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Abstract. Strong winds may uproot and break trees and represent one of the major natural disturbances for European forests. 

Wind disturbances have intensified over the last decades globally and are expected to further rise in view of the climate change 

effects. Despite the importance of such natural disturbances, there are currently no spatially-explicit databases of wind-related 

impact at Pan-European scale. Here, we present a new database of wind disturbances in European forests (FORWIND). 50 

FORWIND comprises more than 80,000 spatially delineated areas in Europe that were disturbed by wind in the period 2000-

2018, and describes them in a harmonized and consistent geographical vector format. The database includes all major 

windstorms that occurred over the observational period (e.g., Gudrun, Kyrill, Klaus, Xhynthia and Vaia) and represents 

approximately 30% of the reported damaging wind events in Europe. Correlation analyses between the areas in FORWIND 

and land cover changes retrieved from the Landsat-based Global Forest Change dataset and the MODIS Global Disturbance 55 

Index corroborate the robustness of FORWIND. Spearman rank coefficients range between 0.27 and 0.48 (p-value<0.05). 

When recorded forest areas are rescaled based on their damage degree, correlation increases to 0.54. Wind-damaged growing 

stock volumes reported in national inventories (FORESTORM dataset) are generally higher than analogous metrics provided 

by FORWIND in combination with satellite-based biomass and country-scale statistics of growing stock volume. The potential 

of FORWIND is explored for a range of challenging topics and scientific fields, including scaling relations of wind damage, 60 

forest vulnerability modelling, remote sensing monitoring of forest disturbance, representation of uprooting and breakage of 

trees in large-scale land surface models and hydrogeological risks following wind damage. Overall, FORWIND represents an 

essential and open-access spatial source that can be used to improve the understanding, detection and prediction of wind 

disturbances and the consequent impacts on forest ecosystems and the land-atmosphere system. Data sharing is encouraged in 

order to continuously update and improve FORWIND. The dataset is available at https://doi.org/10.6084/m9.figshare.9555008 65 

(Forzieri et al., 2019).   

1 Introduction 

Natural forest disturbances represent a serious peril for maintaining productive forests. Studies indicate that their occurrence 

can reduce primary production and partially offset carbon sinks or even turn forest ecosystems into carbon sources (Kurz et 

al., 2008; Yamanoi et al., 2015; Ziemblińska et al., 2018). This is particularly critical for windthrow and tree breakage due to 70 

strong winds, which represent one of the major natural disturbance for European forests (Schelhaas et al., 2003; Seidl et al., 

2017). Such disturbances are intensifying globally, a trend which is expected to continue with further climate change (Bender 

et al., 2010; Knutson et al., 2010; Seidl et al., 2014).  

European windstorms are associated with areas of low atmospheric pressure that typically occur in the autumn and winter 

months (Martínez-Alvarado et al., 2012). Deep low-pressure areas frequently track across the North Atlantic Ocean towards 75 

Western Europe, pass the north coast of Great Britain and Ireland and into the Norwegian Sea. However, when they track 

further south, they can potentially hit any country in Europe. In 1999, storm Lothar damaged approximately 165 million m3 of 

timber mainly in France, Germany and Switzerland (Gardiner et al., 2010), which is equivalent to about 140% of the average 

https://doi.org/10.6084/m9.figshare.9555008
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annual round-wood harvested in the countries affected (FAOSTAT, 2019). In 2005, 75 million m3 were damaged by storm 

Gudrun in Sweden (Gardiner et al., 2010), equivalent to about one year’s cuttings in the same area (FAOSTAT, 2019). In 80 

2007, the storm Kyrill caused the loss of 49 million m3 of timber in Germany and the Czech Republic. In 2009 and 2010, 

storms Klaus and Xynthia hit forests in France and Spain and caused timber losses totalling approximately 45 million m3. In 

2018, the Vaia storm hits the North-Eastern regions of Italy causing a damaged growing stock volume of about 8.5 million m3. 

The socio-economic consequences of wind disturbances can be critical especially for local economies highly dependent on the 

forest sector. Countries in Northern Europe and Central-Eastern Europe, where the forest sector may cover up to 6% of the 85 

national GDP (FOREST EUROPE, 2015), are, therefore, potentially more vulnerable to wind-related impacts.  

Despite the risks they pose, spatially explicit databases of wind disturbances across Europe currently do not exist. Recent 

assessments of current and future forest damages due to windstorms at European scale are based on catalogues of disturbances 

collected at country level (Gregow et al., 2017; Schelhaas et al., 2003; Seidl et al., 2014). Such databases (e.g., FORESTORM) 

are subject to multiple sources of bias and uncertainty associated to the diversity of the underlying inventories. Furthermore, 90 

estimates of forest damage aggregated at national scale may only partially represent the spatial variability of the phenomenon. 

In fact, the coarse spatial resolution of such data hampers inferential analysis of potential drivers of forest vulnerability and 

their use in spatially explicit models to monitor or forecast wind-related impacts (Masek et al., 2015; Phiri and Morgenroth, 

2017). Despite the lack of systematic mapping of wind disturbances in European forests, a multitude of local, national, and 

transnational initiatives have accurately mapped forest areas affected by wind over the last decades. These data represent highly 95 

informative observational records to characterize spatial patterns of forest damages. However, they are collected by different 

institutes, and are often difficult to retrieve or poorly documented. Since 2012, the Copernicus Emergency Management 

Service (https://emergency.copernicus.eu/) produces maps of natural disasters throughout the world based on the analysis of 

satellite images and other geospatial data. While this important initiative can help map wind-affected areas, it only covers 

recent years and, being an on-demand service, it is not comprehensive as it depends on the interests of individual authorized 100 

users of the service to map a given forest disturbance.   

In this study, we try to fill the above-mentioned gap. To this aim, we collected and harmonized 89,743 forest areas damaged 

by wind into a consistent geospatial dataset. The work was carried out through a unique joint effort of 28 research institutes 

and forestry services across Europe. This collaboration led to the first spatially-explicit database of wind disturbances in 

European forests over the period 2000-2018, hereafter referred to as the FORWIND database. We believe that it provides 105 

essential spatial information to improve our understanding of forest damage from wind and can assist in large-scale systematic 

monitoring and modelling of forest disturbances and their effects on the land-atmosphere system. In the following sections, 

we describe the data collection, the harmonization process, and the cross-comparison performed against satellite-retrievals of 

changes in vegetation cover and data from national inventories of forest disturbances. We conclude the data description with 

some examples of the possible usage of the FORWIND database. 110 

https://emergency.copernicus.eu/
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2 Methods 

We collected wind disturbances events caused by windstorms or tornadoes that occurred in Europe between 2000 and 2018. 

A wind disturbance event is represented by a georeferenced polygon that delineates the damaged forest stand, regardless of 

the degree of damage. The original acquisition of the polygons was made by aerial/satellite photointerpretation or field survey 115 

(Table 1). Therefore, the polygons are delineated when a reasonably homogeneous patch of damaged forest is detected from 

the ground or remotely. The data were managed mostly on the Google Earth Engine platform (Gorelick et al., 2017) to 

efficiently quantify the extent of disturbances over large scales and extract additional informative attributes (e.g., Hansen et 

al., 2013; McDowell et al., 2015). We structured the data collection process in four main phases, described below.  

 Literature review and data gathering. We searched PubMed and Scopus for articles published up to January 2019, 120 

with no language restrictions, using the search terms “wind disturbance” OR “windthrow” OR “forest damage” OR 

“wind damage” OR “forest disturbance” AND “Europe” OR single country name in the publication title OR abstract. 

