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Abstract 13 

Droughts in Africa cause severe problems such as crop failure, food shortages, famine, epidemics and even 14 

mass migration. To minimize the effects of drought on water and food security over Africa, a high-resolution 15 

drought dataset is essential to establish robust drought hazard probabilities and to assess drought 16 

vulnerability considering a multi- and cross-sectorial perspective that includes crops, hydrological systems, 17 

rangeland, and environmental systems. Such assessments are essential for policy makers, their advisors, and 18 

other stakeholders to respond to the pressing humanitarian issues caused by these environmental hazards.  In 19 

this study, a high spatial resolution Standardized Precipitation-Evapotranspiration Index (SPEI) drought 20 

dataset is presented to support these assessments. We compute historical SPEI data based on Climate 21 

Hazards group InfraRed Precipitation with Station data (CHIRPS) precipitation estimates and Global Land 22 

Evaporation Amsterdam Model (GLEAM) potential evaporation estimates. The high resolution SPEI dataset 23 

(SPEI-HR) presented here spans from 1981 to 2016 (36 years) with 5 km spatial resolution over the whole 24 

Africa. To facilitate the diagnosis of droughts of different durations, accumulation periods from 1 to 48 25 

months are provided. The quality of the resulting dataset was compared with coarse-resolution SPEI based 26 

on Climatic Research Unit (CRU) Time-Series (TS) datasets, and Normalized Difference Vegetation Index 27 

(NDVI) calculated from the Global Inventory Monitoring and Modeling System (GIMMS) project, as well 28 

as with root zone soil moisture modelled by GLEAM. Agreement found between coarse resolution SPEI 29 
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from CRU TS (SPEI-CRU) and the developed SPEI-HR provides confidence in the estimation of temporal 30 

and spatial variability of droughts in Africa with SPEI-HR. In addition, agreement of SPEI-HR versus NDVI 31 

and root zone soil moisture – with average correlation coefficient (R) of 0.54 and 0.77, respectively – further 32 

implies that SPEI-HR can provide valuable information to study drought-related processes and societal 33 

impacts at sub-basin and district scales in Africa. The dataset is archived in Centre for Environmental Data 34 

Analysis (CEDA) with link: http://dx.doi.org/10.5285/bbdfd09a04304158b366777eba0d2aeb (Peng et al., 35 

2019a)     36 
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1 Introduction 61 

Drought is a complex phenomenon that affects natural environments and socioeconomic systems in the 62 

world (von Hardenberg et al., 2001; Vicente-Serrano, 2007; Van Loon, 2015; Wilhite and Pulwarty, 2017). 63 

Impacts include crop failure, food shortage, famine, epidemics and even mass migration (Wilhite et al., 64 

2007; Ding et al., 2011; Zhou et al., 2018). In recent years, severe events have occurred across the world, 65 

such as the 2003 central Europe drought (García-Herrera et al., 2010), the 2010 Russian drought (Spinoni et 66 

al., 2015), the 2011 Horn of Africa drought (Nicholson, 2014), the southeast Australian’s Millennium 67 

drought (van Dijk et al., 2013; Peng et al., 2019d), the 2013/2014 California drought (Swain et al., 2014), the 68 

2014 North China drought (Wang and He, 2015) and the 2015–2017 Southern Africa drought (Baudoin et 69 

al., 2017; Muller, 2018). Widespread negative effects of these droughts on natural and socioeconomic 70 

systems have been reported afterwards (Wegren, 2011; Arpe et al., 2012; Griffin and Anchukaitis, 2014; 71 

Mann and Gleick, 2015; Dadson et al., 2019; Marvel et al., 2019). Thus, there is a clear need to improve our 72 

knowledge about the spatial and temporal variability of drought, which provides a basis for quantifying 73 

drought impacts and the exposure of society, the economy and the environment over different areas and 74 

time-scales (Pozzi et al., 2013; AghaKouchak et al., 2015). 75 

Generally, drought is defined as a temporal anomaly characterized by a deficit of water compared with long-76 

term conditions (Mishra and Singh, 2010; Van Loon, 2015). Droughts can typically be grouped into five 77 

types: meteorological (precipitation deficiency), agricultural (soil moisture deficiency), hydrological (runoff 78 

and/or groundwater deficiency), socioeconomic (social response to water supply and demand) and 79 

environmental or ecologic (Keyantash and Dracup, 2002; AghaKouchak et al., 2015; Crausbay et al., 2017). 80 

