
Anonymous Referee #1 

I appreciate the revision. The authors have addressed most of my concerns. However, I still find a few issues that were not 

clarified and I listed them below. 

Major concern: 

Please provide more details of how Q1 and Q99 were calculated? Is Q1 the 1% quantile of the monthly minimum TMP, and 

is Q99 the 99% quantile of the monthly maximum TMP? Why use the “extreme” value instead of mean monthly 

minimum/maximum TMP? For the results before Table 4 and Figure 6, are those minimum (maximum) TMPs the Q1 (Q99), 

or mean monthly minimum (maximum) TMPs? 

Response: Many thanks for your queries. Indeed, Q1 is the 1% quantile of the monthly minimum TMP in time series, and 

Q99 is the 99% quantile of the monthly maximum TMP in time series. In the manuscript, we want to use them to present the 

extreme minimum and maximum TMP. However, after we see your queries, we think the “Q1” and “Q99” are not suitable 

for the monthly TMPs, because they are often used in the analysis of the daily TMP.  

For a reasonable representation of annual climatology in minimum/maximum TMP in this study, we will use the mean 

annual minimum and maximum TMPs. Specifically, annual minimum TMP is the minimum value of the monthly minimum 

TMPs in a year, and annual maximum TMP is the maximum value of the monthly maximum TMPs in a year.  

Compared with the mean monthly minimum/maximum TMP in a year, the minimum value of monthly minimum TMPs 

and the maximum value of monthly maximum TMPs in a year could more represent their annual climatology.  

We have recalculated the results of climatology in minimum/maximum TMP and revised the Table 4 and Figures 6-7. The 

implications of these results are the same as the meaning mentioned in the previous manuscript. According to the new results, 

we have revised the related contents as following. 

Page 8 Lines 27-29 “Specifically, the averaged climatology differences between the 0.5’ downscaled and observed data 

equaled −0.12 °C for the annual minimum TMP, −0.12 °C for the annual maximum TMP, 0.01 °C for the annual mean TMP, 

and −0.5 mm for the annual total PRE.” 

Page 9 Lines 6-9 “The mean annual minimum TMP for China ranged from −47.44 to 18.70 °C, with an average of 

−13.19 °C, and the lowest value corresponded to a location in the western part of the Qinghai–Tibet Plateau (Fig. 7a). The 

mean annual maximum TMP ranged from −17.53 to 42.23 °C, with an average of 26.70 °C, and the highest value was 

observed at a location in the Turpan Basin (Fig. 7b).” 

 

In addition, the annual trend analysis of minimum/maximum TMP employed the “Q1” and “Q99” in a year for presenting 

their annual values. We have recalculated the their annual values as above. The results show that the minimum value of 

monthly minimum TMPs in a year is equal to its “Q1”, and the maximum value of monthly maximum TMPs in a year is 

equal to its “Q99”. Thus, annual trend analysis results of minimum/maximum TMP are reasonable, and we have clarified the 

related introduction of how to calculate the annual minimum/maximum TMP in Page 7 Lines 4-7.  



“Specifically, the annual minimum TMP was the minimum value of monthly minimum TMPs in a year, the annual maximum 

TMP was the maximum value of the monthly maximum TMPs in a year, the annual mean TMP was the mean of the monthly 

mean TMPs in a year, and the annual PRE was the sum of the monthly precipitations in a year.” 

 

Specific comments: 

1. There are a few typos of “WordClim”. The authors should check the manuscript carefully before their resubmission. 

Response: Many thanks for your attentions. We have revised the typos in the revision. 

 

2. P1, L23: “the downscaling procedure used data from CRU and WordClim and did not incorporate observations” - I may 

understand what the authors mean, but this statement is not accurate. First, CRU and WorldClim have already 

incorporated observations. Second, if their “observations” mean the observations from 496 weather stations, the 

downscaling procedure itself never uses any of those station observations even for the period 1951-2016. The quality of 

the new datasets throughout the period 1901-2017 depends on the quality of the CRU and WorldClim datasets. 

Response: Yes, you are right. We have revised this statement in Page 1 Lines 27-31. 

“Although the new dataset was not evaluated before 1950 owing to data unavailability, the quality of the new dataset in the 

period of 1901–2017 depended on the quality of the original CRU and WorldClim datasets. Therefore, the new dataset was 

reliable, as the downscaling procedure further improved the quality and spatial resolution of the CRU dataset, and was 

concluded to be useful for investigations related to climate change across China.” 

 

3. P1, L25: The authors should mention the evaluation of the input data (CRU and WorldClim) at the beginning, then 

discuss the quality of their downscaling products. 

Response: Thanks for your suggestion. We have revised the Abstract in Page 1. 

“High-spatial-resolution and long-term climate data are highly desirable for understanding climate-related natural 

processes. China covers a large area with a low density of weather stations in some (e.g., mountainous) regions. This study 

describes a 0.5’ (~1-km) dataset of monthly air temperatures at 2 m (minimum, maximum, and mean TMPs) and 

precipitation (PRE) for China in the period of 1901–2017. The dataset was spatially downscaled from the 30’ climatic 

research unit (CRU) time series dataset with the climatology dataset of WorldClim using Delta spatial downscaling and 

evaluated using observations collected in 1951–2016 by 496 weather stations across China. Prior to downscaling, we 

evaluated the performances of the WorldClim data with different spatial resolutions and the 30’ original CRU dataset using 

the observations, revealing that their qualities were overall satisfactory. Specifically, WorldClim data exhibited better 

performance at higher spatial resolution, while the 30’ original CRU dataset had low biases and high performances. Bicubic, 

bilinear, and nearest-neighbor interpolation methods employed in downscaling processes were compared, and bilinear 

interpolation was found to exhibit the best performance to generate the downscaled dataset. Compared with the evaluations 

of the 30’ original CRU dataset, the mean absolute error of the new dataset (i.e., of the 0.5’ dataset downscaled by bilinear 



interpolation) decreased by 35.4–48.7 % for TMPs and by 25.7 % for PRE, the root-mean-square error decreased by 32.4–

44.9 % for TMPs and by 25.8 % for PRE, the Nash–Sutcliffe efficiency coefficients increased by 9.6–13.8 % for TMPs and 

by 31.6 % for PRE, and correlation coefficients increased by 0.2–0.4 % for TMPs and by 5.0 % for PRE. The new dataset 

could provide detailed climatology data and annual trends of all climatic variables across China, and the results could be 

well evaluated using observations at the station. Although the new dataset was not evaluated before 1950 owing to data 

unavailability, the quality of the new dataset in the period of 1901–2017 depended on the quality of the original CRU and 

WorldClim datasets. Therefore, the new dataset was reliable, as the downscaling procedure further improved the quality and 

spatial resolution of the CRU dataset, and was concluded to be useful for investigations related to climate change across 

China. The dataset presented in this article has been published in the Network Common Data Form (NetCDF) at 

http://doi.org/10.5281/zenodo.3114194 for precipitation (Peng, 2019a) and http://doi.org/10.5281/zenodo.3185722 for air 

temperatures at 2 m (Peng, 2019b) and includes 156 NetCDF files compressed in zip format and one user guidance text file.” 

 

4. P6, L10: Evaluation criteria -> Evaluation metrics 

Response: Adopted.  

 

5. P6, L20: is n the number of stations, or the number of months? I assume it is about the number of stations, so Pi is the 

climatology of the original or downscaled values, and Oi is the climatology of observed values? Because the authors 

mentioned “time series” in the results, this information should be clarified to avoid confusion. 

Response: Many thanks for your attentions. This study evaluated the original CRU and downscaled datasets in the time 

series, and evaluated the WorldClim data in the geographic space. The evaluation presented here is for the original CRU and 

downscaled datasets. We have revised this section and added the introduction of how to evaluate the WorldClim data in Page 

6 Lines 22-28. 

“where Pi is the original or downscaled value in the time series, Oi is the observed value in the time series, and n is the 

number of months. Evaluations of the original CRU and downscaled datasets were carried out at each independent station 

to be mapped in geographic space, and the obtained results were averaged over all independent stations to compare the 

overall performances of original CRU and downscaled datasets. 

In addition, WorldClim data at different spatial resolutions were evaluated using MAE and Cor indices, which were 

calculated according to the paired climatology values from WorldClim and observed data for the same geographic position. 

The sample size was the number of independent stations.” 

 

6. P7, L16: What does “averaged evaluation” mean? Do the authors mean “evaluation of climatology of the downscaled 

monthly TMPs and PRE averaged over independent weather stations”? 



Response: Many thanks for your queries. This section presented the evaluations of downscaled datasets. The evaluations of 

the downscaled datasets were carried out at each independent station, and then averaged over all independent stations. We 

have revised this sentence in Page 8 Lines 2-3. 

