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Abstract. Strong winds may uproot and break trees and represent one of the major natural disturbances for European forests. 

Wind disturbances have intensified over the last decades globally and are expected to further rise in view of the climate change 

effects. Despite the importance of such natural disturbances, there are currently no spatially-explicit databases of wind-related 45 

impact at Pan-European scale. Here, we present a new database of wind disturbances in European forests (FORWIND). 

FORWIND comprises more than 80,000 spatially delineated areas in Europe that were disturbed by wind in the period 2000-

2018, and describes them in a harmonized and consistent geographical vector format. Correlation analyses performed between 

the areas in FORWIND and land cover changes retrieved from the Landsat-based Global Forest Change dataset and the MODIS 

Global Disturbance Index corroborate the robustness of FORWIND. Spearman rank coefficients range between 0.27 and 0.48 50 

(p-value<0.05). When recorded forest areas are rescaled based on their damage degree, correlation increases to 0.54. Wind-

damaged growing stock volumes reported in national inventories (FORESTORM dataset) are generally higher than analogous 

metrics provided by FORWIND in combination with satellite-based biomass and country-scale statistics of growing stock 

volume. Overall, FORWIND represents a valuable and open-access spatial source to improve our understanding of the 

vulnerability of forests to winds and develop large-scale monitoring/modelling of natural disturbances. Data sharing is 55 

encouraged in order to continuously update and improve FORWIND. The dataset is available at 

https://doi.org/10.6084/m9.figshare.9555008 (Forzieri et al., 2019).   

1 Introduction 

Natural forest disturbances represent a serious peril for maintaining productive forests. Studies indicate that their excess can 

reduce primary production and partially offset carbon sinks or even turn forest ecosystems into carbon sources (Kurz et al., 60 

2008; Yamanoi et al., 2015; Ziemblińska et al., 2018). This is particularly critical for windthrow and tree breakage due to 

strong winds, which represent one of the major natural disturbance for European forests (Schelhaas et al., 2003; Seidl et al., 

2017). Such disturbances are intensifying globally, a trend which is expected to continue with further climate change (Bender 

et al., 2010; Knutson et al., 2010; Seidl et al., 2014).  

European windstorms are associated with areas of low atmospheric pressure that typically occur in the autumn and winter 65 

months(Martínez-Alvarado et al., 2012). Deep low-pressure areas frequently track across the North Atlantic Ocean towards 

Western Europe, pass the north coast of Great Britain and Ireland and into the Norwegian Sea. However, when they track 

further south, they can potentially hit any country in Europe. In 1999, storm Lothar damaged approximately 165 million m3 of 

timber, which is equivalent to 43% of the average annual harvest rate, mainly in France, Germany, Switzerland and 

Scandinavia(Gardiner et al., 2010). In 2005, 75 million m3, equivalent to one year’s cuttings, were damaged by storm Gudrun 70 

in Sweden. In 2007, the storm Kyrill caused the loss of 49 million m3 of timber in Germany and the Czech Republic. In 2009 

and 2010, storms Klaus and Xynthia hit forests in France and Spain and caused timber losses totalling approximately 45 million 

https://doi.org/10.5194/essd-2019-141

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 5 September 2019
c© Author(s) 2019. CC BY 4.0 License.



3 

 

m3. In 2018, the Vaia storm hits the North-Eastern regions of Italy causing a damaged growing stock volume of about 8.5 

million m3. 

The socio-economic consequences of wind disturbances can be critical especially for local economies highly dependent on the 75 

forest sector. Countries in Northern Europe and Central-Eastern Europe, where the forest sector may cover up to 6% of the 

national GDP(FOREST EUROPE, 2015), are, therefore, potentially more vulnerable to wind-related impacts.  

Despite the risks they pose, spatially explicit databases of wind disturbances across European currently do not exist. Recent 

assessments of current and future forest damages due to windstorms at European scale are based on catalogues of disturbances 

collected at country level(Gregow et al., 2017; Schelhaas et al., 2003; Seidl et al., 2014; Senf et al., 2018). Such databases are 80 

subject to multiple sources of bias and uncertainty associated to the diversity of the underlying inventories. Furthermore, 

estimates of forest damage aggregated at national scale may only partially represent the spatial variability of the phenomenon. 