The identified studies had mainly mapped the effects of wind on forests for single events and/or for a limited areal 

extent. We then retrieved the spatial delineation of the observed wind damages from the corresponding authors or 

contact persons responsible for the data acquisition. The collected data were originally recorded by different research 125 

institutes and international initiatives across Europe using diverse methodologies. Table 1 lists the data providers and 

the acquisition methods.  

 Coordinate system transformation. The wind disturbances were transformed to the same geographical unprojected 

coordinate system (World Geodetic System 1984, WGS84, EPSG:4326).  

 Spatial segregation. The spatial segregation of each record was verified. In case multiple features for the same event 130 

overlapped, they were merged.  

 Harmonization of the degree of damage. A damage classification for forest disturbances was originally recorded 

for windstorms that occurred in France in 2009, in Lithuania in 2010, in Germany in 2017, in Italy in 2015 and –for 

part of the records - in 2018. In order to make these records comparable in terms of the severity of damage, the original 

classes were harmonized into a single damage metric following the rationale reported in Table 2. The resulting degree 135 

of damage varies between 0 (no damage) and 1 (full destruction of the forest patch). Information on the degree of 

damage is available for ~48% of records and is included as a basic attribute when available (Table 3).  

 

3. Data records 

The FORWIND database is the final output of the data collection procedure and it is publicly available at 140 

https://doi.org/10.6084/m9.figshare.9555008 (Forzieri et al., 2019). The FORWIND dataset contains records as polygon 

features in shapefile format (.shp). The geometry of a feature is stored as a shape comprising a set of vector coordinates 

https://doi.org/10.6084/m9.figshare.9555008
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corresponding to the boundaries of the area of a given wind disturbance. Records are georeferenced in geographical 

coordinates, i.e. latitude and longitude, following the WGS84 standard (EPSG:4326). Basic attributes of each disturbance 

(Table 3) are provided in an associated table, stored in a .dbf file.  145 

Overall, FORWIND includes 89,743 records, corresponding to ~1 million ha of forest area affected by wind disturbances 

during the 2000-2018 period. Each record should not be viewed as independent as a single storm may cause multiple, 

geographically disjunct, disturbances. At European level, the median wind-caused forest disturbance patch measures 1.07 ha 

(Table 4). However, there is substantial variability across disturbances and countries likely driven by the high heterogeneity 

of forest and landscape characteristics. Figure 1 shows the spatial and temporal variations of records in the FORWIND 150 

database. In order to better visualize the data, we summed the areas affected by wind disturbances in 0.5-degree cells (Fig. 1a). 

A similar aggregation was used to show the timing of the disturbances, here expressed as the year in which most area was 

disturbed within a given cell (Fig. 1b). The current release of FORWIND includes wind disturbances that occurred in Austria, 

Switzerland, the Czech Republic, France, Germany, Ireland, Italy, Lithuania, Poland, Romania, Russia, Slovakia and Sweden. 

The major windstorms that occurred in the last two decades are included in FORWIND, particularly Gudrun in 2005 (Sweden), 155 

Kyrill (Germany) in 2007, Klaus in 2009 (France), Xhynthia in 2010 (Germany) and Vaia in 2018 (Italy). The high spatial 

detail of FORWIND is illustrated in Figure 2 for some key windstorms. According to the institutions responsible for the data 

acquisition, the wind disturbances recorded in FORWIND exhaustively represent the damaged forest areas caused by those 

specific events. However, some known damaging wind events are currently missing in the database. In order to provide a more 

comprehensive assessment of the representativeness of FORWIND, we derived for each country the ratio between the number 160 

of wind events included and the number of all wind events that occurred and which are known to have caused forest damages 

(Table 5). The number of known damaging events is derived by summing up the number of distinct events recorded in 

FORESTORM (http://www.iefc.net/storm/) and FORWIND during the 2000-2018 period. Therefore, the temporal 

representativeness ranges between 0 (all known wind disturbances are missing in FORWIND) and 1 (all known wind 

disturbances are included in FORWIND). Estimates of representativeness ranges between 0.13 and 1 amongst the countries 165 

included in FORWIND, with an average value of 0.63 at the European level (see Table 5). However, when countries currently 

missing in FORWIND are also accounted for, the average representativeness decreases to 0.30. These values should be viewed 

with caution as the estimated number of total damaging wind events resulting from FORWIND and FORESTORM could 

likely deviate from the actual ones. Future efforts should be aimed at populating FORWIND with the damaging wind events 

known to be missing. 170 

 

4. Comparison of FORWIND with satellite-based metrics and national inventories 

The lack of alternative datasets with the same spatially explicit mapping of wind disturbances as in FORWIND does not allow 

for a standard validation exercise. Therefore, we evaluated the validity of FORWIND based on the plausibility of the collected 

http://www.iefc.net/storm/
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spatial delineations of wind disturbances with respect to two satellite-based proxies of forest disturbances and estimates of 175 

forest damages reported in national inventories. 

4.1 FORWIND versus LANDSAT-based forest cover loss 

FORWIND was initially compared with satellite-based estimates of forest cover loss derived from the Global Forest Change 

maps (Hansen et al., 2013) (GFC, https://earthenginepartners.appspot.com/science-2013-global-forest). GFC maps 

characterize the annual forest coverage at global scale during the period 2000–2018 at 30-meter spatial resolution based on 180 

time-series analysis of Landsat images. Forest cover loss is defined as an area that has changed from a state of forest to non-

forest, following a given disturbance event (natural or anthropogenic). The change detection is based on the variation in the 

spectral properties of the land surface. Windstorm events in Europe often occur in autumn and the beginning of winter, when 

the availability of cloud-free images is typically much more limited than in summer. Hence, satellite retrievals of forest cover 

loss may miss the exact timing of the disturbance. Therefore, the GFC-based forest cover loss may only record wind 185 

disturbances the year after the event occurred. In addition, fallen trees following a windstorm or tornado often maintain their 

leaves for months. This may lead to limited or no change in land reflectance properties, even when cloud-free images are 

available. Therefore, satellite-based products may underestimate forest cover loss in the short-term (interannual scale). In order 

to account for these effects, we considered the forest cover loss by summing up the forest loss over the year of a given event 

together with that of the following year (lag-01). The loss estimate was quantified with respect to the pre-event conditions (the 190 

forest cover in the year before the event). To reduce potential contamination effects from other disturbances on the resulting 

total forest cover loss, we removed areas affected by fires the year following a wind event. Information on forest areas affected 

by fires were retrieved from the European Forest Fire Information System (EFFIS, http://effis.jrc.ec.europa.eu/). Insect 

outbreaks, which may be triggered by large numbers of dead trees following wind disturbances (Stadelmann et al., 2013), 

generally lead to a slow change in tree cover, which may only marginally affect the 1-year temporal lag used for our estimates 195 

of forest cover loss. Furthermore, forest logging following a wind event can be considered a secondary effect of the strong 

winds, as it is often employed to reduce the risk of other forest disturbances (specifically insect outbreaks and fires). Therefore, 

the resulting estimates of forest cover loss for the selected areas should reflect wind disturbances first and foremost. We 

emphasize that Landsat-derived estimates of forest cover loss are affected by the uncertainty in satellite retrievals and do not 

represent the true impacts. However, their suitability for detecting forest disturbances over large scale has been widely 200 

recognized (Curtis et al., 2018; Hansen et al., 2013) and, therefore, they are here considered a good proxy of forest loss.  

