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Abstract. A dataset containing quality controlled wind observations from 222 tall towers has been created. Wind speed and

wind direction measurements covering the 1984-2017 period have been collected from existing tall towers around the world

in an effort to boost the utilisation of these non-standard atmospheric datasets, especially within the wind energy and research

fields. Observations taken at several heights greater than 10 metres above ground level have been retrieved from various

sparse datasets and compiled in a unique collection with a common format, access, documentation and quality control. For the5

latter, a total of 18 quality control checks have been considered to ensure the high quality of the wind records. Non-quality-

controlled temperature, relative humidity and barometric pressure data from the towers have also been obtained and included

in the dataset. The Tall Tower Dataset (Ramon and Lledó, 2019a) is published in the repository EUDAT and made available at

https://doi.org/10.23728/b2share.136ecdeee31a45a7906a773095656ddb.

1 Introduction10

Renewable energies have experienced the fastest growth among all electricity sources in the last few years (OECD/IEA, 2018,

2019). Together with solar photovoltaic, the wind power sector is leading this development, and the number of new wind farms

and the installed capacity is currently facing an important increase worldwide (WindEurope, 2018; AWEA, 2019).

With higher shares of electricity generation depending on wind speed conditions, it is crucial to advance understanding of

wind speed conditions at heights between 50 and 150 metres above ground —where current wind turbines are installed— and15

at multiple time-scales ranging from turbulence to mesoscale circulations, seasonal to decadal oscillations and climate change

impacts. To characterise these features, high quality meteorological observations are needed.

Vast amounts of surface wind measurements taken at the standard height of 10 m above surface level do already exist, and

efforts have been made to compile the existing surface wind observations (Lott, 2004; Dunn et al., 2012; Klein Tank et al., 2002;

Lucio-Eceiza et al., 2018a, b). However, meteorological data at turbine hub heights are much scarcer than surface observations.20

To take those measurements, a tall tower or met mast needs to be installed and instrumented. The basic structure of these masts

consists of a high vertical tower reaching heights of 100 to 200 metres above ground with several platforms distributed along

the vertical structure. It allows the placement of several wind sensors (i.e., anemometers and wind vanes) at different heights so

that the vertical wind shear can be profiled. In addition, it is also typical to install several horizontal booms at each measuring
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height oriented to different directions. Thus, more than one sensor per measurement level can be installed to correct or replace

data from one of these redundant sensors in case it is affected by a technical failure or by the wind shadow produced by the

mast itself. The physical structure of a tall tower, as well as a typical instrumentation layout, are illustrated in Figure 1.

Figure 1. Left: Measuring levels at Hamburg university meteorological mast (Germany). Source: https://icdc.cen.uni-hamburg.de. Right:

Arrangement of the instrumentation in booms at Hyytiälä forest met tower (Finland). Courtesy of Jesús Yus-Díez.

Recently, the usage of remote sensing devices to measure atmospheric profiles has increased as an alternative to the tall

tower in situ measurements. Atmospheric lidars, for example, are becoming more popular due to their easy installation and5

maintenance when compared to tall towers. However, the lack of historical lidar data limits their utilisation in long-term

assessment studies. One more example of that new trend is the lidar-based satellite Aeolus, which was launched by the European

Space Agency in 2018, and has just started acquiring profiles of Earth’s wind on a global scale1.

Hub-height observations are widely used in different initiatives to: a) evaluate of the wind resource characteristics and derive

wind power generation estimates (Brower et al., 2013); b) study local wind shear, turbulence and the dynamics of the Planetary10

Boundary Layer, PBL (Li et al., 2010); c) enhance or verify reanalysis products (Ramon et al., 2019; Decker et al., 2012); d)

correct meteorological forecasts (Baker et al., 2003) and climate predictions (Torralba et al., 2017); or e) calibrate and verify

wind atlas products (e.g., Troen and Petersen (1989); Fernando et al. (2018); Tammelin et al. (2013)).