In fact, the coarse spatial resolution of such data hampers inferential analysis of potential drivers of forest vulnerability and 

their use in spatially explicit models to monitor or forecast wind-related impacts(Masek et al., 2015; Phiri and Morgenroth, 

2017). Despite the lack of systematic mapping of wind disturbances in European forests, a multitude of local, national, and 85 

transnational initiatives have accurately mapped forest areas affected by wind over the last decades These data represent highly 

informative observational records to characterize spatial patterns of forest damages. However, they are collected by different 

institutes, and are often difficult to retrieve or poorly documented. Since 2012, the Copernicus Emergency Management 

Service (https://emergency.copernicus.eu/) produces maps of natural disasters throughout the world based on the analysis of 

satellite images and other geospatial data. While this important initiative can help map wind-affected areas, it only covers 90 

recent years and, being an on-demand service, it is not comprehensive as it depends on the interests of individual authorized 

users of the service to map a given forest disturbance.   

In this study, we try to fill the above-mentioned gap. To this aim, we collected and harmonized 89,434 forest areas damaged 

by wind into a consistent geospatial dataset. The work was carried out through a unique joint effort of 26 research institutes 

and forestry services across Europe. This collaboration led to the first spatially-explicit database of wind disturbances in 95 

European forests over the period 2000-2018, hereafter referred to as the FORWIND database. We believe that it provides 

essential spatial information to improve our understanding of forest damage from wind and can assist in large-scale systematic 

monitoring and modelling of forest disturbances. In the following sections, we describe the data collection, the harmonization 

process, and the cross-comparison performed against satellite-retrievals of changes in vegetation cover and data from national 

inventories of forest disturbances. We conclude the data description with some examples of the possible usage of the 100 

FORWIND database. 
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2 Methods 

We collected wind disturbances events caused by windstorms or tornadoes that occurred in Europe between 2000 and 2018. 

A wind disturbance event is represented by a georeferenced polygon that delineates the damaged forest stand, regardless of 105 

the degree of damage. The data were managed mostly on the Google Earth Engine platform (Gorelick et al., 2017) to efficiently 

quantify the extent of disturbances over large scales and extract additional informative attributes (e.g., Hansen et al., 2013; 

McDowell et al., 2015). We structured the data collection process in four main phases, described below.  

 Literature review and data gathering. We searched PubMed and Scopus for articles published up to January 2019, 

with no language restrictions, using the search terms “wind disturbance” OR “windthrow” OR “forest damage” OR 110 

“wind damage” OR “forest disturbance” AND “Europe” OR single country name in the publication title OR abstract. 

The identified studies had mainly mapped the effects of wind on forests for single events and/or for a limited areal 

extent. We then retrieved the spatial delineation of the observed wind damages from the corresponding authors or 

contact persons responsible for the data acquisition. The collected data were originally recorded by different research 

institutes and international initiatives across Europe using diverse methodologies. Table 1 lists the data providers and 115 

the acquisition methods.  

 Coordinate system transformation. The wind disturbances were transformed to the same geographical unprojected 

coordinate system (World Geodetic System 1984, WGS84, EPSG:4326).  

 Spatial segregation. The spatial segregation of each record was verified. In case multiple features for the same event 

overlapped, they were merged.  120 

 Harmonization of the degree of damage. A damage classification for forest disturbances was originally recorded 

for windstorms that occurred in France in 2009, in Lithuania in 2010, in Germany in 2017, in Italy in 2015 and –for 

part of the records - in 2018. In order to make these records comparable in terms of the severity of damage, the original 

classes were harmonized into a single damage metric following the rationale reported in Table 2.  

 125 

3. Data records 

The FORWIND database is the final output of the data collection procedure and it is publicly available at 

https://doi.org/10.6084/m9.figshare.9555008 (Forzieri et al., 2019). The FORWIND dataset contains records as polygon 

features in shapefile format (.shp). The geometry of a feature is stored as a shape comprising a set of vector coordinates 

corresponding to the boundaries of the area of a given wind disturbance. Records are georeferenced in geographical 130 

coordinates, i.e. latitude and longitude, following the WGS84 standard (EPSG:4326). Basic attributes of each disturbance 

(Table 3) are provided in an associated table, stored in a .dbf file.  
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Overall, FORWIND includes 89,434 records, corresponding to ~1 million ha of forest area affected by wind disturbances 

during the 2000-2018 period. Each record should not be viewed as independent as a single storm may cause multiple, 

geographically disjunct, disturbances. At European level, the median wind-caused forest disturbance measures 1.08 ha (Table 135 

4). However, there is substantial variability across disturbances and countries likely driven by the high heterogeneity of forest 

and landscape characteristics. Figure 1 shows the spatial and temporal variations of records in the FORWIND database. In 

order to better visualize the data, we summed the areas affected by wind disturbances in 0.5-degree cells (Fig. 1a). A similar 

aggregation was used to show the timing of the disturbances, here expressed as the year in which most area was disturbed 

within a given cell (Fig. 1b). The current release of FORWIND includes wind disturbances that occurred in Austria, 140 

Switzerland, the Czech Republic, France, Germany, Ireland, Italy, Lithuania, Poland, Romania, Russia, Slovakia and Sweden. 

