method, which was, therefore, the new dataset proposed by this study.

Figure 5 maps the relative MAE decrement of MAE upon going from the 30° original dataset to the 0.5° downscaled dataset downscaled with using the bilinear interpolation method. Compared with the MAEs of the original dataset, the MAE of the downscaled dataset were lower in for all independent stations, especially in the northwest of China and the Qinghai–Tibet Plateau.

4.4 Climatology of China based on the 0.5° downscaled dataset

Table 4 lists the averaged climatology data obtained from independent weather stations during 1951–2016, based on the 30° original dataset, the 0.5° downscaled dataset downscaled with bilinear interpolation, and the observations. The annual mean temperature and total precipitation were used to represent the climatology data in terms of mean TMP and PRE, while 1-% and 99-% quantiles (Q1 and Q99) of the monthly minimum and maximum TMPs, respectively, were selected to represent climatology in terms of minimum and maximum TMPs. This is because quantile temperatures are more reliable than absolute minimum and maximum TMPs if an outlier exists. The results indicate that the averaged climatology data for each climatic variable from the 0.5° downscaled data was were closer to that those from the observed data than to those that from the 30° original data. Specifically, the averaged climatology differences between the 0.5° downscaled and observed data were equaled ≈-0.02-12 °C for the Q1 of monthly annual minimum TMP, ≈-0.18-12 °C for the Q99 of monthly annual maximum TMP, 0.01 °C for the annual mean TMP, and ≈-0.5 mm for the annual total PRE.

To further illustrate the ability of the downscaled data to reflect climatology, Figure 6 shows the we constructed box plots of the climatology anomaly–anomaly during 1951–2016 for the 30° original and 0.5° downscaled datasets at independent weather stations, where the climatology anomaly is equal to the bias from the original/downscaled data to the observed values at each station (Fig. 6). The results show that the climatology anomaly from the 0.5° downscaled dataset more intensively embraced the 0-zero value than that from the 30° original dataset, especially for its median and mean values. These results imply that the 0.5° downscaled dataset downscaled with bilinear interpolation could better represent climatology in TMPs and PRE of China than compared with the 30° original dataset.

In addition, we investigated climatology by using the 0.5° downscaled TMPs and PRE data generated by the bilinear interpolation method for 1901 to 2017 (Fig. 7). The value of Q1 of the mean annual minimum TMP for China ranged from ≈-50.1547.44 °C to 17.248.70 °C, with an average of ≈-14713.19 °C, and the lowest value corresponded to a location in the western part of the Qinghai–Tibet Plateau (Fig. 7a). The mean annual value of Q99 of the maximum TMP ranged from ≈-16.37.53 °C to 42.27.23 °C, with an average of 26.88-70 °C, and the highest value was observed at a location in the Turpan
Baseline (Fig. 7b). The mean annual mean TMP ranged from \(-34.41 \degree C\) to 26.39 °C, with an average of 6.18 °C, and the lowest and highest values corresponded to locations in the western part of the Qinghai–Tibet Plateau and the Hainan Island, respectively (Fig. 7c). The mean annual total PRE ranged from 3.2 mm to 4854.0 mm, with an average value of 564.4 mm, and the minimum and maximum values corresponded to locations in the northwestern part of the Qinghai–Tibet Plateau near the Tarim Basin and the Taiwan Island, respectively (Fig. 7d). The climatology data for the three TMPs varied with the topography and notably decreased with orographic uplift. The climatology data for PRE decreased upon going from the southeastern coastal region to the northwestern region. These results almost fit the orographic and coast effects on the climatology of China.

4.5 Trends of the annual temperatures and precipitation in China

Figure 8 maps the annual trends in TMPs and PRE over China during 1951–2016 based on the 0.5’ downscaled dataset with bilinear interpolation, the 30’ original dataset, and the observed dataset. The results show that (1) the annual values of TMPs and PRE in the 0.5’ downscaled dataset were closer to the observations than the original values in the time series; (2) the annual trends from the 0.5’ downscaled dataset were closer to the observed trends than to the trends from the 30’ original data; and (3) the temporal correlations between the 0.5’ downscaled and observed data were slightly better than those between the 30’ original and observed data, although the latter were not sufficiently good. Furthermore, the annual trends in the TMPs in the 0.5’ downscaled dataset were underestimated (by 0.053, 0.048, and 0.06 °C 10 yr\(^{-1}\) for the minimum, maximum, and mean TMPs), while those in the PRE in the 0.5’ downscaled dataset were overestimated (by 0.505 mm 10 yr\(^{-1}\)). Specifically, there were underestimated by 0.053, 0.048, and 0.06 °C 10 yr\(^{-1}\) for the minimum, maximum, and mean TMPs and overestimated by 0.505 mm 10 yr\(^{-1}\) for the PRE. Overall, the 0.5’ downscaled and observed data had minor differences with respect to annual trends and high temporal correlation, and thus, it was concluded that the 0.5’ downscaled dataset can be used to represent temporal variations and trends in TMPs and PRE across China.