Most of the existing met masts are owned by private companies mainly from the wind energy industry. Wind energy

companies need to take those measurements prior to the construction of a new wind farm to characterise the wind speeds in15

1https://www.esa.int/Applications/Observing_the_Earth/Aeolus
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the area and eventually ensure the return of the initial investment. Besides, some local effects such as topographic channelling,

sea breezes, turbulence or vertical wind shear must be inferred because they can have a substantial impact on the electricity

production (Hansen et al., 2012). Since the maintenance costs of these large and complex structures are rather expensive,

the energy industry typically takes measurements for a relatively short period (1 or 2 years usually). Then the towers are

decommissioned, so the lack of long records of tall tower data reduces the possibilities to study, for example, wind variability5

at seasonal to decadal time scales. In addition, private companies are usually reluctant to share the tall tower data with third

parties, obstructing even more their further usages.

Fortunately, many of the initiatives from a) to e) also take tall tower measurements for their research and then the data are

usually made freely accessible for non-commercial purposes. Derived from these diverse efforts devoted to boosting the utilisa-

tion of tall tower records, there exist various sparse datasets containing measurements from instrumented towers. Regrettably,10

they are often difficult to find or access, and the lack of coordination in terms of formats, metadata, data access and Quality

Control (QC) hinder their usability outside the owner institution.

The INDECIS2 project is putting efforts to collect existing non-standard meteorological observations, among other aspects.

In this paper, a dataset is presented, and the QC of the wind data is further detailed. The reader is referred to Ramon and Lledó

(2019b) to find complete information on the identification and collection of towers, data formatting and documentation. Sect. 215

of this article describes the main features of the dataset, as well as the data characteristics. The QC software suite is defined in

Sect. 3. Then, a wrap up of the results after running the QC checks is presented in Sect. 4. The benchmark experiment carried

out to test the robustness of the QC software is shown in Sect. 5. Finally, conclusions are presented in Sect. 6.

2 Tall Tower Dataset description

The Tall Tower Dataset (Ramon and Lledó, 2019a) is a unique collection of data from 222 tall towers resulting from an20

exhaustive process of identification of existing masts and their later data retrieval. Figure 2 presents the global distribution of

the sites, which is highly heterogeneous. Most of the masts are located in Asia (51%), mainly clustered in Iran resulting from

a national campaign aimed to boost renewable energies at a country level. Then, tall towers appear more spatially distributed

over North America (23%) and Europe (16%), mirroring the important deployment of wind power that is taking place in those

regions. Africa (8%), Oceania (1%) and Antarctica (1%) follow. Unfortunately, it has been hard to retrieve data from South25

America, so no records from this area can be found in the Tall Tower Dataset.

The height above the surface where the top sensor is located for each tower is also depicted in Figure 2. On the one hand,

masts placed in historical observatories (i.e., often having more than 20 years of data) tend to be short, with heights ranging

between 18 and 50 metres above the ground and usually consist of one measuring level at the top of the pole. Two examples are

the American masts in Barrow and Mauna Loa. On the other hand, modern towers often reach 100 to 200 metres of altitude.30

Indeed, most of the masts in northern Europe have been installed during the last 15-20 years and are generally taller than 80 m,

usually reaching 150 to 200 m. However, the tallest structures are located in the USA reaching the exceptional height of 500

2http://www.indecis.eu/

3

http://www.indecis.eu/


m, allowing the placement of sensors up there. The top anemometer at Walnut Grove tall tower in California is at 488 m above

ground level. The number of measuring levels in these masts is almost always higher than three, and up to eight in the case of

the FINO met masts.

A list of the towers included in the Tall Tower Dataset, as well as their main characteristics such as the owner institution,

country, geographic coordinates or specific recording periods, can be found in Sect. S1 of the Supplementary Material. The5

record lengths and other structural features such as height or instrumentation are quite diverse as they depend on the purpose

they were designed for. Most of the towers are typically installed to provide in situ observations for experimental field cam-

paigns within the research or industry fields. In this case, the tall towers are commonly referred to as meteorological masts or

met masts, and they represent up to the 87% of all the tall towers in the dataset. However, other sensors are installed over ma-

rine platforms (11%) or at the top of lighthouses (1%) to monitor the coastal weather conditions. Finally, 1% of the towers are10

instrumented communication transmitters that take meteorological measurements at several platforms along with the antenna.