The major windstorms that occurred in the last two decades are included in FORWIND, particularly Gudrun in 2005 (Sweden), 

Kyrill (Germany) in 2007, Klaus in 2009 (France), Xhynthia in 2010 (Germany) and Vaia in 2018 (Italy). The high spatial 

detail of FORWIND is illustrated in Figure 2 for some key windstorms. 

 145 

4. Technical validation  

The lack of alternative datasets with the same spatially explicit mapping of wind disturbances as in FORWIND does not allow 

for a standard validation exercise. Therefore, we evaluated the validity of FORWIND based on the plausibility of the collected 

spatial delineations of wind disturbances with respect to two satellite-based proxies of forest disturbances and estimates of 

forest damages reported in national inventories. 150 

 

4.1 FORWIND versus LANDSAT-based forest cover loss 

FORWIND was initially compared with satellite-based estimates of forest cover loss derived from the Global Forest Change 

maps(Hansen et al., 2013) (GFC, https://earthenginepartners.appspot.com/science-2013-global-forest). GFC maps 

characterize the annual forest coverage at global scale during the period 2000–2018 at 30-meter spatial resolution based on 155 

time-series analysis of Landsat images. Forest cover loss is defined as an area that has changed from a state of forest to non-

forest, following a given disturbance event (natural or anthropogenic). The change detection is based on the variation in the 

spectral properties of the land surface. Windstorm events in Europe often occur in autumn and the beginning of winter, when 

the availability of cloud-free images is typically much more limited than in summer. Hence, satellite retrievals of forest cover 

loss may miss the exact timing of the disturbance. Therefore, the GFC-based forest cover loss may only record wind 160 

disturbances the year after the event occurred. In addition, fallen trees following a windstorm or tornado often maintain their 

leaves for months. This may lead to limited or no change in land reflectance properties, even when cloud-free images are 

available. Therefore, satellite-based products may underestimate forest cover loss in the short-term (interannual scale). In order 

to account for these effects, we considered the forest cover loss by summing up the forest loss over the year of a given event 
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together with that of the following year (lag-01). The loss estimate was quantified with respect to the pre-event conditions (the 165 

forest cover in the year before the event). To reduce potential contamination effects from other disturbances on the resulting 

total forest cover loss, we removed areas affected by fires the year following a wind event. Information on forest areas affected 

by fires were retrieved from the European Forest Fire Information System (EFFIS, http://effis.jrc.ec.europa.eu/). Insect 

outbreaks, which may be triggered by large numbers of dead trees following wind disturbances(Stadelmann et al., 2013), 

generally lead to a slow change in tree cover, which may only marginally affect the 1-year temporal lag used for our estimates 170 

of forest cover loss. Furthermore, forest logging following a wind event can be considered a secondary effect of the strong 

winds, as it is often employed to reduce the risk of other forest disturbances (specifically insect outbreaks and fires). Therefore, 

the resulting estimates of forest cover loss for the selected areas should reflect wind disturbances first and foremost. We 

emphasize that Landsat-derived estimates of forest cover loss are affected by the uncertainty in satellite retrievals and do not 

represent the true impacts. However, their suitability for detecting forest disturbances over large scale has been widely 175 

recognized(Curtis et al., 2018; Hansen et al., 2013) and, therefore, they are here considered a good proxy of forest loss.  

For each selected FORWIND record we computed the area of affected forest based on the spatial delineation of the polygon 

and the corresponding Landsat-derived forest cover loss and calculated the correlation between the two sets of estimates. In 

order to account for the spatial dependence structure of FORWIND data, correlation values were derived for 100 subsets of 

1000 records randomly selected from the entire dataset. The final estimate of correlation was then quantified as the average of 180 

the correlation values derived from the 100 subsets.  