In addition, we investigated the spatial patterns of annual trends in TMPs and PRE from 1901 to 2017 across China by using the 0.5’ downscaled dataset downscaled with bilinear interpolation (Fig. 9). A 95% significance level was selected to represent the significance of the trend for each climatic variable. The annual minimum TMP exhibited a significant upward trend, from 0.018 °C 10 yr\(^{-1}\) to 0.240 °C 10 yr\(^{-1}\), with an average of 0.131 °C 10 yr\(^{-1}\), over areas accounting for approximately 94.17% of the total land area of China (Figs. 9a and e). The annual maximum TMP exhibited a significant upward trend, from 0.016 °C 10 yr\(^{-1}\) to 0.171 °C 10 yr\(^{-1}\), with an average of 0.081 °C 10 yr\(^{-1}\), over areas accounting for approximately 80.85% of the total land area of China (Figs. 9b and f). Meanwhile, the annual maximum TMP exhibited a significant downward trend, from 0.019 °C 10 yr\(^{-1}\) to 0.034 °C 10 yr\(^{-1}\), with an average of 0.027 °C 10 yr\(^{-1}\), in areas accounting for only approximately 0.33% of the land area of China (Figs. 9b and f). The annual mean TMP exhibited a significant upward trend, from 0.017 °C 10 yr\(^{-1}\) to 0.189 °C 10 yr\(^{-1}\), with an average of 0.104 °C 10 yr\(^{-1}\), over areas accounting for approximately 90.92% of the total land area of China (Figs. 9c and g). The annual PRE exhibited a significant upward trend, from 0.11 mm 10 yr\(^{-1}\) to 21.206 mm 10 yr\(^{-1}\), with an average of 3.306 mm 10 yr\(^{-1}\), over areas...
accounting for approximately 22.02% of the total land area of China (Figs. 9d and h). Meanwhile, the annual PRE exhibited a significant downward trend, from 0.13 mm 10 yr$^{-1}$ to 30.321 mm 10 yr$^{-1}$, with an average of 7.147 mm 10 yr$^{-1}$, over areas accounting for only approximately 2.01% of China (Figs. 9d and h). Therefore, the 0.5’ downscaled data downscaled with the bilinear interpolation proposed by this study herein was concluded to well represent the detailed spatial variability of the trends in TMPs and PRE across China.

5 Data availability

The 0.5’ downscaled dataset with bilinear interpolation developed in this study has been published in network Network Common Data Form (NetCDF) at http://doi.org/10.5281/zenodo.3114194 for precipitation (Peng, 2019a) and http://doi.org/10.5281/zenodo.3185722 for air temperatures at 2 m (Peng, 2019b). The dataset includes the monthly minimum, maximum, and mean temperatures, as well as the monthly total precipitation from January 1901 to December 2017. Because of the availability of original CRU data and the spatial resolution of the reference climatology data, the data covers most of the land area of China, with a geographic range of 18.2–53.5$^\circ$ N and 73.5–135.0$^\circ$ E. The total number of grids is 13,808,747. To reduce the size of the NetCDF file, the data for each climatic variable are divided into intervals of 3 years. TMPs and PRE are expressed to precisions of 0.1 °C and 0.1 mm, respectively, and they are stored using the int16 format. Thus, each file contains 36 months of data and requires 2.42 GB of storage space. This file size should be convenient for processing by modern computers, and subparagraph storage in the time series can satisfy the needs for quick data access for a specific period. Each file name indicates the data contained in the file, in the format “data type”_“beginning year”_“ending year”.nc. For example, the file named tmn_1901_1903.nc contains minimum temperature data from 1901 to 1903. The total number of NetCDF files is 156, and the disk usage total size of the dataset in nc format is approximately 378 GB. After compression in zip format, the size of each file is approximately 300 MB, and which translates into a total dataset size of all the files occupy a total of 47.8 GB. This dataset will be updated yearly, as because the CRU TS dataset is also updated yearly, and new data will become available for download from the website identified above.

The monthly TMPs and PRE data in the 30’ original dataset from 1901 to 2017 were obtained from the CRU TS v. 4.02 dataset (http://www.cru.uea.ac.uk/data, last access: 25 Apr 2019). The high-resolution reference data at spatial resolutions of 10’, 5’, 2.5’, and 0.5’ for TMPs and PRE were supported by WorldClim v. 2.0 (http://worldclim.org/version2, last access: 25 Apr 2019). The observed monthly meteorological data from the 496 weather stations across China were provided by the National Meteorological Information Center of China (http://data.cma.cn/en, last access: 25 Apr 2019).

