
Response	to	Anonymous	Referee	#1	
	

Thank	 you	 very	 much	 indeed	 for	 inviting	 me	 to	 review	 this	 paper.	 Having	 access	 to	 high-	
resolution	drought	dataset,	especially	in	data-scarce	region,	is	important	for	drought	monitoring	
and	management	at	watershed/	districts	levels.	I	can	be	wetness	that	the	paper	“A	pan-African	
high-resolution	 drought	 index	 dataset”	 could	 produce	 a	 valid	 significance	 for	 the	 African	
continent	particularly	 in	 the	drought	 vulnerable	areas.	 This	 dataset	 is	 timely,	 and	 the	paper	 is	
fully	 readable	 and	 has	 a	 good	 basis.	 When	 authors	 address	 the	 following	 comments	 and	
suggestions,	I	recommend	acceptance.		

Response:	 Many	 thanks	 indeed	 for	 your	 positive	 evaluation	 and	 constructive	 comments.	We	
have	 revised	 the	 manuscript	 carefully	 according	 to	 your	 comments	 and	 suggestions.	 In	 the	
following,	we	provide	an	item-by-item	response	to	your	comments.	Your	comments	are	written	
in	italic	black	color;	our	responses	are	shown	in	upright	font	blue	color.	

Comments		

Line	35;	I	couldn’t	get	the	access	to	the	dataset.		

Response:	Thanks.	We	have	contacted	CEDA	team	to	solve	the	problem.	The	data	are	available	
now	from	the	link.	

Line	38-39;	delete	the	key-	words	written	in	the	title	(i.e.,	high-resolution,	drought	index)		

Response:	Done.	

Line	78-79;	insert	“and/or”	between	“runoff,	groundwater	deficiency”		

Response:	Done.	

Line	80;	references	should	be	ordered	in	terms	of	publication	year	and	authors	alphabet.	And	do	
the	same	for	the	rest	in	the	manuscript		

Response:	Thanks,	changed.	

Line	 90;	 curiosity	 on	 using	 words/phrases	 “no	 best	 drought	 index”,	 as	 multiscalar	 and	
multivariate	drought	indices	are	better	than	the	single	ones	

Response:	 Thanks	 for	 your	 comment.	 The	phrase	here	 is	 reported	by	Van	 Loon	 (2015),	which	
intends	to	note	that	there	is	no	single	index	which	is	the	best	index	and	suitable	for	all	kinds	of	
drought	events	(meteorological,	agricultural,	hydrological,	socioeconomic	and	environmental).		

Line	93;	change	‘not	enough’	by	‘inadequate’	

Response:	Done.		



Line	113,	curiosity	on	using	words/phrases	“too	course”.		

Response:	The	term	‘coarse’	here	refers	to	existing	global	products	with	spatial	resolution	of	50	
km	and	100	km.	These	datasets	are	not	possible	to	provide	detailed	drought	information	at	km	
scale	that	is	required	in	district	or	sub-basin	scale	applications.	

Line	121,	Explain	how	the	SPEI-HR	dataset	will	be	usefully	to	minimize	the	impact	of	water	and	
food	security	and	support	to	policymakers	and	the	social	sectors.		

Response:	 Thanks	 for	 the	 comment.	 The	 important	 feature	 of	 SPEI-HR	 is	 its	 high	 spatial	
resolution	 compared	 to	other	 coarse	 resolution	datasets.	 The	 SPEI-HR	dataset	 can	be	used	 to	
provide	 quantified	 drought	 conditions	 at	 sub-basin	 scales,	 which	 are	 essential	 for	 managing	
drought-related	 risks.	 One	 application	 of	 SPEI-HR	 for	minimizing	 the	 drought	 impact	 on	 food	
security	 is	 our	 UK	 Space	 Agency's	 International	 Partnership	 Programme	 (417000001429).	We	
have	 developed	a	framework	to	predict	crop	yield	which	can	be	used	to	 infer	the	 influence	of	
droughts	on	agriculture	and	economics	in	general	and	specifically	in	Ethiopia.	

Line	127,	How	can	we	sure	that	SPEI-HR	can	provide	near-real	time	drought	monitoring?		

Response:	 The	 CHIRPS	 dataset	 is	 available	 from	 1981	 to	 near-real	 time,	while	 GLEAM	will	 be	
delivered	in	higher	resolution	and	in	near-real	time.	The	idea	here	is	to	update	SPEI-HR	based	on	
GHIRPS	and	GLEAM	on	a	regular	basis	to	make	it	near-real	time.		

Line	 128;	 I	 have	 no	 problem	 with	 the	 name	 but	 I	 wonder	 why	 authors	 used	 Pan-Africa	 to	
represent	the	African	continent.	Does	it	actually	represent	the	whole	continent?		

Response:	 It	 is	 a	 good	 question.	 The	 idea	 of	 using	 Pan-Africa	 is	 inspired	 by	 Pan-Africanism	
(https://en.wikipedia.org/wiki/Pan-Africanism).	There	is	no	difference	for	this	study	using	either	
Pan-African	or	African.	

Line	129;	and	any	plan	to	provide	data	continuously	in	the	future.		

Response:	Yes,	 the	dataset	 is	planned	 to	be	updated	when	 there	are	new	CHIRPS	and	GLEAM	
datasets	released.	

Line	 147;	 I	 am	 interested	 to	 know	 if	 your	 or	 any	other	 studies	 are	 undertaken	 in	Africa,	 using	
CHIRPS	for	drought	assessment.	Better	if	you	explain	why	you	chose	this	dataset	for	Africa.	This	
is	helpful	if	you	refer	to	studies	done	in	Africa.	And	the	same	for	the	potential	evaporation		

Response:	Thanks	for	your	suggestions.	The	motivation	of	using	CHIRPS	for	Africa	 is	because	it	
was	recently	validated	over	East	Africa	and	Mozambique	and	demonstrated	good	performance	
compared	 to	other	precipitation	datasets	 (Toté	et	 al.,	 2015;	Dinku	et	 al.,	 2018).	 Furthermore,	
CHIRPS	 was	 specifically	 designed	 for	 drought	 monitoring	 over	 regions	 with	 deep	 convective	
precipitation,	scarce	observation	networks	and	complex	topography	(Funk	et	al.,	2014).	Several	
studies	 (e.g.,	 Toté	 et	 al.,	 2015;	 Guo	 et	 al.,	 2017)	 have	 used	 CHIRPS	 for	 drought	 monitoring.	
Similarly,	GLEAM	evaporation	products	have	been	widely	validated/evaluated	over	Africa	(e.g.,	
Trambauer	 et	 al.,	 2014,	 Zhan	 et	 al.,	 2019).	 In	 particular,	 two	 recent	 studies	 detected	 global	



drought	conditions	based	on	GLEAM	potential	and	actual	evaporation	data	(Vicente-Serrano	et	
al.,	2018;	Peng	et	al.,	2019c).	