“Table 3 presents the averaged evaluation over independent weather stations, based on the evaluation result at each station 

for the downscaled monthly TMPs and PRE in the time series (1951–2016) at different spatial resolutions.” 

 

7. P9, L13: time correlation -> temporal correlation 

Response: Adopted.  

 

8. Figure 9: add hatching on the trend map to show the significance instead of plotting individual significance maps. 

Response: Adopted. We have revised the Figure 9 as following. 

 

Figure 9: Spatial patterns of the annual trends in TMPs and PRE from 1901 to 2017 across China obtained using the 0.5’ downscaled data 

with bilinear interpolation. (a)–(d) correspond to the annual minimum, maximum, and mean TMPs as well as the annual PRE, respectively. 

Purple zones indicate locations where trends are significant at the 95 % confidence level. 

 

After above revisions, we found a professional English editor to improve the language quality of manuscript. 

 



Anonymous Referee #2 

The manuscript by Peng et al presents a valuable monthly climatic dataset across China by downscaling CRU data. This 

dataset has a high spatial resolution and cover a long time period. The evaluations by comparing this dataset with WorldClim 

data at different spatial resolution et al have demonstrated that the new dataset is reasonable. The analysis of climatology and 

annual trend further show that the new dataset could be used for investigations related to climate change across China. 

Overall, the paper is very well written and the data would be very useful for scientific communities. Here I have some 

specific suggestions to improve this paper. 

Specific Comments 

1. In the introduction, it may be useful to mention or introduce ERA5 climate data, which has very high time resolution 

(hourly data). 

Response: Thanks for your suggestion. Although the ERA5 climate data has a very high time resolution, available ERA5 

climate data starts from 1979. This study focused on the generation of long term monthly climate data, and thus several > 

100 years monthly climate datasets were reviewed in the Introduction section. Accordingly, we insist the original statement 

for a clear understanding. Based on your suggestion, we will focus on the downscaling of ERA5 climate data to a high 

spatial resolution in our future work for a generation of high-time and spatial resolution dataset. Again, we appreciate your 

suggestion very much.  

 

2. P6, 3.2 Evaluation criteria. This part focused on the evaluation of original/downscaled dataset. Authors should present a 

brief description for the evaluation of WorldClim data. 

Response: Thanks for your suggestion. We have added a brief description in Page 6 Lines 26-28. 

“In addition, WorldClim data at different spatial resolutions were evaluated using MAE and Cor indices, which were 

calculated according to the paired climatology values from WorldClim and observed data for the same geographic position. 

The sample size was the number of independent stations.” 

 

3. P8, L9. Authors introduced the climatic variables for the climatology analysis in the Result section. These introductions 

should be placed in the Method section. 

Response: Thanks for your suggestion. We have added a subsection in the Method to describe how to evaluate the 

climatology and trends for the downscaled dataset and introduce the related variables in Page 7 Line 1. 

“3.3 Evaluations of climatology and trends for the downscaled dataset 

We also evaluated the climatology and trends for the 0.5’ downscaled dataset by comparison with the 30’ original CRU and 

observed datasets. The mean annual value of each climatic variable was used to represent climatology, and the annual trend 

was employed to indicate temporal variation. Specifically, the annual minimum TMP was the minimum value of monthly 

minimum TMPs in a year, the annual maximum TMP was the maximum value of the monthly maximum TMPs in a year, the 

annual mean TMP was the mean of the monthly mean TMPs in a year, and the annual PRE was the sum of the monthly 



precipitations in a year. For annual trend analysis, linear regression relationships between climatic variables and year were 

established to calculate the trend magnitude.” 

 

4. P27, Figure 8. Authors used the 1% and 99% quantiles of monthly temperatures in a year to represent the annual 

minimum and maximum temperatures. Why didn’t use the minimum (maximum) value of monthly minimum 

(maximum) temperatures in a year to indicate the annual minimum (maximum) temperature? Although they should be 

the same values as my experience, I think that the later is more widely used. 

Response: Yes, you are right. We recalculated the annual minimum/maximum temperature as your suggestion. The results 

show that they are the same values in a year. We have revised the related statement for these two variables throughout the 

text as your suggestion.  

 

5. P28, Figure 9. The significance levels in the right column should be integrated into the trends the left column, using 

recognizable lines. Besides, in the P9 L16, authors have stated the 95% significance level was adopted for the 

significance. Thus, only the 95% Significance level in the Figure 9 should be presented. 

Response: We have revised Figure 9 as your suggestion. The revised Figure is as following. 

 



Figure 9: Spatial patterns of the annual trends in TMPs and PRE from 1901 to 2017 across China obtained using the 0.5’ downscaled data 

with bilinear interpolation. (a)–(d) correspond to the annual minimum, maximum, and mean TMPs as well as the annual PRE, respectively. 

Purple zones indicate locations where trends are significant at the 95 % confidence level. 

 

6. Authors should carefully check the typos, such as “WordClim” in P1 L24 25, 

Response: Many thanks for your attention. We have corrected the typos throughout the text. 

 

After above revisions, we found a professional English editor to improve the language quality of manuscript. 
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Abstract: High-spatial-resolution and long-term climate data are highly desirable for understanding climate-related natural 

processes. China covers a large area with a low density of weather stations in some (e.g., mountainous) regions, especially in 

mountainous regions. This study describes a 0.5’ (~1 1-km) dataset of monthly air temperatures at 2 m (minimum, maximum, 

and mean TMPs) and precipitation (PRE) for China from in the period of 1901–2017. The dataset was spatially downscaled 

from the 30’ climatic research unit (CRU) time series dataset with the climatology dataset of WorldClim by using Delta 15 

spatial downscaling and evaluated using observations collected during in 1951–2016 from by 496 weather stations across 

China. Before thePrior to downscaling, this studywe evaluated the performances of the WorldClim data with different spatial 

resolutions and the 30’ original CRU dataset using the observations, andrevealing that their qualities were overall 

satisfactory. Specifically, the WorldClim data exhibited better performance at higher spatial resolution;, while the 30’ 

original CRU dataset had low biases and high performances. Bicubic, bilinear, and nearest-neighbor interpolation methods 20 

employed Iin the downscaling processesMoreover, the bicubic, bilinear, and nearest-neighbor interpolation methods were 

compared in the downscaling processes. Among the three interpolation methods, and the bilinear interpolation was found to 

exhibited the best performance to generate the downscaled dataset. Compared with the evaluations of the 30’ original CRU 

dataset, the mean absolute error of the new dataset (i.e., of the 0.5’ downscaled dataset downscaled with theby bilinear 

interpolation) relatively decreased by 35.4 %–48.7 % for TMPs and by 25.7 % for PRE, the root-mean-square error 25 

relatively decreased by 32.4 %–44.9 % for TMPs and by 25.8 % for PRE, the Nash–Sutcliffe efficiency coefficients 

relatively increased by 9.6 %–13.8 % for TMPs and by 31.6 % for PRE, and the correlation coefficients relatively increased 

by 0.2 %–0.4 % for TMPs and by 5.0 % for PRE. Further, tThe new dataset could provide detailed climatology data and 

annual trends of each all climatic variables across China, and the results could be well evaluated using observations at the 

station. Although the evaluation of the new dataset was not carried outevaluated  before 1950 owing to a lack of data 30 

unavailability, the downscaling procedure used data from CRU and WordClim and did not incorporate observations. Thus 

the quality of the new dataset throughoutin the period of 1901-–2017 depended on the quality of the original CRU and 
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WorldClim datasets.before 1950 mainly depended on that of the CRU and WordClim datasets. Therefore, the new dataset 

iswas  reliable, becauseas The evaluations showed that the overall quality of the CRU and WordClim datasets was 

satisfactory, and the downscaling procedure further improved the quality and spatial resolution of the CRU dataset. , and was 

concluded to be The new dataset will be useful in for investigations related to climate change across China. The dataset 

presented in this article has been published in the Network Common Data Form (NetCDF) at 5 

http://doi.org/10.5281/zenodo.3114194 for precipitation (Peng, 2019a) and http://doi.org/10.5281/zenodo.3185722 for air 

temperatures at 2 m (Peng, 2019b). (Peng, 2019b) andThe dataset includes 156 NetCDF files compressed with in zip format 

and one user guidance text file. 