6 Discussion, limitations, and recommendations

Although the original CRU dataset with a 30’ spatial resolution was not evaluated as being poor, the 0.5’ downscaled dataset downscaled with bilinear interpolation was evaluated as being better, with deviations decreasing by approximately 35.4%–
48.7\%- for TMPs and **by 25.7\%-** for PRE, relative to the original CRU dataset (Table 3). Thus, the original CRU dataset needs to be corrected. Many factors contribute to these deviations, such as observational errors, sample size, and operator errors in gathering the original CRU data. However, little work has been done to address this issue. Previous studies have indicated that topographic information (e.g., elevation, location, slope, and aspect) may be the key factor in correcting deviations, especially in mountainous areas (Gao et al., 2018; Peng et al., 2014; Gao et al., 2017). Therefore, a high-resolution reference climatology dataset containing detailed topographic information, as well as the effects of distance to the nearest coast and satellite-derived covariates, was used in this study to downscale the 30’ original CRU dataset to a 0.5’ dataset consisting of monthly TMPs and PRE from January 1901 to December 2017 across China, which has a low density of weather stations in mountainous areas. To the best of our knowledge, this 0.5’ downscaled dataset is the first dataset (version 1.0) developed with such a high spatiotemporal resolution over such a long time period for China.

Compared with the original CRU dataset, the downscaled dataset exhibited smaller deviations and higher spatial resolutions, which suggested that the Delta downscaling framework can be used to downscale and correct low-spatial-resolution climate data. This should be attributed to the introduction of the high-spatial-resolution WorldClim data, because the reference climatology dataset with higher spatial resolution could produce more accurate downscaled data with a higher spatial resolution (Tables 1–3). Remarkably, because of the introduction of the averaged 30’ elevation information in the original CRU data, this data weakens the representation of TMPs and PRE in the actual land surface, especially in regions with complex terrain. Moreover, the original CRU dataset was evaluated at weather stations, which are often located in valleys near the counties or cities. Thus, the TMPs and PRE from the CRU dataset exhibited lower and higher values than those from the observations, respectively (Table 4 and Figure 6). However, the deviations were decreased to a certain extent in the 0.5’ downscaled dataset (Table 4 and Figure 6). Even so, the Delta downscaling processes did not considerably improve the temporal correlations between 0.5’ downscaled and observed data (Table 3). This could be attributed to the fact that the Delta downscaling processes focus on correcting deviations and downscaling the spatial resolution, using the 12 climatology layers from the WorldClim dataset. In the geographical space, the corrections are evident, especially in the northwest of China and the Qinghai–Tibet Plateau (Figure 5), which should result from the introduction of orographic effects, distance to the nearest coast, and effects of satellite-derived covariates in the WorldClim dataset.

The 0.5’ downscaled TMP and PRE dataset with bilinear interpolation captures the detailed climatology of the whole of China very well (Fig. 7). It accurately represents climate characteristics such as the minimum TMP at high elevations (e.g., the Qinghai–Tibet Plateau), the maximum TMP at low elevations (e.g., the Turpan Basin), and heavy PRE in marine areas (e.g., the Taiwan Island). The biases of the climatology data were only ± 0.02–$0.12 \degree C$ for the minimum TMP, ± 0.48–$1.12 \degree C$ for the maximum TMP, $0.01 \degree C$ for the mean TMP, and ± 0.5 mm for the PRE (Table 4). Furthermore, the climatology anomaly at each weather station from the 0.5’ downscaled dataset is closer to 0–zero than that from the 30’ original dataset (Fig. 6). The 0.5’ downscaled dataset downscaled with bilinear interpolation also represents detailed annual trends in climatic variables over China very well (Fig. 9). The dataset precisely represents the trends and their...
significance levels over the geographic space, such as significant increasing and decreases ofing trends for the maximum TMP and PRE. In general, compared with the 30’ original dataset, this dataset captures the annual trends very well (Fig. 8); the 0.5’ downscaled and observed data exhibited high temporal time–correlations and minor differences in annual trends (Fig. 8). Therefore, the 0.5’ downscaled dataset downscaled with bilinear interpolation can be used successfully to assess climate change and its spatial effects across China.

As mentioned previously, the accuracy of the reference climatology dataset largely determines the quality of the dataset. In this study, the reference climatology dataset from WorldClim was adopted. Although our evaluation indicated that the quality of the dataset is very good, there is a gap between the dataset and observed data was observed. We think that a new and better reference climatology dataset should be generated using the observed data gathered from across China. However, the current release of public climate data over China is insufficient to construct a better reference climatology dataset better than that available from WorldClim. In our future ongoing research, we plan are devoting efforts to collecting more public and private climate data so that we can to construct a better reference climatology dataset and then generate a more accurate downscaled dataset for China.

Another limitation is the difficulty of validating the new dataset before 1950. Although China had a few several weather stations with data collected starting from 1901, all of them have been used to generate the CRU time series (Harris et al., 2014). Therefore, we cannot verify the quality of data quality before 1950 because of a lack of data unavailability. However, the downscaling procedure only used data from original CRU and WorldClim datasets and did not incorporate the observation as inputs, and thus the quality of the new dataset throughout the period of 1901–2017 depended on the input qualities of the inputs. Before 1950 mainly depends on that of the CRU and WorldClim datasets. Furthermore, the evaluations showed that the overall qualities of the original CRU and WorldClim datasets is are overall satisfactory, and that the downscaling procedure can further improve the quality of the original CRU dataset, as well as enhance its spatial resolution.