For each selected FORWIND record we computed the area of affected forest based on the spatial delineation of the polygon 

and the corresponding Landsat-derived forest cover loss and calculated the correlation between the two sets of estimates. In 

order to account for the spatial dependence structure of FORWIND data, correlation values were derived for 100 subsets of 

1000 records randomly selected from the entire dataset. The final estimate of correlation was then quantified as the average of 205 

the correlation values derived from the 100 subsets.  

https://earthenginepartners.appspot.com/science-2013-global-forest
http://effis.jrc.ec.europa.eu/
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Results for the whole dataset are shown in Figure 3a. Overall, we found a modest but significant Spearman rank correlation 

coefficient (ρk=0.48, p-value<10-3), which supports the validity of FORWIND in mapping areas subject to changes of forest 

coverage due to wind disturbances. We point out that for this calculation we did not mask the data based on the degree of 

damage, because such information is available only in some countries. However, a similar correlation analysis performed by 210 

rescaling the recorded areas based in their damage degree (for those records that report the information) led to higher 

correlation values up to 0.54. We further tested the sensitivity of our results to the temporal lag used to quantify the forest 

cover loss. To this aim, we complemented the previous analysis (lag-01) using Landsat-based forest cover loss estimated for 

the year of the event only (lag-0) and the following year only (lag-1). In order to investigate possible scaling relations, the 

correlation analysis was performed accounting for the FORWIND records with a spatial extent above a given threshold derived 215 

from the percentiles 0, 0.25, 0.50 and 0.75 of the full dataset (corresponding to about 0, 0.5, 1, and 3.5 ha, respectively). Results 

show that correlation values between FORWIND affected areas and lag-0 forest cover loss tends to slightly decrease with an 

increasing size of the wind disturbance (Fig. 3b). The opposite pattern is observed for correlation values with lag-1 forest cover 

loss. The forest cover loss accumulated over the two years considered (lag-01) appears dominated by the contribution of lag-

1 forest cover loss. We argue that such contrasting tendencies may be linked to the scale and climatology of extreme winds. 220 

Wind-related forest impacts of limited areal extent originate from local windstorms or tornadoes that may occur throughout 

the year. For these events, most of the damage is probably well captured by lag-0 effects, as it is more likely that cloud-free 

images are available after the event. In contrast, the larger and more damaging windstorms, which affect larger forest areas, 

typically occur in autumn and early winter (decreasing the likelihood of cloud-free images after the storm and before the end 

of the year). For these events, the inclusion of the lag-1 effect is key to characterize the impact on forest cover. 225 

4.2 FORWIND versus MODIS Global Disturbance Index 

FORWIND was also compared with an independent dataset of satellite-based estimates of forest disturbance as expressed by 

the MODIS-based Global Disturbance Index (Mildrexler et al., 2009) (MGDI, 

http://files.ntsg.umt.edu/data/NTSG_Products/MGDI/). MGDI maps quantify the overall annual forest disturbance globally 

for the period 2004-2012 at 500-meter spatial resolution. The disturbance retrieval is based on the variations in the Enhanced 230 

Vegetation Index and land surface temperature following a given sudden change in forest cover. Consistent with the previous 

Landsat-based analysis - the total change in MGDI potentially related to a given wind disturbance was computed as the 

accumulated net change in MGDI over the event year and the following year (lag-01). The change was quantified with respect 

to the pre-event conditions (MGDI in the year before the event).  The technique used to disentangle the fire signal, as well as 

the correlation and sensitivity analyses with respect to the temporal lags and wind disturbance size, were performed 235 

analogously to the previous validation exercise (Section 4.1).  

Overall, we found a low but significant correlation coefficient (ρk=0.27, p-value<10-3) (Fig. 3c). The lower correlation 

compared to the Landsat-based dataset is presumably due to the coarser spatial resolution of MGDI that probably does not 

fully capture the changes in land surface properties due to wind disturbances (Mildrexler et al., 2009). This seems to be 

http://files.ntsg.umt.edu/data/NTSG_Products/MGDI/
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supported by the generally increasing correlation values up to 0.31 for wind disturbances of 1 ha consistently across the 240 

different temporal lags (Fig. 3d). 

4.3 FORWIND versus FORESTORM 

FORWIND data were finally compared with estimates of damaged growing stock volume (GSV) that are recorded at country 

level in the FORESTORM database for five windstorm events: Slovakia in 2004; Sweden in 2005 (Gudrun storm), Germany 

in 2007 (Kyrill storm), the Czech Republic in 2007 (Kyrill storm) and France in 2009 (Klaus storm). We derived the damaged 245 

GSV by multiplying the estimated GSV by the percentage damaged, both of which are reported in FORESTORM. An 

analogous metric was derived from FORWIND data by first calculating for each FORWIND record the amount of GSV lost 

by multiplying the areal average GSV by the damage level reported for the record. As the damage level was only reported for 

Klaus, for the other events we assumed a damage level equal to the average level reported for Klaus weighted on the spatial 

extent of each record. The GSV was retrieved from the GlobBiomass dataset (Santoro et al., 2018) 250 

(https://doi.pangaea.de/10.1594/PANGAEA.894711) which is based on multiple remote sensing products and is considered 

the state-of-the-art global biomass product. This satellite-based GSV estimate refers to the year 2010 and has a spatial 

resolution of 100 meter. The damages to GSV were then summed by event and country. Event-scale FORWIND damaged 

GSVs were then compared with estimates derived from FORESTORM.  

Overall, results show that the magnitude of damages estimated from FORWIND and FORESTORM are largely different, 255 

except for the 2009 Klaus storm in France for which we found a very good agreement (Fig. 3e). For most of the events, 

however, FORESTORM tends to systematically give higher forest damage estimates than FORWIND with differences 

exceeding 90%. We note that such differences persist when we derive FORWIND estimates of damaged GSV assuming a 

100% damage degree for all records (not shown). Therefore, the uncertainty in the damage degree in FORWIND does not 

affect substantially the difference between FORWIND and FORESTORM. We recognize that estimates of forest damages 260 

based on FORWIND are fully dependent on the GSV derived from GlobBiomass. Indeed, any deviations of the mapped GSV 

from the true forest state are inherently translated into our damaged GSV estimates. In particular, the GSV map refers to the 

year 2010, therefore it is very likely that it largely reflects the biomass conditions following, rather than preceding, the 

windstorm events (all the five events considered in this validation exercise occurred before 2010).  

In order to disentangle such source of bias we derived country-scale estimates of average GSVs for the year 2000 (pre-event 265 

conditions) from the State of Europe’s Forest (FOREST EUROPE, 2015) 

(https://www.foresteurope.org/docs/SoeF2015/OUTPUTTABLES.pdf). We then derived the damaged GSVs by multiplying 

Forest Europe-derived GSVs by the total forest area affected for each of the considered wind events by assuming a 100% 

degree of damage. Furthermore, as wind disturbance typically affects taller forest patches and probably more productive trees 

compared to the country scale average, we rescaled previous estimates of damaged GSVs based on the ratio between the 270 

average tree height computed over wind-affected areas and the average tree height computed over the whole vegetated land in 

the country. Tree height values where retrieved from 1-km spaceborne light detection and ranging (lidar) data acquired in 2005 

https://doi.pangaea.de/10.1594/PANGAEA.894711
https://www.foresteurope.org/docs/SoeF2015/OUTPUTTABLES.pdf
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by the Geoscience Laser Altimeter System (GLAS) aboard ICESat (Ice, Cloud, and land Elevation Satellite), 

(https://webmap.ornl.gov/wcsdown/dataset.jsp?ds_id=10023) (Simard et al., 2011). 