Concerning the location, almost 80% of these tall towers are found inland while the other 20% are placed offshore.

Information indicating the representative features mentioned above is included in the dataset within the corresponding site

metadata, which has been standardised for all the sites. This material was sometimes confusing, sparse or even missing in

the datasets distributed by the owner data centres, especially when it comes to the conventions in which the initial data were15

prepared. For example, if the time zone in which the time stamps were delivered was not specified, it could be challenging

to discern whether they are provided in local time or Universal Time Coordinated (UTC). Another example concerns the

data units, which were not explicitly stated in a few cases either. In both of these confusing situations, the data provider was

contacted to confirm the original convention. Further information on the diverse standards in which the data were provided as

well as the final conventions employed in the Tall Tower Dataset can be found in Ramon and Lledó (2019b).20

The time span of the 222 time series is depicted in Figure 3(a). First, we split the series according to their time resolution,

which varies from 10-minutely to 1-hourly. Most of the series, i.e. a total of 172, provide 10-minutely averaged data, meeting

the WMO standard (WMO, 2007) for estimating mean wind speeds. The other 50 masts report 15-minute, 20-minute, 30-

minute or hourly data. Information on how these averages have been taken is hardly ever available. The fact is that resulting

aggregated values vary depending on whether averages are taken over the horizontal wind components or speed and direction25

modules independently. WMO (2007) does not prefer one option over the other, as it may depend on the application or available

instrumentation. Even though the effects of this choice are rather small, especially for higher wind speeds, it represents an

additional source of uncertainty for the values themselves.

The total coverage of the Tall Tower Dataset ranges from 1984 to 2017. While the 90% of the series span less than 20

years, 3% cover 30 or more years. Precise initial and end of periods of record can be found in Sect. S1 of the Supplementary30

Material for each tall tower. Nevertheless, several of these masts have been recently installed, and measurements are currently

operational. Missing data periods —a 12.1% of the dataset— appear sometimes embedded within the series.

Concerning the data retrieval process, the initial efforts focused on collecting the largest amount of wind observations

possible. Those records have been complemented with temperature, relative humidity and surface pressure data also measured

at the different platforms along the tower. The time evolution of the amount of these five variables is plotted in Figure 3 (b).35
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Figure 2. Global distribution of the 222 tall tower locations within the Tall Tower Dataset. Colours indicate the Top Measuring Level for

each tower. Further information can be found in Sect. S1 of the Supplementary Material.

Most of the data falls within the 21st century, with a significant increase at the beginning of the millennium. Up to 2.7M of wind

speed records have been retrieved for one single month, i.e. December 2015, which constitutes the month with the maximum

amount of wind speed data. In the case of wind direction, the month with the highest amount of records is October 2012

(2.1M of measurements). A decrease in the number of observations has been noticed from 2017 onwards. Generally, some of

the data providers prefer to keep the most recent data and release them once measurements are preliminary checked for gross5

errors. Temperature, relative humidity and pressure are not always available. We note that the fewest records correspond to the

barometric pressure, which is usually measured only at surface level (i.e., 2 m above ground level).

3 The Quality Control Software Suite for Tall Towers (QCSS4TT)

To ensure the high quality of tall tower wind data and guarantee the accuracy of any result derived from these records, a

QC procedure needs to be carried out. The state-of-the-art has devoted efforts to QC wind data taken at surface stations10

(e.g., Dunn et al. (2012); Lucio-Eceiza et al. (2018a, b)). However, no QC software has been specifically designed to tackle

the same problem with tall tower observations, whose features vary considerably when compared to surface wind data (e.g.,

measurements are taken at higher altitudes, the spatial density of stations is considerably lower, etc.). Unique measuring

techniques, such as the parallel measurements at different platforms along the mast or sensor redundancy at a given height, can

also be taken into account to complement and enhance the typical QC.15
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Figure 3. a) Time coverage of the 222 tall towers depending whether they report 10-minutely data (top) or lower resolutions up to 1-hourly

data (bottom) and b) time evolution of the total amount of observations within the Tall Tower Dataset for wind speed (green), wind direction

(blue), temperature (red), relative humidity (orange) and pressure (purple).