The usage of some evaluation indices may have defects and should be clarified in this study. The involved indices used in this study can be classified into two groups: one group based on the sums of squared errors (i.e., RMSE and NSE) and the other group based on the sums of error magnitudes (i.e., MAE). The sums of the squared errors are influenced by three independent variables, namely the mean of individual error magnitudes, variability among error magnitudes, and the number of observations or domain of integration (Willmott et al., 2009). Willmott and Matsuura (2005) recommended MAE as an evaluation criterion for estimations. However, this study adopted the CRU time series dataset as a unique original dataset and the observations from 496 weather stations as a unique evaluation dataset. Thus, the variations in RMSE or NSE at different cases were only influenced by the mean of individual error magnitudes, which were introduced by different spatial resolutions and interpolation methods. Thus, the RMSE and NSE satisfied the evaluation criteria of this study. Further, the evaluation indices were mainly used to compare the performance of the downscaled and original datasets. Therefore, the usage of these indices in this study is reasonable.
In addition, because of the limitations associated with the computational resources and the resolutions of reference climatology and the original CRU dataset, the resolution of the new dataset is limited to monthly and a 0.5’ (~approximately 1–km) grid spacing. However, the current dataset (approximately 378 GB) is huge-very large to process and store. The computational resources and disk usage-space required for the dataset will increase exponentially with increasing the spatial resolution increases (Gao et al., 2018). For such a huge-large amount of data, storage and extraction are not convenient—not convenient, and Supercomputers—supercomputers and as well as parallel computing will be necessary-required for work with larger datasets in the future. Another limitation is that the current dataset only includes historical climate data. Many GCM products have been released, but their coarse spatial resolution and low accuracy prevent detailed projections of future climate trends and their effects on local scales, which are urgently requiredpressing needs for planning local strategies to cope with the negative effects of future climate changes. The Delta spatial downscaling procedure has been employed to generate future climate data at high resolutions for some areas (Peng et al., 2017).

The issues associated with computational resources, validation, and a reasonable reference climatology must be addressed to generate high-resolution climate data for China in the future. Higher-resolution data, more validation, and a better reference climatology for historical and future climate data (version 2.0) will be are concerns to be addressed in future research.

Supplement

Table S1: Statistical characteristics between-of original/downscaled and observed monthly TMPs and PRE in the time series (1951–2016). The values shown here are the standard errors at all independent weather stations.

Competing interests

The authors declare that they have no conflict of interest.

Acknowledgements

This study was jointly supported jointly by the National Natural Science Foundation of China (41601058 & U1703124), the Second Tibetan Plateau Scientific Expedition and Research (SQ2019QZKK2203), and the CAS Light of West China Program (XAB2015B07).

References

Table 1: Mean absolute errors between the observed and WorldClim climatology data at different spatial resolutions over the independent weather stations for the period ranging from 1970 to 2000.