Similar to the previous results, except for the Klaus storm, we found higher values of damaged GSVs in FORESTORM than 275 

in our estimates based on the integration of FORWIND and country values of GSVs (Fig. 3f). We recognize that FORWIND 

could miss some wind damage occurrences, for instance due to incomplete detection of wind disturbance from aerial 

photointerpretation or difficulties of mapping inaccessible areas by ground surveys. However, according to the institutions 

responsible for the data acquisition, the forest areas affected by the windstorm events considered in this validation exercise 

were exhaustively mapped. Therefore, possible residual omissions are expected to only marginally affect our results. We 280 

therefore argue that a possible source of error may be associated to the FORESTORM database. Estimates of forest damages 

from FORESTORM originate from different sources and are collected by multiple actors. Hence, the loss figures should be 

viewed in light of their potential biases, including a possible overestimation of the true impacts.  

 

5 Possible applications of FORWIND database 285 

For demonstration purposes, we show a series of possible applications of the FORWIND database. We recognize that the 

examples described in the following sections are an oversimplification of the relationships observed in nature and of the 

biomechanical processes that may cause wind disturbances or that can be triggered by wind disturbances. More sophisticated 

approaches could be employed to better explore and predict the forest response functions to wind disturbances. For example, 

multiple variables, susceptibility factors, and drivers (e.g., tree species, tree dimension, management regimes, planting patterns, 290 

soil depth, snow cover), contribute concurrently to modulate the forest response to wind disturbances (Hart et al., 2019; Klaus 

et al., 2011; Mitchell, 2013) and their contribution should be analysed in a multidimensional space (e.g., Section 5.1 and 5.2). 

Therefore, the approaches described here should not be considered as a reference methodology but only as informative 

applications to explore the usefulness of the FORWIND database. 

5.1 Scaling relations of severity of wind disturbances  295 

The exploration of the relations between forest dynamics and scale can reveal important information on ecosystem spatial 

organization by addressing preservation of information integrity in upscaling/downscaling procedures of land-surface 

parameterization for ecological modelling applications (Forzieri and Catani, 2011). Here, we explore – in a simplified approach 

– the scaling relations of the degree of damage of wind disturbances collected in FORWIND. To this aim, we estimated, for 

each record, the cover fractions of different plant functional types (PFTs) including broadleaf deciduous (BrDe), broadleaf 300 

evergreen (BrEv), needleleaf deciduous (NeDe) and needleleaf evergreen (NeEv).  Cover fractions were retrieved from the 

annual land cover maps of the European Space Agency’s Climate Change Initiative (ESA-CCI, https://www.esa-landcover-

cci.org/). The degree of damage of each record was then spatially averaged over the sampled interquartile range of affected 

https://webmap.ornl.gov/wcsdown/dataset.jsp?ds_id=10023
https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/
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areas (bin size of 0.25 ha). The spatial averages were computed separately for each PFTs utilizing their cover fractions as 

weights. Quadratic polynomial functions were finally used to fit the observations and retrieve the relationship between the 305 

degree of damage and affected area for the considered PFTs.  

Results show that all considered PFTs generally have a higher degree of damage for wind disturbances with small spatial 

extent (Fig. 4a). This may reflect a better delineation of small affected areas when the damage is typically higher and 

homogeneous. Furthermore, the declining scaling relations suggests potential spatially-varying dampening effects of wind 

severity due to landscape heterogeneity over large areas compared to more homogeneous patterns in small forest patches. 310 

Model fitting shows reasonably good performances with R2 ranging between 0.84 and 0.90 across the PFTs (Table 6). 

Compared to the other PFTs, NeEv generally has a higher degree of damage that is related to the affected area by a quasi-

monotonic pattern. The relationships found for the other PFTs show a stronger link between the degree of damage and affected 

area compared to NeEv, particularly over the range with larger samples (affected areas < 2 ha, Fig. 4b) as visualized by the 

steeper slopes of the fitting functions. For BrDe, BrEv and NeDe a prominent parabolic pattern emerges distinctly driven by 315 

records with a large spatial extent and a relatively high degree of damage.  

5.2 Forest vulnerability to wind disturbances  

The vulnerability of forests to natural disturbances is a key determinant of risk and reflects the propensity of a forest to be 

adversely affected when exposed to hazardous events (IPCC, 2014). Vulnerability is largely controlled by local environmental 

conditions, such as climate and forest characteristics, which regulate the sensitivity of ecological processes to disturbance 320 

agents (Lindenmayer et al., 2011; Seidl et al., 2016; Turner, 2010). Here, we employ FORWIND records to quantify the forest 

vulnerability as a function of the fraction of evergreen needleleaf forest and annual maximum wind speed. The fraction of 

NeEv was derived from the ESA-CCI product aggregated at 0.5 degree spatial resolution. Annual maximum wind speeds were 

computed from NCEP/NCAR Reanalysis 2 data (Saha et al., 2010) (NCEP2, 

https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html). Daily average wind data at 0.5 degree spatial 325 

resolution were acquired and the two horizontal components combined to derive the magnitude of the wind vector. For each 

cell, the fraction of NeEv and the annual maximum wind concomitant with a wind disturbance were then selected from the 

time series and used in our experiment as potential drivers of vulnerability (Fig. 5a,c). The values of fraction of NeEv and 

annual maximum wind speed (predictors) were linked with the corresponding FORWIND affected area (response variable) 

within each 0.5 degree cell. The high spatial variability of the considered metrics and the potential effects of additional 330 

environmental factors not considered in this exercise may potentially mask the functional relations between the response 

variable and predictors. In order to reduce such potential sources of noise, response variables and predictors were spatially 

averaged over the sampled range of the predictors (bin sizes of 10% and 2 m/s for fraction of NeEv and annual maximum wind 

speed, respectively). 

Wind disturbance areas manifest a substantial variability, as evident form the generally high values of the coefficient of 335 

variation. However, when data are spatially averaged at bin level, simple linear regression models show a reasonably good fit, 

https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html
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with R2 values of 0.52 and 0.81 for the fraction of NeEv and annual maximum wind speed, respectively. Emerging patterns 

are largely consistent with expectations and previous studies. An increasing fraction of NeEv leads to an increase in wind 

disturbance area (growing rate of 12 ha of affected forest per 0.1 increase in NeEv fraction, Fig. 5b). The emerging relation is 

likely driven by the relatively high abundance of picea abies in the sampled forest areas. This tree species is typically 340 

characterized by shallower rooting systems often due to the type of soils on which it is planted (Mason and Valinger, 2013). 

Combined with the limited flexibility of its branches (Mayhead, 1973) and relatively low rupture strength of its trunk (Lavers, 

1969) this makes picea abies prone to uprooting and breakage by strong winds (Colin et al., 2009; Nicoll et al., 2006).  A 

similar pattern emerges with respect to annual maximum wind speed (Seidl et al., 2011). Wind disturbance area tends to 

increase with rising wind speed (growing rate of 32 ha of affected forest per 1 ms-1 increase in wind speed, Fig. 5d). Maximum 345 

wind speeds are the primary determinant of wind disturbances. However, we point out that the coarse spatial and temporal 

resolution on NCEP2 data largely underestimate the speed of wind gusts and may completely miss peak winds originating 

from tornados. This is clearly evident from the range of values of annual maximum wind speed (6-22 m/s) which are far lower 

than the wind speeds reported in country-scale inventories of forest disturbance (e.g., 42 m/s for Gudrun, FORESTORM) and 

in the Extreme Wind Storms (XWS) catalogue (Roberts et al., 2014) (http://www.europeanwindstorms.org/) (e.g., 39 m/s for 350 

Gudrun, XWS). 