1 Introduction 

High-spatial-resolution and long-term climate data are required for accurate investigations of changes in climate and climate-10 

related phenomena that affect hydrology, vegetation cover, and crop production (Gao et al., 2018; Caillouet et al., 2019; 

Peng et al., 2018; Peng and Li, 2018). Although meteorological observation networks are increasingly incorporating data 

from a greater number of weather stations and contributions from an increasing number of governments and researchers 

around the world, observation networks still suffer from a low station density and spatial resolution (Caillouet et al., 2019; 

Peng et al., 2014), especially in mountainous areas (Gao et al., 2018). (Gao et al., 2018), where tThe installation and 15 

maintenance of weather stations in mountainous areas are challenging (Rolland, 2003). Accordingly, several interpolation 

methods such as inverse distance weighting, kriging methods, and regression analysis are usually used to generate 

meteorological data for those such ungauged areas (Li et al., 2010; Li et al., 2012; Zhao et al., 2004; Atta-ur-Rahman and 

Dawood, 2017; Peng et al., 2014). However, as the accuracy of the corresponding results of these interpolation methods 

depends on station density (Gao et al., 2018; Peng et al., 2014). (Gao et al., 2018; Peng et al., 2014),Therefore, it is 20 

necessaryone needs to use climatic proxy data to generate long-term and high-spatial-resolution climate data. 

Proxy monthly temperature (TMP) and precipitation (PRE) data products are released by several climate research 

organizations, such as the General Circulation Models (GCMs) of Intergovernmental Panel on Climate Change (Brekke et al., 

2013), the Climatic Research Unit (CRU) of the University of East Anglia (Harris et al., 2014), the Global Precipitation 

Climatology Centre (GPCC) (Becker et al., 2013), and Willmott & Matsuura (W&M) (Matsuura and Willmott, 2015a, b). 25 

These products have a long time series (> 100 years) and moderate spatial resolution (> 30’). Compared with GCM products, 

CRU, GPCC, and W&M products ones are generated from the data obtained from observational stations, and thus, they 

haveare more reliable higher reliability. Furthermore, compared with GPCC and W&M products, CRU products include 

several TMP and PRE variables such as monthly mean TMP, maximum TMP, minimum TMP, and PRE. , andTherefore, 

CRU products have therefore been widely employed to investigate climate effects globally (Kannenberg et al., 2019; 30 

Lewkowicz and Way, 2019; Bellprat et al., 2019). Although CRU products offer the advantage of reflecting long-term 

climate effects, their low spatial resolution (30’, approximately 55 km) limits their ability to reflect the effects of complex 



3 

 

topographies, land surface characteristics, and other processes on climate systems (Xu et al., 2017; Peng et al., 2018). (Xu et 

al., 2017; Peng et al., 2018). This drawback alsoThis also prevents CRU data from providing realistic and reliable climate 

change information on fine scales, which is imperative when developing adaptation and mitigation strategies that are suitable 

for use on local scales (Giorgi et al., 2009; Peng et al., 2019). Therefore, it is necessary to spatially downscale and correct 

CRU climate data. 5 

Previous studies have shown that the Delta downscaling framework, using low-spatial-resolution monthly time series data 

and high-spatial-resolution reference climatology data as inputs, performs well inis well suited for climate data downscaling 

climate data (Mosier et al., 2014; Peng et al., 2018; Peng et al., 2017; Wang and Chen, 2014; Brekke et al., 2013). This 

framework uses a low-spatial-resolution monthly time series data and high-spatial-resolution reference climatology data as 

inputs. The high-spatial-resolution climatology data must be physically representative and have a fine-scale distribution of 10 

meteorological variables over the landscape of interest (Mosier et al., 2014; Peng et al., 2017). As a result of incorporating 

high-spatial-resolution reference climatology data, downscaled results often have higher accuracy compared with that ofthan 

original data with respect to weather station data, especially monthly mean TMP and PRE (Peng et al., 2018). Thus, the 

Delta downscaling framework can downscale and correct low-resolution climate data.  

China has a large area and includes manywith abundant mountainous areasregions. As a result, Eeven the establishment of 15 

additional weather stations has not made it possible to fully satisfy satisfied the requirements for long-term, high-spatial-

resolution climate data, especially at finer geographical scales and for mountainous areas. Furthermore, most weather 

stations in China were established after 1950, and thus, long-term observational climate data are insufficient lacking (Peng et 

al., 2018). These above shortcomings limit the types of studies that can be conducted on long-term climate change and the 

effects of climate change at fine geographical scales across China. 20 

The objective of this study was to generate a long-term climate dataset having witha high spatial resolution for China by 

downscaling CRU time series data with using a high-spatial-resolution reference climatology dataset. The specific generated 

climate data types generated included monthly air TMPs at 2 m (mean, maximum, and minimum TMPs) and PRE variables 

with a spatial resolution of 0.5’ (approximately 1 km) from January 1901 to December 2017. First, the reference climatology 

data with different spatial resolutions and the 30’ original CRU time series data were evaluated through observations. Second, 25 

the 30’ original CRU time series data were spatially downscaled to four spatial resolutions (e.g., 10’, 5’, 2.5’, and 0.5’), 

corresponding to the spatial resolutions of the reference climatology data by using the Delta downscaling framework. The 

downscaled data were validated through observations. In addition, the accuracy of the 0.5’ downscaled data was compared 

with that of the downscaled data downscaled with other spatial resolutions, in order to demonstrate the performance of the 

downscaling framework and 0.5’ downscaled data. Finally, the climatology data and annual trends in TMPs and PRE were 30 

investigated using the 30’ original CRU, 0.5’ downscaled, and observed data to demonstrate the performance of the 0.5’ 

downscaled data. 
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2 Data 

2.1 CRU time series data 

The monthly mean, maximum, and minimum air TMPs at 2 m as well as, and PRE were obtained for January 1901 to 

December 2017 with a spatial resolution of 30’. These variables were obtained from the CRU TS v. 4.02 dataset 

(http://www.cru.uea.ac.uk) (Harris et al., 2014). Methodologies used by the CRU group to construct the 30’ time series 5 

dataset are similar to the Delta downscaling framework employed herein (see section 3.1). First, more than 5000 weather 

stations were employed, and each station series was converted to anomalies by subtracting (for temperatures) or dividing (for 

precipitation) the 1961–1990 normal from the station’s data. Then, the station anomaly time series data were linearly 

interpolated into 30’ grids covering the global land surface. Finally, the grid anomaly time series data were transformed back 

to absolute monthly values by using the 30’ reference climatology dataset during 1961–1990. Specifically, the 30’ reference 10 

climatology dataset used by the CRU group contained the climatology data for each month and was obtained from New et al. 

(1999). This These climatology data were generated by a function considering the latitude, longitude, and elevation, based 

on 3615–19800 weather stations located globally. Elevation data used in this climatology dataset had a spatial resolution of 

30’, which was a mean result of the global 5’ digital elevation model. Specifically, elevation at each 30’ grid was the mean 

of 36 grids of the 5’ digital elevation model (New et al., 1999). Therefore, the CRU dataset could represent the orographic 15 

effects on climate variation at 30’ spatial resolution. Compared with similar gridded products, the CRU dataset exhibited 

better performance. In addition, 323 weather stations across China region were employed by the CRU group to generate 

CRU time series data (Harris et al., 2014) (Fig. 1).  

2.2 WorldClim data 

To downscale CRU TMPs and PRE time series data to higher spatial resolutions, we obtained four high-resolution reference 20 

datasets at spatial resolutions of 10’, 5’, 2.5’, and 0.5’ from WorldClim v. 2.0 (http://worldclim.org) (Fick and Hijmans, 

2017). The reference datasets consisted ofcomprised monthly averages of climatic variables (mean, maximum, and minimum 

air TMPs at 2 m, as well as PRE) for 1970–2000, generated based on 9000–60000 weather stations located globally, by 

using the thin-plate splines interpolation method. Thus, for each climatic variable,  was associated withit had 12 climatology 

layers, representing climatology data ranging from January to December. Remarkably, the interpolation considered co-25 

variation with latitude, longitude, elevation, distance to the nearest coast, and three satellite-derived covariates: the 

maximum and minimum land surface temperature and cloud cover, obtained from the MODIS satellite platform. Thus, these 

reference data reflected orographic effects and observed climate information for each month. Moreover, cross-validation 

correlations indicated that these reference data exhibited good performance globally because of the introduction of satellite-

derived and distance to the nearest coast covariates. In addition, weather stations over China used in the WorldClim were the 30 

same as those used in the CRU group (Fick and Hijmans, 2017) (Fig. 1). Herein, Ffor an independent evaluation of the 

downscaled dataset in this study, these weather stations were excluded.  
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2.3 Observations 

To evaluate the performance of the downscaling procedure, the observed long-term monthly TMPs (i.e., mean, maximum, 

minimum air TMPs at 2 m) and PRE variables across China were obtained from the National Meteorological Information 

Center of China (http://data.cma.cn/en). This dataset included observations from 496 national weather stations (Fig. 1) 

during 1951–2016. These stations were not  taken partconsidered in the generations of CRU time series and WorldClim data. 5 

Figure 2 shows the orographic statistical information (e.g., elevation, slope, and aspect) of China and the 496 independent 

weather stations. The results indicated that the proportion of independent weather stations in different orographic gradients 

almost corresponded to that in China, except in for areas with elevations exceeding 4500 m, which indicated that these 

weather stations could represent climate variation over China and be used for validating the downscaled dataset. This 

exception is inevitable because of the observability, installation, and maintenance of weather stations over those areas. In 10 

addition, although China had a few weather stations during 1901–1950, all of these stations have beenwere used to generate 

CRU time series data before 1950. Therefore, this study would aimed to evaluate the downscaled dataset during 1951–2016 

by using 496 independent and representative stations. 