Results for the whole dataset are shown in Figure 3a. Overall, we found a modest but significant Spearman rank correlation 

coefficient (ρk=0.48, p-value<10-3), which supports the validity of FORWIND in mapping areas subject to changes of forest 

coverage due to wind disturbances. We point out that for this calculation we did not mask the data based on the degree of 

damage, because such information is available only in some countries. However, a similar correlation analysis performed by 185 

rescaling the recorded areas based in their damage degree (for those records that report the information) led to higher 

correlation values up to 0.54. We further tested the sensitivity of our results to the temporal lag used to quantify the forest 

cover loss. To this aim, we complemented the previous analysis (lag-01) using Landsat-based forest cover loss estimated for 

the year of the event only (lag-0) and the following year only (lag-1). In order to investigate possible scaling relations, the 

correlation analysis was performed accounting for the FORWIND records with a spatial extent above a given threshold derived 190 

from the percentiles 0, 0.25, 0.50 and 0.75 of the full dataset (corresponding to about 0, 0.5, 1, and 3.5 ha, respectively). Results 

show that correlation values between FORWIND affected areas and lag-0 forest cover loss tends to slightly decrease with an 

increasing size of the wind disturbance (Fig. 3b). The opposite pattern is observed for correlation values with lag-1 forest cover 

loss. The forest cover loss accumulated over the two years considered (lag-01) appears dominated by the contribution of lag-

1 forest cover loss. We argue that such contrasting tendencies may be linked to the scale and climatology of extreme winds. 195 

Wind-related forest impacts of limited areal extent originate from local windstorms or tornadoes that may occur throughout 

the year. For these events, most of the damage is probably well captured by lag-0 effects, as it is more likely that cloud-free 

images are available after the event. In contrast, the larger and more damaging windstorms, which affect larger forest areas, 
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typically occur in autumn and early winter (decreasing the likelihood of cloud-free images after the storm and before the end 

of the year). For these events, the inclusion of the lag-1 effect is key to characterize the impact on forest cover. 200 

4.2 FORWIND versus MODIS Global Disturbance Index 

FORWIND was also compared with an independent dataset of satellite-based estimates of forest disturbance as expressed by 

the MODIS-based Global Disturbance Index(Mildrexler et al., 2007, 2009) (MGDI, 

http://files.ntsg.umt.edu/data/NTSG_Products/MGDI/). MGDI maps quantify the overall annual forest disturbance globally 

for the period 2004-2012 at 500-meter spatial resolution. The disturbance retrieval is based on the variations in the Enhanced 205 

Vegetation Index and land surface temperature following a given sudden change in forest cover. Consistent with the previous 

Landsat-based analysis - the total change in MGDI potentially related to a given wind disturbance was computed as the 

accumulated net change in MGDI over the event year and the following year (lag-01). The change was quantified with respect 

to the pre-event conditions (MGDI in the year before the event).  The technique used to disentangle the fire signal, as well as 

the correlation and sensitivity analyses with respect to the temporal lags and wind disturbance size, were performed 210 

analogously to the previous validation exercise.  

Overall, we found a low but significant correlation coefficient (ρk=0.27, p-value<10-3) (Fig. 3c). The lower correlation 

compared to the Landsat-based dataset is presumably due to the coarser spatial resolution of MGDI that probably does not 

fully capture the changes in land surface properties due to wind disturbances(Mildrexler et al., 2009). This seems to be 

supported by the generally increasing correlation values up to 0.31 for wind disturbances of 1 ha consistently across the 215 

different temporal lags (Fig. 3d). 

4.3 FORWIND versus FORESTORM 

FORWIND data were finally compared with estimates of damaged growing stock volume (GSV) that are recorded at country 

level in the FORESTORM database (http://www.iefc.net/storm/) for five windstorm events: Slovakia in 2004; Sweden in 2005 

(Gudrun storm), Germany in 2007 (Kyrill storm), the Czech Republic in 2007 (Kyrill storm) and France in 2009 (Klaus storm). 220 

We derived the damaged GSV by multiplying the estimated GSV by the percentage damaged, both of which are reported in 

FORESTORM. An analogous metric was derived from FORWIND data by first calculating for each FORWIND record the 

amount of GSV lost by multiplying the areal average GSV by the damage level reported for the record. As the damage level 

was only reported for Klaus, for the other events we assumed a damage level equal to the average level reported for Klaus 

weighted on the spatial extent of each record. The GSV was retrieved from the GlobBiomass dataset(Santoro et al., 2018) 225 