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum 10’</td>
<td>0.726</td>
<td>0.675</td>
<td>0.615</td>
<td>0.533</td>
<td>0.515</td>
<td>0.533</td>
<td>0.789</td>
<td>0.759</td>
<td>0.719</td>
<td>0.639</td>
<td>0.643</td>
<td>0.656</td>
</tr>
<tr>
<td>TMP (°C) 5’</td>
<td>0.653</td>
<td>0.596</td>
<td>0.521</td>
<td>0.467</td>
<td>0.450</td>
<td>0.429</td>
<td>0.660</td>
<td>0.633</td>
<td>0.607</td>
<td>0.523</td>
<td>0.514</td>
<td>0.550</td>
</tr>
<tr>
<td></td>
<td>2.5’</td>
<td>0.632</td>
<td>0.563</td>
<td>0.484</td>
<td>0.433</td>
<td>0.411</td>
<td>0.372</td>
<td>0.602</td>
<td>0.574</td>
<td>0.543</td>
<td>0.459</td>
<td>0.449</td>
</tr>
<tr>
<td></td>
<td>0.5’</td>
<td>0.622</td>
<td>0.549</td>
<td>0.474</td>
<td>0.430</td>
<td>0.408</td>
<td>0.354</td>
<td>0.567</td>
<td>0.541</td>
<td>0.513</td>
<td>0.428</td>
<td>0.420</td>
</tr>
<tr>
<td>Mean 10’</td>
<td>0.450</td>
<td>0.481</td>
<td>0.470</td>
<td>0.482</td>
<td>0.487</td>
<td>0.478</td>
<td>0.455</td>
<td>0.445</td>
<td>0.427</td>
<td>0.425</td>
<td>0.425</td>
<td>0.427</td>
</tr>
<tr>
<td>TMP (°C) 5’</td>
<td>0.401</td>
<td>0.426</td>
<td>0.385</td>
<td>0.390</td>
<td>0.400</td>
<td>0.391</td>
<td>0.379</td>
<td>0.387</td>
<td>0.380</td>
<td>0.367</td>
<td>0.362</td>
<td>0.377</td>
</tr>
<tr>
<td></td>
<td>2.5’</td>
<td>0.365</td>
<td>0.378</td>
<td>0.338</td>
<td>0.332</td>
<td>0.351</td>
<td>0.342</td>
<td>0.338</td>
<td>0.356</td>
<td>0.348</td>
<td>0.333</td>
<td>0.331</td>
</tr>
<tr>
<td></td>
<td>0.5’</td>
<td>0.355</td>
<td>0.366</td>
<td>0.328</td>
<td>0.322</td>
<td>0.337</td>
<td>0.330</td>
<td>0.334</td>
<td>0.351</td>
<td>0.343</td>
<td>0.331</td>
<td>0.324</td>
</tr>
<tr>
<td>Maximum 10’</td>
<td>0.832</td>
<td>0.821</td>
<td>0.809</td>
<td>0.909</td>
<td>0.827</td>
<td>0.678</td>
<td>0.718</td>
<td>0.734</td>
<td>0.644</td>
<td>0.658</td>
<td>0.630</td>
<td>0.687</td>
</tr>
<tr>
<td>TMP (°C) 5’</td>
<td>0.727</td>
<td>0.711</td>
<td>0.666</td>
<td>0.760</td>
<td>0.687</td>
<td>0.560</td>
<td>0.645</td>
<td>0.658</td>
<td>0.568</td>
<td>0.561</td>
<td>0.511</td>
<td>0.576</td>
</tr>
<tr>
<td></td>
<td>2.5’</td>
<td>0.664</td>
<td>0.637</td>
<td>0.591</td>
<td>0.670</td>
<td>0.597</td>
<td>0.485</td>
<td>0.589</td>
<td>0.600</td>
<td>0.531</td>
<td>0.509</td>
<td>0.447</td>
</tr>
<tr>
<td></td>
<td>0.5’</td>
<td>0.631</td>
<td>0.596</td>
<td>0.544</td>
<td>0.611</td>
<td>0.544</td>
<td>0.445</td>
<td>0.574</td>
<td>0.578</td>
<td>0.516</td>
<td>0.484</td>
<td>0.405</td>
</tr>
<tr>
<td></td>
<td>2.5’</td>
<td>2.074</td>
<td>1.813</td>
<td>3.404</td>
<td>4.603</td>
<td>5.594</td>
<td>8.268</td>
<td>9.664</td>
<td>7.705</td>
<td>5.742</td>
<td>3.904</td>
<td>2.182</td>
</tr>
<tr>
<td></td>
<td>0.5’</td>
<td>2.072</td>
<td>1.797</td>
<td>3.360</td>
<td>4.495</td>
<td>5.564</td>
<td>8.190</td>
<td>9.630</td>
<td>7.651</td>
<td>5.699</td>
<td>3.895</td>
<td>2.170</td>
</tr>
</tbody>
</table>
Table 2: Correlation coefficients between the observed and WorldClim climatology datasets at different spatial resolutions over the independent weather stations. The period ranges from 1970 to 2000.