After a review process of the existing QC routines, a set of 18 sequential QC tests (2 preliminary + 16 main tests) have

been selected and designed to be performed over wind measurements. The Quality Control Software Suite for Tall Towers

(QCSS4TT) designed here is applied to all the wind speed and wind direction data within the Tall Tower Dataset, regardless of

whether they were previously quality controlled or not by the providing institution. A general description of the QCSS4TT is

presented below in this section. The software is fully described in Sect. S2 in the Supplementary Material.5

The QC tests within the QCSS4TT are all intra-station checks, as they do not compare series from nearby tall towers. QC

routines ingest entire time series of winds at a specific heights, whose time frequencies vary between 10 minutes to one hour.

The recommended sequence for the application of the QC tests is presented in Figure 4. Checks are grouped in five categories

depending on the purpose they were designed for. The two preliminary checks are designed to detect manipulation gross errors.

Then, the 16 main QC tests ensure the limits, spatiotemporal and internal consistency of the wind speed and wind direction10

time series. We note that the routines can be run independently, with the exception of the Quartile occurrences and Isolated

Pass tests which feed on the output of other tests within the QCSS4TT. After deciding the appropriate order, the tests have

been applied over the Tall Tower Dataset according to the flux diagram in Figure 4.
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Not applicable to wind direction data

Wind Speed QC data

Wind Direction QC data

Manipulation 

errors

Limits 

consistency

Temporal 

consistency

Spatial 

consistency

Internal 

consistency

Plausible values check

Differences between extreme values check

Surroundings check

Time stamps check

Tower shadow

Vertical ratios check

Isolated ‘Pass’ check

Occurrences of 0s and 360s values

Internal consistency check

Wind speed raw data

Wind direction raw data

Abnormally low 

variations

Abnormally high variations

Persistence test

Flat line test

Icing test*

Abnormal variations (moving variances)

Systematic errors (moving averages)

Quartile occurrences check

Rate of change test

Step test

Repeated sequences test

(*) Needs temperature data

Figure 4. Summary of the workflow of the QCSS4TT routines applied over wind data within the Tall Tower Dataset.

Table 1: Main QC tests summary. ws, wd and tmp stand for wind speed (in metres per second), wind direction (in meteo-

rological degrees) and temperature (in Celsius degrees) respectively. The reader is referred to Sect. S2 in the Supplementary

Material for detailed information on each of the tests.

QC Fail Suspect Remarks

Plausible values
ws /∈ [0,113.2)

wd /∈ [0,360]
ws ∈ (75,113.2]

Difference between

extreme values of the

distribution

max(ws)−max2nd(ws)>
max2nd(ws)

Runs iteratively until

the condition is not

satisfied.
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Table 1: Continued

QC Fail Suspect Remarks

Persistence test if A= {xt, ...,xt+60} is a

set of 60 consecutive val-

ues, max(A)−min(A)<
0.7 for ws and max(A)−
min(A)< 5 for wd

Skips calms (ws≤
0.5ms−1)

Flat line 6 or more consecutive ws

values all equal, or 40 or

more consecutive wd values

all equal.

3 or more consecutive ws

values all equal, or 20 or

more consecutive wd values

all equal

Icing max(tmp)< 0 and

max(ws) = 0 for a 4-

day period or longer.

Abnormal variations σi /∈ [σ±4∗sd(σ)] where σ

is the distribution generated

by the standard deviations of

all the 30-day periods within

a time series and σi is the

standard deviation of the ith

30-day period

Only for ws. Dis-

abled when more

than 50% of data

within a 30-day

period are missing

Systematic errors mi /∈ [m±4∗sd(m)] where

m is the distribution gener-

ated by the means of all the

30-day periods within a time

series and mi is the mean of

the ith 30-day period

Only for ws. Dis-

abled when more

than 50% of data

within a 30-day

period are missing

8



Table 1: Continued

QC Fail Suspect Remarks

Quartile occurrences Given a period of time,

all the observations fall

above/below the first, sec-

ond or third quartiles of the

ws distribution (see Table

S2 of the Supplementary

Material)

Given a period of time,

all the observations fall

above/below the first, sec-

ond or third quartiles of the

ws distribution (see Table

S2 of the Supplementary

Material)

Rate of change wst+1−wst ≥ 3 ∗ IQR 2 ∗ IQR≤ wst+1−wst <
3 ∗ IQR

IQR is the interquan-

tile range of the ws

distribution

Step test wst+1−wst ≥ 20

Repeated sequences Repetition of a sequence of

20 or 30 consecutive ws val-

ues, or repetition of a se-

quence of 30 consecutivewd

values.

