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Abstract. Understanding and quantifying the global methane (CH4) budget is important for assessing realistic 

pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 are continuing to 

increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate 140 

forcing, after carbon dioxide (CO2). Assessing the relative importance of CH4 in comparison to CO2 is 

complicated by its shorter atmospheric lifetime, stronger warming potential, and atmospheric growth rate 

variations over the past decade, the causes of which are still debated. Two major difficulties in reducing 

uncertainties arise from the variety of geographically overlapping CH4 sources and from the destruction of 

CH4 by short-lived hydroxyl radicals (OH). To address these difficulties, we have established a consortium 145 

of multi-disciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate 

new research aimed at improving and regularly updating the global methane budget. Following Saunois et 

al. (2016), we present here the second version of the living review paper dedicated to the decadal methane 

budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-

modelling framework) and bottom-up estimates (including process-based models for estimating land surface 150 

emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven 

extrapolations).  

For the 2008-2017 decade, global methane emissions are estimated by atmospheric inversions (top-down 

approach) to be 572 Tg CH4 yr-1 (range 538-593, corresponding to the minimum and maximum estimates of 

the ensemble), of which 357 Tg CH4 yr-1 or ~60% are attributed to anthropogenic sources (range 50-65%). 155 
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This total emission is 27 Tg CH4 yr-1 larger than the value estimated for the period 2000-2009 and 24 Tg 

CH4 yr-1 larger than the one reported in the previous budget for the period 2003-2012 (Saunois et al. 2016). 

Since 2012, global CH4 emissions have been tracking the carbon intensive scenarios developed by the 

Intergovernmental Panel on Climate Change (Gidden et al., 2019). Bottom-up methods suggest larger global 

emissions (737 Tg CH4 yr-1, range 583-880) than top-down inversion methods, mostly because of larger 160 

estimated natural emissions from sources such as natural wetlands, other inland water systems, and geological 

sources. However the strength of the atmospheric constraints on the top-down budget, suggest that these 

bottom-up emissions are overestimated. The latitudinal distribution of atmospheric-based emissions indicates 

a predominance of tropical emissions (~65% of the global budget, <30°N) compared to mid (~30%, 30°N-

60°N) and high northern latitudes (~4%, 60°N-90°N). Our analyses suggest that uncertainties associated with 165 

estimates of anthropogenic emissions are smaller than those of natural sources, with top-down inversions 

yielding larger uncertainties than bottom-up inventories and models. 

The most important source of uncertainty in the methane budget is attributable to natural emissions, 

especially those from wetlands and other inland waters. Some global source estimates are smaller compared 

to the previously published budgets (Saunois et al. 2016; Kirschke et al. 2013), particularly for vegetated 170 

wetland emissions that are lower by about 35 Tg CH4 yr-1 due to efforts to partition vegetated wetlands and 

inland waters. Emissions from geological sources are also found to be smaller by 7 Tg CH4 yr-1, and wild 

animals by 8 Tg CH4 yr-1. However the overall discrepancy between bottom-up and top-down estimates has 

been reduced by only 5% compared to Saunois et al. (2016), due to a higher estimate of freshwater emissions 

resulting from recent research and the integration of emissions from estuaries. Priorities for improving the 175 

methane budget include: i) a global, high-resolution map of water-saturated soils and inundated areas 

emitting methane based on a robust classification of different types of emitting habitats; ii) further 

development of process-based models for inland-water emissions; iii) intensification of methane observations 

at local scales (e.g., FLUXNET-CH4 measurements and urban monitoring to constrain bottom-up land 

surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; 180 

iv) improvements of transport models and the representation of photochemical sinks in top-down inversions, 

and v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as 

ethane.  

The data presented here can be downloaded from ICOS (https://doi.org/10.18160/GCP-CH4-2019; Saunois 

et al., 2019) and the Global Carbon Project. 185 
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1 Introduction 

The surface dry air mole fraction of atmospheric methane (CH4) reached 1850 ppb in 2017 (Fig. 1), 

approximately 2.6 times greater than its estimated pre-industrial equilibrium value in 1750. This increase is 

attributable in large part to increased anthropogenic emissions arising primarily from agriculture (e.g., 

livestock production, rice cultivation, biomass burning), fossil fuel production and use, waste disposal, and 190 

alterations to natural methane fluxes due to increased atmospheric CO2 concentrations and climate change 

(Ciais et al., 2013). Atmospheric CH4 is a stronger absorber of Earth’s emitted thermal infrared radiation than 

carbon dioxide (CO2), as expressed by the global warming potential (GWP). For a 100-yr time horizon and 

without considering climate feedbacks GWP(CH4)=28 (IPCC AR5, Myhre et al., 2013). Although global 

anthropogenic emissions of CH4 are estimated at around 366 Tg CH4 yr-1 (Saunois et al., 2016), representing 195 

only 3% of the global CO2 anthropogenic emissions in units of carbon mass flux, the increase of atmospheric 

CH4 concentrations has contributed ~23% (~0.62 W.m-2) to the additional radiative forcing accumulated in 

the lower atmosphere since 1750 (Etminan et al., 2016). Changes in other chemical compounds (such as 

nitrogen oxides (NOx) or carbon monoxide (CO)) also influence the forcing of CH4 through changes to its 

atmospheric lifetime. From an emission point of view, the total radiative forcing attributable to anthropogenic 200 

CH4 emissions is currently about 0.97 W m-2 (Myhre et al., 2013). This is because emission of CH4 contributes 

to the production of ozone, stratospheric water vapour, and CO2, and most importantly affects its own lifetime 

(Myhre et al., 2013; Shindell et al., 2012). CH4 has a short lifetime in the atmosphere (about 9 years for the 

year 2010 (Prather et al., 2012)) hence a stabilization or reduction of CH4 emissions leads rapidly to a 

stabilization or reduction of its atmospheric concentration and therefore its radiative forcing. Reducing CH4 205 

emissions is therefore recognized as an effective option for climate change mitigation, especially on shorter, 

decadal timescales (Shindell et al., 2012). Moreover, CH4 is a precursor of important air pollutants, and, as 

such, its emissions are covered by two international conventions: the United Nations Framework Convention 

on Climate Change (UNFCCC) and the Convention on Long Range Transport of Air Pollution (CLRTAP). 

Changes in the magnitude and temporal variation (annual to inter-annual) of methane sources and sinks over 210 

the past decades are characterized by high uncertainties (Kirschke et al., 2013; Saunois et al., 2017; Turner 

et al., 2019), with relative uncertainties (hereafter reported as min-max ranges) of 20-35% for inventories of 

anthropogenic emissions in specific sectors (e.g., agriculture, waste, fossil fuels), 50% for biomass burning 

and natural wetland emissions, and reaching 100% or more for other natural sources (e.g. inland waters, 

geological sources). The uncertainty in the chemical loss of methane by OH, the predominant sink of 215 

atmospheric methane, is estimated between 10% (Prather et al., 2012) and 15% (Saunois et al., 2016), 

representing, in relation to top-down methods, the minimum uncertainty associated with global methane 

emissions, as other sinks are much smaller and the atmospheric growth rate is well-defined (Dlugokencky et 
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al., 2009). Globally, the contribution of natural CH4 emissions to total emissions is reasonably well 

quantified, for instance by combining lifetime estimates with reconstructed pre-industrial atmospheric 220 

methane concentrations from ice cores (e.g. Ehhalt et al., 2001). Uncertainties in emissions may reach 40-

60% at regional scales (e.g. for South America, Africa, China and India, Saunois et al., 2016). Beyond the 

intrinsic value of characterizing the biogeochemical cycle of methane, understanding the evolution of the 

methane budget has strong implications for developing credible future climate emission scenarios. 

Worryingly, the current anthropogenic methane emissions trajectory is estimated to lie between the two 225 

warmest IPCC-AR5 scenarios (Nisbet et al., 2016; Nisbet et al., 2019), i.e., the RCP8.5 and RCP6.0, 

corresponding to temperature increases above 3°C by the end of this century. This trajectory implies that 

large reductions of methane emissions are necessary in order to meet the 1.5-2°C target of the Paris 

Agreement (Collins et al., 2013; Nisbet et al., 2019). 

In order to verify such reductions, sustained and long-term monitoring of atmospheric methane is needed for 230 

more precise estimation of trends, and the uncertainties in major emission sources also need to be reduced 

(Pacala et al., 2010; Bergamaschi et al., 2018a). Reducing uncertainties in individual methane sources and 

thus in the overall methane budget is not an easy task for at least four reasons. Firstly, methane is emitted by 

a variety of processes that need to be understood and quantified separately, including both natural and 

anthropogenic sources, point and diffuse sources, and sources associated with three main emission processes 235 

(i.e., biogenic, thermogenic and pyrogenic). These multiple sources and processes require the integration of 

data from diverse scientific communities. The fact that anthropogenic emissions result from unintentional 

leakage from fossil fuel production or agriculture further complicates production of accurate bottom-up 

emission estimates. Secondly, atmospheric methane is removed by chemical reactions in the atmosphere 

involving radicals (mainly OH) that have very short lifetimes (typically ~1s). Although OH can be measured 240 

locally, its spatio-temporal distribution remains uncertain at regional to global scales, in part because of a 

lack of direct measurements. Thirdly, only the net methane budget (sources minus sinks) is constrained by 

precise observations of atmospheric growth rates (Dlugokencky et al., 2009), leaving the sum of sources and 

the sum of sinks uncertain. One simplification for CH4 compared to CO2 is that the oceanic contribution to 

the global methane budget is small (~1-3%), making source estimation predominantly a continental problem 245 

(USEPA, 2010a). Finally, we lack observations to constrain 1) process models that produce estimates of 

wetland extent (Stocker et al., 2014; Kleinen et al., 2012) and wetland emissions (Melton et al., 2013; Poulter 

et al., 2017; Wania et al., 2013), 2) other inland water sources (Bastviken et al., 2011;Wik et al., 2016a), 3) 

inventories of anthropogenic emissions (Höglund-Isaksson, 2012; Höglund-Isaksson, 2017; Janssens-

Maenhout et al., 2019; USEPA, 2012), and 4) atmospheric inversions, which aim to represent or estimate 250 

methane emissions from global to regional scales (Bergamaschi et al., 2013; Bergamaschi et al., 2018b; Bohn 
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et al., 2015; Houweling et al., 2014; Kirschke et al., 2013; Saunois et al., 2016; Spahni et al., 2011; Thompson 

et al., 2017; Tian et al., 2016). 

The global methane budget inferred from atmospheric observations relies on regional constraints from 

atmospheric sampling networks, which are relatively dense for northern mid-latitudes, with a number of high-255 

precision and high-accuracy surface stations, but are sparser at tropical latitudes and in the Southern 

Hemisphere (Dlugokencky et al., 2011). Recently the atmospheric observation density has increased in the 

tropics due to satellite-based platforms that provide column-average methane mixing ratios. Despite 

continuous improvements in the precision and accuracy of space-based measurements (Buchwitz et al., 

2016), systematic errors greater than several ppb on total column observations may limit the usage of such 260 

data to constrain surface emissions (Alexe et al., 2015; Locatelli et al., 2015; Bousquet et al., 2018; Chevallier 

et al., 2017). The development of robust bias corrections on existing data can help overcome this issue (e.g., 

Inoue et al., 2016), and satellite based inversions have already proven useful to reduce global an regional flux 

uncertainties over surface based inverions (Fraser et al., 2013). 

The Global Carbon Project (GCP) seeks to develop a complete picture of the carbon cycle by establishing 265 

common, consistent scientific knowledge to support policy debate and actions to mitigate greenhouse gas 

emissions to the atmosphere (www.globalcarbonproject.org). The objective of this paper is to analyse and 

synthesize the current knowledge of the global methane budget, by gathering results of observations and 

models in order to better understand and quantify the main robust features of this budget and its remaining 

uncertainties. We combine results from a large ensemble of bottom-up approaches (e.g., process-based 270 

models for natural wetlands, data-driven approaches for other natural sources, inventories of anthropogenic 

emissions and biomass burning, and atmospheric chemistry models), and top-down approaches (including 

methane atmospheric observing networks, atmospheric inversions inferring emissions and sinks from 

atmospheric observations and models of atmospheric transport and chemistry). The focus of this work is on 

decadal budgets and to update the previous assessment made for the period 2003-2012 to the recent period 275 

2008-2017, while leaving in-depth analysis of trends and year-to-year changes to other publications. This 

paper is a living review, published at two- to three-year intervals, to provide an update and new synthesis of 

available observational, statistical and model data in order to refine state-of-the-art estimates of the overall 

CH4 budget and its individual components. 

Kirschke et al. (2013) was the first CH4 budget synthesis and was followed by Saunois et al. (2016). Kirschke 280 

et al. (2013) reported decadal mean CH4 emissions and sinks from 1980 to 2009 based on bottom-up and top-

down approaches. Saunois et al. (2016) reported methane emissions for three time periods: 1) the last calendar 

decade (2000-2009), 2) the last available decade (2003-2012), and 3) the last available year (2012). Here, we 

update this same approach reporting methane emissions and sinks for 2000-2009 decade, for the most recent 

2008-2017 decade where data are available, and, preliminarily, for the year 2017, reducing the time lag 285 
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between the last reported year and analysis. The methane budget is presented here at global and latitudinal 

scales and can be downloaded from ICOS (https://doi.org/10.18160/GCP-CH4-2019; Saunois et al., 2019)     

. 

. Further insight into regional budgets will be provided in (Stavert et al., 2019). 

Five sections follow this introduction. Section 2 presents the methodology followed to treat and analyse the 290 

data streams. Section 3 presents the current knowledge about methane sources and sinks based on the 

ensemble of bottom-up approaches reported here (models, inventories, data-driven approaches). Section 4 

reports atmospheric observations and top-down atmospheric inversions gathered for this paper. Section 5, 

based on Sect. 3 and 4, provides the updated analysis of the global methane budget. Finally, Section 6 

discusses future developments, missing components, and the most critical remaining uncertainties based on 295 

this update to the global methane budget. 