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td></td>
</tr>
<tr>
<td>TMP (°C) 5’</td>
<td>0.987</td>
<td>0.984</td>
<td>0.977</td>
<td>0.969</td>
<td>0.963</td>
<td>0.962</td>
<td>0.955</td>
<td>0.957</td>
<td>0.956</td>
<td>0.971</td>
<td>0.984</td>
<td>0.987</td>
</tr>
<tr>
<td>2.5’</td>
<td>0.989</td>
<td>0.987</td>
<td>0.983</td>
<td>0.977</td>
<td>0.973</td>
<td>0.973</td>
<td>0.964</td>
<td>0.966</td>
<td>0.968</td>
<td>0.980</td>
<td>0.990</td>
<td>0.991</td>
</tr>
<tr>
<td>0.5’</td>
<td>0.989</td>
<td>0.989</td>
<td>0.986</td>
<td>0.983</td>
<td>0.981</td>
<td>0.980</td>
<td>0.972</td>
<td>0.974</td>
<td>0.977</td>
<td>0.988</td>
<td>0.993</td>
<td>0.993</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
</tr>
<tr>
<td>TMP (°C) 5’</td>
<td>0.991</td>
<td>0.986</td>
<td>0.980</td>
<td>0.969</td>
<td>0.962</td>
<td>0.959</td>
<td>0.963</td>
<td>0.965</td>
<td>0.973</td>
<td>0.983</td>
<td>0.989</td>
<td>0.991</td>
</tr>
<tr>
<td>2.5’</td>
<td>0.993</td>
<td>0.990</td>
<td>0.986</td>
<td>0.977</td>
<td>0.970</td>
<td>0.965</td>
<td>0.968</td>
<td>0.970</td>
<td>0.978</td>
<td>0.986</td>
<td>0.992</td>
<td>0.993</td>
</tr>
<tr>
<td>0.5’</td>
<td>0.994</td>
<td>0.992</td>
<td>0.989</td>
<td>0.981</td>
<td>0.973</td>
<td>0.968</td>
<td>0.970</td>
<td>0.972</td>
<td>0.980</td>
<td>0.988</td>
<td>0.993</td>
<td>0.995</td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
</tr>
<tr>
<td>TMP (°C) 5’</td>
<td>0.969</td>
<td>0.961</td>
<td>0.946</td>
<td>0.921</td>
<td>0.912</td>
<td>0.912</td>
<td>0.898</td>
<td>0.896</td>
<td>0.939</td>
<td>0.965</td>
<td>0.978</td>
<td>0.982</td>
</tr>
<tr>
<td>2.5’</td>
<td>0.976</td>
<td>0.971</td>
<td>0.960</td>
<td>0.941</td>
<td>0.930</td>
<td>0.925</td>
<td>0.910</td>
<td>0.909</td>
<td>0.945</td>
<td>0.971</td>
<td>0.984</td>
<td>0.986</td>
</tr>
<tr>
<td>0.5’</td>
<td>0.979</td>
<td>0.976</td>
<td>0.968</td>
<td>0.951</td>
<td>0.940</td>
<td>0.932</td>
<td>0.913</td>
<td>0.912</td>
<td>0.946</td>
<td>0.973</td>
<td>0.988</td>
<td>0.989</td>
</tr>
<tr>
<td>PRE</td>
<td></td>
</tr>
<tr>
<td>(mm) 5’</td>
<td>0.976</td>
<td>0.980</td>
<td>0.978</td>
<td>0.979</td>
<td>0.974</td>
<td>0.961</td>
<td>0.903</td>
<td>0.920</td>
<td>0.941</td>
<td>0.908</td>
<td>0.939</td>
<td>0.965</td>
</tr>
<tr>
<td>2.5’</td>
<td>0.976</td>
<td>0.980</td>
<td>0.979</td>
<td>0.979</td>
<td>0.974</td>
<td>0.961</td>
<td>0.905</td>
<td>0.924</td>
<td>0.943</td>
<td>0.911</td>
<td>0.940</td>
<td>0.966</td>
</tr>
<tr>
<td>0.5’</td>
<td>0.977</td>
<td>0.981</td>
<td>0.980</td>
<td>0.975</td>
<td>0.962</td>
<td>0.909</td>
<td>0.930</td>
<td>0.944</td>
<td>0.914</td>
<td>0.941</td>
<td>0.941</td>
<td>0.968</td>
</tr>
</tbody>
</table>
Table 3: Statistical characterization of ties between original/downscaled and observed monthly TMPs and PRE in the time series (1951–2016). The values shown here are the averaged evaluation results at all independent weather stations. Their standard errors are listed in Table S1.