These different drought categories involve different event characteristics in terms of timing, intensity, 81 

duration, and spatial extent, making it very difficult to characterize droughts quantitatively (Panu and 82 

Sharma, 2002; Lloyd-Hughes, 2014; Vicente-Serrano, 2016). For this reason numerous drought indices have 83 

been proposed for precise applications, and reviews of the available indices have been provided by previous 84 

studies such as Heim Jr (2002), Keyantash and Dracup (2002), and Mukherjee et al. (2018). Van Loon 85 
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(2015) noted that there is no best drought index for all types of droughts, because every index is designed for 86 

a specific drought type, thus multiple indices are required to capture the multifaceted nature of drought. 87 

Nevertheless, the Standardized Precipitation Index (SPI) is recommended by the World Meteorological 88 

Organization (WMO) for drought monitoring, which is calculated based solely on long-term precipitation 89 

data over different time spans (McKee et al., 1993). The advantages of SPI are its relative simplicity and its 90 

ability to characterize different types of droughts given the different times of response of different usable 91 

water sources to precipitation deficits (Kumar et al., 2016; Zhao et al., 2017). However, information on 92 

precipitation is inadequate to characterize drought; in most definitions, drought conditions also depend on 93 

the demand of water vapor from the atmosphere. More recently, Vicente-Serrano et al. (2010) proposed an 94 

alternative drought index for SPI, which is called Standardized Precipitation Evapotranspiration Index 95 

(SPEI). Compared to SPI, it considers not only the precipitation supply, but also the atmospheric evaporative 96 

demand (Beguería et al., 2010; Vicente-Serrano et al., 2012b). This makes the index more informative of the 97 

actual drought effects over various natural systems and socioeconomic sectors (Vicente-Serrano et al., 2012b; 98 

Bachmair et al., 2016; Kumar et al., 2016; Sun et al., 2016c; Bachmair et al., 2018; Peña-Gallardo et al., 99 

2018a; Peña-Gallardo et al., 2018b; Sun et al., 2018). 100 

For the calculation of SPEI, high-quality and long-term observations of precipitation and atmospheric 101 

evaporative demand are necessary. These observations may either come from ground-based station data or 102 

gridded data such as satellite and reanalysis datasets. For example, the SPEIbase (Beguería et al., 2010) and 103 

the Global Precipitation Climatology Centre Drought Index (GPCC-DI) (Ziese et al., 2014) both provide 104 

SPEI datasets at global scale. The SPEIbase provides gridded SPEI with a 50-km spatial resolution, and is 105 

calculated from Climatic Research Unit (CRU) Time-Series (TS) datasets, which are produced based on 106 

measurements from more than 4000 ground-based weather stations over the world (Harris et al., 2014). The 107 

SPEI dataset provided by GPCC-DI has spatial resolution of 1°, and was generated from GPCC precipitation 108 

(Becker et al., 2013; Schneider et al., 2016) and National Oceanic and Atmospheric Administration 109 

(NOAA)’s Climate Prediction Center (CPC) temperature dataset (Fan and Van den Dool, 2008). Both of 110 
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these datasets have been applied for various drought related studies at global and regional scales (e.g., Chen 111 

et al., 2013; Vicente-Serrano et al., 2013; Isbell et al., 2015; Sun et al., 2016a; Vicente-Serrano et al., 2016; 112 