3 Methods 

3.1 Spatial downscaling 15 

Delta downscaling was employed to generate monthly TMPs and PRE for the period of 1901–2017 at spatial resolutions of 

10’, 5’, 2.5’, and 0.5’.  The employed Delta downscaling framework used in this study includes the following four steps 

(Peng et al., 2018):(Peng et al., 2018). 

First, a climatology dataset was constructed for each month and each climatic variable based on 30’ CRU time series. In 

this step, the annual averages at each month for TMPs (i.e., mean, maximum, and minimum TMPs) and PRE variables were 20 

constructed based on CRU TMPs and PRE time series data. Specifically, the constructed climatology dataset had a spatial 

resolution of 30’, which is the same as the that of the CRU dataset. Moreover, to match the period of high-resolution 

reference datasets from WorldClim, the 30’ climatology dataset was constructed for the period of 1970–2000. Thus, for each 

climatic variable, the dataset would havefeatured 12 climatology layers during 1970–2000 with a spatial resolution of 30’. 

Second, the 30’ anomaly time series data were derived for each climatic variable based on the 30’ CRU time series data 25 

and the constructed climatology dataset. In this step, the TMP anomaly time series data were calculated as the difference 

between the TMP time series and the TMP climatology data in the corresponding month, while the PRE anomaly time series 

data were calculated as the ratio of the PRE time series to the PRE climatology data in the corresponding month. The 

specific calculation equations are introduced as follows:  

       An_TMP(𝑦𝑟, 𝑚) = TMP(𝑦𝑟, 𝑚) − CRUClim_TMP(𝑚),                  (1) 30 

       An_PRE(𝑦𝑟, 𝑚) =   PRE(𝑦𝑟, 𝑚)  CRUClim_PRE(𝑚),⁄                    (2) 



6 

 

where An_TMP(yr, m) and An_PRE(yr, m) are the anomaly for temperatures and precipitation, respectively, ; at m month 

and yr year; TMP(yr, m) and PRE(yr, m) are the absolute temperatures and precipitation values, respectively, at m month and 

yr year; CRUClim_TMP(m) and CRUClim_PRE(m) are the 30’ climatology for temperatures and precipitation, respectively;, 

at m month. m and yr correspond to month (January–December) and year, respectively. m ranges from January to December.  

Third, the 30’ anomaly time series dataset was spatially interpolated to a higher spatial resolution. In this step, the 30’ 5 

anomaly grids at each time step are interpolated to four spatial resolutions (i.e., 10’, 5’, 2.5’, and 0.5’) to match the spatial 

resolutions of the reference datasets from WorldClim. Specifically, three interpolation methods are employed in this step, 

including bicubic interpolation, bilinear interpolation, and nearest-neighbor interpolation methods. This study would 

compares the performances of these methods to select a reasonable interpolation approach. 

Finally, the high-spatial-resolution anomaly time series dataset was transformed to an absolute climatic time series dataset 10 

based on the reference datasets from WorldClim at the corresponding spatial resolutions. In this step, the anomaly is undone 

at each time. Therefore, addition is used for TMPs, while multiplication is used for PRE. The specific calculation equations 

are introduced as follows:  

TMP(𝑦𝑟, 𝑚, 𝑟𝑒𝑠) = An_TMP(𝑦𝑟, 𝑚, 𝑟𝑒𝑠) + WorldClim_TMP(𝑚, 𝑟𝑒𝑠),       (3) 

PRE(𝑦𝑟, 𝑚, 𝑟𝑒𝑠) =  An_PRE(𝑦𝑟, 𝑚, 𝑟𝑒𝑠) ×  WorldClim_PRE(𝑚, 𝑟𝑒𝑠),        (4) 15 

where m and yr are defined as above; res represents the spatial resolution, i.e., 10’, 5’, 2.5’, and 0.5’; TMP(yr, m, res) and 

PRE(yr, m, res) are the absolute temperatures and precipitation values with a spatial resolution of res, respectively, at m 

month and yr year; An_TMP(yr, m, res) and An_PRE(yr, m, res) represent anomalies with a spatial resolution of res for 

temperatures and precipitation, respectively, at m month and yr year; WorldClim_TMP(m, res) and WorldClim_PRE(m, res) 

represent climatology dataset from WorldClim at a spatial resolution of res for temperatures and precipitation, respectively, 20 

at m month.  

To visually present the downscaling processes, Figure 3 illustrates the components and steps of the Delta downscaling 

framework for obtaining the mean TMP by using the CRU 30’ time series and WorldClim 0.5’ climatology dataset. 

Specifically, to effectively interpolate the 30’ anomaly time series dataset in China and conveniently implement the 

downscaling processes in the program code, downscaling was carried out in a rectangular region covering China (Fig. 3).  25 

3.2 Evaluation metricscriteria 

Four statistic indicesexes were used to evaluate the original CRU and downscaled datasets. , namely The indexes included 

the Pearson's correlation coefficient (Cor), the mean absolute error (MAE), the root-mean-square error (RMSE), and the 

Nash–Sutcliffe efficiency coefficient (NSE). The Cor was used to evaluate the correlation between original/downscaled and 

observed values. , whileThe MAE and RMSE assessed the bias between original/downscaled and observed values by based 30 

onusing Eqs. (5) and (6). The NSE was used to evaluate the performance of original and downscaled datasets by based 

onusing Eq. (7). ), rangingThe NSE ranges from 1 unity (best fit) to negative infinity (worst fit) (Nash and Sutcliffe, 1970). 
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𝑖=1 ,                        (6) 

                          NSE = 1 −
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𝑖=1

∑ (𝑂𝑖−𝑂̅)2𝑛
𝑖=1

 ,                              (7) 

where Pi is the original or downscaled value in the time series, Oi is the observed value in the time series, and n is the 

number of monthsrecords. Evaluations of the original CRU and downscaled datasets were carried out at each independent 5 

station to be mapped in geographic space, and the obtained results were averaged over all independent stations to compare 

the overall performances of original CRU and downscaled datasets.  

In addition, WorldClim data at different spatial resolutions were evaluated using MAE and Cor indices, which were 

calculated according to the paired climatology values from WorldClim and observed data for the same geographic position. 

The sample size was the number of independent stations. 10 

3.3 Evaluations of climatology and trends for the downscaled dataset 

We also evaluated the climatology and trends for the 0.5’ downscaled dataset by comparison with the 30’ original CRU and 

observed datasets. The mean annual value of each climatic variable was used to represent climatology, and the annual trend 

was employed to indicate temporal variation. Specifically, the annual minimum TMP was the minimum value of monthly 

minimum TMPs in a year, the annual maximum TMP was the maximum value of the monthly maximum TMPs in a year, the 15 

annual mean TMP was the mean of the monthly mean TMPs in a year, and the annual PRE was the sum of the monthly 

precipitations in a year. For annual trend analysis, linear regression relationships between climatic variables and year were 

established to calculate the trend magnitude. 

4 Results 

4.1 Evaluation of WorldClim data at different spatial resolutions 20 

This studyWe evaluated the reliability of the WorldClim dataset employed in this study based on observations from 

independent weather stations. Overall, the monthly climatology data with respect to temperatures and precipitation exhibited 

a high performance to for representing the monthly climatology data over China region during 1970–2000, and the 

climatology dataset exhibited good performance at a higher spatial resolution. Specifically, the absolute errors of the 

WorldClim datasets decreased with increasing spatial resolution (Table 1), and the correlations to the observations increased 25 

with increasing spatial resolution (Table 2), especially for the 0.5’ WorldClim dataset. Thus, the employed WorldClim 

datasets employed in this study could be used as an input for the chosen downscaling processes carried out in this study. 
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4.2 Evaluation of original CRU temperatures and precipitation data 

Before Prior to downscaling, this studywe evaluated the performance of the original CRU time series dataset employed in 

this studyherein. Table 3 presents the averaged evaluation over independent weather stations, according to the evaluation 

result at each station for the original monthly TMPs and PRE variables in the time series (1951–2016) based onusing 

independent observations. The results show that (1) the dataset exhibited good performance with respect to for determining 5 

the original monthly TMPss and PRE values; (2) the performance of the NSE and Cor indicesexes in for evaluating the 

values of TMPs was better than that for evaluating the value of PRE. Specifically, the MAEs of the minimum, mean, and 

maximum TMPs, as well as of PRE were equaled 1.766 °C, 1.598 °C, 2.034 °C, and 17.85 mm, respectively; the RMSEs of 

the minimum, mean, and maximum TMPs, as well as of PRE, were equaled 1.947 °C, 1.759 °C, 2.206 °C, and 29.559 mm, 

respectively; the NSEs of the minimum, mean, and maximum TMPs, as well as of PRE, were equaled 0.887, 0.888, 0.8, and 10 

0.614 respectively; and the Cor’s of the minimum, mean, and maximum TMPs, as well as of PRE, were equaled 0.994, 0.996, 

0.995, and 0.885, respectively.  