2 Methodology 

Unless specified, fluxes relevant to the methane budget are expressed in teragrams of CH4 per year (1Tg CH4 

yr-1=1012 gCH4 yr-1), while atmospheric methane concentrations are expressed as dry air mole fractions, in 

parts per billion (ppb), with atmospheric methane annual increases, GATM, expressed in ppb yr-1. In the tables, 300 

we present mean values and ranges for the two decades 2000-2009, and 2008-2017, together with results for 

the most recent available year (2017). Results obtained from previous syntheses (i.e., Saunois et al., 2016)) 

are also given for the decade 2000-2009. Following Saunois et al. (2016) and considering the relatively small 

and variable number of studies generally available for individual estimates, uncertainties are reported as 

minimum and maximum values of the available studies, in brackets. In doing so, we acknowledge that we do 305 

not take into account the uncertainty of the individual estimates, but rather we express uncertainty as the 

range of available mean estimates, i.e., the standard error across measurements/methodologies considered. 

This means that the actual uncertainty range may be larger than the range provided here. These minimum 

and maximum values are those calculated using the boxplot analysis presented in Section 2.2 and thus exclude 

identified outliers.  310 

The CH4 emission estimates are provided with up to three digits, for consistency across all budget flux 

components and to ensure the accuracy of aggregated fluxes. Nonetheless, the uncertainties involved in the 

global budget do not justify the use of more than two significant digits. 

2.1 Processing of emission maps 

Common data analysis procedures have been applied to the different bottom-up models, inventories and 315 

atmospheric inversions whenever gridded products exist. The monthly or yearly fluxes (emissions and sinks) 
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provided by different groups were processed in the same way. They were either provided on a 1°x1° grid or 

re-gridded to 1°x1°, before converting into the common unit of Tg CH4 per grid cell. For land fluxes in 

coastal pixels, misallocation to the ocean was avoided by reallocating the land emissions to the neighbouring 

land pixel. The opposite was done for ocean fluxes. Monthly, annual and decadal means were computed from 320 

the gridded 1°x1° maps. 

2.2 Definition of the boxplots 

Most budgets are presented as boxplots, which have been created using routines in the IDL programming 

language using the classical convention of presenting quartiles (25%, median, 75%), outliers, and minimum 

and maximum values without outliers. Outliers were determined as values below the first quartile minus three 325 

times the inter-quartile range, or values above third quartile plus three times the inter-quartile range. Outliers 

were identified separately in relevant plots. The mean values reported in the tables are represented as “+” 

symbols in the corresponding figures. 

2.3 Definition of regions and source categories  

Geographically, emissions were reported globally and for three latitudinal bands (90°S-30°N, 30-60°N, 60-330 

90°N, only for gridded products). When extrapolating emission estimates forward in time (see Sect. 3.1.1), 

and for the regional budget presented in (Stavert, 2019), a set of 19 regions (oceans and 18 continental 

regions, see supplementary Fig. S1) were used. As anthropogenic emissions are often reported by country, 

we define these regions based on a country list (Table S1). This approach was compatible with all top-down 

and bottom-up approaches considered. The number of regions was chosen to be close to the widely used 335 

TransCom inter-comparison map (Gurney et al., 2004), but with subdivisions to separate the contribution 

from important countries or regions for the methane cycle (China, South Asia, Tropical America, Tropical 

Africa, USA, and Russia). The resulting region definition is the same as used for the GCP N2O budget (Tian 

et al., 2019). 

Following Saunois et al. (2016), we report emissions depending on their anthropogenic or natural origin and 340 

for five main GCP categories for both bottom-up and top-down approaches. The natural emissions include 

two main GCP categories: “natural wetlands”, and “other natural emissions” (e.g., other inland waters, wild 

animals, wildfires, termites, land geological sources, geological and biogenic oceanic sources and terrestrial 

permafrost). Anthropogenic emissions include three main GCP categories: “agriculture and waste 

emissions”, “fossil fuel emissions”, “biomass and biofuel burning emissions”. In the summary tables (Tab. 3 345 

and 6), all types of fires are included as anthropogenic sources, although they are partly of natural origin, as 

shown on the infographic Fig. 6 (Van der Werf et al., 2010). 
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Bottom-up estimates of methane emissions for some processes are derived from models (e.g., biogeochemical 

models for wetlands, models for termites), inventories (agriculture and waste emissions, fossil fuel emissions, 

biomass and biofuel burning emissions), satellite based products (large scale biomass burning), or 350 

observation based upscaling for other sources (e.g., inland water, geological sources…). From these bottom-

up approaches, it is possible to provide estimates for more detailed source categories inside each main GCP 

category (see budget in Table 3). However, the total methane emission derived from the combination of 

independent bottom-up estimates is unconstrained. 

For the atmospheric inversion (top-down) approach the situation is different. Atmospheric observations 355 

provide a constraint on the global source, given a fairly strong constraint on the global sink derived from 

methyl chloroform (Montzka et al., 2011; Rigby et al., 2017). The inversions reported in this work solve 

either for a total methane flux (e.g. Pison et al., 2013), or for a limited number of flux categories (e.g. 

Bergamaschi et al., 2013). In most of the inverse system the atmospheric oxidant concentrations are 

prescribed and thus the atmospheric sink is not solved. Indeed, the assimilation of CH4 observations alone, 360 

as reported in this synthesis, can help to separate sources with different locations or temporal variations but 

cannot fully separate individual sources as they often overlap in space and time in some regions. Global and 

regional methane emissions per source category were obtained directly from the gridded optimized fluxes, 

wherever an inversion had solved for the relevant five main GCP categories. Alternatively, if the inversion 

solved for total emissions (or for different categories other than the five main GCP ones), then the prior 365 

contribution of each source category at the spatial resolution of the inversion was scaled by the ratio of the 

total (or embedding category) optimized flux divided by the total (or embedding category) prior flux 

(Kirschke et al., 2013). The soil uptake was provided separately in order to report total gross surface 

emissions instead of net fluxes (sources minus soil uptake).  

In summary, bottom-up models and inventories are presented for all source processes and for the five main 370 

categories defined above globally. Top-down inversions are reported globally only for the five main emission 

categories. 

3 Methane sources and sinks 

Here we provide a synthesis of methane sources and sinks based on an ensemble of bottom-up emission 

estimation methods: process-based models, statistical databases, and data-driven methods. For each source 375 

category, a description of the relevant emitting processes is given, together with a brief description of the 

original data sets (measurements, models) and the related methodology. Then, the estimate for the global 

source and its range is given and analysed. More detailed descriptions of the data sets can be found elsewhere 
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(see references of each component in the different subsections and tables) and in the supplementary material 

of this paper.  380 

Methane sources can be organized by emitting process (i.e., biogenic, thermogenic, or pyrogenic) or by 

anthropogenic versus natural origin. Biogenic methane is the final product of the decomposition of organic 

matter by methanogenic Archaea in anaerobic environments, such as water-saturated soils, swamps, rice 

paddies, marine sediments, landfills, sewage and wastewater treatment facilities, or inside animal digestive 

systems. Thermogenic methane is formed on geological time scales by the breakdown of buried organic 385 

matter due to heat and pressure deep in the Earth’s crust. Thermogenic methane reaches the atmosphere 

through marine and land geological gas seeps. These methane emissions are increased by human processes, 

for instance the exploitation and distribution of fossil fuels (e.g., coal mining, natural gas production, gas 

transmission and distribution, oil production and refinery). Pyrogenic methane is produced by the incomplete 

combustion of biomass and other organic material. Peat fires, biomass burning in deforested or degraded 390 

areas, wildfires and biofuel burning are the largest sources of pyrogenic methane. Methane hydrates, ice-like 

cages of trapped methane found in continental shelves and slopes and below sub-sea and land permafrost, 

can be of either biogenic or thermogenic origin. Each of the three process categories has both anthropogenic 

and natural components. In the following, we present the different methane sources depending on their 

anthropogenic or natural origin (see Sect. 2.3 for definition of the categories), which seems more relevant for 395 

planning climate mitigation activities. However this choice does not correspond exactly to the definition of 

anthropogenic and natural used by UNFCCC and IPCC guidelines (IPCC, 2006), where, for pragmatic 

reasons, all emissions from managed land are reported as anthropogenic, which is not the case here. For 

instance, we consider all wetlands in the natural emissions category, despite some wetlands being actively 

managed. 400 

3.1 Anthropogenic methane sources  

Various human activities emit methane to the atmosphere. Agricultural processes under anaerobic conditions, 

such as enteric fermentation in ruminant livestock, manure management and applications, and rice 

cultivation, emit biogenic CH4, as does the decomposition of municipal solid waste. Methane is also emitted 

during the production and distribution of natural gas and petroleum, and is released as a by-product of coal 405 

mining and incomplete fossil fuel and biomass combustion (USEPA, 2016).  

Available statistical emission databases typically apply the IPCC methodologies resulting in bottom-up 

estimates of sector-specific emissions using country-specific activity data and emission factors.  
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3.1.1 Reported global inventories 

The main bottom-up global inventory datasets covering anthropogenic emissions from all sectors are those 410 

from the United States Environmental Protection Agency, USEPA (2012), the Greenhouse gas and Air 

pollutant Interactions and Synergies (GAINS) model developed by the International Institute for Applied 

Systems Analysis (IIASA) (Gómez-Sanabria et al., 2018; Höglund-Isaksson, 2012; Höglund-Isaksson, 2017) 

and the Emissions Database for Global Atmospheric Research (EDGAR, Janssens-Maenhout et al., 2019) 

compiled by the European Commission Joint Research Centre (EC-JRC) and Netherland’s Environmental 415 

Assessment Agency (PBL). Also included in this budget analysis is the Community Emissions Data System 

for historical emissions (CEDS) (Hoesly et al., 2018) developed for use by the climate modelling community 

in the Coupled Model Inter-comparison Project Phase 6 (CMIP6). The Food and Agriculture Organization 

(FAO) dataset emission database (Tubiello et al., 2019) is included but only covers emissions from 

agriculture and land use (including peatland and biomass fires). 420 

These inventory datasets report the major sources of anthropogenic methane emissions: fossil fuel 

production, transmission and distribution; livestock enteric fermentation; livestock manure management and 

application; rice cultivation; solid waste and wastewater. Since the level of detail provided by country and 

by sector varies among inventories, the data used for this analysis were reconciled into common categories 

(see Table S2). For example, agricultural and waste burning emissions treated as a separate category in 425 

EDGAR, GAINS and FAO, are included in the biofuel sector in the USEPA inventory and in the agricultural 

sector in CEDS. The GAINS, EDGAR and FAO estimates of agricultural waste burning were excluded from 

this analysis (these amounted to 1-3 Tg CH4 yr-1 in recent decades). Excluding agricultural waste burning 

estimates also prevents any inadvertent overlap with separate estimates of biomass burning emissions (e.g. 

GFEDv4.1s). In these inventories, methane emissions for a given region/country and a given sector are 430 

usually calculated following standard IPCC methodology (IPCC, 2006), for instance as the product of an 

activity factor and an emission factor for this activity. An abatement coefficient is used additionally, to 

account for any regulations implemented to control emissions (see, e.g., Höglund-Isaksson et al., 2015). The 

USEPA integrated emission inventory model provides estimates every five years for both past and future 

periods, with projections after 2005. GAINS provides annual data for past emissions and a projection for 435 

2020; FAOSTAT (Tubiello et al., 2019) provides data for the period 1961-2016 plus projections to 2030 and 

2050; and CEDS and EDGAR provide annual estimates only for past emissions. These datasets differ in their 

assumptions and the data used for the calculation; however, they are not completely independent because 

they follow the same IPCC guidelines (IPCC, 2006), and, at least for agriculture, use the same FAOSTAT 

activity data. While the USEPA inventory adopts the emissions reported by the countries to the UNFCCC, 440 

other inventories (FAOSTAT, EDGAR and the GAINS model) produce their own estimates using a 
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consistent approach for all countries. These other inventories need large amounts of country-specific activity 

data and emission factor information or, if not available, may adopt IPCC default factors or emission factors 

reported to UNFCCC (Höglund-Isaksson, 2012;Janssens-Maenhout et al., 2019; Olivier and Janssens-

Maenhout, 2012; Tubiello et al., 2019). CEDS takes a different approach starting from pre-existing default 445 

emission estimates; for methane, a combination of EDGAR and FAO estimates are used, scaled to match 

other individual or region-specific inventory values when available. This process maintains the spatial 

information in the default emission inventories while preserving consistency with the country level data. The 

FAOSTAT was used to provide estimates of methane emissions at the country level but was limited to 

agriculture (enteric fermentation, manure management, rice cultivation, energy usage, burning of crop 450 

residues and prescribed burning of savannahs) and land-use (biomass burning). It will hereafter be referred 

as FAO-CH4. FAO-CH4 uses activity data mainly from the FAOSTAT crop and livestock production 

database, as reported by countries to FAO (Tubiello et al., 2013), and apply mostly the Tier 1 IPCC 

methodology for emissions factors (IPCC, 2006), which depend on geographic location and development 

status of the country. Finally, we note that, for manure, the necessary country-scale temperature was obtained 455 

from the FAO global agro-ecological zone database (GAEZv3.0, 2012). Although, country emissions are 

reported annually to the UNFCCC by annex I countries, and episodically reported by non-annex I countries, 

data gaps in national greenhouse gas inventories do not allow the inclusion of these estimates in this analysis, 

although the USEPA inventory includes those available from UNFCCC.  