5.3 Remote sensing detection and attribution of wind disturbances  

Natural disturbances are accelerating globally, but their full impact is not quantified because we lack an adequate monitoring 

system. Remote sensing offers a means to quantify the frequency and extent of disturbances over landscape-to-global scales 

(McDowell et al., 2015). For instance, some pioneering studies have begun producing classification maps of various forest 355 

disturbance agents based on remote sensing data (Cohen et al., 2016; Hermosilla et al., 2015; Potapov et al., 2015; White et 

al., 2017). However, the attribution of forest change to windstorms remains challenging. Previous systematic monitoring has 

been performed only over limited areal extents and showed considerable uncertainty (Baumann et al., 2014; Schroeder et al., 

2017) mostly due to the limited number of sampled wind-affected areas available for training/testing classification algorithms 

(Schroeder et al., 2017). In this respect, FORWIND data can be used to enhance our capability to detect and attribute forest 360 

damage due to windstorms from remote sensing data.  Here, we tested different types of classification trees in combination 

with a Sentinel-2 imagery and FORWIND database to automatically map  wind disturbances that occurred following storm 

Vaia in October 2018 in the Dolomites Mountains in Northern Italy (Pirotti et al., 2016). Google Earth Engine was used to 

create a single image composite from a stack of cloud-free pixels (11 and 28 images acquired before and after the windstorm 

event, respectively). Median was used as a reducer over the vector of pixel values derived from each image, after masking 365 

cloudy pixels using the cloud probability raster delivered from atmospheric, terrain and cirrus correction of the sen2cor 

processor (Louis et al., 2018). Further masking was applied to process only pixels covered by forest, using the 2018 estimated 

forest cover map from the Global Forest Change 2000–2018 dataset (Hansen et al., 2013). Binary classification, i.e. damaged 

vs. non-damaged, was applied over a set of 1000 completely damaged areas retrieved from FORWIND, and 1000 non-damaged 

http://www.europeanwindstorms.org/
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areas. Half of these were used for training and validation, the other half for unbiased testing of the model performance. The 370 

feature vector used for predictors included reflectance values recorded by Sentinel-2 after radiometric and atmospheric 

correction (i.e. bottom of atmosphere) and a tasselled cap (TC) transform of reflectance bands to the brightness, greenness and 

wetness domain. The TC was added as it is reasonable that wind-affected areas will provide higher degree of brightness and 

lower degree of greenness with respect to undisturbed areas (Baumann et al., 2014). Several machine learning algorithms were 

employed, including Random Forest, Extremely-Randomized Forest, Gradient Boosting Machines, Deep Neural Networks 375 

and Stacked Ensemble, all trained and cross-validated based on K-fold validation with K=5 (Click et al., 2016). 

Results, based on the best performing classification model (Random Forest), provided very promising accuracy with a F1 score 

of 0.97, with 27 false positives and 1 false negative over 915 pixels used for testing (507 not-damaged and 408 damaged). 

Figure 6 shows mapped probability of wind occurrence - with blue to red respectively representing zero to one probability of 

a heavily hit area in the Veneto Region. Based on visual comparison with ground data, the automatic classification is able to 380 

capture the spatial patterns of wind damage. It is worth noting that damage in forest/non-forest nexus is less accurate due to 

pixel mixing. Another point worth further investigation is what might be defined as false positives from binary classification, 

might actually be true positives that were not mapped due to human error. On the other hand, false negatives might be true 

negatives in the sense that small patches of standing trees might be present in mapped areas due to the understandable minimum 

level of detail that must be adopted.  385 

5.4 Representation of wind disturbances in Land Surface Models  

Land surface models (LSM) are key components of Earth System Models that are widely applied to support policy-relevant 

assessments on the impact of climate change on terrestrial ecosystems (Quéré et al., 2018). Recently, windstorm effects have 

been incorporated in LSMs (Chen et al., 2018). However, these models are hampered by the lack of harmonized spatially-

explicit information on windstorms required as input for robust model parameterization and large-scale representation of wind 390 

disturbance. In such contexts, the FORWIND database represents a valuable source of harmonized wind-affected forest areas 

for improving model calibration and/or evaluation. To illustrate such possible application, FORWIND was used as an 

independent data source to evaluate the LSM ORCHIDEE (revision r4262) that simulates windthrow damages and that was 

parameterized with observation prior to the FORWIND time frame.  

ORCHIDEE r4262 was parameterized to the extent possible with observed parameter values. Nevertheless, tuning windthrow 395 

parameters remained necessary for gustiness, maximum damage rate (which is a parameter to account for the large simulations 

units, i.e., 2500 km2, in ORCHIDEE vs. the small scale at which storm damage occurs), and the relaxation factor for the 

damage function (Rf in eq.(12) in (Chen et al., 2018); which is the parameter that converts the difference between the critical 

and actual wind speed into a damage rate). To this aim Swedish data from 1981 to 2000 (Nilsson et al., 2004), a period 

characterized by the absence of major storms in Sweden, was selected. Tuned parameters reproduced the annual storm damage 400 

in Sweden between 1981 to 2000 with a root mean square error of 1.3 Mm3 year-1 as well as the observed damage from the 

2005 storm named Gudrun (75 Mm3 of reported damage vs. 77 Mm3 of simulated damage) (Chen et al., 2018). Subsequently, 
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the parameter values obtained by tuning ORCHIDEE against the damage rate in the absence of major storms in Sweden were 

used to simulate windthrow over the entire European domain starting in the year 2000.  

The model simulated a total annual damage of 30 Mm3 year-1 of wood timber over an area of 2Mkm2 averaging 0.15 m3/ha/year 405 

which is in line with the reported value of 0.13 m3/ha/year between 1951 and 2000 (Schelhaas et al., 2003) and the projected 

0.15 m3/ha/year-1 between 2000 and 2020 (Seidl et al., 2014). According to ORCHIDEE, storms affected a total of 50,000 

km2 between 2000 and 2015, where, damage area was obtained by dividing the damaged timber volume (m3 m-2) by the sum 

of the damaged and remaining timber volume (m3 m-2) and multiplying by pixel surface area. At first sight these results strongly 

contrast with the 14,000 km2 of storm damaged area archived in the FORWIND database between 2000 and 2015 but it should 410 

be noted that FORWIND was estimated to represent just 30% of the European storms since 2000 (see Table 5). Extrapolating 

FORWIND to the European domain suggests that based on the observations, the area affected by wind storms could exceed 

38,000 km2.  

Differences in spatial and temporal definitions between ORCHIDEE and FORWIND were partly accounted for by extracting 

storm damage estimates from ORCHIDEE only when the storm was included in FORWIND. Following this, the ORCHIDEE 415 

model appears to overestimate the damage rate in years with small storms but failed to estimate the damage rate of Klaus in 

2009 (Fig. 7). This suggests that the tuned relaxation factor for the damage function (Rf=6), which allows for individual tree 

damage at actual wind speeds below the critical wind speed, is too high. As a consequence ORCHIDEE simulates too much 

small-scale damage at wind speeds below the critical value, while the maximum damage rate in ORCHIDEE is too low. 

Furthermore, ORCHIDEE could only partially represent the effects of forest stand edges on the propagation of wind 420 

disturbance. Indeed, damage due to the Klaus storm was particularly amplified due to the amount of damage arising at 

vulnerable forest stand edges and then propagating through the uniform pinus radiata stands (Hart et al., 2019; Kamimura et 

al., 2015).  