(https://doi.pangaea.de/10.1594/PANGAEA.894711) which is based on multiple remote sensing products and is considered 

the state-of-the-art global biomass product. This satellite-based GSV estimate refers to the year 2010 and has a spatial 

resolution of 100 meter. The damages to GSV were then summed by event and country. Event-scale FORWIND damaged 

GSVs were then compared with estimates derived from FORESTORM.  
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Overall, results show that the magnitude of damages estimated from FORWIND and FORESTORM are largely different, 230 

except for the 2009 Klaus storm in France for which we found a very good agreement (Fig. 3e). For most of the events, 

however, FORESTORM tends to systematically give higher forest damage estimates than FORWIND with differences 

exceeding 90%. We note that such differences persist when we derive FORWIND estimates of damaged GSV assuming a 

100% damage degree for all records (not shown). Therefore, the uncertainty in the damage degree in FORWIND does not 

affect substantially the difference between FORWIND and FORESTORM. We recognize that estimates of forest damages 235 

based on FORWIND are fully dependent on the GSV derived from GlobBiomass. Indeed, any deviations of the mapped GSV 

from the true forest state are inherently translated into our damaged GSV estimates. In particular, the GSV map refers to the 

year 2010, therefore it is very likely that it largely reflects the biomass conditions following, rather than preceding, the 

windstorm events (all the five events considered in this validation exercise occurred before 2010).  

In order to disentangle such source of bias we derived country-scale estimates of average GSVs for the year 2000 (pre-event 240 

conditions) from the State of Europe’s Forest(FOREST EUROPE, 2015) 

(https://www.foresteurope.org/docs/SoeF2015/OUTPUTTABLES.pdf). We then derived the damages GSVs by multiplying 

Forest Europe-derived GSVs by the total forest area affected for each of the considered wind events by assuming a 100% 

degree of damage. Similar to the previous results, expect for the Klaus storm, we found higher values of damaged GSVs in 

FORESTORMS than in our estimates based on the integration of FOREWIND and country values of GSVs (Fig. 3f). We 245 

recognize that FORWIND could miss some wind damage occurrences. However, according to the institutions responsible for 

the data acquisition, the forest areas affected by the windstorm events considered in this validation exercise were exhaustively 

mapped. Therefore, possible residual omissions are expected to only marginally affect our results. We therefore argue that a 

possible source of error may be associated to the FORESTORM database. Estimates of forest damages from FORESTORM 

originate from different sources and are collected by multiple actors. Hence, the loss figures should be viewed in light of their 250 

potential biases, including a possible overestimation of the true impacts.  

 

5 Data usage and conclusions 

The FORWIND database is the first Pan-European collection of spatially delineated forest areas affected by wind disturbances 

and includes all major events that occurred over the 2000-2018 period. FORWIND provides fundamental spatial and temporal 255 

information to improve our understanding of the vulnerability of forests to winds and develop large-scale monitoring and 

modelling of natural disturbances.  

For demonstration purposes, we show how FORWIND data can be used to quantify forest vulnerability as a function of the 

fraction of evergreen needleleaf forest (ENF) and annual maximum wind speed. The fraction of ENF was derived from the 

annual land cover maps of the European Space Agency’s Climate Change Initiative(ESA, 2017) (ESA-CCI, https://www.esa-260 

landcover-cci.org/) aggregated at 0.5 degree spatial resolution. Annual maximum wind speeds were computed from 
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NCEP/NCAR Reanalysis 2 data(Saha et al., 2010) (NCEP2, 

https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html). Daily average wind data at 0.5 degree spatial 

resolution were acquired and the two horizontal components combined to derive the magnitude of the wind vector. For each 

cell, the fraction of ENF and the annual maximum wind concomitant with a wind disturbance were then selected from the time 265 

series and used in our experiment as potential drivers of vulnerability (Fig. 4a,c). The values of fraction of ENF and annual 

maximum wind speed (predictors) were linked with the corresponding FORWIND affected area (response variable) within 

each 0.5 degree cell. In order to increase the spatial consistency of the emerging relationships, spatial averages in the response 

variable were derived using bins that spanned the sampled ranges of the predictors (bin sizes of 10% and 2 m/s for fraction of 

ENF and annual maximum wind speed, respectively). The resulting datasets were ultimately fitted by linear regression models 270 

(Fig. 4b,d).  