Line	168,	179	and	188;	explain	why	you	have	chosen	these	datasets	in	the	context	of	Africa.		

Response:	All	these	datasets	have	been	validated	and	applied	by	many	studies.	Specifically,	the	
GLEAM	root	zone	soil	moisture	is	the	unique	long-term	root	zone	soil	moisture	product	that	 is	
generated	 based	 on	 ESA	 CCI	 surface	 soil	 moisture.	 And	 the	 root	 zone	 soil	 moisture	 is	 more	
relevant	to	drought	monitoring	than	satellite-based	surface	soil	moisture.	The	CRU-TS	datasets	
were	used	because	the	coarse	SPEIbase	dataset	was	produced	from	CRU-TS	datasets.	And	the	
SPEIbase	dataset	has	been	used	for	drought	related	studies	in	Africa.	The	GIMMS	NDVI	dataset	
has	been	selected	because	 it	has	been	widely	applied	 to	 investigate	 the	effects	of	drought	on	
vegetation	in	many	areas	including	Africa	(e.g.,	Rojas	et	al.,	2011;	Vicente-Serrano	et	al.,	2013;	
Törnros	and	Menzel,	2014;	Vicente-Serrano	et	al.,	2018).		

Line	200-201,	make	sure	‘The	negative	and	positive	SPEI	values	201	respectively	indicate	dry	and	
wet	conditions’	is	correct.		

Response:	Yes.	The	SPEI	negative	values	indicate	dry	conditions	while	positive	values	correspond	
to	wet	conditions.		

Line	204-205;	how	did	you	mask	out	and	how	did	you	manage	it	in	your	dataset		

Response:	 The	MODIS	 land	 cover	 product	 was	 used	 to	mask	 out	 the	 sparsely	 vegetated	 and	
barren	areas	 in	the	SPEI	datasets.	All	the	datasets	were	preprocessed	to	have	same	projection	
(geographic	lat/lon)	and	grid	size	using	Python.	

Line	210,	insert	‘full	stop	(.)’	after	‘Vicente-Serrano	et	al.,	2013)’		

Response:	Done,	thanks.		

Line	296,	why	the	correlations	have	become	low,	any	possible	reasons		

Response:	 The	 lower	 correlations	 against	 NDVI	 than	 against	 RSM	 are	 likely	 due	 to	 complex	
physiological	processes	associated	to	vegetation,	and	the	fact	that	ecosystem	state	is	driven	by	
multiple	variables	other	than	water	availability.	Similar	results	have	been	reported	by	Nemani	et	
al.,	2003.	

Line	313,	What	value	does	the	y-axis	represent	in	figure	4	and	5		

Response:	As	mentioned	in	section	2.3.2	‘To	facilitate	direct	comparison	between	SPEI	and	NDVI	
as	well	as	RSM,	both	NDVI	and	RSM	are	standardized	by	subtracting	their	corresponding	(1981–
2016)	mean	and	expressed	the	resulting	anomalies	as	numbers	of	standard	deviations.’,	the	y-
axis	has	no	unit	and	represents	both	SPEI	and	standardized	NDVI	and	RSM.	



Finally,	 it	will	 be	 very	 helpful	 if	 you	 include	 discussions	 on	 how	 the	 SPEI-HR	 is	 correlated	with	
each	of	the	drought	types	(meteorological,	agricultural	and	hydrological).	This	can	be	useful	to	
plan	for	short	and	long-term	drought	events	mitigation	based	on	the	datasets	provided.		

Response:	Thanks	for	the	suggestions.	SPEI	is	similar	to	SPI	when	representing	drought	types.	In	
general,	 the	 short	 time	 scale	 (e.g.,	 1	 and	 3	 month)	 SPI/SPEI	 is	 more	 suitable	 for	 identifying	
agriculture	 drought.	 When	 the	 time	 scale	 increases,	 the	 SPI/SPEI	 is	 more	 relevant	 for	
hydrological	drought.	There	are	many	studies	using	different	time	scales	of	SPI/SPEI	to	represent	
different	 types	 of	 droughts.	 In	 the	 manuscript,	 the	 sentence	 below	 describes	 the	 ability	 of	
SPI/SPEI	for	representing	different	types	of	droughts.	

“The	advantages	of	SPI	are	its	relative	simplicity	and	its	ability	to	characterize	different	types	of	
droughts	given	the	different	times	of	response	of	different	usable	water	sources	to	precipitation	
deficits	(Kumar	et	al.,	2016;	Zhao	et	al.,	2017).”	

	

	



Response	to	Anonymous	Referee	#2	
	

Comments	on	the	manuscript	entitled	"A	pan-African	high-resolution	drought	index	dataset"		

Drought	is	recurring	and	posing	a	certain	threat	to	water	resource	and	food	security	around	the	
globe.	Accurate	and	timely	monitoring	of	droughts	is	essential	for	many	applications	to	mitigate	
the	potential	 impacts.	 The	 study	aimed	 to	generate	a	new	high-resolution	drought	monitoring	
dataset	 with	 satellite	 observations,	 which	 provides	 a	 timely	 contribution	 to	 the	 scientific	
community.	I	think	the	produced	product	has	a	great	potential	to	benefit	drought	study	in	Africa.	
To	the	best	of	my	knowledge,	high	resolution	drought	dataset	is	not	existing	in	the	community.	
The	widely	used	SPI/SPEI	indices	are	normally	based	on	interpolated	ground	measurements	and	
have	spatial	resolution	of	0.5	degree	(∼50	km).	The	use	of	satellite	products	is	a	novel	way,	and	
should	be	highly	encouraged.	Although	5	km	 is	 still	quite	coarse	 for	agriculture	applications,	 it	
might	 be	 useful	 for	 other	 applications	 e.g.,	 regional	 hydrological/meteorological	 drought	
monitoring.	 Based	 on	my	 review,	 I	 think	 the	 presented	 dataset	 adds	 great	 values	 for	 drought	
related	 applications	 in	 Africa.	 The	manuscript	 is	well	 written.	 The	 newly	 generated	 product	 is	
clearly	 described.	 I	 have	 a	 few	 fairly	 minor	 comments/suggestions	 below	 for	 the	 authors	 to	
consider	for	further	improving	the	manuscript.		