The values of the

sequences need not

be all equal. The

maximum allowable

length of the ws se-

quence depends on

the decimal places of

the data

Tower shadow ws values falling in the

wake of the vertical struc-

ture

Only works if the

tower contains

redundant anemome-

ters at the same

level

Vertical ratios Ratio between parallel ws

observations at different lev-

els exceeds 30 units

Ratio between parallel ws

observations at different lev-

els exceeds 15 units

Skips ws lower than

1 ms−1
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Table 1: Continued

QC Fail Suspect Remarks

Isolated pass Unflagged ws or wd values

are surrounded by sequences

of erroneous or missing data

(see Table S3 of the Supple-

mentary Material)

Unflagged ws or wd values

are surrounded by sequences

of suspect data (see Table S4

of the Supplementary Mate-

rial)

This QC test needs to

be run after the other

routines.

Occurrences of 0s

and 360s

The occurrence of 0s repre-

sents more than 30% of ws

values, or the occurrence of

0s and 360s represents more

than 30% of wd values

Does not flag indi-

vidual records but the

entire time series

Internal consistency ws= 0 and wd 6=NA

The QCSS4TT starts with two preliminary tests. Firstly, the Time stamps check is carried out during the data formatting

process and ensures that all the time stamps are included in the dataset and equally sampled according to the tower reporting

frequency. Those time stamps that are either duplicated or wrongly spaced have been discarded, and those missing have been

included, setting the corresponding record to ’Not Available’ (NA). Secondly, the Surroundings check is performed by detecting

nearby elements that could potentially perturb the wind flow and then produce unreal records. To do so, detailed descriptions5

of the encircling area of the mast as well as their possible changes over time are required.

Then, the 16 main QC tests follow. A summary can be found in Table 1 and complete information can be encountered in

Sect. S2 in the Supplementary Material. Most of them are standard checks typically performed over wind and other Essential

Climate Variables such as temperature or precipitation. However, we propose here two new QC tests (the so-called Tower

shadow and Vertical ratios checks, respectively) to guarantee the spatial consistency of the data by considering the special10

characteristics of the tall tower measurements since classic inter-station comparisons appear challenging due to poor spatial

density of sites.

After running the QCSS4TT, a natural number (hereafter referred to as QC flag or flag, see Table 2) is attached to each

observation according to its nature and/or level of confidence. To decide which flag should be assigned to each observation,

different threshold values have been set for each of the QC routines. The threshold selection has been based on the World15

Meteorological Organization (WMO) standards (WMO, 2007; Aguilar et al., 2003), QC software manuals (IOSS, 2017) or

state-of-the-art bibliography (e.g., Jiménez et al. (2010)). Many of these standards, if not all, have been developed specifically

for surface winds (i.e., 10 m winds), whose features vary importantly when compared with winds observed at higher altitudes,
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Table 2. Flag levels definition

Flag value The observation...

0 has not been evaluated by three or more QC tests (partly QCed)

1 has passed all QC tests successfully

2 is deemed suspect

4 has failed at least one of the tests

5 is a calm wind

9 is missing

as those from the present work. After a preliminary test of the thresholds over the wind data within the Tall Tower Dataset, it

was noted that some tests overestimated considerably the amount of erroneous data (also known as Type I errors, see Hubbard

et al. (2004)). The WMO allows adjusting some of the fixed-value limits proposed in the WMO (2007) to reflect singular

climate conditions more accurately. As the QCSS4TT aims to clean data from towers located all over the world regardless of

the prevailing climate conditions in the area, thresholds need to be adjusted manually to not to deem wrong the general and5

particular climate features observed in the wide variety of world climates. It is also vital to take into account that this sensitive

experiment should reduce the number of Type I errors without increasing the number of invalid data that has been accepted by

the tests (also referred to as Type II errors).