Wind disturbance areas manifest a substantial variability, as evident form the generally high values of the coefficient of 

variation. However, when data are spatially averaged at bin level, simple linear regression models show a reasonably good fit, 

with R2 values of 0.52 and 0.81 for the fraction of ENF and annual maximum wind speed, respectively. Emerging patterns are 

largely consistent with expectations and previous studies. An increasing fraction of ENF leads to an increase in wind 275 

disturbance area (growing rate of 12 ha of affected forest per 0.1 increase in ENF fraction). Indeed, this plant functional type 

is typically characterized by shallower rooting systems compared to other forest types. Combined with the limited flexibility 

of its branches and trunk this makes ENF more prone to uprooting and breakage by strong winds(Klaus et al., 2011; Ruel, 

1995). A similar pattern emerges with respect to annual maximum wind speed(Seidl et al., 2011). Wind disturbance area tends 

to increase with rising wind speed (growing rate of 32 ha of affected forest per 1 ms-1 increase in wind speed). Maximum wind 280 

speeds are the primary determinant of wind disturbances. However, we point out that the coarse spatial and temporal resolution 

on NCEP2 data largely underestimate the speed of wind gusts and may completely miss peak winds originating from tornados. 

This is clearly evident from the range of values of annual maximum wind speed (6-22 m/s) which are far lower than the wind 

speeds reported in country-scale inventories of forest disturbance (e.g., 42 m/s for Gudrun, FORESTORM). 

We recognize that the above example is an oversimplification of the biomechanical processes that may cause wind 285 

disturbances. Multiple variables, susceptibility factors, and drivers (e.g., tree species, tree dimension, management regimes, 

planting patterns, soil depth, snow cover), contribute concurrently to the vulnerability of trees(Hart et al., 2019; Klaus et al., 

2011; Mitchell, 2013) and therefore their contribution should be analysed in a multidimensional space. Therefore, the approach 

described here should not be considered as a reference methodology to analyse the vulnerability of forests but only as an 

informative application to explore the usefulness of the FORWIND database. 290 

FORWIND could also be suitable in diverse contexts for large-scale monitoring and modelling of forest ecosystems. For 

instance, some pioneering studies have begun producing classification maps of various forest disturbance agents based on 

remote sensing data(Cohen et al., 2016; Hermosilla et al., 2015; Potapov et al., 2015; White et al., 2017). However, the 

attribution of forest change to windstorms remains challenging. Previous systematic monitoring has been performed only over 

limited areal extents and showed considerable uncertainty(Baumann et al., 2014; Schroeder et al., 2017) mostly due to the 295 
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limited number of sampled wind-affected areas available for training/testing classification algorithms(Schroeder et al., 2017). 

Similar critical issues affect land surface models (LSM) now widely applied to support policy-relevant assessments on the 

impact of climate change on terrestrial ecosystems. Recently, windstorm effects have been incorporated in LSMs(Bonan and 

Doney, 2018; Chen et al., 2018). However, these models are hampered by the lack of harmonized spatially-explicit information 

on windstorms required as input for robust model parameterization and large-scale representation of wind disturbance. In such 300 

contexts, the FORWIND database represents a valuable source of harmonized wind-affected forest areas for improving model 

calibration and validation. 

 

6 Data availability 

Data are freely available at https://doi.org/10.6084/m9.figshare.9555008 (Forzieri et al., 2019) and will be periodically updated 305 

with new and historical events. To this effect, the authors welcome further data contributions and commit to properly 

acknowledging them. 
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Data provider 
Number of 

records 
Event type Acquisition method 

Alto Adige province forest service, Italy 1457 Windstorm Aerial photointerpretation and field survey 

Copernicus Emergency Service 4425 Windstorm Aerial photointerpretation 

Department of Cartography and Geoinformatics, Perm State University, Perm, Russia  3056 Tornado Satellite data classification a 

Department of Forest Management, Geomatics and Forest Economics, Institute of Forest 

ResourcesManagement, Faculty of Forestry, University of Agriculture in Krakow, 
Poland 

321 Windstorm Aerial photointerpretation 

Department of Forest Resource Planning and Informatics, Faculty of Forestry, Technical 

University in Zvolen, Slovakia 
14 Windstorm Aerial photointerpretation and field survey 

Department of Geoinformatics, Faculty of Science, Palacky University, Czech Republic 1175 Windstorm Aerial photointerpretation 

Department of Land Change Science, Swiss Federal Institute for Forest, Snow and 

Landscape Research WSL, Birmensdorf, Switzerland 
64 Windstorm Aerial photointerpretation 