We use the following versions of these databases:  460 

● EDGARv4.3.2 which provides yearly gridded emissions by sectors from 1970 to 2012 (Janssens-

Maenhout et al., 2019),  

● the GAINS model scenario ECLIPSE v6 (Gómez-Sanabria et al., 2018;Höglund-Isaksson, 

2012;Höglund-Isaksson, 2017) which provides both annual sectorial totals by country for 1990 to 

2015 and a projection for 2020 (that assumes current emission legislation  for the future)  and an 465 

annual sectorial gridded product for 1990 to 2015, 

● USEPA (USEPA, 2012), which provides 5-year sectorial totals by country for 1990 to 2020 

(estimates from 2005 onward are a projection), with no gridded distribution available, 

● the CEDS emission estimates version 2017-05-18 which provides both gridded monthly and annual 

country based emissions by sectors for 1970 to 2014 (Hoesly et al., 2018), 470 

● FAO-CH4 (database accessed in February 2019, FAO (2019)) containing annual country level data 

for the period 1961-2016, for rice, manure, and enteric fermentation; and 1990 to 2016 for burning 

savannah, crop residue and non-agricultural biomass burning. 

Further details of the datasets used in this study are provided in Table 1. The recent expansion in the number 

of gridded data sets available, including EDGARv4.3.2, CEDS and GAINS, has greatly increased the input 475 
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options for inverse and climate modelling. However, these inventories are not all regularly updated, whereas 

the FAOSTAT database provides methane emission estimates up to year 2016. As our study aimed to report 

emissions for the period 2000-2017, it was necessary to extend and interpolate some of the datasets to cover 

this period. The estimates from USEPA were linearly interpolated to provide yearly values. The FAO-CH4 

dataset was extrapolated to 2017 using a linear fit for the 2014-2016 data. We have also extrapolated the 480 

EDGARv4.3.2 up to 2017 using the extended FAO-CH4 emissions for CH4 emissions from enteric 

fermentation, manure management and rice cultivation, and using BP statistical review of fossil fuel 

production and consumption (BP Statistical Review of World Energy, 2019) to update CH4 emissions from 

coal, oil and gas sectors. In this extrapolated inventory, called EDGARv4.3.2EXT, methane emissions for year 

t are set equal to the 2012 EDGAR CH4 emissions (EEDGARv4.3.2) times the ratio between the FAO-CH4 485 

emissions (or BP statistics) of year t (EFAO-CH4(t)) and FAO-CH4 emissions (or BP statistics) of 2012 (EFAO-

CH4(2012)). For each emission sector, the region-specific emissions (EEDGARv4.3.2ext) in year (t) are estimated 

following Eq. (1): 

𝐸"#$%&'(.*.+,-.(𝑡) = 	𝐸"#$%&'(.*.+(2012) × 𝐸8%9:;<((𝑡)/𝐸8%9:;<((2012)  (1) 

Transport, industrial, waste and biofuel sources were linearly extrapolated based on the last three years of 490 

data while other sources are kept constant at the 2012 level. This extrapolation approach is necessary, and 

often performed by top-down approaches to define prior emissions because, up to now, global inventories 

such as sector-specific emissions in the EDGAR database are not updated on a regular basis. To allow 

comparisons through 2017, the CEDS dataset has also been extrapolated in an identical method creating 

CEDSEXT. However, in contrast to the EDGARv4.3.2 dataset, the CEDS dataset provides only a combined 495 

oil and gas sector; hence, it was necessary to extend this dataset using the sum of BP oil and gas emissions. 

The by-country GAINS dataset was linearly projected by sector for each country using the trend between the 

historic 2015 and projected 2020 values. These by-country projections were then aggregated to the 19 global 

regions (Section 2.3 and Fig. S1) and used to extrapolate the GAINS gridded dataset in a similar manner to 

that described in Equation 1. For ease of reading, all further references in this paper will be to the extended 500 

inventories CEDSEXT, EDGARv4.3.2EXT and GAINSEXT although the “EXT” suffix will be dropped 

hereafter. 

3.1.2 Total anthropogenic methane emissions 

In order to avoid double counting and ensure consistency with each inventory, the range (min-max) and mean 

values of the total anthropogenic emissions were not calculated as the sum of the mean and range of the three 505 

upper-level anthropogenic categories (“Agriculture and waste”, “Fossil fuels” and “Biomass burning & 

biofuels”). Instead, we calculated separately the total anthropogenic emissions for each inventory by adding 

its values for “Agriculture and waste”, “Fossil fuels” and “biofuels” with the range of available large-scale 
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biomass burning emissions. This approach was used for the EGDARv4.3.2, CEDS and GAINS inventories, 

where as we kept the USEPA inventory as originally reported because it includes its own estimates of biomass 510 

burning emissions. As a result, FAO-CH4 estimates are not included in the range derived for the total 

anthropogenic emissions, but they are included in the values reported for the “Agriculture and waste” 

category. For the latter, we calculate the range and mean value as the sum of the mean and range of the three 

anthropogenic subcategory estimates “Enteric fermentation and Manure”, “Rice”, and “Landfills and Waste”. 

The values reported for the upper-level anthropogenic categories (“Agriculture and waste”, “Fossil fuels” 515 

and “Biomass burning & biofuels”) are therefore consistent with the sum of their subcategories, although 

there might be small percentage differences between the reported total anthropogenic emissions and the sum 

of the three upper-level categories. This approach provides a more accurate representation of the range of 

emission estimates, avoiding an artificial expansion of the uncertainty attributable to subtle differences in the 

definition of sub-sector categorisations between inventories. 520 

Based on the ensemble of databases detailed above, total anthropogenic emissions were 366 [348-392] Tg 

CH4 yr-1 for the decade 2008-2017 (Table 3, including biomass and biofuel burning) and 334 [325-357] Tg 

CH4 yr-1 for the preceding decade 2000-2009. Our estimate for the preceding decade is statistically consistent 

with the findings of Saunois et al. (2016) (338 Tg CH4 yr-1 [329-342]) and of Kirschke et al. (2013) (331 Tg 

CH4 yr-1 [304-368]) for the same period. The slightly larger range reported herein with respect to our 525 

previous findings is mainly due to a larger range in the biomass burning estimates, as more biomass burning 

products are included in our new budget. The range associated with our estimates (~10-12%) is smaller than 

the range reported in the Arctic Monitoring And Assessment Programme (AMAP) report (Höglund-Isaksson 

et al., 2015) (~20%), perhaps both because the latter analysed data from a wider range of inventories and 

projections, and because the AMAP was referenced to one year only (2005) rather than averaged over a 530 

decade, as done here. 

Figure 2 summarizes the global methane emissions of anthropogenic sources (including biomass and biofuel 

burning) estimated and projected by the different datasets between 2000 and 2050. The datasets consistently 

estimate total anthropogenic emissions of ~300 Tg CH4 yr-1 in 2000. The main discrepancy between the 

inventories is observed in their trend after 2005, with the lowest emissions projected by GAINS and the 535 

largest emissions estimated by CEDS. Despite relatively good agreement between the inventories for total 

emissions from year 2000 onwards, large differences were found at the sector and country level (IPCC, 2014). 

Some of these discrepancies are detailed in the following sections and in (Stavert et al., 2019). For the Sixth 

Assessment report of the IPCC, seven main Shared Socioeconomic Pathways (SSPs) have been defined to 

provide climate projections in the Coupled Model Intercomparison Project 6 (CMIP6) (Gidden et al., 2019) 540 

ranging from 1.9 to 8.5 W m-2 radiative forcing by the year 2100 (as shown by the number in the SSP names). 

For the 1970-2014 period, the historical emissions used in CMIP6 combine anthropogenic emissions from 
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Hoesly et al. (2018) (CEDS) and a climatological value from the GFEDv4.1s biomass burning inventory (van 

Marle et al., 2017). The CEDS anthropogenic emissions estimates, based on EDGARv4.2, are 10-20 Tg 

higher than the more recent EDGARv4.3.2 (van Marle et al., 2017). Methane emissions continue to track 545 

emissions from RCP8.5, indicating that climate policies have not been sufficient to change the emissions 

trajectory substantially to date (Nisbet et al., 2019). In the future, the SSP storylines span a range of future 

outcomes, and it appears likely that higher-emission trajectories will be realised. 

This shows the tremendous challenge of climate mitigation that lies ahead to reach the goals of the Paris 

agreement Despite the offset of the SSP scenarios compared to the recent inventories, it will be crucial to 550 

monitor the trends estimated in the reported inventories in the following years and compare them to the 

SSP’s. 

3.1.3 Methane emissions from fossil fuel production and use 

Most anthropogenic methane emissions related to fossil fuels come from the exploitation, transportation, and 

usage of coal, oil, and natural gas. Additional emissions reported in this category include small industrial 555 

contributions such as production of chemicals and metals, fossil fuel fires (underground coal mine fires and 

the Kuwait oil and gas fires), and transport. Methane emissions from the oil industry (e.g. refining) and 

production of charcoal are estimated to be a few Tg CH4 yr-1 only (EDGARv4.2, 2011) and are included in 

the transformation industry sector in the inventory. Fossil fuel fires are included in the sub-category “Oil & 

Gas”. For our budget, emissions from industries and transport are reported apart from the two main sub-560 

categories “Oil & Gas” and “Coal”. Each amounts to about 5 Tg CH4 yr-1. The large range (0-12 Tg CH4 yr-

1) is attributable to difficulties allocating some sectors to specific GCP sub-categories consistently among the 

different inventories (See Table S2). In Saunois et al. (2016), these emissions were included in the sub-

category “Oil & Gas” or “Coal”. The spatial distribution of methane emissions from fossil fuels is presented 

in Fig. 3 based on the mean gridded maps provided by CEDS, EDGARv4.3.2 and GAINS for the 2008-2017 565 

decade; USEPA lacks a gridded product. 

Global emissions of methane from fossil fuels, other industries and transport are estimated from four global 

inventories yielding 127 [111-154] Tg CH4 yr-1 for the 2008-2017 decade (Table 3), but with large differences 

in the rate of change during this period across inventories. The sector accounts on average for 35% (range 

30-42%) of the total global anthropogenic emissions. 570 

Coal mining. During mining, methane is emitted from ventilation shafts, where large volumes of air are 

pumped into the mine to keep the CH4 mixing ratio below 0.5% to avoid accidental ignition, and attributable 

to dewatering operations. In countries of the Organization for Economic Co-operation and Development 

(OECD), methane released from ventilation shafts is used as fuel, but in many countries it is still emitted into 

the atmosphere or flared, despite efforts for coalmine recovery under the UNFCCC Clean Development 575 
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Mechanisms (http://cdm.unfccc.int). Methane emissions also occur during post-mining handling, processing, 

and transportation. Some CH4 is released from coal waste piles and abandoned mines, however emissions 

from these sources are believed to be low (IPCC, 2000). 

Almost 40% (IEA, 2018) of the world’s electricity is still produced from coal. This contribution indeed grew 

in the 2000s at the rate of several per cent per year, driven by Asian economic growth where large reserves 580 

exist, but global coal consumption has been fairly stable since 2011. In 2018, the top ten largest coal 

producing nations accounted for ~90% of total world emissions for coal mining; among them, the top three 

producers (China, USA and India) produced almost two thirds (64%) of the world’s coal (CIA, 2016; BP 

2019). 

Global estimates of CH4 emissions from coal mining show a large variation, in part due to the lack of 585 

comprehensive data from all major producing countries. The range of coal mining emissions is estimated at 

29-60 Tg of methane for 2008-2017, the highest value coming from the CEDS inventory and the lowest from 

USEPA. 

As outlined in Sect. 3.1.2, coal mining is the main source explaining the differences between inventories 

globally (Fig. 2). Indeed, these differences are explained mainly by the different CH4 emission factors used 590 

for calculating fugitive emissions from coal mining in China. Coal mining emission factors depend strongly 

on the type of coal extraction (underground mining emitting up to 10 times more than surface mining), the 

geological underground structure, which is region-specific, history (basin uplift), and the quality of the coal 

(brown coal emitting more than hard coal). CEDS seems to have overestimated coal mining emissions from 

China by almost a factor of 2, most likely due to its dependence on the EDGARv4.2 emission inventory. As 595 

highlighted by Saunois et al. (2016) a county-based inventory of Chinese methane emissions also confirms 

the overestimate of about +38% with total anthropogenic emissions estimated at 43±6 Tg CH4 yr-1 (Peng et 

al., 2016). A study using 13CH4 data by (Thompson et al., 2015) showed that their prior (based on 

EDGARv4.2FT2010) also overestimated the Chinese methane emissions by 30%, however they found no 

significant difference in the coal sector estimates between prior and posterior. EDGARv4.2 inventory 600 

followed the IPCC guidelines and used the European averaged emission factor for CH4 from coal production 

to substitute missing data for China, which was a factor of two too high. These differences highlight 

significant errors resulting from the inappropriate use of emission factors, and that applying “Tier 1” 

approaches for coal mine emissions is not accurate enough as stated by the IPCC guidelines. The newly 

released version of EDGARv4.3.2 revises China emission factors down and distributes the fugitive CH4 from 605 

coal mining to more than 80 times more coal mining locations in China. 

For the 2008-2017 decade, methane emissions from coal mining are estimated at 33% of total fossil fuel 

related emissions of methane (42 Tg CH4 yr-1, range of 29-60). An additional very small source corresponds 

to fossil fuel fires (mostly underground coal fires, ~0.15 Tg yr-1 in 2012, EDGARv4.3.2). 
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Oil and natural gas systems. 610 

This category includes emissions from conventional oil and gas exploitation and from shale gas exploitation. 

Natural gas is comprised primarily of methane, so both fugitive and planned emissions during the drilling of 

wells in gas fields, extraction, transportation, storage, gas distribution, end use, and incomplete combustion 

of gas flares emit methane (Lamb et al., 2015; Shorter et al., 1996). 