<table>
<thead>
<tr>
<th>Res</th>
<th>MAE_c</th>
<th>MAE_l</th>
<th>MAE_n</th>
<th>RMSE_c</th>
<th>RMSE_l</th>
<th>RMSE_n</th>
<th>NSE_c</th>
<th>NSE_l</th>
<th>NSE_n</th>
<th>Cor_c</th>
<th>Cor_l</th>
<th>Cor_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>30’</td>
<td>1.766</td>
<td></td>
<td>1.947</td>
<td></td>
<td>0.887</td>
<td></td>
<td></td>
<td></td>
<td>0.994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMP (°C)</td>
<td>10’</td>
<td>1.673</td>
<td>1.513</td>
<td>1.558</td>
<td>1.802</td>
<td>1.726</td>
<td>1.793</td>
<td>0.896</td>
<td>0.902</td>
<td>0.899</td>
<td>0.995</td>
<td>0.995</td>
</tr>
<tr>
<td></td>
<td>5’</td>
<td>1.338</td>
<td>1.292</td>
<td>1.325</td>
<td>1.666</td>
<td>1.503</td>
<td>1.582</td>
<td>0.904</td>
<td>0.937</td>
<td>0.923</td>
<td>0.995</td>
<td>0.995</td>
</tr>
<tr>
<td></td>
<td>2.5’</td>
<td>1.233</td>
<td>1.142</td>
<td>1.211</td>
<td>1.401</td>
<td>1.349</td>
<td>1.384</td>
<td>0.946</td>
<td>0.951</td>
<td>0.949</td>
<td>0.995</td>
<td>0.997</td>
</tr>
<tr>
<td></td>
<td>0.5’</td>
<td>1.140</td>
<td>1.050</td>
<td>1.137</td>
<td>1.322</td>
<td>1.248</td>
<td>1.271</td>
<td>0.955</td>
<td>0.972</td>
<td>0.963</td>
<td>0.997</td>
<td>0.998</td>
</tr>
<tr>
<td>Mean TMP</td>
<td>30’</td>
<td>1.598</td>
<td></td>
<td>1.759</td>
<td></td>
<td>0.888</td>
<td></td>
<td></td>
<td></td>
<td>0.996</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(°C)</td>
<td>10’</td>
<td>1.277</td>
<td>1.140</td>
<td>1.188</td>
<td>1.433</td>
<td>1.293</td>
<td>1.358</td>
<td>0.899</td>
<td>0.914</td>
<td>0.904</td>
<td>0.997</td>
<td>0.997</td>
</tr>
<tr>
<td></td>
<td>5’</td>
<td>1.117</td>
<td>0.980</td>
<td>1.003</td>
<td>1.222</td>
<td>1.133</td>
<td>1.197</td>
<td>0.926</td>
<td>0.950</td>
<td>0.933</td>
<td>0.997</td>
<td>0.997</td>
</tr>
<tr>
<td></td>
<td>2.5’</td>
<td>0.977</td>
<td>0.836</td>
<td>0.859</td>
<td>1.157</td>
<td>0.988</td>
<td>0.993</td>
<td>0.966</td>
<td>0.976</td>
<td>0.973</td>
<td>0.997</td>
<td>0.998</td>
</tr>
<tr>
<td></td>
<td>0.5’</td>
<td>0.826</td>
<td>0.820</td>
<td>0.822</td>
<td>0.974</td>
<td>0.969</td>
<td>0.970</td>
<td>0.977</td>
<td>0.981</td>
<td>0.980</td>
<td>0.998</td>
<td>0.998</td>
</tr>
<tr>
<td>Maximum</td>
<td>30’</td>
<td>2.034</td>
<td></td>
<td>2.206</td>
<td></td>
<td>0.800</td>
<td></td>
<td></td>
<td></td>
<td>0.995</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMP (°C)</td>
<td>10’</td>
<td>1.800</td>
<td>1.672</td>
<td>1.755</td>
<td>2.044</td>
<td>1.886</td>
<td>1.968</td>
<td>0.811</td>
<td>0.832</td>
<td>0.824</td>
<td>0.995</td>
<td>0.996</td>
</tr>
<tr>
<td></td>
<td>5’</td>
<td>1.649</td>
<td>1.487</td>
<td>1.548</td>
<td>1.864</td>
<td>1.700</td>
<td>1.756</td>
<td>0.843</td>
<td>0.856</td>
<td>0.850</td>
<td>0.996</td>
<td>0.996</td>
</tr>
<tr>
<td></td>
<td>2.5’</td>
<td>1.455</td>
<td>1.310</td>
<td>1.387</td>
<td>1.666</td>
<td>1.523</td>
<td>1.632</td>
<td>0.875</td>
<td>0.909</td>
<td>0.887</td>
<td>0.996</td>
<td>0.997</td>
</tr>
<tr>
<td></td>
<td>0.5’</td>
<td>1.296</td>
<td>1.282</td>
<td>1.291</td>
<td>1.511</td>
<td>1.491</td>
<td>1.500</td>
<td>0.909</td>
<td>0.910</td>
<td>0.910</td>
<td>0.997</td>
<td>0.997</td>
</tr>
<tr>
<td>PRE (mm)</td>
<td>30’</td>
<td>17.850</td>
<td></td>
<td>29.559</td>
<td></td>
<td>0.614</td>
<td></td>
<td></td>
<td></td>
<td>0.885</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10’</td>
<td>16.884</td>
<td>16.647</td>
<td>16.741</td>
<td>28.022</td>
<td>27.559</td>
<td>27.946</td>
<td>0.675</td>
<td>0.735</td>
<td>0.700</td>
<td>0.887</td>
<td>0.890</td>
</tr>
<tr>
<td></td>
<td>5’</td>
<td>16.134</td>
<td>15.223</td>
<td>15.942</td>
<td>26.222</td>
<td>25.185</td>
<td>25.888</td>
<td>0.764</td>
<td>0.791</td>
<td>0.773</td>
<td>0.892</td>
<td>0.900</td>
</tr>
<tr>
<td></td>
<td>2.5’</td>
<td>14.867</td>
<td>14.024</td>
<td>14.557</td>
<td>24.374</td>
<td>23.191</td>
<td>23.867</td>
<td>0.791</td>
<td>0.792</td>
<td>0.791</td>
<td>0.914</td>
<td>0.920</td>
</tr>
<tr>
<td></td>
<td>0.5’</td>
<td>13.772</td>
<td>13.269</td>
<td>13.443</td>
<td>22.655</td>
<td>21.941</td>
<td>22.213</td>
<td>0.794</td>
<td>0.808</td>
<td>0.802</td>
<td>0.920</td>
<td>0.929</td>
</tr>
</tbody>
</table>

Notes: Res indicates the spatial resolution. The subscripts c, l, and n indicate bicubic, bilinear, and nearest-neighbor interpolations, respectively. The original TMPs and PRE are the 30’ CRU data and are directly compared with the observed data. Evaluations at 10’, 5’, 2.5’, and 0.5’ are the evaluations for the downscaled datasets. MAE, RMSE, NSE, and Cor indicate the mean absolute error, root-mean-square error, Nash–Sutcliffe efficiency coefficient, and correlation coefficient, respectively.
Table 4: Comparison of the averaged climatology among the independent weather stations during 1951–2016, based on the 30’ original datasets, the 0.5’ downscaled datasets downscaled with the bilinear interpolation, and the observations.