Deo et al., 2017). However, these global SPEI data sets’ spatial resolution are too coarse to be applied at 113 

district or sub-basin scales (Vicente-Serrano et al., 2017). A sub-basin scale quantification of drought 114 

conditions is particularly crucial in regions such as Africa, in which geospatial data and drought indices can 115 

be essential to manage existing drought-related risks (Vicente-Serrano et al., 2012a) and where in-situ 116 

measurements are scarce (Trambauer et al., 2013; Masih et al., 2014; Anghileri et al., 2019). Over last 117 

century, Africa has been severely influenced by intense drought events, which has led to food shortages and 118 

famine in many countries (Anderson et al., 2012; Yuan et al., 2013; Sheffield et al., 2014; Awange et al., 119 

2016; Funk et al., 2018; Nicholson, 2018; Gebremeskel et al., 2019). Therefore, the availability of a high-120 

resolution drought index dataset may contribute to an improved characterization of drought risk and 121 

vulnerability, and minimize its impact on water and food security by supporting policy makers, water 122 

managers and stakeholders. Conveniently, with the advancement of satellite technology, the estimation of 123 

precipitation and evaporation from remote sensing datasets is becoming more accurate (Fisher et al., 2017). 124 

In particular, the long-term Climate Hazards group InfraRed Precipitation with Station data (CHIRPS) (Funk 125 

et al., 2015a) precipitation and Global Land Evaporation Amsterdam Model (GLEAM) (Miralles et al., 2011) 126 

evaporation datasets provide high-quality datasets for near-real time drought monitoring. Here, we use 127 

CHIRPS and GLEAM datasets to develop a pan-African high spatial resolution (5-km) SPEI dataset, which 128 

may be useful to inform drought relief management strategies for the continent. The dataset covers the 129 

period from 1981 to 2016 and it is comprehensively inter-compared with soil moisture, vegetation index and 130 

coarse resolution SPEI datasets. 131 

2 Data and Methodology 132 

2.1 Data 133 

2.1.1 CHIRPS 134 
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CHIRPS is a recently-developed high-resolution, daily, pentadal, dekadal, and monthly precipitation dataset 135 

(Funk et al., 2015a). It was produced by blending a set of satellite-only precipitation values (CHIRP) with 136 

additional monthly and pentadal station observations. The CHIRP is based on infrared cold cloud duration 137 

(CCD) estimates calibrated with the Tropical Rainfall Measuring Mission Multi-satellite Precipitation 138 

Analysis version 7 (TMPA 3B42 v7) and the Climate Hazards group Precipitation climatology (CHPclim) 139 

The CHPclim (Funk et al., 2015a; Funk et al., 2015e) is based on station data from the Food and Agriculture 140 

Organization (FAO) and the Global Historical Climate Network (GHCN). Compared with other global 141 

precipitation datasets such as Multi-Source Weighted-Ensemble Precipitation (MSWEP) (Beck et al., 2017) 142 

and Global Precipitation Climatology Project (GPCP) (Adler et al., 2003), CHIRPS has several advantages: 143 

a long period of record, high spatial resolution (5-km), low spatial biases and low temporal latency. It has 144 

been widely validated and applied in various applications (e.g., Shukla et al., 2014; Maidment et al., 2015; 145 

Duan et al., 2016; Zambrano-Bigiarini et al., 2017; Rivera et al., 2018). In particular, it was recently 146 

validated over East Africa and Mozambique and demonstrated good performance compared to other 147 

precipitation datasets (Toté et al., 2015; Dinku et al., 2018). Furthermore, CHIRPS was specifically designed 148 

for drought monitoring over regions with deep convective precipitation, scarce observation networks and 149 

complex topography (Funk et al., 2014). Several studies (e.g., Toté et al., 2015; Guo et al., 2017) have used 150 

CHIRPS for drought monitoring. Its high spatial resolution makes it particularly suitable for local-scale 151 

studies, such as sub-basin drought monitoring, especially in areas with complex topography. The detailed 152 

description of the dataset was provided by Funk et al. (2015a). In this study, daily CHIRPS precipitation 153 

from 1981 to 2016 was used. 154 

2.2.2 GLEAM 155 

GLEAM is designed to estimate land surface evaporation and root-zone soil moisture from remote sensing 156 

observations and reanalysis data (Miralles et al., 2011; Martens et al., 2017). Specifically, the Priestley-157 