For the 2008-2017 decade, methane emissions from upstream and downstream natural oil and gas sectors are 615 

estimated to represent about 63% of total fossil CH4 emissions (76 Tg CH4 yr-1, range of 66-92, Table 3), 

with a lower uncertainty range than for coal emissions for most countries. 

a. Conventional oil and gas. Persistent fugitive emissions (e.g., due to leaky valves and compressors) should 

be distinguished from intermittent emissions due to maintenance (e.g. purging and draining of pipes). During 

transportation, fugitive emissions can occur in oil tankers, fuel trucks and gas transmission pipelines, due to 620 

corrosion, manufacturing, welding, etc. According to Lelieveld et al. (2005), the CH4 fugitive emissions from 

gas pipelines should be relatively low, however distribution networks in older cities have higher rates, 

especially those with cast-iron and unprotected steel pipelines. Measurement campaigns in cities within the 

USA and Europe also revealed that significant emissions occur in specific locations (e.g. storage facilities, 

city gates, well and pipeline pressurization/depressurization points) along the distribution networks (e.g. 625 

Jackson et al., 2014a; McKain et al., 2015; Wunch et al., 2016). However, methane emissions can vary 

significantly from one city to another depending, in part, on the age of city infrastructure and the quality of 

its maintenance, making urban emissions difficult to scale-up. In many facilities, such as gas and oil fields, 

refineries and offshore platforms, venting of natural gas is now replaced by flaring with almost complete 

conversion to CO2; these two processes are usually considered together in inventories of oil and gas 630 

industries. Also, single-point failure of natural gas infrastructure can leak methane at high rate for months, 

such as at the Aliso Canyon blowout in the Los Angeles, CA, basin, thus hampering emission control 

strategies (Conley et al., 2016). 
Methane emissions from oil and natural gas systems also vary greatly in different global inventories (69 to 

97 Tg yr-1 in 2017, Table 3). The inventories generally rely on the same sources and magnitudes for the 635 

activity data, with the derived differences therefore resulting primarily from different methodologies and 

parameters used, including both emission and emission factors. Those factors are country- or even site-

specific and the few field measurements available often combine oil and gas activities (Brandt et al., 2014) 

and remain largely unknown for most major oil- and gas-producing countries. Depending on the country, the 

reported emission factors may vary by two orders of magnitude for oil production and by one order of 640 

magnitude for gas production (Table SI-5.1 of (Höglund-Isaksson, 2017). The GAINS estimate of methane 

emissions from oil production, for instance, is twice as high as the estimate from EDGARv4.3.2. For natural 

gas, the uncertainty is of a similar order of magnitude. During oil extraction, the gas generated can be either 
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recovered (re-injected or utilized as an energy source) or not recovered (flared or vented to the atmosphere). 

The recovery rates vary from one country to another (being much higher in the USA, Europe and Canada 645 

than elsewhere), and, could lead to an amount of gas released into the atmosphere during oil production two 

times higher accounting for country-specific rates of generation and recovery of associated gas than when 

using default values (Höglund-Isaksson, 2012). This difference in methodology explains, in part, why 

GAINS estimates are higher than those of EDGARv4.3.2. Another challenge lies in determining the amount 

of flared or vented unrecovered gas, as venting emits CH4 whereas flaring converts all or most methane 650 

(usually >99%) to CO2. The balance of flaring and venting also depends on the type of oil: flaring is less 

common for heavy oil wells than for conventional ones (Höglund-Isaksson et al., 2015). Satellite images can 

detect flaring (Elvidge et al., 2009; 2016) and may be used to verify country estimates, but such satellites can 

not currently be used to estimate the efficiency of CH4 conversion to CO2. 

b. Shale gas. Production of natural gas from the exploitation of hitherto unproductive rock formations, 655 

especially shale, began in the 1980s in the US on an experimental or small-scale basis, then, from early 2000s, 

exploitation started at large commercial scale. Two techniques developed and often applied together are 

horizontal drilling and hydraulic fracturing. The shale gas contribution to total dry natural gas production in 

the United States reached 62% in 2017, growing rapidly from 40% in 2012, with only small volumes 

produced before 2005 (EIA, 2019). Indeed, the practice of high-volume hydraulic fracturing (fracking) for 660 

oil and gas extraction is a growing sector of methane and other hydrocarbon production, especially in the 

U.S. Most studies (Alvarez et al., 2018; Brandt et al., 2014; Howarth et al., 2011b; Jackson et al., 2014b; 

Karion et al., 2013; Moore et al., 2014; Olivier and Janssens-Maenhout, 2014; Pétron et al., 2014; Zavala-

Araiza et al., 2015) albeit not all (Peischl et al., 2015; Allen et al., 2013; Cathles et al., 2012), suggest that 

methane emissions from oil and gas industry are underestimated by inventories and agencies, including the 665 

USEPA. For instance, the recent synthesis of (Alvarez et al., 2018) suggests that methane emissions from the 

U.S. oil and gas supply chain are ~60% higher than the USEPA estimate (13±2 Tg yr-1 against 8±2 Tg yr-

1), corresponding to 2.3% of US gas production. They propose that existing inventory methods are most 

likely missing emissions released during abnormal operating conditions, such as those observed across the 

rapidly expanding shale gas sector. Zavala-Araiza et al. (2015) showed that a few high-emitting facilities, 670 

i.e., super-emitters, neglected in the inventories, dominated emissions. For instance, they estimate that 2% of 

the facilities of the Barnett region are responsible for 50% of the methane emissions. These high emitting 

points, located on the conventional part of the facility, could be avoided through better operating conditions 

and repair of malfunctions. Their result also suggests that the emission factors of conventional and non-

conventional gas facilities might not be as different as originally thought by Howarth et al. (2011a,b). Indeed, 675 

the possibly larger emission factors from the unconventional gas as compared to the conventional one have 

been widely debated (e.g. Cathles et al., 2012; Howarth et al., 2011a,b). However, the latest studies tend to 
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infer similar emission factors in a narrow range of 1-3% (Alvarez et al.; 2018; Zavala-Araiza, 2015; Peischl 

et al., 2015), different from the widely spread rates of 3-17% from previous studies (e.g. Caulton et al., 2014; 

Schneising et al., 2014).  680 

The global implications of the rapidly growing shale gas activity in the US remains to be determined 

precisely. Schwietzke et al. (2017) proposed that the underestimation found in the U.S. might exist on a 

global scale for the same reasons (operating processes and malfunctioning equipment). Extending the work 

of Saunois et al. (2016), Bruhwiler et al. (2017) and Lan et al. (2019) found no evidence of a contribution of 

North American CH4 emissions to the increasing global atmospheric trend over the past decade. Still, as U.S. 685 

production increases, absolute methane emissions almost certainly increase, as well. U.S. crude oil 

production doubled over the last decade to reach record levels of 11 million barrels per day in 2018; natural 

gas production rose more than 50% to 83.4 billion cubic feet per day, also a U.S. record (EIA 2019) 

3.1.4 Agriculture and waste  

This main category includes methane emissions related to livestock production (i.e., enteric fermentation in 690 

ruminant animals and manure management), rice cultivation, landfills, and wastewater handling. Of these, 

globally and in most countries livestock is by far the largest source of CH4, followed by waste handling and 

rice cultivation. Conversely, field burning of agricultural residues is a minor source of CH4 reported in 

emission inventories. The spatial distribution of methane emissions from agriculture and waste handling is 

presented in Fig. 3 based on the mean gridded maps provided by CEDS, EDGARv4.3.2 and GAINS over the 695 

2008-2017 decade. 

Global emissions from agriculture and waste for the period 2008-2017 are estimated at 206 Tg CH4 yr-1 

(range 191-223, Table 3), representing 56% of total anthropogenic emissions. This total is ~60% greater than 

the estimated 127 Tg yr-1 emitted through fossil fuel production and use (see Section 3.1.3 above and Table 

3). 700 

Livestock: Enteric fermentation and manure management. Domestic ruminant such as cattle, buffalo, 

sheep, goats, and camels emit large amounts of methane as a by-product of the anaerobic microbial activity 

in their digestive systems (Johnson et al., 2002). The very stable temperatures (about 39°C) and pH (6.5-6.8) 

values within in the rumen of domestic ruminants, along with a constant plant matter flow from grazing 

(cattle graze many hours per day), allow methanogenic Archaea residing within the rumen to produce 705 

methane. Methane is released from the rumen mainly through the mouth of multi-stomached ruminants 

(eructation, ~87% of emissions) or absorbed in the blood system. The methane produced in the intestines and 

partially transmitted through the rectum is only ~13%. 

The total number of livestock continues to grow steadily. There are currently about 1.4 billion cattle globally, 

1 billion sheep, and nearly as many goats (http://www.fao.org/faostat/en/#data/GE). Livestock numbers are 710 
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linearly related to CH4 emissions in inventories using the Tier 1 IPCC approach such as FAOSTAT. In 

practice, some non-linearity may arise due to dependencies of emissions on total weight of the animals and 

their diet, which are better captured by Tier 2 and higher approaches. Cattle, due to their large population, 

large size, and particular digestive characteristics, account for the majority of enteric fermentation CH4 

emissions from livestock worldwide (Tubiello et al., 2019), particularly in intensive agricultural systems in 715 

developed and emerging economies, including the United States (USEPA, 2016). Methane emissions from 

enteric fermentation also vary from one country to another as cattle may experience diverse living conditions 

that vary spatially and temporally, especially in the tropics (Chang and al., 2019). 

Anaerobic conditions often characterize manure decomposition in a variety of manure management systems 

throughout the world (e.g., liquid/slurry treated in lagoons, ponds, tanks, or pits), with the volatile solids 720 

component in manure producing CH4 as a result. In contrast, when manure is handled as a solid (e.g., in 

stacks or dry-lots) or deposited on pasture, range, or paddock lands, it tends to decompose aerobically and 

produce little or no CH4. Ambient temperature, moisture, and manure storage or residency time affect the 

amount of CH4 produced because they influence the growth of the microorganisms responsible for CH4 

formation. For non-liquid-based manure systems, moist conditions (which can be induced by rainfall and 725 

humidity) can promote CH4 production. Manure composition, which varies with animal diet, growth rate, 

and type, including the animal’s digestive system, also affects the amount of CH4 produced. In general, the 

potential for CH4 emissions grows with the energy contents of the feed. However, some higher-energy feeds 

also are more digestible than lower quality forages, which can result in less overall waste excreted from the 

animal (USEPA, 2006). Despite these complexities, most global datasets used herein apply a simplified IPCC 730 

Tier 1 approach, where amounts of manure treated depend on animal numbers and simplified climatic 

conditions by country. 

Global methane emissions from enteric fermentation and manure management are estimated in the range of 

99-115 Tg CH4 yr-1, for the year 2010, in the GAINS model and CEDS, USEPA, FAO-CH4 and 

EDGARv4.3.2 inventories. These values are slightly higher than the IPCC Tier II estimates of Dangal et al 735 

(2017) (i.e., 87.5 and 95.7 Tg CH4/yr for 2000 and 2010 respectively) and the IPCC Tier III estimates of 

Herrero et al (2013) (83.2 Tg CH4 yr-1 for 2000). 

For the period 2008-2017, we estimated total emissions of 111 [106-116] Tg CH4 yr-1 for enteric fermentation 

and manure management, about one third of total global anthropogenic emissions. 

Rice cultivation. Most of the world’s rice is grown in flooded paddy fields (Baicich, 2013). Under these 740 

shallow-flooded conditions, aerobic decomposition of organic matter gradually depletes most of the oxygen 

in the soil, resulting in anaerobic conditions and methane production. Most of this methane is oxidized in the 

overlying soil, while some is dissolved in the floodwater and leached away. The remaining methane is 
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released to the atmosphere, primarily by diffusive transport through the rice plants, but methane also escapes 

from the soil via diffusion and bubbling through floodwaters (USEPA, 2016; Bridgham et al., 2013).  745 

The water management systems used to cultivate rice are one of the most important factors influencing CH4 

emissions and is one of the most promising approaches for CH4 emission mitigation (e.g. periodical drainage 

and aeration not only causes existing soil CH4 to oxidize, but also inhibits further CH4 production in soils 

(Simpson et al., 1995;USEPA, 2016;Zhang et al., 2016b). Upland rice fields are not flooded, and therefore 

are not a significant source of CH4. Other factors that influence CH4 emissions from flooded rice fields 750 

include fertilization practices (i.e. the use of urea and organic fertilizers), soil temperature, soil type (texture 

and aggregated size), rice variety and cultivation practices (e.g., tillage, seeding, and weeding practices) 

(USEPA, 2011, 2016; Kai et al., 2011; Yan et al., 2009; Conrad et al., 2000). For instance, methane emissions 

from rice paddies increase with organic amendments (Cai et al., 1997) but can be mitigated by applying other 

types of fertilizers (mineral, composts, biogas residues, wet seeding) (Wassmann et al., 2000). 755 

     The geographical distribution of rice emissions has been assessed by global (e.g., Tubiello, 2019; USEPA, 

2006, 2012; Janssens-Maenhout et al., 2019) and regional (e.g. Peng et al., 2016; Chen et al., 2013; Chen and 

Prinn, 2006; Yan et al., 2009; Castelán-Ortega et al., 2014; Zhang and Chen, 2014) inventories or land surface 

models (Spahni et al., 2011; Zhang et al., 2016a; Ren et al., 2011; Tian et al., 2010; Tian et al., 2011; Li et 

al., 2005; Pathak et al., 2005). The emissions show a seasonal cycle, peaking in the summer months in the 760 

extra-tropics associated with the monsoons and with land management. Similar to emissions from livestock, 

emissions from rice paddies are influenced not only by extent of rice field area (equivalent to the number of 

livestock), but also by changes in the productivity of plants (Jiang et al., 2017) as these alter the CH4 emission 

factor used in inventories. Nonetheless, the databases considered herein are largely based on IPCC Tier 1 

methods, which largely scale with cultivated area but include regional specificities in emission factors. 765 

The largest emissions are found in Asia (Hayashida et al., 2013), with China (5-11 Tg CH4 yr-1, Chen et al., 

2013; Zhang et al., 2016a) and India (~3-5 Tg CH4 yr-1, Bhatia et al., 2013) accounting for 30 to 50% of 

global emissions (Fig. 3). This contrasts with the work of (Carlson et al., 2016) who suggested that India 

contributed a larger flux, 7.4 Tg CH4/yr, than China, 6.2 Tg CH4/yr around the year 2000. The lower 

emissions in China were linked to paddy drainage practises. The decrease of CH4 emissions from rice 770 

cultivation over the past decades is confirmed in most inventories, because of the decrease in rice cultivation 

area, the change in agricultural practices, and a northward shift of rice cultivation since 1970s as in China 

(e.g. Chen et al., 2013)). 