Based on these thresholds and the nature of the individual wind records, six different categories have been defined (Table 2),

and each datum is flagged appropriately. The quality of a record is inferred automatically by checking if it passes all the tests10

successfully (flagged as ’1’), passes the tests but might need further checks such as a visual inspection (hereafter referred to

as suspect and marked as ’2’), or fails at least one of the tests (flagged as ’4’). When an observation is not considered suspect

or wrong by any of the QC tests, additional levels may indicate that the observation was not evaluated by three or more tests

(indicated as ’0’) or corresponds to a calm period (’5’). Finally, missing values are flagged uniformly (categorised as ’9’).

Wind records flagged as ’4’ are deemed to be erroneous data and thus, unreliable. They have been removed by changing15

the original record to NA. Suspect data remain unaltered as well as those observations that have not been evaluated by all the

QC tests because they might be potentially correct and usable for some applications. But in case the user prefers to impose

their own level of restriction, we also include the raw data jointly with the flag values resulting from the quality controlling.

Therefore, the data user is able to filter the raw data based on the flag values. Still in those cases, we strongly discourage the

usage of data marked as erroneous (’4’).20
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4 Results of the application of the QCSS4TT

The QCSS4TT has been applied sequentially over the Tall Tower Dataset according to the flux diagram in Figure 4. We present

here the global results obtained from the quality controlling of the Tall Tower Dataset, as well as a summary of the performance

of the main tests.

As stated in Sect. 3, the Surroundings check needs detailed original metadata of the tower location. Unfortunately, this5

valuable information is not always available so the Surroundings check cannot be carried out over all the tower sites. The

unique case when this QC test confirms that a series of wind speeds were disturbed by the surrounding forest occurs at Wallaby

Creek met mast. After running the main QC routines, long sequences of wind speeds measured at the lowermost level of this

met mast —placed at 10 m above surface— have been flagged as wrong. A close look at the site metadata reveals that the

canopy well exceeds the 10 metres height during all the recording period, reducing considerably the observed wind speeds.10

Hence, all the individual observations of the Wallaby Creek 10-metre wind series have to be used with caution, even those that

have not been considered problematic by other tests.

Then, the main QC routines have examined each of the 240 371 908 wind speed and wind direction values individually

in the Tall Tower Dataset and flagged them accordingly. After all this process, 228 780 679 values (95.2% of the total data)

passed successfully all the checks and can be considered reliable. On the contrary, 6 827 880 observations (2.8%) have been15

considered erroneous by at least one of the QC tests. They have been replaced by NA, increasing the total number of missing

data from 12.1% to 14.6%. A 1.8% of the dataset is flagged as suspect. Some of the QC tests, particularly those that compute

period-aggregated statistics such as moving averages or variances, require a minimum amount of data. Due to this constraint,

a 0.2% of the data have not been evaluated by 3 or more QC tests to avoid the computation of such statistics with reduced

sample sizes. Records identified as calms (i.e. wind speeds under 0.5 ms−1) have been also skipped on purpose by a small20

group of tests, i.e. those that compute quotients between pairs of simultaneous observations. However, calms can be trusted as

they passed successfully all the other QC checks. The percentage of calms is highly dependent on the geographical location

of the tall tower. Met masts located in Southeast Asia contain the largest percentage of calms, reaching up to 24% of the total

data.

The amount of data flagged by each test is considerably different, as can be noticed in Figure 5, which depicts the percentage25

of data flagged as erroneous and suspect by the main QC tests. We note that both the Flat line and Quartile occurrences

checks have flagged the largest amount of data (1.74%). The former detected the most substantial amount of erroneous data

(1.52%), followed by the Repeated sequences and Quartile occurrences tests (1.29% and 0.88%, respectively). The Vertical

ratios check has detected very few erroneous or suspect records, and the Difference of extreme values test has flagged no datum.