Response:	Many	 thanks	 indeed	 for	 your	 positive	 evaluation	 and	 constructive	 comments.	We	
have	 revised	 the	 manuscript	 carefully	 according	 to	 your	 comments	 and	 suggestions.	 In	 the	
following,	we	provide	an	item-by-item	response	to	your	comments.	Your	comments	are	written	
in	italic	black	color;	our	responses	are	shown	in	upright	font	blue	color.	

1.	Unlike	other	hydrological	disasters	such	as	flood,	drought	is	very	hard	to	define.	To	this	regard,	
there	are	no	agreements	on	its	definition	and	hundreds	of	drought	indices	have	been	proposed	in	
last	decades.	Why	do	the	authors	choose	SPEI?	Why	not	using	PDSI	or	others	widely	recognized	
and	 used	 index?	 For	 practical	 applications,	 how	 should	 end-user	 use	 your	 dataset	 to	monitor	
drought?	The	information	is	missing	in	the	manuscript,	and	I	advise	the	authors	to	elaborate	on	
this	aspect.		

Response:	 Thanks	 for	 your	 comments	 and	 questions.	 The	motivation	 of	 choosing	 SPEI	 rather	
than	other	drought	 index	 is	mainly	due	 to	 its	 relative	simplicity,	which	allows	us	 to	produce	a	
high	 spatial	 resolution	 drought	 dataset	 that	 entirely	 replies	 on	 satellite-based	 products.	 In	
addition,	SPEI	has	the	ability	to	characterize	different	types	of	droughts	given	the	different	times	
of	response	of	different	usable	water	sources	to	precipitation	deficits	(Kumar	et	al.,	2016;	Zhao	
et	al.,	 2017).	Regarding	practical	 applications,	 there	 is	 a	wide	 range	of	 studies	 that	have	used	
SPEI	for	different	types	of	droughts.	In	addition,	the	SPEI	negative	values	indicate	dry	conditions	
while	 positive	 values	 correspond	 to	 wet	 conditions.	 The	 table	 below	 has	 been	 added	 in	 the	
revised	manuscript	to	show	the	categories	of	dry	and	wet	conditions	indicated	by	SPEI	values.	



Table	1.	Categories	of	dry	and	wet	conditions	indicated	by	SPEI	values.	

SPEI	 Category	

2	and	above	 Extremely	wet	

1.5	to	1.99	 Very	wet	

1.0	to	1.49	 Moderately	wet	

-0.99	to	0.99	 Near	Normal	

-1.0	to	-1.49	 Moderately	dry	

-1.5	to	-1.99	 Severely	dry	

-2	and	less	 Extremely	dry	

2.	 Drought	 is	 a	 global	 disaster	 and	 deserves	 research	 at	 global	 scale.	 As	 far	 as	 I	 know,	 the	
satellite	 products	 used	 in	 your	 dataset	 like	 CHIRPS,	 GLEAM	 cover	 nearly	 entire	 globe	 (e.g.	 50	
dgree	N-S).	Why	do	you	only	focus	on	Africa?	Why	not	extending	to	the	global	scale?		

Response:	It	is	a	good	point.	Theatrically,	Yes,	the	dataset	can	be	extended	to	global	scale.	The	
current	 study	 is	 supported	 by	 the	 UK	 Space	 Agency's	 International	 Partnership	 Programme	
(417000001429),	 which	 aims	 to	 focus	 on	 Africa.	 However,	 the	 whole	 framework	 has	 been	
established,	we	can	produce	the	SPEI-HR	at	any	regions	once	there	is	a	request	from	potential	
users.	

3.	 Regarding	 evaluation	 of	 your	 dataset,	 indirect	 comparison	 is	 definitely	 informative.	 Direct	
evaluation	against	ground-based	measurements	 is	essential.	This	part	 is	missing	 in	 the	current	
manuscript.		

Response:	Thanks	for	the	suggestion.	We	fully	agree	validation	with	ground-based	measurement	
is	 important.	However,	 it	 is	very	challenging	to	 implement	due	to	the	missing	of	ground-based	
measurements	 for	 both	 precipitation	 and	 potential	 evapotranspiration.	 As	 stated	 in	 the	
manuscript,	 the	 CHIRPS	 dataset	 has	 been	 validated	 in	 Africa	 with	 in	 situ	 measurements.	
However,	 the	 ground-based	 potential	 evapotranspiration	 measurement	 is	 not	 available	 in	
Africa,	which	hampers	the	calculation	of	SPEI	using	ground-based	measurements.	Therefore,	we	
use	indirect	comparison	to	present	the	validity	of	generated	SPEI	dataset.	

	

	



Response	to	Gebremedhin	Haile	
	

I	 am	 eager	 to	 use	 this	 dataset.	 I	 believe	 that	 this	 dataset	will	 be	 very	 valuable	 and	 helpful	 in	
Africa	where	data	is	limited.	I	like	how	the	paper	is	written,	it	is	very	informative.		

Response:	Many	thanks	indeed	for	your	positive	evaluation	and	suggested	references.	We	have	
carefully	 revised	 the	manuscript	according	 to	your	comments.	 In	 the	 following,	we	provide	an	
item-by-item	response	to	your	comments.	Your	comments	are	written	in	 italic	black	color;	our	
responses	are	shown	in	upright	font	blue	color.	

I	have	the	following	two	minor	comments	that	needs	to	be	considered		

Authors	 used	 high	 resolution	 datasets	 to	 develop	 the	 dataset.	However,	 other	 criterias	 should	
have	 been	 considered.	 For	 example,	 supportive	 evidence	 should	 be	 provided	 as	 to	 whether	
CHIRPS	is	recommended	for	Africa	or	not.	And	the	same	for	the	other	datasets	used	to	develop	
this	dataset.	I	also	recommend	to	include	the	following	recent	researches	on	Africa	and	global	to	
further	enrich	the	quality	of	the	paper.		

https://journals.ametsoc.org/doi/full/10.1175/BAMS-D-12-00124.1	
https://journals.ametsoc.org/doi/full/10.1175/BAMS-D-16-0287.1	
https://www.nature.com/articles/s41586-019-1149-8	
https://www.sciencedirect.com/science/article/abs/pii/S0012825218303519	
https://www.nature.com/articles/ngeo2646	
https://onlinelibrary.wiley.com/doi/abs/10.1002/wc	
https://journals.ametsoc.org/doi/full/10.1175/BAMS-D-11-00176.1	
https://journals.ametsoc.org/doi/full/10.1175/BAMS-D-11-00212.1	
	