Department of forestry Mecklenburg-Vorpommern state, Germany 2073 Windstorm Aerial photointerpretation 

Forest national service of Sweden, Sweden  19358 Windstorm Semiautomatic classification b 

Friuli Venezia Giulia forest service, Italy 191 Windstorm Aerial photointerpretation and field survey 

Ign-Institut National de information geographique et forestiere 21691 Windstorm Aerial photointerpretation 

Laboratory of Geomatics, Institute of Land Management and Geomatics, Aleksandras 
Stulginskis University, Lithuania 

14571 Windstorm Aerial photointerpretation 

National Forest Centre, Forest Research Institute, Slovakia 555 Windstorm Aerial photointerpretation 

North Rhine-Westphalia forest service, Germany 13642 Windstorm Aerial photointerpretation 

Tesaf Department- Padua University 1532 Windstorm field survey and aerial photointerpretation 

Trento province forest service, Italy 3596 Windstorm Aerial photointerpretation and field survey 

University of Bucharest, Faculty of Geography, Romania 186 Windstorm Aerial photointerpretation and field survey 

University of Lorraine 256 Windstorm Aerial photointerpretation 

geoLAB - Laboratory of Forest Geomatics, Department of Science and Technology in  

 
Agriculture, Food, Environment and Forestry, University of Florence, Italy 

1271 Windstorm Field survey 

 

 
Table 1: List of institutions responsible of wind disturbance mapping and corresponding number of records collected and acquisition methods 435 
employed. a Spatial delineation of tornado-related impacts on forests have been based on a semi-automatic algorithm and every record has been singularly 

validated based on visual inspection of high-resolution of satellite images(Shikhov and Chernokulsky, 2018). b Area subject to wind disturbances have been 

retrieved for FORWIND by intersection of the 2005 registered forest clear-cuts between 2005-01-07 and  2005-12-31 larger than 500 m2 

(http://skogsdataportalen.skogsstyrelsen.se/Skogsdataportalen/) with the spatial delineation of the Gudrun storm(Gardiner et al., 2010). The use of forest clear-

cuts as proxy for wind-affected areas is reasonable because the morning after the storm all normal felling activity stopped and moved to storm damaged areas 440 
(Swedish Forest Agency, personal communication).    
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Class of damage Definition of damage (D) Degree of 

damage 

France 

2009 

0 no forest area (not included in FORWIND) 
 

1 D ≤ 20% 0.1 

2 20% < D ≤ 40% 0.3 

3 40% < D ≤ 60% 0.5 

4 60% < D ≤ 80% 0.7 

5 80% < D ≤100% 0.9 

6 marginally affected  missing data 

7 missing data missing data 

Lithuania 

2010 

0 no damage (not included in the FORWIND) 
 

1 D ≤ 25% 0.125 

2 25% < D ≤ 50% 0.375 

3 50% < D ≤ 75% 0.625 

4 D > 75% 0.875 

Germany 

2017 

1 D ≤ 50% 0.25 

2 50% < D ≤ 90% 0.7 

3 90% > D 0.95 

Italy 2018 1 D ≤ 30% 0.15 

 2 30% < D ≤ 50% 0.4 

 3 50% < D ≤ 90% 0.7 

 4 D > 90% 0.95 

 
Table 2: Conversion table to pass from class of damage to degree of damage. Records of windstorms occurred in Italy in 2015 are 

already expressed as damage degree in a consistent range between 0 (no damage) and 1 (full destruction of forest pattern).  
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Attribute name Description 

Id_poly Identifier code 

EventDate Date of event (MM/DD/YYYY) 

StormName Storm name  

EventType Type of event: windstorm/tornado 

Country Country where the wind disturbance occurred 

Area Area affected by wind disturbance (in hectares) 

Perimeter Perimeter of the forest area affected by wind disturbance (in meters) 

Damage_deg Damage degree (in %) 

Methods Acquisition method  

Dataprovid Data provider responsible of the wind disturbance mapping 

Source Original source of the data 

 445 
Table 3: Attribute table of the FORWIND database. Name and description of the attributes associated to each wind disturbance in 

FORWIND and listed in the .dbf file. Missing data are reported as -999.  
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Country 

Number of 

records 

Accumulated 

affected area 

(ha) 

Median affected 

area (ha) 

Standard deviation of 

affected area (ha) 