The Occurrences of 0s and 360s values test is not included in Figure 5 since this test does not flag individual records, but the30

entire time series according to their quality. Results for this QC show that no wrong or suspicious time series has been detected

after the inspection of the frequency of appearance of null wind speeds and 0s and 360s wind direction values.
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Figure 5. Percentage of data flagged as Fail (red) and Suspect (orange) by 15 of the main QC tests within the QCSS4TT. Asterisk (*)

indicates that the QC test only flags data as suspect. Double asterisk (**) denotes that the QC test only flags data as erroneous.

5 How reliable is the QCSS4TT?

The performance of the QCSS4TT needs to be assessed. Here, a benchmark experiment has been specifically designed to test

the ability of the QCSS4TT in detecting wrong values. In the following, the preparation of the experiment and their results are

described.

The setup of the experiment consists of generating a set of presumably QC-free time series where a set of errors will be5

purposely introduced later on. The time series have been extracted at 50 randomly selected points from the ERA5 reanalysis

(Copernicus Climate Change Service (C3S), 2017) global grid at hourly frequency, thus meeting the requirements of the

QCSS4TT concerning the time resolution. These time series span the 10-year period from 2007 to the end of 2016, which

13



Table 3. Percentage of the detected errors (in %) depending on the proportion of data that were set to missing. The percentages of missing

data are approximately 20%, 10%, 5%, and 0% (NA-free). The table differentiates between land and offshore locations.

NA-free 5% missing 10% missing 20% missing

Land sites 40.3 40.2 39.8 39.1

Offshore sites 40.0 39.8 39.4 38.8

Total 40.2 40.0 39.6 39.0

constitutes the time range with the largest amounts of records within the Tall Tower Dataset (Figure 3(b)). To better emulate

the features of the tall tower data, we retrieve two parallel series at each of the 50 points. These wind speeds are those provided

at 10 and 100 metres respectively.

The set of 50 series is replicated fourfold. Three of these series are firstly modified by introducing missing data at random,

either by erasing data individually or removing sequences of records. The percentages of missing data in these series are5

approximately 5%, 10%, and 20%, respectively. The introduction of missing records emulates the frequently observed sporadic

sensor failures and no data periods within the wind speed series. Finally, one series is left with no datum set to missing.

The error ’seeding’ process is carried out following the methodology in (Hubbard et al., 2004), where the performance of a

set of basic QC tests for temperature and precipitation data is assessed. In this publication, a subset of 2% of the total data is

selected to be modified by introducing an error of magnitude:10

Eix = σxri (1)

where σx is the standard deviation of the time series x and ri is a randomly selected number generated using a uniform

distribution ranging from -3.5 to +3.5 specifically for ith observation. Once the errors are inserted, the QCSS4TT is executed.

Table 3 summarises the differences in the error detection depending on whether missing data are introduced or not into

the wind series for both continental and oceanic locations. It is worth noting that the QCSS4TT shows a slight sensitivity to15

missing data, reducing the percentage of detected errors when the percentage of missing records increases. This decrease might

be attributed to the fact that some QC tests are deactivated when a period with very sparse data is encountered. No important

differences are noted between onshore and offshore sites, as the percentages of identified errors are quite similar. Results that

follow in this section are presented for the set of series containing approximately 10% of missing data, which is close to the

average of absent records within the Tall Tower Dataset (12.5%).20

The QCSS4TT has detected on average nearly 40% of all the seeded errors (see Table 3). Indeed, this result is on the average

of the percentage of detection observed for precipitation data in Hubbard et al. (2004), which was 30%-40% for complex terrain

sites and 40%-50% for the other locations.

At this stage of the experiment, it is important to study the role of the random number r, and particularly its magnitude,

which subsequently influences the size of the error E. Values of r close to zero will introduce smaller errors, which will be25
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less likely to be caught by any of the QC checks. Figure 6 presents the percentage of detection as a function of the r values,

which have been grouped in intervals of 0.5 units. We note that the QC tests detect most of the biggest errors. However, the

percentage of detection decreases as the magnitude of r does, as we expected. Thus, the smallest errors are usually skipped by

all the QC tests. Indeed, this result mirrors the conservative philosophy employed in the threshold selection of the checks.