Response:	 Thanks	 for	 the	 comments	 and	 suggestions.	We	 fully	 agree.	 Please	 see	our	detailed	
responses	 to	 Referee	 #1	 on	 the	 motivation	 of	 choosing	 different	 products.	 In	 addition,	 the	
relevant	references	that	support	the	validity	of	CHIRPS	and	other	datasets	 in	Africa	have	been	
added	in	the	revised	manuscript.	Most	of	your	suggested	references	have	also	been	integrated	
into	the	revised	manuscript.	Thanks	very	much.	
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Abstract 13 

Droughts in Africa cause severe problems such as crop failure, food shortages, famine, epidemics and even 14 

mass migration. To minimize the effects of drought on water and food security over Africa, a high-resolution 15 

drought dataset is essential to establish robust drought hazard probabilities and to assess drought 16 

vulnerability considering a multi- and cross-sectorial perspective that includes crops, hydrological systems, 17 

rangeland, and environmental systems. Such assessments are essential for policy makers, their advisors, and 18 

other stakeholders to respond to the pressing humanitarian issues caused by these environmental hazards.  In 19 

this study, a high spatial resolution Standardized Precipitation-Evapotranspiration Index (SPEI) drought 20 

dataset is presented to support these assessments. We compute historical SPEI data based on Climate 21 

Hazards group InfraRed Precipitation with Station data (CHIRPS) precipitation estimates and Global Land 22 

Evaporation Amsterdam Model (GLEAM) potential evaporation estimates. The high resolution SPEI dataset 23 

(SPEI-HR) presented here spans from 1981 to 2016 (36 years) with 5 km spatial resolution over the whole 24 

Africa. To facilitate the diagnosis of droughts of different durations, accumulation periods from 1 to 48 25 

months are provided. The quality of the resulting dataset was compared with coarse-resolution SPEI based 26 

on Climatic Research Unit (CRU) Time-Series (TS) datasets, and Normalized Difference Vegetation Index 27 

(NDVI) calculated from the Global Inventory Monitoring and Modeling System (GIMMS) project, as well 28 

as with root zone soil moisture modelled by GLEAM. Agreement found between coarse resolution SPEI 29 



 

 2 

from CRU TS (SPEI-CRU) and the developed SPEI-HR provides confidence in the estimation of temporal 30 

and spatial variability of droughts in Africa with SPEI-HR. In addition, agreement of SPEI-HR versus NDVI 31 

and root zone soil moisture – with average correlation coefficient (R) of 0.54 and 0.77, respectively – further 32 

implies that SPEI-HR can provide valuable information to study drought-related processes and societal 33 

impacts at sub-basin and district scales in Africa. The dataset is archived in Centre for Environmental Data 34 

Analysis (CEDA) with link: http://dx.doi.org/10.5285/bbdfd09a04304158b366777eba0d2aeb (Peng et al., 35 

2019a)     36 

Keywords:  37 

Drought, Africa, Precipitation, Potential evaporation, drought management, disaster risk reduction 38 
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1 Introduction 62 

Drought is a complex phenomenon that affects natural environments and socioeconomic systems in the 63 

world (von Hardenberg et al., 2001; Vicente-Serrano, 2007; Van Loon, 2015; Wilhite and Pulwarty, 2017). 64 

Impacts include crop failure, food shortage, famine, epidemics and even mass migration (Wilhite et al., 65 

2007; Ding et al., 2011; Zhou et al., 2018). In recent years, severe events have occurred across the world, 66 

such as the 2003 central Europe drought (García-Herrera et al., 2010), the 2010 Russian drought (Spinoni et 67 

al., 2015), the 2011 Horn of Africa drought (Nicholson, 2014), the southeast Australian’s Millennium 68 

drought (van Dijk et al., 2013; Peng et al., 2019d), the 2013/2014 California drought (Swain et al., 2014), the 69 

2014 North China drought (Wang and He, 2015) and the 2015–2017 Southern Africa drought (Baudoin et 70 

al., 2017; Muller, 2018). Widespread negative effects of these droughts on natural and socioeconomic 71 

systems have been reported afterwards (Wegren, 2011; Arpe et al., 2012; Griffin and Anchukaitis, 2014; 72 

Mann and Gleick, 2015; Dadson et al., 2019; Marvel et al., 2019). Thus, there is a clear need to improve our 73 

knowledge about the spatial and temporal variability of drought, which provides a basis for quantifying 74 

drought impacts and the exposure of society, the economy and the environment over different areas and 75 

time-scales (Pozzi et al., 2013; AghaKouchak et al., 2015). 76 

Generally, drought is defined as a temporal anomaly characterized by a deficit of water compared with long-77 

term conditions (Mishra and Singh, 2010; Van Loon, 2015). Droughts can typically be grouped into five 78 

types: meteorological (precipitation deficiency), agricultural (soil moisture deficiency), hydrological (runoff 79 

and/or groundwater deficiency), socioeconomic (social response to water supply and demand) and 80 

environmental or ecologic (Keyantash and Dracup, 2002; AghaKouchak et al., 2015; Crausbay et al., 2017). 81 

These different drought categories involve different event characteristics in terms of timing, intensity, 82 

duration, and spatial extent, making it very difficult to characterize droughts quantitatively (Panu and 83 

Sharma, 2002; Lloyd-Hughes, 2014; Vicente-Serrano, 2016). For this reason numerous drought indices have 84 

been proposed for precise applications, and reviews of the available indices have been provided by previous 85 

studies such as Heim Jr (2002), Keyantash and Dracup (2002), and Mukherjee et al. (2018). Van Loon 86 
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(2015) noted that there is no best drought index for all types of droughts, because every index is designed for 87 

a specific drought type, thus multiple indices are required to capture the multifaceted nature of drought. 88 

Nevertheless, the Standardized Precipitation Index (SPI) is recommended by the World Meteorological 89 

Organization (WMO) for drought monitoring, which is calculated based solely on long-term precipitation 90 

data over different time spans (McKee et al., 1993). The advantages of SPI are its relative simplicity and its 91 

ability to characterize different types of droughts given the different times of response of different usable 92 

water sources to precipitation deficits (Kumar et al., 2016; Zhao et al., 2017). However, information on 93 

precipitation is inadequate to characterize drought; in most definitions, drought conditions also depend on 94 

the demand of water vapor from the atmosphere. More recently, Vicente-Serrano et al. (2010) proposed an 95 

alternative drought index for SPI, which is called Standardized Precipitation Evapotranspiration Index 96 

(SPEI). Compared to SPI, it considers not only the precipitation supply, but also the atmospheric evaporative 97 

demand (Beguería et al., 2010; Vicente-Serrano et al., 2012b). This makes the index more informative of the 98 

actual drought effects over various natural systems and socioeconomic sectors (Vicente-Serrano et al., 2012b; 99 