Based on the global inventories considered in this study, global methane emissions from rice paddies are 

estimated to be 30 [25-38] Tg CH4 yr-1 for the 2008-2017 decade (Table 3), or about 8% of total global 775 

anthropogenic emissions of methane. These estimates are consistent with the 29 Tg CH4 yr-1 estimated for 

the year 2000 by Carlson et al (2016). 
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Waste management. This sector includes emissions from managed and non-managed landfills (solid waste 

disposal on land), and wastewater handling, where all kinds of waste are deposited. These can emit significant 780 

amounts of methane through the anaerobic decomposition of organic material by microorganisms. Methane 

production from waste depends on pH, moisture and temperature. The optimum pH for methane emission is 

between 6.8 and 7.4 (Thorneloe et al., 2000). The development of carboxylic acids leads to low pH, which 

limits methane emissions. Food or organic waste, leaves and grass clippings ferment quite easily, while wood 

and wood products generally ferment slowly, and cellulose and lignin even more slowly (USEPA, 2010b). 785 

Waste management is responsible for about 11% of total global anthropogenic methane emissions in 2000 at 

global scale (Kirschke et al., 2013). A recent assessment of methane emissions in the U.S. found landfills to 

account for almost 26% of total U.S. anthropogenic methane emissions in 2014, the largest contribution of 

any single CH4 source in the United States (USEPA, 2016). In Europe, gas control is mandatory on all 

landfills from 2009 onwards, following the ambitious objective raised in the EU Landfill Directive (1999) to 790 

reduce the landfilling of biodegradable waste to 65% below the 1990 level by 2016. This is attempted through 

source separation and treatment of separated biodegradable waste in composts, bio-digesters, and paper 

recycling. This approach is assumed more efficient in terms of reducing methane emissions than the more 

usual gas collection and capture. Collected biogas is either burned by flaring, or used as fuel if it is pure 

enough (i.e. the content of methane is > 30%). Many managed landfills have the practice to apply cover 795 

material (e.g. soil, clay, sand) over the waste being disposed of in the landfill to prevent odour, reduce risk 

to public health, but also promote microbial communities of methanotrophic organisms (Bogner et al., 2007). 

In developing countries, very large open landfills still exist, with important health and environmental 

consequences in addition to methane emissions (André et al., 2014). 

Wastewater from domestic and industrial sources is treated in municipal sewage treatment facilities and 800 

private effluent treatment plants. The principal factor in determining the CH4 generation potential of 

wastewater is the amount of degradable organic material in the wastewater. Wastewater with high organic 

content is treated anaerobically and that leads to increased emissions (André et al., 2014). The large and fast 

urban development worldwide, and especially in Asia and Africa, could enhance methane emissions from 

waste unless adequate policies are designed and implemented rapidly.  805 

The GAINS model and CEDS and EDGAR inventories give robust emission estimates from solid waste in 

the range of 29-41 Tg CH4 yr-1 in the year 2005, and wastewater in the range 14-33 Tg CH4 yr-11. 

In this study, the global emission of methane from waste management is estimated in the range of 60-69 Tg 

CH4 yr-1 for the 2008-2017 period with a mean value of 65 Tg CH4 yr-1, about 12% of total global 

anthropogenic emissions. 810 
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3.1.5 Biomass and biofuel burning 

This category includes methane emissions from biomass burning in forests, savannahs, grasslands, peats, 

agricultural residues, as well as, from the burning of biofuels in the residential sector (stoves, boilers, 

fireplaces). Biomass and biofuel burning emits methane under incomplete combustion conditions, i.e., when 

oxygen availability is insufficient for complete combustion, for example in charcoal manufacture and 815 

smouldering fires. The amount of methane that is emitted during the burning of biomass depends primarily 

on the amount of biomass, the burning conditions, and the material being burned. At the global scale, during 

the period 2008-2017, biomass and biofuel burning generated methane emissions of 30 [26-40] Tg CH4 yr-1 

(Table 3), of which 30-50 % is biofuel burning. 

In this study, we use the large-scale biomass burning (forest, savannah, grassland and peat fires) from specific 820 

biomass burning inventories (GFEDv4.1s, QFEDv2.5, GFASv1.3, FINNv1.5, FAO-CH4 see below for 

details) and the biofuel burning contribution from anthropogenic emission inventories (EDGARv4.3.2, 

CEDS, GAINS and USEPA). 

The spatial distribution of methane emissions from biomass burning over the 2008-2017 decade is presented 

in Fig. 3 and is based on the mean gridded maps provided by CEDS, EDGARv4.3.2 and GAINS for biofuel 825 

burning, and the mean gridded maps provided by the biomass burning inventories presented thereafter. 

 

Biomass burning. Fire is the most important disturbance event in terrestrial ecosystems at the global scale 

(van der Werf et al., 2010), and can be of either natural (typically ~10%, ignited by lightning strikes or started 

accidentally) or anthropogenic origin (~90%, human initiated fires) (USEPA (2010a) chapter 9.1). 830 

Anthropogenic fires are concentrated in the tropics and subtropics, where forests, savannahs and grasslands 

may be burned to clear land for agricultural purposes or to maintain pastures and rangelands. Small fires 

associated with agricultural activity, such as field burning and agricultural waste burning, are often not well 

detected by remote sensing methods and are instead estimated based on cultivated area. As it is among the 

species emitted during biomass burning, carbon monoxide is a pertinent tracer for biomass burning emissions 835 

(Yin et al., 2015;Pechony et al., 2013). 

Usually the biomass burning emissions are estimated using IPCC methodology, as: 

𝐸(𝑥, 𝑡) = 𝐴(𝑥, 𝑡, ) ∗ 𝐵(𝑥) ∗ 𝐹𝐵 ∗ 𝐸𝐹       (2) 

where A(x,t) is the area burned, B(x) the biomass loading (depending on the biomes) at the location, FB the 

fraction of the area burned (or the efficiency of the fire depending on the vegetation type and the fire type) 840 

and EF the emissions factor (mass of the considered species / mass of biomass burned). Depending on the 

approach, these parameters can be derived using satellite data and/or biogeochemical model, or through 

simpler, IPCC default approaches. 
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The Global Fire Emission Database (GFED) is the most widely used global biomass burning emission dataset 

and provides estimates from 1997. In this review, we use GFEDv4.1s (van der Werf et al., 2017). GFED is 845 

based on the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and satellite derived 

estimates of burned area, fire activity and plant productivity. From November 2000 onwards, these three 

parameters are inferred from the MODerate resolution Imaging Spectroradiometer (MODIS) sensor. For the 

period prior to MODIS, burned area maps are derived from the Tropical Rainfall Measuring Mission 

(TRMM) Visible and Infrared Scanner (VIRS) and Along-Track Scanning Radiometer (ATSR) active fire 850 

data and estimates of plant productivity derived from Advanced Very High Resolution Radiometer (AVHRR) 

observations during the same period. GFEDv4.1s (with small fires) is available at a 0.25° resolution and on 

a daily basis from 1997 to 2017. The particularity of the GFEDv4.1s burned area is that small fires are better 

accounted for as detected by MODIS (Randerson et al., 2012), increasing carbon emissions by approximately 

35% on the global scale. However, interestingly, global methane emissions are 25% lower in GFEDv4 than 855 

in the previous version GFEDv3 because of new emission factors updated from Akagi et al. (2011). 

The Quick Fire Emissions Dataset (QFED) is calculated using the fire radiative power (FRP) approach, in 

which the thermal energy emitted by active fires is converted to an estimate of methane flux using biome 

specific emissions factors and a unique method for accounting for cloud cover. FRP is estimated using the 

MODIS satellite and combined with vegetation maps from the International Geosphere-Biosphere 860 

Programme (IGBP) database. The resulting emissions factors are scaled to match GFEDv2. Further 

information related to this method and the derivation of the biome specific emission factors can be found in 

(Darmenov and da Silva, 2015). Here we use the historical QFEDv2.5 product available daily on a 0.1x0.1 

grid for 2000 to 2017. Comparisons of an earlier version, QFEDv2.2, to other fire products (including 

GFEDv1.0 and GFASv3.1), (Darmenov and da Silva, 2015) found that the QFED database was well 865 

correlated with the other datasets, particularly GFAS (see after, R2 = 0.96), with QFED typically showing 

similar seasonality but slightly larger global emissions than both GFED and GFAS. 

The Fire Inventory from NCAR (FINN, Wiedinmyer et al., 2011) provides daily, 1km resolution estimates 

of gas and particle emissions from open burning of biomass (including wildfire, agricultural fires and 

prescribed burning) over the globe for the period 2002-2018. FINNv1.5 uses MODIS satellite observations 870 

for active fires, land cover and vegetation density. The emission factors are from Akagi et al. (2011), the 

estimated fuel loading are assigned using model results from Hoelzemann et al. (2004), and the fraction of 

biomass burned is assigned as a function of tree cover (Wiedinmyer et al., 2006).  

The Global Fire Assimilation System (GFAS, Kaiser et al., 2012) calculates biomass burning emissions by 

assimilating Fire Radiative Power (FRP) observations from MODIS at a daily frequency and 0.5° resolution 875 

and is available for the time period 2000-2016. After correcting the FRP observations for diurnal cycle, gaps 
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etc., it is linked to the dry matter combustion rate using Wooster et al. (2005) and CH4 emission factors from 

Andreae and Merlet (2001). Here we use GFASv1.3. 

The FAO-CH4 yearly biomass burning emissions are based on the most recent MODIS 6 burned area 

products, coupled with a pixel level (500m) implementation of the IPCC Tier 1 approach. The FAO-CH4 880 

dataset has been shown to be consistent with GFED, however it extends the estimation of peatland fires to 

regions beyond South East Asia (Rossi et al., 2016). FAO-CH4 biomass burning emissions are available from 

1990 to 2016 (Table 1). 

The differences in the biomass burning emission estimates arise from various difficulties, among them the 

ability to represent and know geographical and meteorological conditions and fuel composition, which highly 885 

impact combustion completeness and emission factors. The latter also vary greatly according to fire type, 

ranging from 2.2 g CH4 kg-1 dry matter burned for savannah and grassland fires up to 21 g CH4 kg-1 dry 

matter burned for peat fires (van der Werf et al., 2010). 

Tian et al. (2016) estimated that CH4 emissions from biomass burning during the 2000s were 23±11 Tg CH4 

yr–1 (top-down) and 20±7 Tg CH4 yr–1 (bottom-up). Based on a combination of bottom-up estimates for fire 890 

emissions, of burnt area measurements, and of observationally-constrained top-down emissions of CO, 

(Worden et al., 2017) estimated lower fire emissions at 12.9 ± 3.3 CH4 yr-1 for the time period 2001-2014. In 

this study, based on the five aforementioned products, biomass burning emissions are estimated at 17 Tg CH4 

yr-1 [14-26] for the decade 2008-2017, representing about 5% of total global anthropogenic methane 

emissions. 895 

 

Biofuel burning. Biomass that is used to produce energy for domestic, industrial, commercial, or 

transportation purposes is hereafter called biofuel burning. A largely dominant fraction of methane emissions 

from biofuels comes from domestic cooking or heating in stoves, boilers and fireplaces, mostly in open 

cooking fires where wood, charcoal, agricultural residues, or animal dung are burnt. It is estimated that more 900 

than two billion people, mostly in developing countries, use solid biofuels to cook and heat their homes on a 

daily basis (André et al., 2014), and yet methane emissions from biofuel combustion have not yet received 

full attention. Biofuel burning estimates are gathered from the CEDS, USEPA, GAINS and EDGAR 

inventories. 

Due to the sectorial breakdown of the EDGAR and CEDS inventories the biofuel component of the budget 905 

has been estimated as equivalent to the “RCO - Energy for buildings” sector as defined in (Worden et al., 

2017) and Hoesly et al. 2018 (See Table S2). This is equivalent to the sum of the IPCC 1A4a_Commercial-

institutional, 1A4b_Residential, 1A4c_Agriculture-forestry-fishing and 1A5_Other-unspecified reporting 

categories. This definition is consistent with that used in Saunois et al. (2016) and Kirschke et al. (2013). 

While this sector incorporates biofuel use it also includes the use of other combustible materials (e.g. coal or 910 

https://doi.org/10.5194/essd-2019-128

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 19 August 2019
c© Author(s) 2019. CC BY 4.0 License.



28 
 

gas) for small scale heat and electricity generation within residential and commercial premises. Data provided 

within the GAINS inventory suggests that this approach may overestimate biofuels emissions by between 5 

and 50%. 

In this study, biofuel burning is estimated to contribute 11 Tg CH4 yr-1 [10-14] to the global methane budget, 

about 3% of total global anthropogenic methane emissions. 915 

3.1.6 Other anthropogenic sources (not included in the budget) 

Other anthropogenic sources not yet directly accounted for here are related to agriculture and land-use 

management. In particular, increases in global palm oil production have led to the clearing of natural peat 

forests, reducing natural peatland area and the associated natural CH4 emissions. While studies have long 

suggested that CH4 emissions from peatland drainage ditches are likely to be significant (e.g., Minkkinen and 920 

Laine, 2006), CH4 emissions related to palm oil plantations remain to be properly quantified. Page et al. 