Figure 4 maps the MAEs of the original TMPs and PRE variables at each independent weather station. , showingThe 

results show that (1) the original TMPs had larger biases in the northwest of China, especially at high-elevation regions and 

the Qinghai–Tibet Plateau; and (2) the original PRE had greater biases in the southern part of Qinghai–Tibet Plateau and 15 

China.  

4.3 Validation of downscaled CRU temperatures and precipitation data 

Table 3 presents the averaged evaluation over independent weather stations, based on the evaluation result at each station for 

the downscaled monthly TMPs and PRE in the time series (1951–2016) at different spatial resolutions. The results show that 

(1) compared with the original dataset, the downscaled dataset had lower MAEs and RMSEs values and higher NSEs values; 20 

(2) the increased increase of the spatial resolution of the WorldClim reference dataset from 10’ to 0.5’ resulted in a decreased 

decrease in MAE and RMSE values and an increased increase in NSE values; (3) of among the three interpolation methods 

employed in the Delta downscaling framework, the downscaled data using the bilinear interpolation method afforded 

downscaled data withhad the lowest MAEs and RMSEs as well as values and the highest NSEs values at each spatial 

resolution; and (4) the performance of the Delta downscaling framework was better for TMPs than for PRE. Specifically, 25 

compared with the original dataset, the MAE of the downscaled minimum TMP at 0.5’ under the bilinear interpolation 

method decreased to 1.05 °C (relative decrement ofby 35.4 %), the RMSE decreased to 1.248 °C (relative decrement ofby 

35.9 %), the NSE increased to 0.972 (relative increment ofby 9.6 %), and the Cor increased to 0.998 (relative increment ofby 

0.4 %). For the mean TMP, the MAE of the downscaled data at 0.5’ under the bilinear interpolation method decreased to 

0.820 °C (relative decrement ofby 48.7 %), the RMSE decreased to 0.969 °C (relative decrement ofby 44.9 %), the NSE 30 

increased to 0.981 (relative increment ofby 10.5 %), and the Cor increased to 0.998 (relative increment ofby 0.2 %). For the 

maximum TMP, the MAE of the downscaled data at 0.5’ under the bilinear interpolation method decreased to 1.282 °C 
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(relative decrement ofby 37.0 %), the RMSE decreased to 1.491 °C (relative decrement ofby 32.4 %), the NSE increased to 

0.91 (relative increment ofby 13.8 %), and the Cor increased to 0.997 (relative increment ofby 0.2 %). For PRE, the MAE of 

the downscaled data at 0.5’ under the bilinear interpolation method relatively decreased by 25.7 %, the RMSE relatively 

decreased by 25.8 %, the NSE relatively increased by 31.6 %, and the Cor relatively increased by 5.0 %. Overall, the 

downscaled datasets had higher accuracy than the original CRU dataset, especially for the 0.5’ downscaled dataset 5 

downscaled with using the bilinear interpolation method, which was, therefore, the new dataset proposed by this study.  

Figure 5 maps the relative MAE decrement of MAE upon going from the 30’ original dataset to the 0.5’ downscaled 

dataset downscaled with using the bilinear interpolation method. Compared with the MAEs of the original dataset, the 

thoseMAE  of the downscaled dataset were lower in for all independent stations, especially in the northwest of China and the 

Qinghai–Tibet Plateau. 10 

4.4 Climatology of China based on the 0.5’ downscaled dataset 

Table 4 lists the averaged climatology data obtained from independent weather stations during 1951–2016, based on the 30’ 

original dataset, the 0.5’ downscaled dataset downscaled with bilinear interpolation, and the observations. The annual mean 

temperature and total precipitation were used to represent the climatology data in terms of mean TMP and PRE, while 1 % 

and 99 % quantiles (Q1 and Q99) of the monthly minimum and maximum TMPs, respectively, were selected to represent 15 

climatology in terms of minimum and maximum TMPs. This is because quantile temperatures are more reliable than 

absolute minimum and maximum TMPs if an outlier exists. The results indicate that the averaged climatology data for each 

climatic variable from the 0.5’ downscaled data was were closer to that those from the observed data than to thosethat from 

the 30’ original data. Specifically, the averaged climatology differences between the 0.5’ downscaled and observed data were 

equaled −-0.02 12 °C for the Q1 of monthlyannual minimum TMP, −-0.18 12 °C for the Q99 of monthlyannual maximum 20 

TMP, 0.01 °C for the annual mean TMP, and −-0.5 mm for the annual total PRE.  

To further illustrate the ability of the downscaled data to reflect climatology, Figure 6 shows thewe constructed box plots 

of the climatology anomaly anomaly during 1951–2016 for the 30’ original and 0.5’ downscaled datasets at independent 

weather stations, where the climatology anomaly is equal to the bias from the original/downscaled data to the observed 

values at each station (Fig. 6). The results show that the climatology anomaly from the 0.5’ downscaled dataset more 25 

intensively embraced the 0 zero value than that from the 30’ original dataset, especially for its median and mean values. 

These results imply that the 0.5’ downscaled dataset downscaled with bilinear interpolation could better represent 

climatology in TMPs and PRE of China,  thancompared with  the 30’ original dataset. 

In addition, we investigated climatology by using the 0.5’ downscaled TMPs and PRE data generated by the bilinear 

interpolation method for 1901 to 2017 (Fig. 7). The value of Q1 of themean annual minimum TMP for China ranged from −-30 

50.1547.44 °C to 17.218.70 °C, with an average of −-1713.19 °C, and the lowest value corresponded to a location in the 

western part of the Qinghai–Tibet Plateau (Fig. 7a). The mean annualvalue of Q99 of the maximum TMP ranged from −-

16.37.53 °C to 42.27 23 °C, with an average of 26.88 70 °C, and the highest value was observed at a location in the Turpan 
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Basin (Fig. 7b). The mean annual mean TMP ranged from −-34.41 °C to 26.39 °C, with an average of 6.18 °C, and the 

lowest and highest values corresponded to locations in the western part of the Qinghai–Tibet Plateau and the Hainan Island, 

respectively (Fig. 7c). The mean annual total PRE ranged from 3.2 mm to 4854.0 mm, with an average value of 564.4 mm, 

and the minimum and maximum values corresponded to locations in the northwestern part of the Qinghai–Tibet Plateau near 

the Tarim Basin and the Taiwan Island, respectively (Fig. 7d). The climatology data for the three TMPs varies varied with 5 

the topography and notably decreases decreased with orographic uplift. The climatology data for PRE decreased upon going 

from the southeastern coastal region to the northwestern region. These results almost fit the  orographic and coast effects on 

the climatology of China. 

4.5 Trends of the annual temperatures and precipitation in China 

Figure 8 maps the annual trends in TMPs and PRE over China during 1951–2016 based on the 0.5’ downscaled dataset with 10 

bilinear interpolation, the 30’ original dataset, and the observed dataset. The results show that (1) the annual values of TMPs 

and PRE in the 0.5’ downscaled dataset were closer to the observations than the original values in the time series; (2) the 

annual trends from the 0.5’ downscaled dataset were closer to the observed trends than to the thosetrends from the 30’ 

original data; and (3) the temporal time correlations between the 0.5’ downscaled and observed data were slightly better than 

those between the 30’ original and observed data, although the latter were not badsufficiently good. Furthermore, the annual 15 

trends in the TMPs in the 0.5’ downscaled dataset were underestimated (by 0.053, 0.048, and 0.06 °C 10 yr−1 for the 

minimum, maximum, and mean TMPs), while those in the PRE in the 0.5’ downscaled dataset were overestimated (by 0.505 

mm 10 yr−1). Specifically, there were underestimated by 0.053, 0.048, and 0.06 °C 10 yr-1 for the minimum, maximum, and 

mean TMPs and overestimated by 0.505 mm 10 yr-1 for the PRE. Overall, the 0.5’ downscaled and observed data had minor 

differences with respect to annual trends and high temporal time correlations, and thus, it was concluded that the 0.5’ 20 

downscaled dataset can be used to represent temporal variations and trends in TMPs and PRE across China.  