These results  shows that evaluating the capacity of land surface models to project storm damage hinges on our ability to 

precisely define the storm events recorded in the databases and our ability to use this information to estimate key model 425 

parameters such as the relaxation factor and the maximum damage rate. 

5.5 Indirect effects of wind damages on slope instability 

FORWIND may also be employed to improve the predictive performances of slope stability models that rely on water-soil 

interactions and soil mechanics. Vegetation affects terrain properties in a variety of ways including the modification of 

hydraulic conductivity, the regulation of evapotranspiration and the increase of soil strength by apparent root cohesion 430 

(Amundson et al., 2015; De Baets et al., 2008). This, in turn, may strongly condition terrain response to external forcing such 

as intense rainfall and seismic shaking, leading to mass wasting in the form of shallow landslides and soil erosion (Moos et 

al., 2016; Ruiz-Colmenero et al., 2013). 

We have tested the capability of FORWIND to provide data for assimilation in shallow landslide hazard models and for model 

validation by selecting the dataset relative to the Vaia wind storm of October 2018 in the Dolomites Mountains in Northern 435 
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Italy and using it to model indirect effects of wind disturbance on slope stability. A multivariate machine learning model for 

shallow landslide susceptibility has been trained and applied on pre-storm terrain attributes to reveal relative probability of 

occurrence and then applied again to post-storm conditions to measure the effects of forest disturbance on the hazard. The 

terrain attributes considered in the analysis include elevation, slope angle, slope curvature variability, local rainfall patterns, 

geo-mechanical classes, potential soil saturation, contributing area and pre- and post-storm Normalized Difference Vegetation 440 

Index (NDVI) maps from Landsat 8 level-2 imagery. The dataset was trained by a RUSBoosted Random Forest regressor 

(Catani et al., 2013) on a validated shallow-landslide dataset derived from the Italian National catalogue IFFI (Trigila et al., 

2013). The training process highlights that NDVI, typically considered as a good proxy of biomass density, is ranked second 

in terms of explained variance and seems to strongly condition landslide susceptibility in all the Dolomites Mountains. The 

FORWIND database collects dated and graded information on wind damage to forests that directly correlates to marked 445 

changes in NDVI values, as can be observed in Fig. 8a. The effects of the damages recorded in the FORWIND dataset are 

measurable by comparing the levels of susceptibility before and after the occurrence of the Vaia wind storm (Fig. 8b). As can 

be appreciated in the map, the red areas, that reveal a marked increase in the probability of landslides, match the FORWIND 

polygons very well and clearly indicate the usefulness of the wind-damage geographical databases in slope hazard prediction 

and modelling. In Fig. 8b we also note some omission and commission errors. They, however, can be easily explained by 450 

noting that vegetation stripping (or vegetation scantiness) is only one of the factors contributing to landslides. Therefore, 

wherever Vaia has damaged forests but slopes are very gentle, no shallow landslides can be generated. On the other hand, 

outside FORWIND polygons landslides may still develop, due to the prevailing action of other factors, such as e.g. 

unfavourable geological conditions or strong concentrated rainfall.  

The use of FORWIND data in landslide modelling is not limited to the cross-validation of biomass volume changes but can 455 

also be extended to the usage of the dataset as an additional predictor in multi-variate statistics. We noted that the overlapping 

of FORWIND polygons and NDVI stress (brown) areas shows few exceptions. In such areas, the two factors seem to behave 

independently. In particular, locations where wind damage do not correspond to a NDVI change might reveal cases where the 

possible storm effects on soil stability are not captured by satellite-based variations in biomass content and must be accounted 

for by a different metric. That, in turn, opens the way to important future developments in the usage of wind-driven damage 460 

datasets in slope stability forecasting. 

 

6 Conclusions 

Modern and forthcoming Earth observation systems (McDowell et al., 2015), new generation of Land Surface Models (Bonan 

and Doney, 2018), recent developments of cloud computing platforms (Gorelick et al., 2017) and machine learning approaches 465 

(Reichstein et al., 2019) are offering unprecedented opportunities to explore and predict ecosystem dynamics at an increasing 

spatial-temporal resolution and sophistication level. In light of such progress, it is of paramount importance to implement 
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robust calibration and validation procedures based on reliable ground observations. In order to capture the variability of 

ecosystem response across wide environmental gradients, reference ground truth needs to be collected over large spatial scales. 

In this context, FORWIND represents an essential dataset to improve our capacity to understand, detect and predict wind 470 

disturbances and quantify their impact on forest ecosystems and the land-atmosphere system. The FORWIND database is the 

first Pan-European collection of spatially delineated forest areas affected by wind disturbances and includes all major events 

that occurred over the 2000-2018 period. Future research needs should be aimed at further populating FORWIND with missing 

damaging wind events.  

 475 

7 Data availability 

Data are freely available at https://doi.org/10.6084/m9.figshare.9555008 (Forzieri et al., 2019a) and will be periodically 

updated with new and historical events. To this effect, the authors welcome further data contributions and commit to properly 

acknowledging them. 
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Data provider 
Number 

of records 
Event type Acquisition method 

Alto Adige province forest service, Italy 1457 Windstorm Aerial photointerpretation and field survey 

AVEPA - Agenzia Veneta per i Pagamenti in Agricoltura,in 

collaboration with U.O. Forestale of the Veneto Region; 

revisited by TESAF Department, University of Padova. 

1526 Windstorm 
Aerial and satellite photointerpretation + field 

surveys 

Copernicus Emergency Service 4425 Tornado Aerial photointerpretation 

Department of Cartography and Geoinformatics, Perm State 

University, Perm, Russia 
3056 Windstorm Satellite data classification a 

Department of Forest Management, Geomatics and Forest 

Economics, Institute of Forest ResourcesManagement, 

Faculty of Forestry, University of Agriculture in Krakow, 

Poland 

321 Windstorm Aerial photointerpretation 

Department of Forest Resource Planning and Informatics, 

Faculty of Forestry, Technical University in Zvolen, Slovakia 
14 Windstorm Aerial photointerpretation and field survey 

Department of Geoinformatics, Faculty of Science, Palacky 

University, Czech Republic 
1175 Windstorm Aerial photointerpretation 

Department of Land Change Science, Swiss Federal Institute 

for Forest, Snow and Landscape Research WSL, Birmensdorf, 

Switzerland 

64 Windstorm Aerial photointerpretation 

Department of forestry Mecklenburg-Vorpommern state, 

Germany 
2073 Windstorm Aerial photointerpretation 

Forest national service of Sweden, Sweden 19673 Windstorm Semiautomatic classification b 

Friuli Venezia Giulia forest service, Italy 191 Windstorm Aerial photointerpretation and field survey 

geoLAB - Laboratory of Forest Geomatics, Department of 

Science and Technology in Agriculture, Food, Environment 

and Forestry, University of Florence, Italy 

1271 Windstorm Field survey 

Ign-Institut National de information geographique et forestiere 21691 Windstorm Aerial photointerpretation 

Laboratory of Geomatics, Institute of Land Management and 

Geomatics, Aleksandras Stulginskis University, Lithuania 
14571 Windstorm Aerial photointerpretation 

National Forest Centre, Forest Research Institute, Slovakia 555 Windstorm Aerial photointerpretation 

North Rhine-Westphalia forest service, Germany 13642 Windstorm Aerial photointerpretation 

Trento province forest service, Italy 3596 Windstorm Aerial photointerpretation and field survey 