(2011) and Taylor et al. (2014) have quantified global palm oil wastewater treatment fluxes as 2 ± 21 Tg CH4 

yr-1 for 2000-2009 and 4± 32 Tg CH4 yr-1 for 2010-2013. This currently represents a small and highly 

uncertain source of methane but potentially growing in the future. 

Anthropogenic flooded land, including reservoirs, artificial ponds, canals, and ditches, emit CH4 to the 925 

atmosphere. The emission pathways are the same as those described for inland waters below (diffusive flux, 

ebullition and plant-mediated flux), plus reservoir specific pathways including degassing of CH4 from 

turbines (hydropower reservoirs only) and elevated diffusive emissions in rivers downstream of the reservoir 

- these latter emissions are enhanced if the water outlet comes from anoxic CH4-rich hypolimnion waters in 

the reservoir (Bastviken et al., 2004; Guérin et al., 2006; 2016). Methane emissions from reservoirs (mostly 930 

larger ones) are estimated along with the natural inland water system (Sect 3.2.2), despite their anthropogenic 

origin. Small artificial water-bodies have a high surface area to volume ratio, and shallow depth, and are 

likely to be a notable source of methane, at least at the regional scale (Grinham et al., 2018; Ollivier et al., 

2019). These studies found that emissions varied by pond type (for example: livestock rearing farm dams vs. 

cropping farm dams vs. urban ponds vs. weirs). A rough estimate of the global impact of this emission source 935 

is globally significant, between 3 and 8 Tg CH4 yr-1 (calculated using the mean emission rates from Grinham 

et al. (2018) and Ollivier et al. (2018) and an estimate of global farm impoundment surface area of 77,000 

km2 (Downing et al., 2006)). Still, this estimate is quite uncertain given uncertainty in both the per-area 

emission rates (which likely vary by both pond type and by geographic location) and in the surface area of 

artificial ponds globally. However, this rough estimate does emphasise the potential significance of these 940 

sources, although double counting with current uncertain estimates from natural inland water systems (see 

next section) is possible (Thornton et al., 2016b). Canals and ditches have recently been highlighted as high 

areal emitters (e.g., Stanley et al., 2016), and their contribution to large-scale emission are typically included 
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in estimates for overall running waters so far. For an extended discussion on general uncertainties of inland 

water flux estimates, see the natural inland water section below.  945 

3.2 Natural methane sources 

Natural methane sources include vegetated wetland emissions and inland water systems (lakes, small ponds, 

rivers), land geological sources (gas-oil seeps, mud volcanoes, microseepage, geothermal manifestations and 

volcanoes), wild animals, wildfires, termites, thawing terrestrial and marine permafrost and oceanic sources 

(biogenic, geological and hydrate). Many sources have been recognized but their magnitude and variability 950 

remain the most uncertain part of the global methane budget (Kirschke et al., 2013; Saunois et al., 2016). 

3.2.1 Wetlands 

Wetlands are generally defined as ecosystems in which soils or peats are water saturated or where surface 

inundation (permanent or not) dominates the soil biogeochemistry and determines the ecosystem species 

composition (USEPA, 2010a). In order to refine such overly broad definition for methane emissions, we 955 

define wetlands as ecosystems with inundated or saturated soils or peats where anaerobic conditions lead to 

methane production (USEPA, 2010a; Matthews and Fung, 1987). Brackish water emissions are discussed 

separately in Sect. 3.2.6. Our definition includes peatlands (bogs and fens), mineral soil wetlands (swamps 

and marshes), as well as seasonal or permanent floodplains. It excludes exposed water surfaces without 

emergent macrophytes, such as lakes, rivers, estuaries, ponds, and reservoirs (addressed in the next section), 960 

as well as rice agriculture (see Sect. 3.1.4, rice cultivation paragraph) and wastewater ponds. It also excludes 

coastal vegetated ecosystems (mangroves, seagrasses, salt marshes) with salinities usually >0.5 (See Sect. 

3.2.6). Even with this definition, parts of the wetlands could be considered as anthropogenic systems, being 

affected by human-driven land-use changes such as impoundments or even losses due to drainage 

(Woodward et al., 2012). In the following we keep the generic denomination wetlands for natural and human-965 

influenced wetlands. 

Anaerobic conditions are required for acetoclastic or hydrogenotrophic methanogenesis by Archea. High-

water table or flooded conditions limit oxygen availability and creates suitable redox conditions for methane 

production (Fiedler and Sommer, 2000) in water saturated soils, peats and sediments. Although recent work 

suggests modest amounts of methane can also be produced in aerobic tidal freshwater marshsoils (Angle et 970 

al., 2017), this process is not integrated in this analysis. The three most important factors influencing methane 

production in wetlands are the spatial and temporal extent of anoxia (linked to water saturation), temperature 

and substrate availability (Wania et al., 2010; Valentine et al., 1994; Whalen, 2005). Once produced, methane 

can reach the atmosphere through a combination of three processes: molecular diffusion limited advection, 

plant-mediated transport, and ebullition. On its way to the atmosphere, methane can be partly or completely 975 
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oxidized by a group of bacteria, called methanotrophs, which use methane as their only source of energy and 

carbon (USEPA, 2010a). Concurrently, methane from the atmosphere can diffuse into the soil column and 

be oxidized (See Sect. 3.3.4). 

Land-surface models estimate CH4 emissions through a series of processes, including CH4 production, CH4 

oxidation and transportation and are further regulated by changing environmental factors (Tian et al., 2010; 980 

Xu et al., 2010; Melton et al., 2013;Wania et al., 2013; Poulter et al., 2017). Methane emissions originating 

from wetlands to the atmosphere are computed as the product of an emission flux density and a methane 

producing area or surface extent (Supplementary Material, Melton et al. (2013); Bohn et al., 2015). Wetland 

extent appears to be a primary contributor to uncertainties in the absolute flux of methane emissions from 

wetlands and climate response the main source of uncertainty for seasonal and interannual variability (Bohn 985 

et al., 2015; Desai et al., 2015; Poulter et al., 2017). 

In this work, following on from Melton et al. (2013) and Poulter et al. (2017), thirteen land surface models 

computing net CH4 emissions (Table 2) were run under a common protocol with a 30-year spin-up (1901-

1930) followed by a simulation until the end of 2017 forced by CRU-JRA reconstructed climate fields 

(Harris, 2019). Atmospheric CO2 influencing NPP was also prescribed in the models, allowing the models to 990 

separately estimate carbon substrate availability for methanogenesis. In all models, the same remote sensing 

based wetland area and dynamics dataset, which we refer to as WAD2M; Wetland Area Dynamics for 

Methane Modeling) was prescribed. The WAD2M dataset is a monthly global wetland area dataset, which 

has been developed to address some known issues of previous work, such as inclusion of inland waters 

(Poulter et al., 2017). WAD2M combines microwave remote sensing data from Schroeder et al. (2015) with 995 

various regional inventory datasets to develop a monthly global wetland area dataset (Poulter et al., 2019). 

Non-vegetated wetland inland waters (i.e., lakes, rivers and ponds) were subtracted using the Global Surface 

Waters dataset of (Pekel et al., 2016), assuming that permanent waters were those that were present > 50% 

of the time within a 32-year observing period. Then, data for the tropics (Gumbricht et al., 2017), high-

latitudes (Hugelius et al., 2014) and (Widhalm et al., 2015) and temperate regions (Lehner and Döll, 2004) 1000 

were used to set the long-term annual mean wetland area, to which a seasonal cycle of fractional surface 

water was added using data from the Surface WAter Microwave Product Series Version 3.2 (SWAMPS) 

(Jensen and McDonald, 2019;Schroeder et al., 2015). Rice agriculture was removed using the MIRCA2000 

dataset from circa 2000, as a fixed distribution The combined remote-sensing and inventory WAD2M 

product leads to a maximum wetland area of 14.9 Mkm2during the peak season (8.4 Mkm2 on annual average, 1005 

with a range of 8.0 to 8.9 Mkm2 from 2000-2017, about 5.5% of the global land surface). The largest wetland 

areas in the WAD2M are in Amazonia, the Congo Basin, and the Western Siberian Lowlands, which in 

previous studies have appeared to be strongly underestimated by several inventories (Bohn et al., 2015).  
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The average emission map from wetlands for 2008-2017 built from the 13 models is plotted in Fig. 3. The 

zones with the largest emissions reflect the WAD2M database: the Amazon basin, equatorial Africa and Asia, 1010 

Canada, western Siberia, eastern India, and Bangladesh. Regions where methane emissions are robustly 

inferred (i.e., regions where mean flux is larger than the standard deviation of the models) represent 61% of 

the total methane flux due to natural wetlands. This contribution is 80% lower than found in Saunois et al. 

(2016) probably due to the different ensemble of models gathered here and the more stringent exclusion of 

inland waters. Over the 13 models, 10 contributed to Saunois et al. (2016), three models newly participated 1015 

for this release (JSBACH, LPJ-GUESS and TEM-MDM), and SDGVM did not contribute (Table S3). The 

main primary emission zones are consistent between models, which is clearly favoured by the prescribed 

common wetland extent. However, the different sensitivities of the models to temperature, vapour pressure, 

precipitation, and radiation can generate substantially different patterns, such as in India. Some secondary 

(in magnitude) emission zones are also consistently inferred between models: Scandinavia, Continental 1020 

Europe, Eastern Siberia, Central USA, and tropical Africa. Using improved regional methane emission data 

sets (such as studies over North America, Africa, China, and Amazon) can enhance the accuracy of the global 

budget assessment (Tian et al., 2011; Xu and Tian, 2012; Ringeval et al., 2014; Valentini et al., 2014). 

The resulting global flux range for natural wetland emissions is 101-179 Tg CH4 yr-1 for the 2000-2017 

period, with an average of 148 Tg CH4 yr-1 and a one-sigma standard deviation of 25 Tg CH4 yr-1. For the 1025 

last decade, 2008-2017, the average ensemble emissions were 149 Tg CH4 yr-1 with a range of 102-182 (Table 

3). Using a prognostic set of simulations, where models used their own internal approach to estimate wetland 

area and dynamics, the average ensemble emissions were 161 Tg CH4 yr-1 with a range of 125-218 for the 

2008-2017 period. The greater range of uncertainty from the prognostic models is due to unconstrained 

wetland area, but generally the magnitude and interannual variability agree between diagnostic and 1030 

prognostic approaches. These emissions represent about 30% of the total (natural plus anthropogenic) 

methane sources. The large range in the estimates of wetland CH4 emissions results from difficulties in 

defining wetland CH4 producing areas as well as in parameterizing terrestrial anaerobic conditions that drive 

sources and the oxidative conditions leading to sinks (Poulter et al., 2017; Melton et al., 2013; Wania et al., 

2013). The ensemble mean using diagnostic wetland extent in the models is lower by ~35 Tg CH4 yr-1 than 1035 

the one previously reported (see Table 3, for 2000-2009 with comparison to Saunois et al., 2016). This 

difference results from a reduction in double counting due to i) decreased wetland area in WAD2M, 

especially for high-latitude regions where the inland waters, i.e., lakes, small ponds and lakes, were removed, 

and ii) to some extent, an improved  removal of rice agriculture area using the MIRCA-2000 database. 
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3.2.2 Other inland water systems (lakes, ponds, rivers, reservoirs) 1040 

This category includes methane emissions from freshwater systems (lakes, ponds, reservoirs, streams and 

rivers). Methane emissions to the atmosphere from freshwaters occur through a number of pathways 

including (1) diffusive loss of dissolved CH4 across the air-water boundary; (2) ebullition flux from organic 

rich sediments and (3) flux mediated by emergent aquatic macrophytes (plant transport) in littoral 

environments. It is very rare that bottom-up emission budgets distinguish among all of these flux types, and 1045 

many top-down inversion do not have these emissions explicitly represented. Meta-data analyses are 

hampered for methane due to a mix of methodological approaches, which capture different components of 

emissions depending on method and time of deployment and data processing (Stanley et al., 2016). The 

different methods and study designs used also capture different scales in space and time. Altogether, this 

inconsistency in the data collection makes detailed modelling of fluxes highly uncertain. To date, very few 1050 

process-based models exist for these fluxes, relying on data driven approaches and extrapolations. For many 

lakes, particularly smaller shallower lakes and ponds, it is established that ebullition and plant fluxes (in lakes 

with substantial emergent macrophyte communities) can make up a substantial contribution to fluxes, 

potentially accounting for 50% to more than 90% of the flux from these water bodies. While contributions 

from ebullition appear lower from rivers, there are currently insufficient measurements from these systems 1055 

to determine its role (Stanley et al., 2016; Crawford et al., 2014). Ebullition fluxes are very challenging to 

measure, due to the high degree of spatiotemporal variability with very high fluxes occurring in parts of an 

ecosystem over the time frames of seconds followed by long periods without ebullition. 

Streams and rivers. Freshwater methane fluxes from streams and rivers were first estimated to be 1.5 Tg 

CH4 yr-1 (Bastviken et al. 2011). However, this study had measurements from only 21 sites globally. More 1060 

recently, Stanley et al. (2016) compiled a data set of 385 sites and estimated a diffusive emission of 27 Tg 

CH4 yr-1 (5th–95th percentiles: 0.01–160 Tg CH4 yr-1). Detailed regional studies in the tropics and temperate 

watersheds (Borges et al., 2015;Campeau and del Giorgio, 2014) support a flux in the range of 27 Tg CH4 

yr-1 as opposed to the initial ~1.5 Tg CH4 yr-1, however the low number of measurements, the lack of clarity 

on ebullitive fluxes, and the large degree of variance in measurements have precluded an accurate spatial 1065 

representation of stream and river methane fluxes. No new global estimates have been published since 

Stanley et al. (2016) and Saunois et al. (2016). As a result, we use here the same estimate for stream and 

rivers as in Saunois et al. (2016): 27 Tg CH4 yr-1. 