In addition, we investigated the spatial patterns of annual trends in TMPs and PRE from 1901 to 2017 across China by 

using the 0.5’ downscaled dataset downscaled with bilinear interpolation (Fig. 9). A 95% significance level was selected to 

represent the significance of the trend for each climatic variable. The annual minimum TMP exhibited a significant upward 

trend, from 0.018 °C 10 yr-1 to 0.240 °C 10 yr−-1, with an average of 0.131 °C 10 yr−-1, over areas accounting for 25 

approximately 94.17 % of the total land area of China (Figs. 9a and e). The annual maximum TMP exhibited a significant 

upward trend, from 0.016 °C 10 yr-1 to 0.171 °C 10 yr−-1, with an average of 0.081 °C 10 yr−-1, over areas accounting for 

approximately 80.85 % of the total land area of China (Figs. 9b and f). Meanwhile, the annual maximum TMP exhibited a 

significant downward trend, from 0.019 °C 10 yr-1 to 0.034 °C 10 yr−-1, with an average of 0.027 °C 10 yr−-1, in areas 

accounting for only ~approximately 0.33 % of the land area of China (Figs. 9b and f). The annual mean TMP exhibited a 30 

significant upward trend, from 0.017 °C 10 yr-1 to 0.189 °C 10 yr−-1, with an average of 0.104 °C 10 yr−-1, over areas 

accounting for approximately 90.92 % of the total land area of China (Figs. 9c and g). The annual PRE exhibited a 

significant upward trend, from 0.11 mm 10 yr-1 to 21.206 mm 10 yr−-1, with an average of 3.306 mm 10 yr−-1, over areas 
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accounting for ~approximately 22.02 % of the total land area of China (Figs. 9d and h). Meanwhile, the annual PRE 

exhibited a significant downward trend, from 0.13 mm 10 yr-1 to 30.321 mm 10 yr−-1, with an average of 7.147 mm 10 yr−-1, 

over areas accounting for only ~approximately 2.01 % of China (Figs. 9d and h). Therefore, the 0.5’ downscaled data 

downscaled with the bilinear interpolation proposed by this studyherein was concluded to well represent can draw the 

detailed spatial variability of the trends in TMPs and PRE across China. 5 

5 Data availability 

The 0.5’ downscaled dataset with bilinear interpolation developed in this study has been published in network Network 

Common Data Form (NetCDF) at http://doi.org/10.5281/zenodo.3114194 for precipitation (Peng, 2019a) and 

http://doi.org/10.5281/zenodo.3185722 for air temperatures at 2 m (Peng, 2019b). The dataset includes the monthly 

minimum, maximum, and mean temperatures, as well as the monthly total precipitation from January 1901 to December 10 

2017. Because of the availability of original CRU data and the spatial resolution of the reference climatology data, the data 

covers most of the land area of China, with a geographic range of 18.2–53.5° N and 73.5–135.0° E. The total number of 

grids is 13,808,747. To reduce the size of the NetCDF file, the data for each climatic variable are divided into intervals of 3 

years. TMPs and PRE are expressed to precisions of 0.1 °C and 0.1 mm, respectively, and they are stored using the int16 

format. Thus, each file contains 36 months of data and requires 2.42 GB of storage space. This file size should beis 15 

convenient for processing by modern computers, and subparagraph storage in the time series can satisfy the needs for quick 

data access for a specific period. Each file name indicates the data contained in the file, in the format “data type”_“beginning 

year”_“ending year”.nc. For example, the file named tmn_1901_1903.nc contains minimum temperature data from 1901 to 

1903. The total number of NetCDF files is 156, and the disk usagetotal size of the dataset in nc format is approximately 378 

GB. After compression in zip format, the size of each file is approximately 300 MB, and which translates into a total dataset 20 

size ofall the files occupy a total of 47.8 GB. This dataset will be updated yearly, as because  the CRU TS dataset is also 

updated yearly, and new data will become available for download from the website identified above.  

The monthly TMPs and PRE data  in the 30’ original dataset from 1901 to 2017 were obtained from the CRU TS v. 4.02 

dataset (http://www.cru.uea.ac.uk/data, last access: 25 Apr 2019). The high-resolution reference data at spatial resolutions of 

10’, 5’, 2.5’, and 0.5’ for TMPs and PRE were supported by WorldClim v. 2.0 (http://worldclim.org/version2, last access: 25 25 

Apr 2019). The observed monthly meteorological data from the 496 weather stations across China were provided by the 

National Meteorological Information Center of China (http://data.cma.cn/en, last access: 25 Apr 2019). 

6 Discussion, limitations, and recommendations 

Although the original CRU dataset with a 30’ spatial resolution was not evaluated as being poor, the 0.5’ downscaled dataset 

downscaled with bilinear interpolation was evaluated as being better, with deviations decreasing by approximately 35.4 %–30 
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48.7 % for TMPs and by 25.7 % % for PRE, relative to the original CRU dataset (Table 3). Thus, the original CRU dataset 

needs to be corrected. Many factors contribute to these deviations, such ase.g., observational errors, sample size, and 

operator errors in gathering the original CRU data. However, little work has been done to address this issue. Previous studies 

have indicated that topographic information (e.g., elevation, location, slope, and aspect) may be the key factor fors in 

correcting deviations, especially in mountainous areas (Gao et al., 2018; Peng et al., 2014; Gao et al., 2017). Therefore, a 5 

high-resolution reference climatology dataset containing detailed topographic information, as well as the effects of distance 

to the nearest coast and satellite-derived covariates, was used in this study to downscale the 30’ original CRU dataset to a 0.5’ 

dataset consisting ofcomprising  monthly TMPs and PRE from January 1901 to December 2017 across China, which has a 

low density of weather stations in mountainous areas. To the best of our knowledge, this 0.5’ downscaled dataset is the first 

dataset (version 1.0) developed with such a high spatiotemporal resolution over such a long time period for China.  10 

Compared with the original CRU dataset, the downscaled dataset exhibited smaller deviations and higher spatial 

resolutions, which suggesteding that the Delta downscaling framework can be used to downscale and correct low-spatial-

resolution climate data. This should be attributed to the introduction of the high-spatial-resolution WorldClim data, because 

the reference climatology dataset with higher spatial resolution could produce more accurate downscaled data with a higher 

spatial resolution (Tables 1–3). Remarkably, because of the introduction of the averaged 30’ elevation information in the 15 

original CRU data, this these data weakens the representation of TMPs and PRE in on the actual land surface, especially in 

regions with complex terrain. Moreover, the original CRU dataset was evaluated at weather stations, which are often located 

in valleys near the countyies or citycities. Thus, the TMPs and PRE from the CRU dataset exhibited lower and higher values 

than those from the observations, respectively (Table 4 and Figure 6). However, the deviations were decreased to a certain 

extent in the 0.5’ downscaled dataset (Table 4 and Figure 6). Even so, the Delta downscaling processes did not considerably 20 

improve the temporal time correlations between 0.5’ downscaled and observed data by a considerable extent (Table 3). This 

could be attributed to the fact that the Delta downscaling processes focus on correcting deviations and downscaling the 

spatial resolution, using the 12 climatology layers from the WorldClim dataset. In the geographical space, the corrections are 

evident, especially in the northwest of China and the Qinghai–Tibet Plateau (Figure 5), which should result from the 

introduction of orographic effects, distance to the nearest coast, and effects of satellite-derived covariates in the WorldClim 25 

dataset. 

The 0.5’ downscaled TMP and PRE dataset with bilinear interpolation captures the detailed climatology of the whole of 

China very well (Fig. 7). ),It accurately represents representing climate characteristics such as the minimum TMP at high 

elevations (e.g., the Qinghai–Tibet Plateau), the maximum TMP at low elevations (e.g., the Turpan Basin), and heavy PRE 

in marine areas (e.g., the Taiwan Island). The biases of the climatology data were only −-0.02 12 °C for the minimum TMP, 30 

−-0.18 12 °C for the maximum TMP, 0.01 °C for the mean TMP, and −-0.5 mm for the PRE (Table 4). Furthermore, the 

climatology anomaly at each weather station from the 0.5’ downscaled dataset is closer to 0 zero than that from the 30’ 

original dataset (Fig. 6). The 0.5’ downscaled dataset downscaled with bilinear interpolation also represents detailed annual 

trends in climatic variables over China very well (Fig. 9). ),The dataset precisely represents representing the trends and their 
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significance levels over the geographic space, such as significant increasing increases and decreases ofing trends for the 

maximum TMP and PRE. In general, compared with the 30’ original dataset, this dataset captures the annual trends very 

well (Fig. 8); the 0.5’ downscaled and observed data exhibited high temporal time correlations and minor differences in 

annual trends (Fig. 8). Therefore, the 0.5’ downscaled dataset downscaled with bilinear interpolation can be used 

successfully to successfully assess climate change and its spatial effects across China. 5 

As mentioned previously, the accuracy of the reference climatology dataset largely determines the its quality of the dataset. 