Bachmair et al., 2016; Kumar et al., 2016; Sun et al., 2016c; Bachmair et al., 2018; Peña-Gallardo et al., 100 

2018a; Peña-Gallardo et al., 2018b; Sun et al., 2018). 101 

For the calculation of SPEI, high-quality and long-term observations of precipitation and atmospheric 102 

evaporative demand are necessary. These observations may either come from ground-based station data or 103 

gridded data such as satellite and reanalysis datasets. For example, the SPEIbase (Beguería et al., 2010) and 104 

the Global Precipitation Climatology Centre Drought Index (GPCC-DI) (Ziese et al., 2014) both provide 105 

SPEI datasets at global scale. The SPEIbase provides gridded SPEI with a 50-km spatial resolution, and is 106 

calculated from Climatic Research Unit (CRU) Time-Series (TS) datasets, which are produced based on 107 

measurements from more than 4000 ground-based weather stations over the world (Harris et al., 2014). The 108 

SPEI dataset provided by GPCC-DI has spatial resolution of 1°, and was generated from GPCC precipitation 109 

(Becker et al., 2013; Schneider et al., 2016) and National Oceanic and Atmospheric Administration 110 

(NOAA)’s Climate Prediction Center (CPC) temperature dataset (Fan and Van den Dool, 2008). Both of 111 
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these datasets have been applied for various drought related studies at global and regional scales (e.g., Chen 113 

et al., 2013; Vicente-Serrano et al., 2013; Isbell et al., 2015; Sun et al., 2016a; Vicente-Serrano et al., 2016; 114 

Deo et al., 2017). However, these global SPEI data sets’ spatial resolution are too coarse to be applied at 115 

district or sub-basin scales (Vicente-Serrano et al., 2017). A sub-basin scale quantification of drought 116 

conditions is particularly crucial in regions such as Africa, in which geospatial data and drought indices can 117 

be essential to manage existing drought-related risks (Vicente-Serrano et al., 2012a) and where in-situ 118 

measurements are scarce (Trambauer et al., 2013; Masih et al., 2014; Anghileri et al., 2019). Over last 119 

century, Africa has been severely influenced by intense drought events, which has led to food shortages and 120 

famine in many countries (Anderson et al., 2012; Yuan et al., 2013; Sheffield et al., 2014; Awange et al., 121 

2016; Funk et al., 2018; Nicholson, 2018; Gebremeskel et al., 2019). Therefore, the availability of a high-122 

resolution drought index dataset may contribute to an improved characterization of drought risk and 123 

vulnerability, and minimize its impact on water and food security by supporting policy makers, water 124 

managers and stakeholders. Conveniently, with the advancement of satellite technology, the estimation of 125 

precipitation and evaporation from remote sensing datasets is becoming more accurate (Fisher et al., 2017). 126 

In particular, the long-term Climate Hazards group InfraRed Precipitation with Station data (CHIRPS) (Funk 127 

et al., 2015a) precipitation and Global Land Evaporation Amsterdam Model (GLEAM) (Miralles et al., 2011) 128 

evaporation datasets provide high-quality datasets for near-real time drought monitoring. Here, we use 129 

CHIRPS and GLEAM datasets to develop a pan-African high spatial resolution (5-km) SPEI dataset, which 130 

may be useful to inform drought relief management strategies for the continent. The dataset covers the 131 

period from 1981 to 2016 and it is comprehensively inter-compared with soil moisture, vegetation index and 132 

coarse resolution SPEI datasets. 133 

2 Data and Methodology 134 

2.1 Data 135 

2.1.1 CHIRPS 136 

Jian mpim� 1/14/2020 10:44 AM
Formatted: Font color: Red

Jian mpim� 1/14/2020 10:44 AM
Formatted: Font color: Red



 

 6 

CHIRPS is a recently-developed high-resolution, daily, pentadal, dekadal, and monthly precipitation dataset 137 

(Funk et al., 2015a). It was produced by blending a set of satellite-only precipitation values (CHIRP) with 138 

additional monthly and pentadal station observations. The CHIRP is based on infrared cold cloud duration 139 

(CCD) estimates calibrated with the Tropical Rainfall Measuring Mission Multi-satellite Precipitation 140 

Analysis version 7 (TMPA 3B42 v7) and the Climate Hazards group Precipitation climatology (CHPclim) 141 

The CHPclim (Funk et al., 2015a; Funk et al., 2015e) is based on station data from the Food and Agriculture 142 

Organization (FAO) and the Global Historical Climate Network (GHCN). Compared with other global 143 

precipitation datasets such as Multi-Source Weighted-Ensemble Precipitation (MSWEP) (Beck et al., 2017) 144 

and Global Precipitation Climatology Project (GPCP) (Adler et al., 2003), CHIRPS has several advantages: 145 

a long period of record, high spatial resolution (5-km), low spatial biases and low temporal latency. It has 146 

been widely validated and applied in various applications (e.g., Shukla et al., 2014; Maidment et al., 2015; 147 

Duan et al., 2016; Zambrano-Bigiarini et al., 2017; Rivera et al., 2018). In particular, it was recently 148 

validated over East Africa and Mozambique and demonstrated good performance compared to other 149 

precipitation datasets (Toté et al., 2015; Dinku et al., 2018). Furthermore, CHIRPS was specifically designed 150 

for drought monitoring over regions with deep convective precipitation, scarce observation networks and 151 

complex topography (Funk et al., 2014). Several studies (e.g., Toté et al., 2015; Guo et al., 2017) have used 152 

CHIRPS for drought monitoring. Its high spatial resolution makes it particularly suitable for local-scale 153 

studies, such as sub-basin drought monitoring, especially in areas with complex topography. The detailed 154 

description of the dataset was provided by Funk et al. (2015a). In this study, daily CHIRPS precipitation 155 

from 1981 to 2016 was used. 156 

2.2.2 GLEAM 157 

GLEAM is designed to estimate land surface evaporation and root-zone soil moisture from remote sensing 158 

observations and reanalysis data (Miralles et al., 2011; Martens et al., 2017). Specifically, the Priestley-159 