AU 646 1222.15 0.78 5.69 

CH 64 41.28 0.26 0.79 

CZ 1175 540.98 0.14 1.67 

DE 18909 34075.95 0.64 5.33 

FR 21947 875407.23 8.79 993.80 

IR 561 541.03 0.36 1.60 

IT 8047 33991.61 1.06 14.18 

LT 14571 13378.80 0.53 1.28 

PL 345 46065.34 24.03 573.29 

RO 186 417.59 0.80 4.92 

RU 3056 17188.38 0.85 25.41 

SE 19358 24450.73 0.82 1.73 

SK 569 9150.24 0.65 118.65 

Europe 89434 1056471.32 1.08 494.05 

 
Table 4: Statistics of wind disturbance records collected in the FORWIND database aggregated at country level and for whole 

Europe.  450 
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Figure 1: Spatial and temporal distribution of wind disturbances in the FORWIND database. (a) The total area affected by wind 

disturbances over the multi-year observational period (2000-2018) in 0.5-degree cells. (b) Wind disturbance occurrence year in the same 455 
cells. Red circles in (a) refer to site locations shown in Fig. 2. 
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Figure 2: Examples of wind disturbances recorded in the FORWIND database. (a,b) Tatra Mountains, Slovakia, affected by a 460 
windstorm in 2004. (c,d) Southern Sweden affected by the Gudrun storm in 2005. (e,f) Western Germany affected by the Kyrill storm in 

2007. (g,h) Western France affected by the Klaus storm in 2009. Wind disturbances recorded in the FORWIND database are shown as red 

polygons. Background colors show forest and non-forest areas derived from the 25-meter forest cover map of 2000(Pekkarinen et al., 2009) 
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while water bodies are derived from the 25-meter land cover type map of 2006(Kempeneers et al., 2011) 

(https://forest.jrc.ec.europa.eu/en/past-activities/forest-mapping/#Downloadforestmaps). Site locations in (a,c,e,g) are shown in Fig. 1a 465 
whereas zoomed plots in (b,d,f,h) refer to black boxes in (a,c,e,g). 

 

  

https://doi.org/10.5194/essd-2019-141

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 5 September 2019
c© Author(s) 2019. CC BY 4.0 License.



22 

 

 

Figure 3: Validation of the FORWIND database. (a) Density plot of FORWIND affected area versus LANDSAT-derived forest cover 470 
loss, both expressed in logarithmic scale and for lag-01 effects. The color reflects the number of records, top left labels report the Spearman 

rank correlation coefficient (ρk), the significance (p-value) and the sample size (n). (b) Spearman rank correlation coefficients for different 

affected area thresholds (on the x-axis) and different lagged effects displayed in color bars. Lagged effects considered include the forest 

cover loss cumulated over the event of a given year together with that of the following year (lag-01), forest cover loss estimated for the year 

event only (lag-0) and forest cover loss estimated for the following year only (lag-1). (c) and (d) as (a) and (b) but for the MODIS-derived 475 
Global Disturbance Index in place of Landsat-derived forest cover loss. (e) Scatter plot of damaged growing stock volume estimated from 

FORWIND (on the x-axis) and FORESTORM (on the y-axis) for five windstorms: Slovakia in 2004 (SK2004); Sweden in 2005 (SE2005 

(Gudrun)), Germany in 2007 (GE2007 (Kyrill), the Czech Republic in 2007 (CZ2007 (Kyrill)) and France in 2009 (FR2009 (Klaus)). 

FORWIND estimates are derived using GlobBiomass-derived estimates of GSVs and reported damage degree information. (f) as (e) but 

with estimates of GSVs derived from Forest Europe national inventories and assuming a  100% damage degree for all FORWIND records.  480 
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Figure 4: Use of FORWIND to explore susceptibility factors and drivers of forest vulnerability to wind disturbances. (a) Spatial map 

of the fraction of evergreen needleleaf forest (ENF). (b) Relation between the fraction of ENF (on the x-axis) and area affected by wind 485 
disturbances (on the y-axis) as derived from the FORWIND database.  Averaged values, shown in grey circles, were derived using bins that 

spanned the sampled range. Colour patterns reflect the coefficient of variation within each bin. The fitted linear regression model is shown 

in black line with the coefficient of determination (R2), slope (p1) and intercept (p2) reported in the labels. The confidence interval for each 

of the coefficient is shown in brackets. (c) Spatial map of annual maximum wind speed; (d) as (b) but for annual maximum wind speed in 

place of the fraction of ENF. The grid cells in (a) and (c) with no wind disturbances occurred over the 2000-2018 period are masked out. 490 
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