Taylor equation is used to calculate potential evaporation within GLEAM based on near surface temperature 158 

and net radiation, while the root zone soil moisture is obtained from a multilayer water balance driven by 159 
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precipitation observations and updated with microwave soil moisture estimates (Martens et al., 2017). The 160 

actual evaporation is estimated by constraining potential evaporation with a multiplicative evaporative stress 161 

factor based on root-zone soil moisture and Vegetation Optical Depth (VOD) estimates. The GLEAM 162 

version 3a (v3a) provides global daily potential and actual evaporation, evaporative stress conditions and 163 

root zone soil moisture from 1980 to 2018 at spatial resolution of 0.25° (Martens et al., 2017) (see 164 

www.gleam.eu). GLEAM datasets have already been comprehensively evaluated against FLUXNET 165 

observations and used for multiple hydro-meteorological applications (Greve et al., 2014; Miralles et al., 166 

2014; Trambauer et al., 2014; Forzieri et al., 2017; Lian et al., 2018; Richard et al., 2018; Vicente-Serrano et 167 

al., 2018; Zhan et al., 2019). In particular, two recent studies detected global drought conditions based on 168 

GLEAM potential and actual evaporation data (Vicente-Serrano et al., 2018; Peng et al., 2019c). For this 169 

study, the GLEAM potential evaporation and root zone soil moisture were used. 170 

2.2.3 CRU-TS 171 

The global gridded CRU-TS datasets provide most widely-used climate variables including precipitation, 172 

potential evaporation, diurnal temperature range, maximum and minimum temperature, mean temperature, 173 

frost day frequency, cloud cover and vapour pressure (Harris et al., 2014). The CRU TS datasets were 174 

produced using angular-distance weighting (ADW) interpolation based on monthly meteorological 175 

observations collected at ground-based stations across the world. The recently-released CRU TS version 176 

4.0.1 covers the period 1901–2016 and provides monthly data at 50-km spatial resolution. The CRU TS 177 

datasets have been widely used for various applications since their release (e.g., van der Schrier et al., 2013; 178 

Chadwick et al., 2015; Delworth et al., 2015; Jägermeyr et al., 2016). The SPEIbase dataset was generated 179 

from CRU TS datasets (Beguería et al., 2010). In this study, the CRU TS precipitation and potential 180 

evaporation from 1981 to 2016 were used. 181 

2.2.4 GIMMS NDVI 182 
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The Normalized Difference Vegetation Index (NDVI) can serve as a proxy of vegetation status and has been 183 

widely applied to investigate the effects of drought on vegetation (e.g., Rojas et al., 2011; Vicente-Serrano et 184 

al., 2013; Törnros and Menzel, 2014; Vicente-Serrano et al., 2018). The Global Inventory Monitoring and 185 

Modeling System (GIMMS) NDVI was generated based on Advanced Very High Resolution Radiometer 186 

(AVHRR) observations, and has accounted for various deleterious effects such as orbital drift, calibration 187 

loss and volcanic eruptions (Beck et al., 2011; Pinzon and Tucker, 2014). For the current study, the latest 188 

version of GIMMS NDVI (3g.v1) was used, which covers the time period from 1981 to 2015 at biweekly 189 

temporal resolution and 8-km spatial resolution (Pinzon and Tucker, 2014). 190 

2.3 Methods  191 

2.3.1 SPEI calculation 192 

The SPEI proposed by Vicente-Serrano et al. (2010) has been used for a wide variety of agricultural, 193 

ecological and hydro-meteorological applications (e.g., Schwalm et al., 2017; Naumann et al., 2018; Jiang et 194 

al., 2019). It accounts for the impacts of evaporation demand on droughts and inherits the simplicity and 195 

multi-temporal characteristics of SPI. The procedure for SPEI calculation includes the estimation of a 196 

climatic water balance (namely the difference between precipitation and potential evaporation), the 197 

aggregation of the climatic water balance over various time-scales (e.g., 1, 3, 6, 12, 24, or more months), and 198 

a fitting to a certain parameter distribution. As suggested by Beguería et al. (2014) and Vicente-Serrano and 199 