University of Bucharest, Faculty of Geography, Romania 186 Windstorm Aerial photointerpretation and field survey 

University of Lorraine 256 Windstorm Aerial photointerpretation 

Table 1: List of institutions responsible of wind disturbance mapping and corresponding number of records collected and acquisition methods 665 
employed. a Spatial delineation of tornado-related impacts on forests have been based on a semi-automatic algorithm and every record has been singularly 

validated based on visual inspection of high-resolution of satellite images (Shikhov and Chernokulsky, 2018). b Area subject to wind disturbances have been 

retrieved for FORWIND by intersection of the 2005 registered forest clear-cuts between 2005-01-07 and  2005-12-31 
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(http://skogsdataportalen.skogsstyrelsen.se/Skogsdataportalen/) with the spatial delineation of the Gudrun storm (Gardiner et al., 2010). The use of forest clear-

cuts as proxy for wind-affected areas is reasonable because the morning after the storm all normal felling activity stopped and moved to storm damaged areas 670 
(Swedish Forest Agency, personal communication).    

http://skogsdataportalen.skogsstyrelsen.se/Skogsdataportalen/
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Class of damage Definition of damage (D) Degree of 

damage 

France 

2009 

0 no forest area (not included in FORWIND) 
 

1 D ≤ 20% 0.1 

2 20% < D ≤ 40% 0.3 

3 40% < D ≤ 60% 0.5 

4 60% < D ≤ 80% 0.7 

5 80% < D ≤100% 0.9 

6 marginally affected  missing data 

7 missing data missing data 

Lithuania 

2010 

0 no damage (not included in the FORWIND) 
 

1 D ≤ 25% 0.125 

2 25% < D ≤ 50% 0.375 

3 50% < D ≤ 75% 0.625 

4 D > 75% 0.875 

Germany 

2017 

1 D ≤ 50% 0.25 

2 50% < D ≤ 90% 0.7 

3 90% > D 0.95 

Italy 2018 

(Trentino 

Alto 

Adige) 

1 D ≤ 30% 0.15 

2 30% < D ≤ 50% 0.4 

3 50% < D ≤ 90% 0.7 

4 D > 90% 0.95 

 
Table 2: Conversion table to pass from class of damage to degree of damage. Records of windstorms occurred in Italy in 2015 

(Toscana) and in 2018 (Veneto) are already expressed as damage degree in a consistent range between 0 (no damage) and 1 (full 

destruction of forest pattern).  675 
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Attribute name Description 

Id_poly Identifier code 

EventDate Date of event (MM/DD/YYYY) 

StormName Storm name  

EventType Type of event: windstorm/tornado 

Country Country where the wind disturbance occurred 

Area Area affected by wind disturbance (in hectares) 

Perimeter Perimeter of the forest area affected by wind disturbance (in meters) 

Damage_deg Damage degree (-) 

Methods Acquisition method  

Dataprovid Data provider responsible of the wind disturbance mapping 

Source Original source of the data 

 
Table 3: Attribute table of the FORWIND database. Name and description of the attributes associated to each wind disturbance in 

FORWIND and listed in the .dbf file. Missing data are reported as -999.
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Country 

code 

Number 

of 

records 

Accumulated 

affected area 

(ha) 

Median 

affected 

area (ha) 

Standard 

deviation 

of affected 

area (ha) 

AU 646 1222.15 0.78 5.69 

CH 64 41.28 0.26 0.79 

CZ 1175 540.98 0.14 1.67 

DE 18909 34075.95 0.64 5.33 

FR 21947 875407.23 8.79 993.80 

IE 561 541.03 0.36 1.60 

IT 8041 33991.67 1.06 14.20 

LT 14571 13378.80 0.53 1.28 

PL 345 46065.34 24.03 573.29 

RO 186 417.59 0.80 4.92 

RU 3056 17188.38 0.85 25.41 

SE 19673 24496.26 0.81 1.73 

SK 569 9150.24 0.65 118.65 

Europe 89743 1056516.91 1.07 493.20 

 680 
Table 4: Statistics of wind disturbance records collected in the FORWIND database aggregated at country level and for whole 

Europe.
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Country 

code 

Dates of damaging wind 

events recorded in 

FORESTORM during the 

2000-2018 period 

Dates of 

damaging wind 

events recorded 

in FORWIND 

Damaging wind events 

recorded in FORESTORM 

during the 2000-2018 period 

and missing in FORWIND 

FORWIND 

representativeness 

(-) 

AU 2008.01; 2008.03 2018.10 2008.01; 2008.03 0.333 

BE 2010.02 none 2010.02   

BG none none none   

CH 

2002.01; 2003.01; 2004.01; 

2007.01; 2008.12; 2009.01; 

2009.02 

2017.08 

2002.01; 2003.01; 2004.01; 

2007.01; 2008.12; 2009.01; 

2009.02 

0.125 

CY none none none   

CZ 2007.01; 2008.03 2007.01 2008.03 0.500 

DE 

2002.10; 2006.02; 2006.11; 

2007.01; 2008.01; 2008.02; 

2008.03; 2010.02 

2007.01; 2017.11; 

2018.01 

2002.10; 2006.02; 2006.11; 

2008.01; 2008.02; 2008.03; 

2010.02 

0.300 

DK 
2000.01; 2005.01; 2006.11; 

2008.01; 2008.02  
none 

2000.01; 2005.01; 2006.11; 

2008.01; 2008.02  
0.000 

EE 2005.01; 2008.02 none 2005.01; 2008.02 0.000 

ES 2009.01; 2010.02 none 2009.01; 2010.02 0.000 

FI 2001.unknown none 2001.unknown 0.000 

FR 

2000.10; 2003.07; 2004.12; 

2006.10; 2009.01; 2010.02; 

2013.unknown 

2009.01; 2010.02 
2000.10; 2003.07; 2004.12; 

2006.10; 2013.unknown 
0.286 

GR none none none none 

HR none none none none 

HU none none none none 

IE 2005.01; 2014.unknown 2014.02 2005.01 0.500 

IS none none none none 

IT none 2015.03; 2018.10 none 1.000 

LT 2005.01; 2008.02 2010-08 2005.01; 2008.02 0.333 

LU 2010.02 none 2010.02 0.000 

LV 2005.01; 2007.01; 2008.02 none 2005.01; 2007.01; 2008.02 0.000 

MT none none none none 

NL 2002.10; 2007.01 none 2002.10; 2007.01 0.000 

NO 

2000.11; 2000.12; 2001.08; 

2001.11; 2003.12; 2006.11; 

2007.01; 2008.01 

none 

2000.11; 2000.12; 2001.08; 

2001.11; 2003.12; 2006.11; 

2007.01; 2008.01 

0.000 

PL 
2007.01; 2008.01; 2008.02; 

2008.03 
2013.12; 2017.08 

2007.01; 2008.01; 2008.02; 

2008.03 
0.333 

PT 2010.02 none 2010.02 0.000 

RO none 2005.06 none 1.000 

RU none 
multiple tornado 

events 
none 1.000 
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SE 

2001.11; 2002.01; 

2003.unknown; 2005.01; 

2006.11; 2007.01; 2008.01; 

2008.02 

2005.01 

2001.11; 2002.01; 

2003.unknown; 2006.11; 

2007.01; 2008.01; 2008.02 

0.125 

SI none none none none 

SK 2004.11 2004.11; 2014.05 none 1.000 

UK 

2000.10; 2002.10; 

2005.01(.08); 2005.01(.11); 

2006.11; 2007.01(.18); 