Lakes and ponds. Methane emissions from lakes were first estimated to 1-20 Tg CH4 yr-1 based on 

measurements in two systems (Great Fresh Creek, Maryland and Lake Erie; Ehhalt (1974)). A subsequent 1070 

global emission estimate was 11-55 Tg CH4 yr-1 based on measurements from three Arctic lakes and a few 

temperate and tropical systems (Smith and Lewis, 1992), and 8-48 Tg CH4 yr-1 using extended data from a 
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series of latitudinal bands (73 lakes, Bastviken et al., (2004)). Based on data from 421 lakes and ponds, 

Bastviken et al. (2011) updated their values to 71.6 Tg CH4 yr-1, including emissions from non-saline lakes 

and ponds. High-latitude lakes include both post-glacial and thermokarst lakes (water bodies formed by 1075 

thermokarst), the latter having larger emissions per square meter but smaller regional emissions than the 

former because of smaller areal extent (Wik et al., 2016b). Water body depth, sediment type, and eco-climatic 

region are the key factors explaining variation in methane fluxes from lakes (Wik et al., 2016b). A regional 

estimate for latitudes above 50° North (Wik et al., 2016b) estimated lake and pond methane emissions to 

16.5 Tg CH4 yr-1 (compared to 13.4 Tg CH4 yr-1 in Bastviken et al. (2011), above 54 °N). Tan et al (2016) 1080 

used atmospheric inversion approaches and estimated that the current pan-Arctic (north of 60 °N) lakes emit 

2.4-14.2 Tg CH4 yr-1, while a process-based lake biogeochemistry model (bLake4Me) estimated the 

emissions at 11.9 [7.1-17.3] Tg CH4 yr-1 (Tan et al., 2015). These numbers for northern or Arctic lakes need 

to be considered with regard to the latitudinal area encompassed which differ among studies (Thornton et al. 

2016b). Saunois et al. (2016) estimates for emissions from natural lakes and ponds were based on Bastviken 1085 

et al. (2011), using the emissions from the northern high latitudes above 50°N from Wik et al., (2016b), 

leading to a rounded mean value of 75 Tg CH4 yr-1. Thus emissions between 50°N and 54°N were double 

counted in this previous estimate. Roughly re-distributing Bastviken et al. (2011) latitudinal values over 

different latitudinal bands leads to lake emissions at 18.8 Tg CH4 yr-1 and 10.1 Tg CH4 yr-1 north of 50°N 

and north of 60°N respectively, higher than Wik et al. (2016b) and lower than Tan and Zhuang (2015). 1090 

Combining Bastviken et al. (2011) south of 50°N with the estimate from Wik et al. (2016b) and Bastviken et 

al. (2011) south of 60°N) with. Tan and Zhuang, 2015) leads to global emissions of 69.3 and 73.4 Tg CH4 

yr-1 respectively. Thus we derive here a rounded mean global estimate of 71 Tg CH4 yr-1 close to Bastviken 

et al. (2011) (71.6 Tg CH4 yr-1). 

Reservoirs. Methane emissions from reservoirs may be considered anthropogenic sources as humans build 1095 

them. However, reservoir ecosystems are not managed afterwards and methane emissions do not directly 

depend on human activities. In this budget methane emissions from reservoirs are accounted for in the natural 

sources. In Saunois et al. (2016), methane emissions from reservoirs were estimated to be 20 Tg CH4 yr-1 

using Bastviken et al. (2011), which was based on data from 32 systems. A more recent and extensive review 

estimated total reservoir emissions to 18 Tg CH4 yr-1 (95% confidence interval 12-30 Tg CH4 yr-1; n = 75 1100 

(Deemer et al., 2016)), which is used to revise our estimate in this study. 

Combination. Combining emissions from lakes and ponds from Bastviken et al. (2011) (71.6 Tg CH4 yr-1) 

with the recent estimate of Deemer et al. (2016) for reservoirs and the streams and river estimates from 

Stanley et al. (2016) leads to total inland freshwater emissions of 117 Tg CH4 yr-1. Recently, using a new up 

scaling approach based on size weighting productivity and chlorophyll-A, (DelSontro et al., 2018) provided 1105 

a combined lake and reservoir estimates of 104 (5th–95th percentiles: 67-165), 149 (5th–95th percentiles: 
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95-236) and 185 (5th–95th percentiles: 119-295) Tg CH4 yr-1, using the lake size distributions from Downing 

et al. (2006), Messager et al. (2016) and Verpooter et al. (2014), respectively. These estimates are higher (by 

10%, 57% and almost 100%, respectively) than previously reported in Saunois et al. (2016) (ie, 95 Tg CH4 

yr-1 for lakes, ponds and reservoirs). Adding the streams and river estimates from Stanley et al. (2016) to 1110 

DelSontro et al. (2018) yields total freshwater estimates of 131, 176 and 212 Tg CH4 yr-1. 

Previously, Kirschke et al. (2013) reported a range of 8-73 Tg CH4 yr-1 for this ensemble of emissions and 

Saunois et al. (2016) a mean value of 122 Tg CH4 yr-1 (75 Tg CH4 yr-1 for lakes and ponds, adding 20 Tg 

CH4 yr-1 for reservoirs (Bastviken et al., 2011) and 27 Tg CH4 yr-1 for streams and rivers (Stanley et al., 

2016)). This mean value was based on a single set of estimates, to which a 50% uncertainty was associated 1115 

as a range (60-180 Tg CH4 yr-1). Here the new estimates of DelSontro et al. (2018) allows to calculate a mean 

estimate of all inland freshwaters at 159 Tg CH4 yr-1 associated to the range 117-212 Tg CH4 yr-1 that reflects 

the minimum and maximum values of the available studies (see Methodology, Sect. 2). However, it should 

be noted that this range does not take into account the uncertainty of individual studies. Importantly, these 

current estimates do not include the smallest size class of lakes or ephemeral streams resulting in a possible 1120 

misallocation of freshwater fluxes to wetland ecosystems in spite of the attempts to discount open water 

emissions from the wetland estimate (see above). The present data indicate that lakes or natural ponds, 

flooded land/reservoirs and streams/rivers account for 70%, 13% and 17% of the average fluxes, respectively 

(given the large uncertainty the percentages should be seen as approximate relative magnitudes only). 

The improvement in quantifying inland water fluxes is highly dependent on the availability of more accurate 1125 

assessments of their surface area. Yet despite new estimates of surface areas, there are still important 

discrepancies between published studies that prevent us from stabilizing estimates of freshwater methane 

emissions in this update of the global methane budget. For streams and rivers, the 355,000km2 used in 

Bastviken et al. (2011) were re-evaluated to 540,000 km2 by Stanley et al. (2016) due to new surface area 

estimate from Raymond et al. (2013). Regarding lakes and reservoirs, the three current inventories (Downing 1130 

et al., 2006;Messager et al., 2016;Verpoorter et al., 2014) show typical differences of a factor 2 to 5 by size-

class. Also, it was noted that small ponds, which were not included in either Downing et al. (2006) or 

Verpoorter et al. (2014), have a diffusive flux higher than any other size class of lakes (Holgerson and 

Raymond, 2016). Further analysis, and possibly more refined process-based models, are still necessary and 

urgent to evaluate these global up scaled estimates against regional specific approaches such as Wik et al. 1135 

(2016b) for the northern high latitude lakes.  

It is important to note that the above estimates of all inland water fluxes are not independent. Instead, they 

represent updates from increasing data quantity and quality. Altogether, these studies consider data from 

about 1000 systems, of which ~750 are located north of 50°N. In this context we only consider fluxes from 

open waters assuming that plant-mediated fluxes (estimated at 10.2 Tg CH4 yr-1 in Bastviken et al., 2011) are 1140 
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included in the wetland emission term. It should also be noted that issues regarding spatiotemporal variability 

are not considered in consistent ways at present (Wik et al., 2016a; Natchimuthu et al., 2015). Given the 

inconsistencies in the areal flux data and in area estimates, the aim to make frequent updates of the methane 

emissions is presently not possible for inland water emissions. Even more than for other emission categories, 

differences in inland water flux values between updates of this paper are more likely to represent differences 1145 

in what data are used and how the data is processed, rather than reflecting real temporal trends in the 

environment.  

Several aspects will need consideration to reduce the remaining uncertainty in the freshwater fluxes including 

generating flux measurements that are more representative in time and space, updating surface area databases 

(e.g. GLOWABO, Verpoorter et al. (2014), HydroLAKES, Messager et al., 2016), and refining our 1150 

understanding of ebullitive fluxes. Furthermore, it is clear that double accounting between inland waters and 

wetlands is occuring (Thornton et al., 2016b). As a result, new frontiers include i) concluding the ongoing 

effort to develop high resolution (further <30m) classification of saturated and inundated continental surfaces, 

ii) developing systematic flux data collection efforts, capturing spatiotemporal variability, and in turn (iii) 

the development of process-based models, to include lateral fluxes, for example, for the different inland 1155 

waters systems avoiding up scaling issues, as recently done by e.g. (Maavara et al., 2019) for N2O.  

3.2.3 Onshore and offshore geological sources 

Significant amounts of methane, produced within the Earth’s crust, naturally migrate to the atmosphere 

through tectonic faults and fractured rocks. Major emissions are related to hydrocarbon production in 

sedimentary basins (microbial and thermogenic methane), through continuous or episodic exhalations from 1160 

onshore and shallow marine hydrocarbon seeps and through diffuse soil microseepage (after Etiope, 2015). 

Specifically, five source categories have been considered. Four are onshore sources: gas-oil seeps, mud 

volcanoes, diffuse microseepage and geothermal manifestations including volcanoes. One source is offshore: 

submarine seepage, which may include the same types of gas manifestations occurring on land. Based on (i) 

the acquisition of thousands of land-based flux measurements for various seepage types in many countries, 1165 

(ii) existing datasets from oil and gas industry and studies on volcanism, and (iii) following the same 

procedures as for other sources (using the concepts of “point sources”, “area sources”, “activity data” and 

“emission factors”, EMEP/EEA, 2009), (Etiope et al., 2019) have produced the first gridded maps of 

geological methane emissions and their isotopic signature for these five categories, with a global total of 37.4 

Tg CH4 yr−1 (reproduced in Fig. 4). The grid maps do not represent, however, the actual global geological-1170 

CH4 emission because the datasets used for the spatial gridding (developed for modelling purposes) were not 

complete or did not contain the information necessary for improving all previous estimates. Combining the 

best estimates for the five categories of geological sources (from grid maps or from previous statistical and 
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process-based models), the breakdown by category reveals that onshore microseepage dominate (24 Tg CH4 

yr-1), the other categories having similar smaller contributions: as average values, 4.7 Tg CH4 yr-1 for 1175 

geothermal manifestations, about 7 Tg CH4 yr-1 for submarine seepage and 9.6 Tg CH4 yr-1 for onshore seeps 

and mud volcanoes. These values lead to a global bottom-up geological emission mean of 45 [27-63] Tg CH4 

yr-1 (Etiope and Schwietzke, 2019). 

This bottom-up estimate is compatible with top-down estimates derived by combining radiocarbon (14C) and 

ethane concentrations data in the atmosphere and polar ice-cores and related modelling (Lassey et al., 1180 

2007a,b; (Nicewonger et al., 2016); Schwietzke et al., 2016; (Dalsøren et al., 2018), Etiope and Schwietzke, 

2019). While all bottom-up and some top-down estimates, following different and independent techniques 

from different authors consistently suggest a global geo-CH4 emission in the order of 40-50 Tg yr-1, the 

radiocarbon (14C-CH4) data in ice cores reported by (Petrenko et al., 2017) appear to lower the estimate, with 

a range of 0 (zero) to 18.1 Tg CH4 yr-1 (<15.4 Tg CH4 yr-1, 95 percent confidence) at least for the atmosphere 1185 

between 11,000 and 12,000 years ago (Younger-Dryas Preboreal transition). If the Petrenko et al. (2017) 

estimate is correct and reflects present-day conditions (which is questionable), its range, including zero and 

near-zero emissions, is lower than any estimates from different authors that do not go below 18 Tg CH4 yr-1 

(Etiope et al., 2019). The discrepancy between Petrenko et al (2017) and all other estimates has opened a new 

debate and certainly it represents an interesting topic of discussion. 1190 

Waiting for further investigation on this topic, we decide to keep the best estimates from Etiope and 

Shwietzke, (2019) for the mean values, and associate it to the lowest estimates reported in Etiope et al. (2019). 

Thus we report a total global geological emission of 45 [18-63] Tg CH4 yr-1, with the following breakdown: 

offshore emissions 7 [5-10] Tg CH4 yr-1 and onshore emissions 38 [13-53] Tg CH4 yr-1. The updated bottom-

up estimate is slightly lower than the previous budget mostly due to a reduction of estimated emissions of 1195 

onshore and offshore seeps (see Sect. 3.2.6 for more offshore contribution explanations). 

3.2.4 Termites 

Termites are an order of insects (isoptera), which occur predominantly in the tropical and subtropical latitudes 

(Abe et al., 2000). Thanks to their metabolism they play an important role in the decomposition of plant 

material and C cycling, CO2 and CH4 being released during the anaerobic decomposition of plant biomass in 1200 

their gut (Sanderson, 1996). The uncertainty related to this CH4 source is very high as CH4 emissions from 

termites in different ecosystem types can vary and are driven by a range of factors while the number field 

measurements both of termite biomass and emissions are relatively scarce (Kirschke et al. 2013).  