Beguería (2016), the log-logistic probability distribution is best for SPEI calculation, from which the 200 

probability distribution of the difference between precipitation and potential evaporation can be calculated as 201 

suggested by Vicente-Serrano et al. (2010) and Beguería et al. (2014). The negative and positive SPEI values 202 

respectively indicate dry and wet conditions. Table 1 summarizes the category of dry and wet conditions 203 

based on SPEI values. In this study, the CHIRPS and GLEAM datasets were used for SPEI calculation at 204 

high spatial resolution (5-km). For comparison, the SPEI at 50-km was also calculated based on CRU TS 205 

datasets for the same 1981–2016 period. It should be noted that the SPEI over sparsely vegetated and barren 206 

areas were masked out based on Moderate Resolution Imaging Spectroradiometer (MODIS) land cover 207 
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product (MCD12Q1) (Friedl et al., 2010), because SPEI is not reliable over these areas (Beguería et al., 2010; 208 

Beguería et al., 2014; Zhao et al., 2017). 209 

Table 1. Categories of dry and wet conditions indicated by SPEI values. 210 

SPEI Category 

2 and above Extremely wet 

1.5 to 1.99 Very wet 

1.0 to 1.49 Moderately wet 

-0.99 to 0.99 Near Normal 

-1.0 to -1.49 Moderately dry 

-1.5 to -1.99 Severely dry 

-2 and less Extremely dry 

 211 

2.3.2 Evaluation criteria 212 

The SPEIbase dataset (Beguería et al., 2010) was calculated with CRU TS dataset, which has been evaluated 213 

and applied by many studies (e.g., Chen et al., 2013; Vicente-Serrano et al., 2013; Isbell et al., 2015; Sun et 214 

al., 2016a; Greenwood et al., 2017; Um et al., 2017). The newly-generated SPEI at high spatial resolution 215 

based on CHIRPS and GLEAM (SPEI-HR) is compared temporally and spatially with the SPEI calculated 216 

from CRU TS datasets. In addition, the NDVI can also serve as an indicator for drought and vegetation 217 

health, and to assess the performance of drought indices (Vicente-Serrano et al., 2013; Aadhar and Mishra, 218 

2017). Furthermore, root zone soil moisture is an ideal hydrological variable for agricultural (soil moisture) 219 

drought monitoring. The recently-released root zone soil moisture (RSM) from GLEAM v3 provides a great 220 

opportunity to evaluate whether soil moisture drought is well represented by SPEI. To facilitate direct 221 

comparison between SPEI and NDVI as well as RSM, both NDVI and RSM are standardized by subtracting 222 

their corresponding (1981–2016) mean and expressed the resulting anomalies as numbers of standard 223 
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deviations. This standardization has been applied by many studies to evaluate drought indices (Anderson et 224 

al., 2011; Mu et al., 2013; Zhao et al., 2017). The correlation between SPEI and the standardized NDVI and 225 

RSM is quantified using Pearson’s correlation coefficient (R). In addition, the high resolution SPEI from 226 

GLEAM and CHIRPS is also resampled to the same grid size of SPEI from CRU TS in order to quantify 227 

their correlation and disentangle whether the added value of the former arises from its increased accuracy or 228 

higher resolution. In the following part, the high (5-km) resolution SPEI is referred to SPEI-HR, while the 229 

coarse 50-km resolution SPEI is referred to SPEI-CRU. 230 

3 Results and discussion 231 

3.1 Inter-comparison between high- and coarse-resolution SPEI 232 

Figure 1 shows the spatial distribution of SPEI-HR and SPEI-CRU at different resolutions for an example 233 

month (June 1995). Figure 1a,b show the 3-month SPEI and 12-month SPEI, respectively. It can be seen that 234 

the high resolution and coarse resolution SPEI display quite similar dry and wet patterns over the whole of 235 