<table>
<thead>
<tr>
<th></th>
<th>Monthly minimum TMP (°C)</th>
<th>Annual maximum TMP (°C)</th>
<th>Monthly maximum TMP (°C)</th>
<th>Annual mean TMP (°C)</th>
<th>Annual total PRE (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30’</td>
<td>–8.269 ± 0.451</td>
<td>29.558 ± 0.1822</td>
<td>29.448 ± 0.409</td>
<td>11.41 ± 0.30</td>
<td>898.4 ± 22.3</td>
</tr>
<tr>
<td>0.5’</td>
<td>–7.448 ± 0.409</td>
<td>29.434 ± 0.169</td>
<td>29.342 ± 0.169</td>
<td>12.13 ± 0.28</td>
<td>879.7 ± 22.8</td>
</tr>
<tr>
<td>Observation</td>
<td>–7.327 ± 0.451</td>
<td>29.451 ± 0.169</td>
<td>29.431 ± 0.169</td>
<td>12.12 ± 0.28</td>
<td>880.2 ± 23.2</td>
</tr>
</tbody>
</table>

Notes: Monthly minimum and maximum TMPs are 1% and 99% quantile values, respectively, based on monthly time series data. Annual total PRE and mean TMP values were calculated for full years. All values are presented as mean ± standard error.
Figure 1: Spatial distribution of national weather stations across China.

- Stations for producing the CRU TS and WorldClim data (323)
- Stations for validating the downscaled results in this study (496)
Figure 2: Orographic statistical information at different gradients for China and weather stations used in this study.
Figure 3: Schematic illustration of the Delta spatial downscaling process by using the mean TMP (TMP_m) in July 2017 obtained from the CRU data as an example.
Figure 4: Spatial distribution of MAEs between the 30' original and observed TMPs/PRE from 1951–2016 at each independent weather station. (a), (b), (c), and (d) are the MAE values for the monthly minimum, mean, and maximum temperatures as well as the monthly precipitation, respectively.
Figure 5: Relative decrement in MAEs from the 30’ original datasets to 0.5’ downscaled datasets generated using bilinear interpolation at each independent weather station. (a), (b), (c), and (d) are the relative decrements in MAE for the monthly minimum, mean, and maximum temperatures as well as monthly precipitation, respectively.
Figure 6: Box plots of climatology anomaly during 1951–2016 for 30’ original and 0.5’ downscaled datasets at independent weather stations. The climatology anomaly is equal to the bias from the original/downscaled to the observed values. The Red lines in the boxes show the median values. Boxes indicate the inner-quantile range (25–75%). The Crosses (×) in the boxes indicate the averaged values of all the anomaly values. The Horizontal dotted lines indicate the zero lines. The An_original and An_downscale indicate climatology anomalies of the 30’ original and 0.5’ downscaled datasets, respectively. The 0.5’ downscaled datasets were generated using bilinear interpolation in the Delta downscaling framework. Monthly minimum and maximum TMPs are 1% and 99% quantile values, respectively, based on monthly time-series data. Annual PRE and mean TMP values were calculated for full years.
Figure 7: Spatial distributions of the climatology data during the time period of 1901–2017 for TMPs and PRE over China, based on the 0.5° downscaled datasets generated using bilinear interpolation in the Delta downscaling framework. (a) and (b) are the averaged annual minimum and maximum TMPs, corresponding to 1% and 99% quantiles of monthly minimum and maximum temperatures in a year, respectively; (c) and (d) correspond to the mean annual minimum, maximum, and mean temperatures as well as the mean annual precipitation, respectively.
Figure 8: Temporal variations in annual TMPs and PRE over China during 1951–2016 based on the 0.5° downscaled datasets with bilinear interpolation, 30° original datasets, and observed datasets. The minimum and maximum TMPs are 1% and 99% quantiles of monthly temperatures in a year, respectively. The mean TMP and PRE are the mean of monthly temperatures and the sum of the monthly precipitations in a year, respectively. Tr-obs, Tr-down, and Tr-ori indicate the annual trends calculated using the observed, 0.5° downscaled, and 30° original datasets, respectively. Cor(obs, down) indicates the correlation coefficients of the annual values from observed and 0.5° downscaled data, while the Cor(obs, ori) indicates the correlation coefficients of the annual values from the observed and 30° original data.
Figure 9: Spatial patterns of the annual trends in TMPs and PRE from 1901 to 2017 and their significance levels across China obtained using the 0.5° downscaled data with bilinear interpolation. (ae)–(bf), (cg), and (dh) correspond to the annual minimum, maximum, and mean TMPs as well as the annual PRE, respectively. The purple zones indicate locations where the trends are significant at the 95% confidence level. The annual minimum and maximum TMPs are 1% and 99% quantiles of the monthly temperatures in a year, respectively.