In this studyHerein, the reference climatology dataset from WorldClim was adopted. Although the our evaluation indicated 

that the quality of the dataset is very good, there is a gap between the dataset and observed data was observed. We think that 

a new and better reference climatology dataset should be generated using the observed data gathered from across China. 

However, the current release of public climate data over China is insufficient to construct a better reference climatology 10 

dataset better than that available from WorldClim. In our futureongoing research, we planare devoting efforts to collecting 

more public and private climate data so that we canto construct a better reference climatology dataset and then generate a 

more accurate downscaled dataset for China.  

Another limitation is the difficulty of validating the new dataset before 1950. Although China had a fewseveral weather 

stations with data collected starting from 1901, all of them have been used to generate the CRU time series (Harris et al., 15 

2014). Therefore, we cannot verify the quality of data quality before 1950 because of a lack of data unavailability. However, 

the downscaling procedure only used data from original CRU and WorldClim datasets and did not incorporate the 

observationas inputs, and thus the quality of the new dataset throughout the period of 1901-–2017 depended on theinput 

qualityies of the inputs. Tbefore 1950 mainly depends on that of the CRU and WorldClim datasets. Furthermore, the 

eEvaluations showed that the overall qualityies of the original CRU and WorldClim datasets is are overall satisfactory, and 20 

that the downscaling procedure can further improve the quality of the original CRU dataset, as well as enhance its spatial 

resolution.  

The usage of some evaluation indicesexes may have defects and should be clarified in this study. The involved 

indicesexes used in this studyherein can be classified into two groups: , one group based on the sums of squared errors (i.e., 

RMSE and NSE) and the other group based on the sums of error magnitudes (i.e., MAE). The sums of the squared errors are 25 

influenced by three independent variables, such asnamely the mean of individual error magnitudes, variability among error 

magnitudes, and the number of observations or domains of integration (Willmott et al., 2009). Willmott and Matsuura (2005) 

recommended MAE as an evaluation criterion for estimations. However, this study adopted the CRU time series dataset as a 

unique original dataset and the observations from 496 weather stations as a unique evaluation dataset. Thus, the variations in 

RMSE or NSE at in different cases were only influenced by the mean of individual error magnitudes, which were introduced 30 

by different spatial resolutions and interpolation methods. Thus, the RMSE and NSE indexes indices satisfied the evaluation 

criteria of this study. Further, the evaluation indexes indices were mainly used to compare the performance of the 

downscaled and original datasets. Therefore, the usage of evaluation indexesthese indices in this study is reasonable. 
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In addition, because of the limitations associated with the computational resources and the resolutions of reference 

climatology and the original CRU dataset, the resolution of the new dataset is limited to monthly and a 0.5’ (~approximately 

1 -km) grid spacing. However, the current dataset (approximately 378 GB) is huge very large to process and store. The 

computational resources and disk usage space required for the dataset will increase exponentially with increasingas the 

spatiotemporal resolution increases (Gao et al., 2018). For such a huge large amount of data, storage and extraction are not 5 

convenient. , and Supercomputers supercomputers and as well as parallel computing will be necessary required forto work 

with larger datasets in the future. Another limitation is that the current dataset only includes historical climate data. Many 

GCM products have been released, but their coarse spatial resolution and low accuracy prevent detailed projections of future 

climate trends and their effects on local scales, which are urgently requiredpressing needs for planning local strategies to of 

copecoping with the negative effects of future climate changes. The Delta spatial downscaling procedure has been employed 10 

to generate future climate data at high resolutions for some areas (Peng et al., 2017).  

The issues associated with computational resources, validation, and a reasonable reference climatology must be addressed 

to generate high-resolution climate data for China in the future. Higher-resolution data, more validation, and a better 

reference climatology for historical and future climate data (version 2.0) will beare concerns to be addressed in future 

research. 15 

Supplement 

Table S1: Statistical characteristics between of original/downscaled and observed monthly TMPs and PRE in the time series 

(1951–2016). The values shown here are the standard errors at all independent weather stations. 
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Table 1: Mean absolute errors between the observed and WorldClim climatology datasetsset at different spatial resolutions over the independent 

weather stations for. The period ranges from  1970– to 2000.  

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Minimum 

TMP (°C) 

10’ 0.726  0.675  0.615  0.533  0.515  0.533  0.789  0.759  0.719  0.639  0.643  0.656  

5’ 0.653  0.596  0.521  0.467  0.450  0.429  0.660  0.633  0.607  0.523  0.514  0.550  

2.5’ 0.632  0.563  0.484  0.433  0.411  0.372  0.602  0.574  0.543  0.459  0.449  0.503  

0.5’ 0.622  0.549  0.474  0.430  0.408  0.354  0.567  0.541  0.513  0.428  0.420  0.484  

              

Mean 

TMP (°C) 

10’ 0.450  0.481  0.470  0.482  0.487  0.478  0.455  0.445  0.427  0.425  0.425  0.427  

5’ 0.401  0.426  0.385  0.390  0.400  0.391  0.379  0.387  0.380  0.367  0.362  0.377  

2.5’ 0.365  0.378  0.338  0.332  0.351  0.342  0.338  0.356  0.348  0.333  0.331  0.349  

0.5’ 0.355  0.366  0.328  0.322  0.337  0.330  0.334  0.351  0.343  0.331  0.324  0.342  

              

Maximum 

TMP (°C) 

10’ 0.832  0.821  0.809  0.909  0.827  0.678  0.718  0.734  0.644  0.658  0.630  0.687  

5’ 0.727  0.711  0.666  0.760  0.687  0.560  0.645  0.658  0.568  0.561  0.511  0.576  

2.5’ 0.664  0.637  0.591  0.670  0.597  0.485  0.589  0.600  0.531  0.509  0.447  0.517  

0.5’ 0.631  0.596  0.544  0.611  0.544  0.445  0.574  0.578  0.516  0.484  0.405  0.479  

              

PRE 

(mm) 

10’ 2.165  1.869  3.476  4.662  5.651  8.416  9.716  7.993  5.825  3.968  2.202  1.378  

5’ 2.077  1.834  3.407  4.641  5.637  8.291  9.702  7.841  5.805  3.908  2.183  1.348  

2.5’ 2.074  1.813  3.404  4.603  5.594  8.268  9.664  7.705  5.742  3.904  2.182  1.334  

0.5’ 2.072  1.797  3.360  4.495  5.564  8.190  9.630  7.651  5.699  3.895  2.170  1.300  
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Table 2: Correlation coefficients between the observed and WorldClim climatology datasets at different spatial resolutions over the independent 

weather stations.  forThe period ranges from  1970– to 2000.  

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Minimum 

TMP (°C) 

10’ 0.987  0.984  0.977  0.969  0.963  0.962  0.955  0.957  0.956  0.971  0.984  0.987  

5’ 0.989  0.987  0.983  0.977  0.973  0.973  0.964  0.966  0.968  0.980  0.990  0.991  

2.5’ 0.989  0.988  0.985  0.981  0.978  0.977  0.968  0.971  0.974  0.985  0.992  0.992  

0.5’ 0.989  0.989  0.986  0.983  0.981  0.980  0.972  0.974  0.977  0.988  0.993  0.993  

              

Mean 

TMP (°C) 

10’ 0.986  0.979  0.968  0.955  0.949  0.949  0.956  0.958  0.966  0.974  0.982  0.987  

5’ 0.991  0.986  0.980  0.969  0.962  0.959  0.963  0.965  0.973  0.983  0.989  0.991  

2.5’ 0.993  0.990  0.986  0.977  0.970  0.965  0.968  0.970  0.978  0.986  0.992  0.993  

0.5’ 0.994  0.992  0.989  0.981  0.973  0.968  0.970  0.972  0.980  0.988  0.993  0.995  

              

Maximum 

TMP (°C) 

10’ 0.958  0.946  0.920  0.892  0.889  0.899  0.893  0.890  0.935  0.957  0.968  0.974  

5’ 0.969  0.961  0.946  0.921  0.912  0.912  0.898  0.896  0.939  0.965  0.978  0.982  

2.5’ 0.976  0.971  0.960  0.941  0.930  0.925  0.910  0.909  0.945  0.971  0.984  0.986  

0.5’ 0.979  0.976  0.968  0.951  0.940  0.932  0.913  0.912  0.946  0.973  0.988  0.989  

              

PRE 

(mm) 

10’ 0.976  0.980  0.978  0.979  0.974  0.961  0.903  0.920  0.941  0.908  0.939  0.965  

5’ 0.976  0.980  0.979  0.979  0.974  0.961  0.905  0.924  0.943  0.911  0.940  0.966  

2.5’ 0.976  0.981  0.980  0.979  0.974  0.962  0.908  0.930  0.943  0.913  0.941  0.967  

0.5’ 0.977  0.981  0.981  0.980  0.975  0.962  0.909  0.930  0.944  0.914  0.941  0.968  
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Table 3: Statistical characterization ofstics between original/downscaled and observed monthly TMPs and PRE in the time series (1951–2016). 