Africa for both temporal scales. However, as expected, the SPEI-HR shows much more spatial detail that 236 

reflects mesoscale geographic and climatic features, which highlights the advantages of this new dataset. The 237 

differences in patterns between 3-month and 12-month SPEI indicate the different water deficits caused by 238 

different aggregation time scales, which can further separate agricultural, hydrological, environmental, and 239 

other droughts. For example, in June 1995 southern Africa showed persistent dry conditions over a 240 

prolonged period, while western Africa only showed a short-term drought.  241 
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 242 
Figure 1: Spatial patterns of 3-month and 12-month SPEI at high spatial resolution (5 km) and coarse spatial resolution (50 km) in 243 
June, 1995. The high spatial resolution SPEI (SPEI-HR) is based on CHIRPS precipitation and GLEAM potential evaporation, 244 
while the coarse spatial resolution SPEI (SPEI-CRU) is calculated from CRU TS datasets. 245 
 246 

In order to quantify how different is SPEI-HR from SPEI-CRU, the correlation between them is calculated 247 

for each grid cell over the whole study period. Figure 2 shows the correlations for time-scales 1, 3, 6, 9, 12, 248 

24, 36, and 48 months. In general, the SPEI-HR and SPEI-CRU agree well in terms of temporal variability 249 

with high positive correlations over most of Africa for every time scale. However, relatively low correlations 250 

appear in central Africa, and they become lower as the SPEI time-scale increases. This region has very few 251 

station observations. It should be noted that the correlations shown here are statistically significant with p 252 

value less than 0.05.  In addition, the average correlation between 6-month SPEI-CRU and SPEI-HR for 253 

each month of the year is summarized in Figure 3 using box plot. In general, positive correlations, with a 254 

median larger than 0.6 (p<0.05), are found for every month. There are no substantial differences in 255 

correlations between different months. Figure A1 in Appendix shows additional box plots for SPEI at other 256 

time scales.   257 



 

 12 

  

  

  



 

 13 

  

Figure 2: Correlation (p<0.05) between SPEI-HR and SPEI-CRU, with the number indicating different months.  258 
 259 

 260 

 261 
Figure 3: Box plot of the correlation (p<0.05) between SPEI-HR and SPEI-CRU for each month of the entire record. The results 262 

here are based on 6-month SPEI and the red line in each box represents the median.  263 
 264 

 265 

3.2 Comparison against root zone soil moisture and NDVI 266 

To gain more insights into their significance and applicability, the SPEI datasets are compared with NDVI 267 

and RSM. Figure 4 shows the results of the spatial and temporal comparison between 6-month SPEI and 268 

RSM as indicated by Törnros and Menzel (2014). Figure 4a,b display the correlation (p<0.05) of SPEI-HR 269 

and SPEI-CRU against RSM during the whole time period respectively. In general, both SPEI-HR and SPEI-270 

CRU show strong correlations with RSM over the whole African continent. Compared to SPEI-CRU, the 271 

SPEI-HR shows higher correlations, particularly over central Africa. Since Section 3.1 shows that relatively 272 
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large discrepancy between SPEI-CRU and SPEI-HR exists over central Africa, the results presented here 273 

suggest a potentially better performance of SPEI-HR compared with SPEI-CRU in this region. 274 

The time series of SPEI and RSM, averaged over the entire study area, are shown in Figure 4c, together with 275 

the corresponding correlations. It can be seen that both SPEI-HR and SPEI-CRU agree well with each other 276 

and with the RSM dynamics. Consistent with the results from the spatial correlation analysis, the SPEI-HR 277 

and SPEI-CRU show similar results when compared with RSM (R = 0.77 for SPEI-HR, R = 0.72 for SPEI-278 

CRU). Furthermore, the scatterplots between 6-month SPEI and RSM for the entire data record are shown in 279 

Appendix Figure A2, where positive and significant correlations with RSM are found for both SPEI-HR (R = 280 

0.51) and SPEI-CRU (R = 0.42). To explore the correlation between RSM and different time scales of SPEI, 281 

Table 2 summarizes the correlation value calculated in the same way as Figure 4c. It can be seen that the 282 

highest correlations against RSM are found at 3- and 6-month time scales. It should be noted that satellite 283 

data-driven estimates of root zone soil moisture is more suitable for evaluating SPEI compared to satellite-284 

based top-layer soil moisture or reanalysis soil moisture data (Mo et al., 2011; Xu et al., 2018).  285 