2007.01(.25); 2007.06; 

2007.11 

none 

2000.10; 2002.10; 

2005.01(.08); 2005.01(.11); 

2006.11; 2007.01(.18); 

2007.01(.25); 2007.06; 

2007.11 

0.000 

Europe    0.626 | 0.297 

Table 5: Representativeness of FORWIND. The first estimate of representativeness at Europe level accounts for damaging wind events 

that occurred during the 2000-2018 period in the countries currently included in FORWIND. The second estimate of representativeness at 

Europe level accounts for all damaging events occurring during the 2000-2018 period, including those countries currently missing in 685 
FORWIND.  
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Plant 

Functional 

Type 

Model parameters 
Coefficient of determination (R2) 

𝑝1 𝑝2 𝑝3 

BrDe 0.040 (0.028, 0.052) -0.223 (-0.279, -0.167) 0.718 (0.662, 0.773) 0.905 

BrEv 0.051 (0.034, 0.068) -0.265 (-0.344, -0.187) 0.727 (0.649, 0.805) 0.842 

NeDe 0.050 (0.031, 0.070) -0.277 (-0.367, -0.188) 0.757 (0.668, 0.846) 0.848 

NeEv 0.025 (0.015, 0.036) -0.157 (-0.206, -0.108) 0.695 (0.646, 0.743) 0.902 

 

Table 6: Parameters and performance of fitting regression models expressing the degree of damage as a function of the area 

affected. The relationship between the degree of damage (𝑦) and the area affected by wind disturbance (𝑥) is expressed by the following 690 
general quadratic polynomial function: 𝑦 = 𝑝1 ∙ 𝑥

2 + 𝑝2 ∙ 𝑥 + 𝑝3, where 𝑝1, 𝑝2 and 𝑝3 are the coefficients of the equation. Coefficients are 

listed in the table with their 95% confidence interval in brackets. Model performance is quantified in terms of coefficient of determination 

(R2). Models, and corresponding parameters and performance, are evaluated separately for broadleaves deciduous (BrDe), broadleaves 

evergreen (BrEv), needleleaf deciduous (NeDe) and needleleaf evergreen (NeEv). 

 695 
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Figure Captions 

 700 

Figure 1: Spatial and temporal distribution of wind disturbances in the FORWIND database. (a) The total area affected by wind 

disturbances over the multi-year observational period (2000-2018) in 0.5-degree cells. (b) Wind disturbance occurrence year in the same 

cells. Red circles in (a) refer to site locations shown in Fig. 2. 
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Figure 2: Examples of wind disturbances recorded in the FORWIND database. (a,b) Tatra Mountains, Slovakia, affected by a 

windstorm in 2004. (c,d) Southern Sweden affected by the Gudrun storm in 2005. (e,f) Western Germany affected by the Kyrill storm in 

2007. (g,h) Western France affected by the Klaus storm in 2009. Wind disturbances recorded in the FORWIND database are shown as red 

polygons. Background colors show forest and non-forest areas derived from the 25-meter forest cover map of 2000 (Pekkarinen et al., 2009) 

while water bodies are derived from the 25-meter land cover type map of 2006 (Kempeneers et al., 2011) 710 
(https://forest.jrc.ec.europa.eu/en/past-activities/forest-mapping/#Downloadforestmaps). Site locations in (a,c,e,g) are shown in Fig. 1a 

whereas zoomed plots in (b,d,f,h) refer to black boxes in (a,c,e,g). 

  

https://forest.jrc.ec.europa.eu/en/past-activities/forest-mapping/#Downloadforestmaps
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Figure 3: Validation of the FORWIND database. (a) Density plot of FORWIND affected area versus LANDSAT-derived forest cover 715 
loss, both expressed in logarithmic scale and for lag-01 effects. The color reflects the number of records, top left labels report the Spearman 

rank correlation coefficient (ρk), the significance (p-value) and the sample size (n). (b) Spearman rank correlation coefficients for different 

affected area thresholds (on the x-axis) and different lagged effects displayed in color bars. Lagged effects considered include the forest 

cover loss cumulated over the event of a given year together with that of the following year (lag-01), forest cover loss estimated for the year 

event only (lag-0) and forest cover loss estimated for the following year only (lag-1). (c) and (d) as (a) and (b) but for the MODIS-derived 720 
Global Disturbance Index in place of Landsat-derived forest cover loss. (e) Scatter plot of damaged growing stock volume estimated from 

FORWIND (on the x-axis) and FORESTORM (on the y-axis) for five windstorms: Slovakia in 2004 (SK2004); Sweden in 2005 (SE2005 

(Gudrun)), Germany in 2007 (GE2007 (Kyrill), the Czech Republic in 2007 (CZ2007 (Kyrill)) and France in 2009 (FR2009 (Klaus)). 

FORWIND estimates are derived using GlobBiomass-derived estimates of GSVs and reported damage degree information. (f) as (e) but 

with estimates of GSVs derived from Forest Europe national inventories and assuming a  100% damage degree for all FORWIND records.  725 
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Figure 4: Scaling relations of the degree of damage. (a) Relation between the area affected by wind disturbance (on the x-axis) and degree 

of damage (on the y-axis) as derived from the FORWIND database for different PFTs, including broadleaves deciduous (BrDe), broadleaves 

evergreen (BrEv), needleleaf deciduous (NeDe) and needleleaf evergreen (NeEv). PFT-specific averaged values, visualized in circles of 730 
different colour, were derived using bins that spanned the sampled range and using their cover fractions as weights. The fitted quadratic 

polynomial functions are shown by continuous line, while their parameters and performances are reported in Table 5. The inset box shows 

the average degree of damage computed separately for each PFT using the whole set of records. (b) Frequency distribution of the samples 

(on the y-axis) over the gradient of area affected by wind disturbance (on the x-axis).  

  735 
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Figure 5: Susceptibility factors and drivers of forest vulnerability to wind disturbances. (a) Spatial map of the fraction of evergreen 

needleleaf forest (NeEv). (b) Relation between the fraction of NeEv (on the x-axis) and area affected by wind disturbances (on the y-axis) 

as derived from the FORWIND database.  Averaged values, shown in grey circles, were derived using bins that spanned the sampled range. 

Colour patterns reflect the coefficient of variation within each bin. The fitted linear regression model is shown in black line with the 740 
coefficient of determination (R2), slope (p1) and intercept (p2) reported in the labels. The 95% confidence interval for each of the coefficient 

is shown in brackets. (c) Spatial map of annual maximum wind speed; (d) as (b) but for annual maximum wind speed in place of the fraction 

of NeEv. The grid cells in (a) and (c) with no wind disturbances occurred over the 2000-2018 period are masked out. 
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Figure 6: Remote sensing classification of windthrows. Probability of windthrow obtained from random forest classification of Sentinel-

2 reflectance bands and their tasselled cap transformation in a sampled area of the Dolomites Mountains in Northern Italy affected by the 

Vaia storm of October 2018. Black polygons show the actual wind disturbances.   
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Figure 7: Observed and simulated cumulated forest area damaged by windstorms between 2000 and 2015 over Europe. The observed 

damage area was extracted from the FORWIND dataset (shown in blue) whereas the simulated area comes from ORCHIDEE r4262 with 

Rf=6 (shown in red). 
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Figure 8: Analysis of the indirect effects of wind damages on slope instability. Changes in NDVI and probability of landsliding following 

the Vaia storm of October 2018 in the Dolomites Mountains in Northern Italy, in (a) and (b), respectively. Black polygons show the actual 

wind disturbances.   