Taylor equation is used to calculate potential evaporation within GLEAM based on near surface temperature 160 

and net radiation, while the root zone soil moisture is obtained from a multilayer water balance driven by 161 
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precipitation observations and updated with microwave soil moisture estimates (Martens et al., 2017). The 162 

actual evaporation is estimated by constraining potential evaporation with a multiplicative evaporative stress 163 

factor based on root-zone soil moisture and Vegetation Optical Depth (VOD) estimates. The GLEAM 164 

version 3a (v3a) provides global daily potential and actual evaporation, evaporative stress conditions and 165 

root zone soil moisture from 1980 to 2018 at spatial resolution of 0.25° (Martens et al., 2017) (see 166 

www.gleam.eu). GLEAM datasets have already been comprehensively evaluated against FLUXNET 167 

observations and used for multiple hydro-meteorological applications (Greve et al., 2014; Miralles et al., 168 

2014; Trambauer et al., 2014; Forzieri et al., 2017; Lian et al., 2018; Richard et al., 2018; Vicente-Serrano et 169 

al., 2018; Zhan et al., 2019). In particular, two recent studies detected global drought conditions based on 170 

GLEAM potential and actual evaporation data (Vicente-Serrano et al., 2018; Peng et al., 2019c). For this 171 

study, the GLEAM potential evaporation and root zone soil moisture were used. 172 

2.2.3 CRU-TS 173 

The global gridded CRU-TS datasets provide most widely-used climate variables including precipitation, 174 

potential evaporation, diurnal temperature range, maximum and minimum temperature, mean temperature, 175 

frost day frequency, cloud cover and vapour pressure (Harris et al., 2014). The CRU TS datasets were 176 

produced using angular-distance weighting (ADW) interpolation based on monthly meteorological 177 

observations collected at ground-based stations across the world. The recently-released CRU TS version 178 

4.0.1 covers the period 1901–2016 and provides monthly data at 50-km spatial resolution. The CRU TS 179 

datasets have been widely used for various applications since their release (e.g., van der Schrier et al., 2013; 180 

Chadwick et al., 2015; Delworth et al., 2015; Jägermeyr et al., 2016). The SPEIbase dataset was generated 181 

from CRU TS datasets (Beguería et al., 2010). In this study, the CRU TS precipitation and potential 182 

evaporation from 1981 to 2016 were used. 183 

2.2.4 GIMMS NDVI 184 
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The Normalized Difference Vegetation Index (NDVI) can serve as a proxy of vegetation status and has been 185 

widely applied to investigate the effects of drought on vegetation (e.g., Rojas et al., 2011; Vicente-Serrano et 186 

al., 2013; Törnros and Menzel, 2014; Vicente-Serrano et al., 2018). The Global Inventory Monitoring and 187 

Modeling System (GIMMS) NDVI was generated based on Advanced Very High Resolution Radiometer 188 

(AVHRR) observations, and has accounted for various deleterious effects such as orbital drift, calibration 189 

loss and volcanic eruptions (Beck et al., 2011; Pinzon and Tucker, 2014). For the current study, the latest 190 

version of GIMMS NDVI (3g.v1) was used, which covers the time period from 1981 to 2015 at biweekly 191 

temporal resolution and 8-km spatial resolution (Pinzon and Tucker, 2014). 192 

2.3 Methods  193 

2.3.1 SPEI calculation 194 

The SPEI proposed by Vicente-Serrano et al. (2010) has been used for a wide variety of agricultural, 195 

ecological and hydro-meteorological applications (e.g., Schwalm et al., 2017; Naumann et al., 2018; Jiang et 196 

al., 2019). It accounts for the impacts of evaporation demand on droughts and inherits the simplicity and 197 

multi-temporal characteristics of SPI. The procedure for SPEI calculation includes the estimation of a 198 

climatic water balance (namely the difference between precipitation and potential evaporation), the 199 

aggregation of the climatic water balance over various time-scales (e.g., 1, 3, 6, 12, 24, or more months), and 200 

a fitting to a certain parameter distribution. As suggested by Beguería et al. (2014) and Vicente-Serrano and 201 

Beguería (2016), the log-logistic probability distribution is best for SPEI calculation, from which the 202 

probability distribution of the difference between precipitation and potential evaporation can be calculated as 203 

suggested by Vicente-Serrano et al. (2010) and Beguería et al. (2014). The negative and positive SPEI values 204 

respectively indicate dry and wet conditions. Table 1 summarizes the category of dry and wet conditions 205 

based on SPEI values. In this study, the CHIRPS and GLEAM datasets were used for SPEI calculation at 206 

high spatial resolution (5-km). For comparison, the SPEI at 50-km was also calculated based on CRU TS 207 

datasets for the same 1981–2016 period. It should be noted that the SPEI over sparsely vegetated and barren 208 

areas were masked out based on Moderate Resolution Imaging Spectroradiometer (MODIS) land cover 209 
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product (MCD12Q1) (Friedl et al., 2010), because SPEI is not reliable over these areas (Beguería et al., 2010; 210 

Beguería et al., 2014; Zhao et al., 2017). 211 

Table 1. Categories of dry and wet conditions indicated by SPEI values. 212 

SPEI Category 

2 and above Extremely wet 

1.5 to 1.99 Very wet 

1.0 to 1.49 Moderately wet 

-0.99 to 0.99 Near Normal 

-1.0 to -1.49 Moderately dry 

-1.5 to -1.99 Severely dry 

-2 and less Extremely dry 

 213 

2.3.2 Evaluation criteria 214 

The SPEIbase dataset (Beguería et al., 2010) was calculated with CRU TS dataset, which has been evaluated 215 

and applied by many studies (e.g., Chen et al., 2013; Vicente-Serrano et al., 2013; Isbell et al., 2015; Sun et 216 

al., 2016a; Greenwood et al., 2017; Um et al., 2017). The newly-generated SPEI at high spatial resolution 217 

based on CHIRPS and GLEAM (SPEI-HR) is compared temporally and spatially with the SPEI calculated 218 

from CRU TS datasets. In addition, the NDVI can also serve as an indicator for drought and vegetation 219 

health, and to assess the performance of drought indices (Vicente-Serrano et al., 2013; Aadhar and Mishra, 220 

2017). Furthermore, root zone soil moisture is an ideal hydrological variable for agricultural (soil moisture) 221 

drought monitoring. The recently-released root zone soil moisture (RSM) from GLEAM v3 provides a great 222 

opportunity to evaluate whether soil moisture drought is well represented by SPEI. To facilitate direct 223 

comparison between SPEI and NDVI as well as RSM, both NDVI and RSM are standardized by subtracting 224 

their corresponding (1981–2016) mean and expressed the resulting anomalies as numbers of standard 225 
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deviations. This standardization has been applied by many studies to evaluate drought indices (Anderson et 226 

al., 2011; Mu et al., 2013; Zhao et al., 2017). The correlation between SPEI and the standardized NDVI and 227 

RSM is quantified using Pearson’s correlation coefficient (R). In addition, the high resolution SPEI from 228 