 
(a) 

   
(b) 
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(c) 

Figure 4: Spatial maps of correlation between SPEI and root zone soil moisture (RSM) for 6-month SPEI: (a) SPEI-HR and (b) 286 
SPEI-CRU. The time series of Africa area-mean RSM and SPEI are shown in (c), where R refers to the correlation coefficient. 287 
The correlations shown here are all significant at the 95% confidence level. 288 
 289 
 290 

Table 2: The correlation (p<0.05) between area-mean RSM and SPEI at different time scales. 291 
 292 

 SPEI-01 SPEI-03 SPEI-06 SPEI-09 SPEI-12 SPEI-24 SPEI-36 SPEI-48 
R (SPEI-CRU) 0.52 0.74 0.72 0.64 0.56 0.41 0.26 0.16 
R (SPEI-HR) 0.49 0.76 0.77 0.69 0.62 0.44 0.29 0.18 

 293 

Similar to the above analysis between SPEI and RSM, the comparison of results between SPEI and NDVI 294 

are shown in Figure 5. First, Figures 5a,b present the spatial distribution of the correlations (p<0.05) between 295 

SPEI-HR and NDVI and between SPEI-CRU and NDVI, respectively. While correlations are overall lower 296 

than for RSM, it can be seen that both SPEI datasets are positively correlated with NDVI over most of the 297 

continent. It is also clear that SPEI-HR shows higher correlations. The time series comparison between the 298 

area-mean SPEI and NDVI is shown in Figure 5c. Both SPEI-HR and SPEI-CRU show agreement with 299 

NDVI, with R=0.54 and R=0.47, respectively. In addition, the comparison between 6-month SPEI and 300 

NDVI for the entire data record was also calculated, with R=0.24 for SPEI-HR and R=0.21 for SPEI-CRU 301 

significant at 95% confidence level (Figure A3). While these correlations are admittedly low, overall results 302 

suggest that the SPEI has a positive relation with NDVI, which is also reported by previous studies (e.g., 303 

Törnros and Menzel, 2014; Vicente-Serrano et al., 2018). The lower correlations against NDVI than against 304 

RSM are likely due to complex physiological processes associated to vegetation, and the fact that ecosystem 305 

state is driven by multiple variables other than water availability (Nemani et al., 2003). Furthermore, there 306 
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are also clearly documented lags between precipitation and NDVI, with NDVI time series typically peaking 307 

one or even two months after the period of maximum rainfall (Funk and Brown, 2006). Finally, Table 3 308 

summarizes the correlation between SPEI and NDVI at different time scales. Compared with the results 309 

presented in Table 2 for RSM, the correlation with NDVI shown in Table 3 is also generally lower, and the 310 

highest correlations appear between 9- and 24-month SPEI (R>0.5).  311 

 312 
 313 
 314 
 315 

 
(a) 

   
(b) 

 
(c) 

 316 
 317 
Figure 5: Spatial maps of the correlation between SPEI and NDVI for 6-month SPEI: (a) SPEI-HR and (b) SPEI-CRU. The time 318 
series of area-mean NDVI and SPEI are shown in (c), where R refers to the correlation coefficient. The correlations shown here 319 
are all significant at the 95% confidence level. 320 
 321 

 322 
Table 3: The correlation (p<0.05) between area-mean NDVI and SPEI at different time scales. 323 

 324 
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 SPEI-01 SPEI-03 SPEI-06 SPEI-09 SPEI-12 SPEI-24 SPEI-36 SPEI-48 
R (SPEI-CRU) 0.23 0.42 0.47 0.48 0.47 0.50 0.34 0.20 
R (SPEI-HR) 0.31 0.51 0.54 0.56 0.57 0.57 0.44 0.29 
 325 

Altogether, the comparisons between SPEI and RSM and between SPEI and NDVI indirectly indicate the 326 

validity of the generated SPEI datasets. Therefore, the generated high-resolution SPEI-HR from satellite 327 

products has potential to improve upon the state of the art in drought assessment over Africa. 328 