The values shown here are the averaged evaluation results at all  independent weather stations. , withTheir standard errors are listed in Table S1.  

Notes: Res indicates the spatial resolution. The sSubscripts c, l, and n indicate bicubic, bilinear, and nearest-neighbor interpolations, respectively. 

The original TMPs and PRE are the 30’ CRU data and are directly compared with the observed data. Evaluations at 10’, 5’, 2.5’, and 0.5’ are the 

evaluations forpertain to the downscaled datasets. MAE, RMSE, NSE, and Cor indicate the mean absolute error, root-mean-square error, Nash–5 

Sutcliffe efficiency coefficient, and correlation coefficient, respectively. 

 Res MAEc MAEl MAEn RMSEc RMSEl RMSEn NSEc NSEl NSEn Corc Corl Corn 

Minimum 

TMP (°C) 

30’ 1.766  1.947  0.887  0.994    

10’ 1.673  1.515  1.558  1.802  1.726  1.793  0.896  0.902  0.899  0.995  0.995  0.995  

5’ 1.338  1.292  1.325  1.666  1.503  1.582  0.904  0.937  0.923  0.995  0.995  0.995  

2.5’ 1.233  1.142  1.211  1.401  1.349  1.384  0.946  0.951  0.949  0.995  0.997  0.996  

0.5’ 1.140  1.050  1.137  1.322  1.248  1.271  0.955  0.972  0.963  0.997  0.998  0.997  

Mean TMP 

(°C) 

30’ 1.598  1.759  0.888  0.996    

10’ 1.277  1.140  1.188  1.433  1.293  1.358  0.899  0.914  0.904  0.997  0.997  0.997  

5’ 1.117  0.980  1.003  1.222  1.133  1.197  0.926  0.950  0.933  0.997  0.997  0.997  

2.5’ 0.977  0.836  0.859  1.157  0.988  0.993  0.966  0.976  0.973  0.997  0.998  0.997  

0.5’ 0.826  0.820  0.822  0.974  0.969  0.970  0.977  0.981  0.980  0.998  0.998  0.998  

Maximum 

TMP (°C) 

30’ 2.034 2.206  0.800  0.995   

10’ 1.800  1.672  1.755  2.044  1.886  1.968  0.811  0.832  0.824  0.995  0.996  0.996  

5’ 1.649  1.487  1.548  1.864  1.700  1.756  0.843  0.856  0.850  0.996  0.996  0.996  

2.5’ 1.455  1.310  1.387  1.666  1.523  1.632  0.875  0.909  0.887  0.996  0.997  0.996  

0.5’ 1.296  1.282  1.291  1.511  1.491  1.500  0.909  0.910  0.910  0.997  0.997  0.997  

PRE (mm) 30’ 17.850  29.559  0.614  0.885   

10’ 16.884  16.647  16.741  28.022  27.559  27.946  0.675  0.735  0.700  0.887  0.890  0.890  

5’ 16.134  15.223  15.942  26.222  25.185  25.888  0.764  0.791  0.773  0.892  0.900  0.894  

2.5’ 14.867  14.024  14.557  24.374  23.191  23.867  0.791  0.792  0.791  0.914  0.920  0.919  

0.5’ 13.772  13.269  13.443  22.655  21.941  22.213  0.794  0.808  0.802  0.920  0.929  0.926  
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Table 4: Comparison of the averaged climatology among the independent weather stations during 1951–2016, based on the 

30’ original datasets, the 0.5’ downscaled datasets downscaled with the bilinear interpolation, and the observations.  

 Monthly Annual 

minimum TMP (°C) 

Monthly Annual 

maximum TMP (°C) 

Annual mean TMP (°C) Annual total PRE (mm) 

30’  −-8.269.30 ± 0.451  29.558.24 ± 0.1822  11.41 ± 0.30  898.4 ± 22.3 

0.5’ −-7.448.69 ± 0.409  2931.6227 ± 0.169  12.13 ± 0.28  879.7 ± 22.8  

Observation −-78.3267 ± 0.451  2931.4574 ± 0.169  12.12 ± 0.28  880.2 ± 23.2  

Notes: Monthly minimum and maximum TMPs are 1% and 99% quantile values, respectively, based on monthly time-series 

data. Annual total PRE and mean TMP values were calculated for full years. All values are presented as mean ± standard 

error. 5 
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Figure 1: Spatial distribution of national weather stations across China. 
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Figure 2: Orographic statistical information at different gradients for China and weather stations used in this study. 
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Figure 3: Schematic illustration of the Delta spatial downscaling process by using the mean TMP (TMP_m) in July 2017 obtained from 

the CRU data as an example. 

 



25 

 

 

Figure 4:  Spatial distribution of MAEs between the 30’ original and observed TMPs/PRE from 1951–2016 at each independent weather 

station. (a)–, (b), (c), and (d) are the MAE values for the monthly minimum, mean, and maximum temperatures as well as the monthly 

precipitation, respectively. 
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Figure 5:  Relative decrement in MAEs from the 30’ original datasets to 0.5’ downscaled datasets generated using bilinear interpolation at 

each independent weather station. (a)–, (b), (c), and (d) are the relative decrements in MAE in for the monthly minimum, mean, and 

maximum temperatures as well as monthly precipitation, respectively.  



27 

 

 



28 

 

 

Figure 6:  Box plots of climatology anomaly during 1951–2016 for 30’ original and 0.5’ downscaled datasets at independent weather 

stations. The climatology anomaly is equal to the bias from the original/downscaled to the observed values. The rRed lines in the boxes 

show the median values. Boxes indicate the inner-quantile range (25–% to 75%). The Crosses (×) in the boxes indicate the averaged 

averagesvalues of all the anomaly values. The hHorizontal dotted lines indicate the zero linesvalues. The An_original and An_downscale 5 

indicate climatology anomaly anomalies of the 30’ original and 0.5’ downscaled datasets, respectively. The 0.5’ downscaled datasets were 

generated using bilinear interpolation in the Delta downscaling framework. Monthly minimum and maximum TMPs are 1% and 99% 

quantile values, respectively, based on monthly time-series data. Annual PRE and mean TMP values were calculated for full years. 
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Figure 7: Spatial distributions of the climatology data during in the time period of 1901–2017 for TMPs and PRE over China, based on 

the 0.5’ downscaled datasets generated using bilinear interpolation in the Delta downscaling framework. (a)– and , (b), are the averaged 

annual minimum and maximum TMPs, corresponding to 1 % and 99 % quantiles of monthly minimum and maximum temperatures in a 

year, respectively; (c) and (d) arecorrespond to the mean annual minimum, maximum, and mean temperatures as well as the mean annual 5 

precipitation, represent the average annual mean temperature and total precipitation, respectively. 
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Figure 8: Temporal variations in annual TMPs and PRE over China during 1951–2016 based on the 0.5’ downscaled datasets with bilinear 

interpolation, 30’ original datasets, and observed datasets. The minimum and maximum TMPs are 1 % and 99 % quantiles of monthly 

temperatures in a year, respectively. The mean TMP and PRE are the mean of monthly temperatures and the sum of the monthly 

precipitations in a year, respectively. Tr-obs, Tr-down, and Tr-ori indicate the annual trends calculated using the observed, 0.5’ 5 

downscaled, and 30’ original datasets, respectively. Cor(obs, down) indicates the correlation coefficients of the annual values from 

observed and 0.5’ downscaled data, while the Cor(obs, ori) indicates the correlation coefficients of the annual values from the observed 

and 30’ original data. 
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Figure 9: Spatial patterns of the annual trends in TMPs and PRE from 1901 to 2017 and their significance levels across China obtained 

using the 0.5’ downscaled data with bilinear interpolation. (ae)–, (bf), (cg), and (dh) are correspond to the annual minimum, maximum, 

and mean TMPs as well as the annual PRE, respectively. The pPurple zones indicate locations where the trends are significant at the 95% 

confidence level. The annual minimum and maximum TMPs are 1 % and 99 % quantiles of the monthly temperatures in a year, 5 

respectively. 