GLEAM and CHIRPS is also resampled to the same grid size of SPEI from CRU TS in order to quantify 229 

their correlation and disentangle whether the added value of the former arises from its increased accuracy or 230 

higher resolution. In the following part, the high (5-km) resolution SPEI is referred to SPEI-HR, while the 231 

coarse 50-km resolution SPEI is referred to SPEI-CRU. 232 

3 Results and discussion 233 

3.1 Inter-comparison between high- and coarse-resolution SPEI 234 

Figure 1 shows the spatial distribution of SPEI-HR and SPEI-CRU at different resolutions for an example 235 

month (June 1995). Figure 1a,b show the 3-month SPEI and 12-month SPEI, respectively. It can be seen that 236 

the high resolution and coarse resolution SPEI display quite similar dry and wet patterns over the whole of 237 

Africa for both temporal scales. However, as expected, the SPEI-HR shows much more spatial detail that 238 

reflects mesoscale geographic and climatic features, which highlights the advantages of this new dataset. The 239 

differences in patterns between 3-month and 12-month SPEI indicate the different water deficits caused by 240 

different aggregation time scales, which can further separate agricultural, hydrological, environmental, and 241 

other droughts. For example, in June 1995 southern Africa showed persistent dry conditions over a 242 

prolonged period, while western Africa only showed a short-term drought.  243 
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 244 
Figure 1: Spatial patterns of 3-month and 12-month SPEI at high spatial resolution (5 km) and coarse spatial resolution (50 km) in 245 
June, 1995. The high spatial resolution SPEI (SPEI-HR) is based on CHIRPS precipitation and GLEAM potential evaporation, 246 
while the coarse spatial resolution SPEI (SPEI-CRU) is calculated from CRU TS datasets. 247 
 248 

In order to quantify how different is SPEI-HR from SPEI-CRU, the correlation between them is calculated 249 

for each grid cell over the whole study period. Figure 2 shows the correlations for time-scales 1, 3, 6, 9, 12, 250 

24, 36, and 48 months. In general, the SPEI-HR and SPEI-CRU agree well in terms of temporal variability 251 

with high positive correlations over most of Africa for every time scale. However, relatively low correlations 252 

appear in central Africa, and they become lower as the SPEI time-scale increases. This region has very few 253 

station observations. It should be noted that the correlations shown here are statistically significant with p 254 

value less than 0.05.  In addition, the average correlation between 6-month SPEI-CRU and SPEI-HR for 255 

each month of the year is summarized in Figure 3 using box plot. In general, positive correlations, with a 256 

median larger than 0.6 (p<0.05), are found for every month. There are no substantial differences in 257 

correlations between different months. Figure A1 in Appendix shows additional box plots for SPEI at other 258 

time scales.   259 
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Figure 2: Correlation (p<0.05) between SPEI-HR and SPEI-CRU, with the number indicating different months.  260 
 261 

 262 

 263 
Figure 3: Box plot of the correlation (p<0.05) between SPEI-HR and SPEI-CRU for each month of the entire record. The results 264 

here are based on 6-month SPEI and the red line in each box represents the median.  265 
 266 

 267 

3.2 Comparison against root zone soil moisture and NDVI 268 

To gain more insights into their significance and applicability, the SPEI datasets are compared with NDVI 269 

and RSM. Figure 4 shows the results of the spatial and temporal comparison between 6-month SPEI and 270 

RSM as indicated by Törnros and Menzel (2014). Figure 4a,b display the correlation (p<0.05) of SPEI-HR 271 

and SPEI-CRU against RSM during the whole time period respectively. In general, both SPEI-HR and SPEI-272 

CRU show strong correlations with RSM over the whole African continent. Compared to SPEI-CRU, the 273 

SPEI-HR shows higher correlations, particularly over central Africa. Since Section 3.1 shows that relatively 274 
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large discrepancy between SPEI-CRU and SPEI-HR exists over central Africa, the results presented here 275 

suggest a potentially better performance of SPEI-HR compared with SPEI-CRU in this region. 276 

The time series of SPEI and RSM, averaged over the entire study area, are shown in Figure 4c, together with 277 

the corresponding correlations. It can be seen that both SPEI-HR and SPEI-CRU agree well with each other 278 

and with the RSM dynamics. Consistent with the results from the spatial correlation analysis, the SPEI-HR 279 

and SPEI-CRU show similar results when compared with RSM (R = 0.77 for SPEI-HR, R = 0.72 for SPEI-280 

CRU). Furthermore, the scatterplots between 6-month SPEI and RSM for the entire data record are shown in 281 

Appendix Figure A2, where positive and significant correlations with RSM are found for both SPEI-HR (R = 282 

0.51) and SPEI-CRU (R = 0.42). To explore the correlation between RSM and different time scales of SPEI, 283 

Table 2 summarizes the correlation value calculated in the same way as Figure 4c. It can be seen that the 284 

highest correlations against RSM are found at 3- and 6-month time scales. It should be noted that satellite 285 

data-driven estimates of root zone soil moisture is more suitable for evaluating SPEI compared to satellite-286 

based top-layer soil moisture or reanalysis soil moisture data (Mo et al., 2011; Xu et al., 2018).  287 

 
(a) 

   
(b) 
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(c) 

Figure 4: Spatial maps of correlation between SPEI and root zone soil moisture (RSM) for 6-month SPEI: (a) SPEI-HR and (b) 288 
SPEI-CRU. The time series of Africa area-mean RSM and SPEI are shown in (c), where R refers to the correlation coefficient. 289 
The correlations shown here are all significant at the 95% confidence level. 290 
 291 
 292 

Table 2: The correlation (p<0.05) between area-mean RSM and SPEI at different time scales. 293 
 294 

 SPEI-01 SPEI-03 SPEI-06 SPEI-09 SPEI-12 SPEI-24 SPEI-36 SPEI-48 
R (SPEI-CRU) 0.52 0.74 0.72 0.64 0.56 0.41 0.26 0.16 
R (SPEI-HR) 0.49 0.76 0.77 0.69 0.62 0.44 0.29 0.18 

 295 

Similar to the above analysis between SPEI and RSM, the comparison of results between SPEI and NDVI 296 

are shown in Figure 5. First, Figures 5a,b present the spatial distribution of the correlations (p<0.05) between 297 

SPEI-HR and NDVI and between SPEI-CRU and NDVI, respectively. While correlations are overall lower 298 

than for RSM, it can be seen that both SPEI datasets are positively correlated with NDVI over most of the 299 

continent. It is also clear that SPEI-HR shows higher correlations. The time series comparison between the 300 

area-mean SPEI and NDVI is shown in Figure 5c. Both SPEI-HR and SPEI-CRU show agreement with 301 