Finally, it has been observed that Type I errors have been made in 8% of the total data, corresponding mainly to suspect5

flagging.

Figure 6. Percentage of detection of seeded errors as a function of the magnitude of the random number r

6 Conclusions

Hub-height wind data are vital to assess the local wind flow features at heights ranging from 20 to 120 metres, where wind

turbines are located. Nonetheless, the wind industry is not the only user of these observations, but also the research academy

is interested in retrieving hub-height winds for their studies such as PBL experiments or the verification of climate products.10

Unfortunately, these non-standard climate data appear sparsely, and the lack of standardised formats, quality and metadata

jeopardise their further usage. This is the first time when efforts were devoted to gather the most substantial possible amount

of existing data measured at tall towers around the world, and perform an exhaustive QC assessment to eventually made

them publicly available for non-commercial purposes in a standard format and access point. Wind speed, wind direction,

15



temperature, pressure and relative humidity observations measured at different heights in 222 tall towers —owned mainly

by public institutions such as universities, meteorological weather services or research centres— have been retrieved from

sparse archives, compiled in a unique collection, quality controlled —in the case of wind speed and wind direction data—, and

released under the name of the Tall Tower Dataset. Data from of 181 of these sites are stored in the EUDAT data repository and

can be publicly accessed. Records from the other 41 towers are not available there since the authors of the Tall Tower Dataset5

do not own the observations and the data providers do not grant rights to share with third parties. Although some initiatives

such as the Climate Data Store1 are starting to appear to uniform and boost the free utilisation of climate observations, there is

still some reluctance, mainly in Europe, to contribute to open initiatives that derive in the inclusion of data in public external

archives, thus hindering their further usage.

To guarantee the reliability of the wind measurements, a QC software suite has been designed and applied over the Tall10

Tower Dataset, and the erroneous data have been removed. Some of the QC functions are coded to deal simultaneously with

huge amounts of data so that the computation costs may be high specially when considering high resolution data. After the

application of the QCSS4TT, the vast majority of the dataset (i.e, the 95.2% of the wind data) passed all the tests successfully.

A benchmark experiment based on Hubbard et al. (2004) has been designed to assess the efficacy of the QCSS4TT in

detecting wrong wind speed data. The exercise is based on the detection of a set of seeded errors introduced in 100 wind time15

hourly series at 50 randomly selected locations obtained using the ERA5 reanalysis. On average, the 40% of these seeded errors

have been identified, even though the magnitude of the error is sometimes close to zero and therefore, difficult to detect. This

result agrees with the obtained by the previously mentioned publication, thus assuring the reliability of the QCSS4TT results.

We do not perform any analogue experiment for wind direction data since the nature of these data requires a more complex

exercise.20

Even though some tall towers have been decommissioned recently due to several different reasons, most of the locations

within the Tall Tower Dataset continue taking measurements that could be added to the collection in a near future. Besides, the

authors of this work are open to receive useful inputs on new tower locations not included in the Sect. S1 of the Supplementary

Material, and whose data could be potentially added to the Tall Tower Dataset in future updates. Enlarging the collection of

these non-standard climate data and increasing the density of stations may allow, for instance, further quality checks by means25

of inter-station comparisons with nearby tall towers.

Code and data availability. Records from 181 out of the 222 tall towers within the Tall Tower Dataset (Ramon and Lledó, 2019a) are publicly

accessible through the following EUDAT repository: https://doi.org/10.23728/b2share.136ecdeee31a45a7906a773095656ddb. Data from

other 41 tall towers are not directly provided for download within the Tall Tower Dataset, but can be downloaded from specific tower websites

(mostly after registration). Links to all the 222 tall tower original sources are provided in a data catalogue website at http://talltowers.bsc.es,30

which also facilitates browsing the Tall Tower Dataset and visualising the main climatic features of all the data. The QCSS4TT code as well

as an explanatory vignette on how to use it is also available via GitLab at: https://earth.bsc.es/gitlab/jramon/INDECIS-QCSS4TT.
1https://cds.climate.copernicus.eu/
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