3.3 Patterns of SPEI, RSM and NDVI during specific drought events 329 

Most of Africa has suffered severe droughts in past decades (Naumann et al., 2014; Blamey et al., 2018). 330 

Among them, the 2011 East Africa drought (Anderson et al., 2012; AghaKouchak, 2015) and 2002 southern 331 

Africa drought (Masih et al., 2014) were extremely severe and had devastating effects on the natural and 332 

socioeconomic environment. Taking these two events as case studies, the spatial patterns of the newly-333 

developed high-resolution 6-month SPEI-HR are analyzed, together with the variability in NDVI and RSM. 334 

Figure 6a,b show the evolution of 6-month SPEI, NDVI and RSM during the 2011 East Africa and the 2002 335 

southern Africa drought, respectively. The 6-month periods end in the named month, with the 6-month June 336 

2011 SPEI values based on data for January to June. In general, these three variables reflect the progressive 337 

dry-out during the events. For example, strong, severe drought is revealed by the SPEI with values less than 338 

-1.5, coinciding with a decline in NDVI and RSM, from June to September 2011 over East Africa; the 339 

drought was offset in October. Similarly, dry and wet conditions variations during the 2002 southern Africa 340 

drought were also captured by the three variables. Despite differences over space and time, results here 341 

demonstrate that the generated SPEI-HR captures the main drought conditions that are reflected by negative 342 

anomalies in NDVI and RSM, and can thus be used to study local drought related processes and societal 343 

impacts in Africa.  344 
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(a) 

 
(b) 

 345 
Figure 6: Evolution of the spatial patterns of 6-month SPEI-HR, NDVI and root zone soil moisture (RSM) during the 2011 East 346 
Africa drought (a) and 2002 southern Africa drought (b), respectively. 347 
 348 
 349 

4. Data availability 350 

The high resolution SPEI dataset is publically available from the Centre for Environmental Data Analysis 351 

(CEDA) with link: http://dx.doi.org/10.5285/bbdfd09a04304158b366777eba0d2aeb (Peng et al., 2019a). It 352 

covers the whole Africa at monthly temporal resolution and 5 km spatial resolution from 1981 to 2016, and 353 

is provided with Geographic Lat/Lon projection and NetCDF format. 354 
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 355 

5. Conclusion 356 

The study presents a newly-generated high-resolution SPEI dataset (SPEI-HR) over Africa. The dataset is 357 

produced from satellite-based CHIRPS precipitation and GLEAM potential evaporation, and covers the 358 

entire African continent over the time period from 1981 to 2016 with spatial resolution of 5-km. The 359 

accumulated SPEI ranging from 1 to 48 months is provided to facilitate applications from meteorological to 360 

hydrological droughts. The SPEI-HR was compared with widely used coarse-resolution SPEI data (SPEI-361 

CRU) and GIMMS NDVI as well as GLEAM root zone soil moisture to investigate its capability for drought 362 

detection. In general, the SPEI-HR has good correlation with SPEI-CRU temporally and spatially. They both 363 

agree well with NDVI and root zone soil moisture, although SPEI-HR displays higher correlations overall. 364 

These results indicate the validity and advantage of the newly developed high resolution SPEI-HR dataset, 365 

and its unprecedentedly high spatial resolution offers important advantages for drought monitoring and 366 

assessment at district and river basin level in Africa. 367 

 368 
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 388 
 389 
 390 
 391 
Figure A1: Box plots of the correlation (p<0.05) between SPEI-HR and SPEI-CRU for each month and entire monthly record. 392 
 393 
 394 

  

Figure A2: Scatterplots between 6-month SPEI and RSM for the entire data record. R is correlation coefficient with p<0.05, and 395 
the colors denote the occurrence frequency of values. 396 
 397 
 398 
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Figure A3: Scatterplots between 6-month SPEI and NDVI for the entire data record. R is correlation coefficient with p<0.05, and 399 
the colors denote the occurrence frequency of values. 400 
 401 
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