NDVI, with R=0.54 and R=0.47, respectively. In addition, the comparison between 6-month SPEI and 302 

NDVI for the entire data record was also calculated, with R=0.24 for SPEI-HR and R=0.21 for SPEI-CRU 303 

significant at 95% confidence level (Figure A3). While these correlations are admittedly low, overall results 304 

suggest that the SPEI has a positive relation with NDVI, which is also reported by previous studies (e.g., 305 

Törnros and Menzel, 2014; Vicente-Serrano et al., 2018). The lower correlations against NDVI than against 306 

RSM are likely due to complex physiological processes associated to vegetation, and the fact that ecosystem 307 

state is driven by multiple variables other than water availability (Nemani et al., 2003). Furthermore, there 308 
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are also clearly documented lags between precipitation and NDVI, with NDVI time series typically peaking 309 

one or even two months after the period of maximum rainfall (Funk and Brown, 2006). Finally, Table 3 310 

summarizes the correlation between SPEI and NDVI at different time scales. Compared with the results 311 

presented in Table 2 for RSM, the correlation with NDVI shown in Table 3 is also generally lower, and the 312 

highest correlations appear between 9- and 24-month SPEI (R>0.5).  313 

 314 
 315 
 316 
 317 

 
(a) 

   
(b) 

 
(c) 

 318 
 319 
Figure 5: Spatial maps of the correlation between SPEI and NDVI for 6-month SPEI: (a) SPEI-HR and (b) SPEI-CRU. The time 320 
series of area-mean NDVI and SPEI are shown in (c), where R refers to the correlation coefficient. The correlations shown here 321 
are all significant at the 95% confidence level. 322 
 323 

 324 
Table 3: The correlation (p<0.05) between area-mean NDVI and SPEI at different time scales. 325 

 326 
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 SPEI-01 SPEI-03 SPEI-06 SPEI-09 SPEI-12 SPEI-24 SPEI-36 SPEI-48 
R (SPEI-CRU) 0.23 0.42 0.47 0.48 0.47 0.50 0.34 0.20 
R (SPEI-HR) 0.31 0.51 0.54 0.56 0.57 0.57 0.44 0.29 
 327 

Altogether, the comparisons between SPEI and RSM and between SPEI and NDVI indirectly indicate the 328 

validity of the generated SPEI datasets. Therefore, the generated high-resolution SPEI-HR from satellite 329 

products has potential to improve upon the state of the art in drought assessment over Africa. 330 

3.3 Patterns of SPEI, RSM and NDVI during specific drought events 331 

Most of Africa has suffered severe droughts in past decades (Naumann et al., 2014; Blamey et al., 2018). 332 

Among them, the 2011 East Africa drought (Anderson et al., 2012; AghaKouchak, 2015) and 2002 southern 333 

Africa drought (Masih et al., 2014) were extremely severe and had devastating effects on the natural and 334 

socioeconomic environment. Taking these two events as case studies, the spatial patterns of the newly-335 

developed high-resolution 6-month SPEI-HR are analyzed, together with the variability in NDVI and RSM. 336 

Figure 6a,b show the evolution of 6-month SPEI, NDVI and RSM during the 2011 East Africa and the 2002 337 

southern Africa drought, respectively. The 6-month periods end in the named month, with the 6-month June 338 

2011 SPEI values based on data for January to June. In general, these three variables reflect the progressive 339 

dry-out during the events. For example, strong, severe drought is revealed by the SPEI with values less than 340 

-1.5, coinciding with a decline in NDVI and RSM, from June to September 2011 over East Africa; the 341 

drought was offset in October. Similarly, dry and wet conditions variations during the 2002 southern Africa 342 

drought were also captured by the three variables. Despite differences over space and time, results here 343 

demonstrate that the generated SPEI-HR captures the main drought conditions that are reflected by negative 344 

anomalies in NDVI and RSM, and can thus be used to study local drought related processes and societal 345 

impacts in Africa.  346 
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(a) 

 
(b) 

 347 
Figure 6: Evolution of the spatial patterns of 6-month SPEI-HR, NDVI and root zone soil moisture (RSM) during the 2011 East 348 
Africa drought (a) and 2002 southern Africa drought (b), respectively. 349 
 350 
 351 

4. Data availability 352 

The high resolution SPEI dataset is publically available from the Centre for Environmental Data Analysis 353 

(CEDA) with link: http://dx.doi.org/10.5285/bbdfd09a04304158b366777eba0d2aeb (Peng et al., 2019a). It 354 

covers the whole Africa at monthly temporal resolution and 5 km spatial resolution from 1981 to 2016, and 355 

is provided with Geographic Lat/Lon projection and NetCDF format. 356 
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 357 

5. Conclusion 358 

The study presents a newly-generated high-resolution SPEI dataset (SPEI-HR) over Africa. The dataset is 359 

produced from satellite-based CHIRPS precipitation and GLEAM potential evaporation, and covers the 360 

entire African continent over the time period from 1981 to 2016 with spatial resolution of 5-km. The 361 

accumulated SPEI ranging from 1 to 48 months is provided to facilitate applications from meteorological to 362 

hydrological droughts. The SPEI-HR was compared with widely used coarse-resolution SPEI data (SPEI-363 

CRU) and GIMMS NDVI as well as GLEAM root zone soil moisture to investigate its capability for drought 364 

detection. In general, the SPEI-HR has good correlation with SPEI-CRU temporally and spatially. They both 365 

agree well with NDVI and root zone soil moisture, although SPEI-HR displays higher correlations overall. 366 

These results indicate the validity and advantage of the newly developed high resolution SPEI-HR dataset, 367 

and its unprecedentedly high spatial resolution offers important advantages for drought monitoring and 368 

assessment at district and river basin level in Africa. 369 

 370 

 371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 
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Appendix 379 
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 380 

 381 
 382 
 383 
 384 
 385 
 386 
 387 
 388 
 389 

 390 
 391 
 392 
 393 
Figure A1: Box plots of the correlation (p<0.05) between SPEI-HR and SPEI-CRU for each month and entire monthly record. 394 
 395 
 396 

  

Figure A2: Scatterplots between 6-month SPEI and RSM for the entire data record. R is correlation coefficient with p<0.05, and 397 
the colors denote the occurrence frequency of values. 398 
 399 
 400 
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Figure A3: Scatterplots between 6-month SPEI and NDVI for the entire data record. R is correlation coefficient with p<0.05, and 401 
the colors denote the occurrence frequency of values. 402 
 403 
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