In Kirschke et al. (2013) (see their supplementary material), a re-analysis of CH4 emissions from termites at 

the global scale was proposed. There CH4 emissions per unit of surface were estimated as the product of 1205 

termite biomass, termite CH4 emissions per unit of termite mass and a scalar factor expressing the effect of 
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land use/cover change, the latter two terms estimated from published literature re-analysis (Kirschke et al., 

2013, supplementary). For tropical climates, termite biomass was estimated by a simple regression model 

representing its dependence on GPP (Kirschke et al., 2013, supplementary), whereas termite biomass for 

forest and grassland ecosystems of the warm temperate climate and for shrub lands of the Mediterranean sub-1210 

climate were estimated from data reported by Sanderson (1996). The CH4 emission factor per unit of termite 

biomass was estimated as 2.8 mg CH4 g-1 termite h-1 for tropical ecosystems and Mediterranean shrublands 

(Kirschke et al., 2013) and 1.7 mg CH4 g-1 termite h-1 for temperate forests and grasslands (Fraser et al., 

1986). Emissions were scaled-up in ESRI ArcGIS environment and annual CH4 fluxes computed for the three 

periods 1982-1989, 1990-1999 and 2000-2007 representative of the 1980s’, 1990s’ and 2000s’, respectively. 1215 

The re-analysis of termite emissions proposed in Saunois et al. (2016), maintained the same approach but 

data were calculated using climate zoning (following the Koppen-Geiger classification) applied to updated 

climate datasets by Santini and di Paola (2015), and was adopted to take into account different combinations 

of termite biomass per unit area and CH4 emission factor per unit of termite biomass.  

Here, this analysis is extended to cover the period 2000-2007 and 2010-2016. This latest estimate follows 1220 

the approach outlined above for Saunois et al. (2016). However in order to extend the analysis to 2016, an 

alternative, MODIS based measure of GPP (Zhang et al., 2017a) rather than (Jung et al., 2009) and (Jung et 

al., 2011) was used to estimate termite biomass. To have coherent datasets of GPP and land use, the latter 

variable previously derived from Ramankutty and Foley (1999) was substituted by MODIS maps (Friedl et 

al., 2010;Channan et al., 2014.). These new estimates covered 2000-2007 and 2010-2016 using 2002 and 1225 

2012 MODIS data as an average reference year for each period, respectively. 

Termite CH4 emissions show only little inter-annual and inter-decadal variability (0.1 Tg CH4 yr-1) but a 

strong regional variability with tropical South America and Africa being the main sources (23 and 28% of 

the global total emissions, respectively) due to the extent of their natural forest and savannah ecosystems 

(Fig. 4). Changing GPP and land use dataset sources had only a minimal impact on the 2000-2007 global 1230 

termite flux, increasing it from 8.7 Tg CH4 yr-1 as found in the first two re-analyses (Kirschke et al., 2013, 

Saunois et al. 2016) to 9.9 Tg CH4 yr-1 (present data), well within the estimated uncertainty (8.7±3.1 Tg CH4 

yr-1). But it had a noticeable effect on the spatial distribution of the flux (Fig. S2). These changes, most 

obviously a halving of the South East Asian flux, aligned with shifts in the underlying GPP product. Previous 

studies (Zhang et. al 2017a, Mercado et. al 2009) had linked these GPP shifts to a methodological issue with 1235 

light-use efficiency that drove an underestimate of evergreen broadleaf and evergreen needleleaf forest GPP, 

biomes which are prevalent in the tropics. This value is close to the average estimate derived from previous 

up-scaling studies, which report values spanning from 2 to 22 Tg CH4 yr-1 (Ciais et al., 2013). 

In this study, we report a decadal value of 9 Tg CH4 yr-1 (range [3-15] Tg CH4 yr-1, Table 3). 
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3.2.5 Wild animals 1240 

Wild ruminants emit methane through the microbial fermentation process occurring in their rumen, similarly 

to domesticated livestock species (USEPA, 2010a). Using a total animal population of 100-500 million, 

(Crutzen et al., 1986) estimated the global emissions of CH4 from wild ruminants in the range of 2-6 Tg CH4 

yr-1. More recently, (Pérez-Barbería, 2017) lowered this estimate to 1.1-2.7 Tg CH4 yr-1 using a number of 

total animal population of 214 millions (range [210-219]), arguing that the maximum number of animals 1245 

(500 million) used in Crutzen et al. (1986) was only poorly justified. Moreover Perez-Barberia (2017) also 

stated that the value of 15 Tg CH4 yr-1 found in the last IPCC reports is much higher than their estimate 

because this value comes from an extrapolation of Crutzen work for the last glacial maximum when the 

population of wild animals was much larger, as originally proposed by (Chappellaz et al., 1993). 

Based on these findings, the range adopted in this updated methane budget is 2 [1-3] Tg CH4 yr-1 (Table 3). 1250 

3.2.6 Oceanic sources 

Oceanic sources comprise coastal ocean and open ocean methane release. Possible sources of oceanic CH4 

include: (1) production from marine (bare and vegetated) sediments or thawing sub-sea permafrost; (2) in 

situ production in the water column, especially in the coastal ocean because of submarine groundwater 

discharge (USEPA, 2010a); (3) leaks from geological marine seepage (see also Sect. 3.2.3); (4) emission 1255 

from the destabilisation of marine hydrates. Once at the seabed, methane can be transported through the water 

column by diffusion in a dissolved form (especially in the upwelling zones), or by ebullition (gas bubbles, 

e.g. from geological marine seeps), for instance, in shallow waters of continental shelves. In coastal vegetated 

habitats methane can also be transported to the atmosphere through the aerenchyma of emergent aquatic 

plants (Ramachandran et al., 2004). 1260 

Biogenic emissions from open and coastal ocean. The most common biogenic ocean emission value found 

in the literature is 10 Tg CH4 yr-1 (Rhee et al., 2009). It appears that most studies rely on the work of Ehhalt 

(1974), where the value was estimated on the basis of the measurements done by Swinnerton and co-workers 

(Lamontagne et al., 1973; Swinnerton and Linnenbom, 1967) for the open ocean, combined with purely 

speculated emissions from the continental shelf. Based on basin-wide observations using updated 1265 

methodologies, three studies found estimates ranging from 0.2 to 3 Tg CH4 yr-1 (Conrad and Seiler, 1988; 

Bates et al., 1996; Rhee et al., 2009), associated with super-saturations of surface waters that are an order of 

magnitude smaller than previously estimated, both for the open ocean (saturation anomaly ~0.04, see Rhee 

et al. (2009), equation 4) and for continental shelf (saturation anomaly ~0.2). In their synthesis, indirectly 

referring to the original observations from Lambert and Schmidt (1993), Wuebbles and Hayhoe (2002), they 1270 

use a value of 5 Tg CH4 yr-1. Proposed explanations for discrepancies regarding sea-to air methane emissions 
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in the open ocean rely on experimental biases in the former studies of Swinnerton and Linnenbom (Rhee et 

al., 2009). This may explain why the Bange et al. (1994) compilation cites a global source of 11-18 Tg CH4 

yr-1 with a dominant contribution of coastal regions. Here, we report a range of 0-5 Tg CH4 yr-1, with a mean 

value of 2 Tg CH4 yr-1 for biogenic emissions from open and coastal ocean (excluding estuaries). 1275 

Biogenic emissions from brackish waters (estuaries, coastal wetlands) were not reported in the previous 

budget (Saunois et al., 2016). Methane emissions from estuaries were originally estimated by Bange et al. 

(1994), Upstill-Goddard et al. (2000) and Middelburg et al. (2002) to be comprised between 1 and -3 Tg CH4 

yr-1. This range was later revised upwards by Borges and Abril (2011) to about 7 Tg CH4 yr-1 based on a 

methodology distinguishing between different estuarine types and accounting for the contribution of tidal 1280 

flats, marshes and mangroves, for a total of 39 systems and a global “inner” estuarine surface area of 1.1 106 

km2 (Laruelle et al., 2013). The same methodology as in Laruelle et al. (2013) has been applied here to the 

same systems using an expanded database of local and regional measurements (72 systems) and suggests 

however that global estuarine CH4 emissions were overestimated and may actually not surpass 3-3.5 Tg CH4 

yr-1. Despite this overall reduction, the specific contribution of sediment and water emissions from mangrove 1285 

ecosystems is however higher and contributes 0.03 to 1.7 Tg CH4 yr-1 globally (Rosentreter et al., 2018). This 

estuarine estimate does not include the uncertain contribution from large river plumes protruding onto the 

shelves. Their surface area reaches about 3.7 106 km2 (Kang et al., 2013) but because of significantly lower 

CH4 concentration (e.g. Zhang et al., 2008; Osudar et al., 2015) than in inner estuaries, the outgassing 

associated with these plumes likely does not exceed 1-2 Tg CH4 yr-1. Seagrass meadows are also not included 1290 

although they might release 0.09 to 2.7 Tg CH4 yr-1 (Garcias-Bonet and Duarte, 2017). These methane 

emissions from vegetated coastal ecosystems can partially offset (Rosentreter et al. 2018) their “blue carbon” 

sink (e.g., Nellemann et al., 2009; McLeod et al., 2011). Note that the latter two contributions might partly 

overlap with oceanic (open and coastal) sources estimates. The total (inner and outer) estuarine emission 

flux, which is based on only about 80 systems is thus in the range 4-5 Tg CH4 yr-1 (including marshes and 1295 

mangrove). High uncertainties in coastal ocean emission estimates can be reduced by better defining the 

various coastal ecosystem types and their boundaries to avoid double-counting (e.g. estuaries, brackish 

wetlands, freshwater wetlands), updating the surface area of each of these coastal systems, and better 

quantifying methane emission rates in each ecosystem type. 

As a result, here we report a range of 4-10 Tg CH4 yr-1 for emissions from coastal and open ocean (including 1300 

estuaries), with a mean value of 6 Tg CH4 yr-1. 

Geological emissions. The production of methane at the seabed is known to be significant. For instance, 

marine seepages emit up to 65 Tg CH4 yr-1 globally at seabed level (USEPA, 2010a). What is uncertain is 

the flux of oceanic methane reaching the atmosphere. For example, bubble plumes of CH4 from the seabed 

have been observed in the water column, but not detected in the Arctic atmosphere (Westbrook et al., 2009; 1305 
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Fisher et al., 2011). There are several barriers preventing methane to be expelled to the atmosphere. Firstly, 

starting from the bottom, gas hydrates and permafrost serve as a barrier to fluid and gas migration towards 

the seafloor (James et al., 2016). On centennial to millennial timescales, trapped gases may be released when 

permafrost is perturbed and cracks, or through Pingo-like features. Secondly, and most importantly microbial 

processes control methane emissions from the seabed. Anaerobic methane oxidation, first described by 1310 

Reeburgh and Heggie (1977), coupled to sulfate reduction controls methane losses from sediments to the 

overlying water (Reeburgh, 2007; Egger et al., 2018). Methane only escapes marine sediments in significant 

amounts from rapidly accumulating sedimentary environments or via advective processes such as ebullition 

or groundwater flow in shallow shelf regions. Anaerobic methane oxidation was demonstrated to be able to 

keep up with the thaw front of thawing permafrost in a region that had been inundated within the past 1000 1315 

years (Overduin et al., 2015). Thirdly, a large part of the seabed CH4 production and emission is oxidised in 

the water column and does not reach the atmosphere (James et al., 2016). Aerobic oxidation is a very efficient 

sink, which allows very little methane; even from established and vigorous gas seep areas or even gas well 

blowouts such as the Deepwater Horizon, from reaching the atmosphere. Fourthly, the oceanic pycnocline 

acts as a physical barrier limiting the transport of methane (and other species) towards the surface. Fifthly, 1320 

the dissolution of bubbles into the ocean water prevents methane from reaching the ocean surface. Although 

bubbling is the most efficient way to transfer methane from the seabed to the atmosphere, the fraction of 

bubbles actually reaching the atmosphere is very uncertain and critically depends on emission depths (< 100-

200m, McGinnis et al., 2015) and on the size of the bubbles (>5-8 mm, James et al., 2016). Finally, surface 

oceans are aerobic and contribute to the oxidation of dissolved methane (USEPA, 2010a). However, surface 1325 

waters can be more supersaturated than the underlying deeper waters, leading to a methane paradox 

(Sasakawa et al., 2008). Possible explanations involve i) upwelling in areas with surface mixed layers covered 

by sea-ice (Damm et al., 2015), ii) the release of methane by the degradation of dissolved organic matter 

phosphonates in aerobic conditions (Repeta et al., 2016), iii) methane production by marine algae (Lenhart 

et al., 2016), or iv) methane production within the anoxic centre of sinking particles (Sasakawa et al., 2008), 1330 

but more work is still needed to be conclusive about this apparent paradox. 

For geological emissions, the most used value has long been 20 Tg CH4 yr-1, relying on expert knowledge 

and literature synthesis proposed in a workshop reported in Kvenvolden et al. (2001), the author of this study 

recognising that this was a first estimation and needs revision. Since then, oceanographic campaigns have 

been organized, especially to sample bubbling areas of active seafloor gas seep bubbling. For instance, 1335 

Shakhova et al. (2010; 2014) infer 8-17 Tg CH4 yr-1 emissions just for the Eastern Siberian Arctic Shelf 

(ESAS), based on the extrapolation of numerous but local measurements, and possibly related to thawing 

subseabed permafrost (Shakhova et al., 2015). Because of the highly heterogeneous distribution of dissolved 

CH4 in coastal regions, where bubbles can most easily reach the atmosphere, extrapolation of in situ local 

https://doi.org/10.5194/essd-2019-128

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 19 August 2019
c© Author(s) 2019. CC BY 4.0 License.



41 
 

measurements to the global scale can be hazardous and lead to biased global estimates. Indeed, using very 1340 

precise and accurate continuous land shore-based atmospheric methane observations in the Arctic region, 

Berchet et al. (2016) found a range of emissions for ESAS of ~2.5 Tg CH4 yr-1 (range [0-5]), 4-8 times lower 

than Shakhova’s estimates. Such a reduction in ESAS emission estimate has also been inferred from oceanic 

observations by Thornton et al. (2016a) with a maximum sea-air CH4 flux of 2.9 Tg CH4 yr-1 for this region. 

Etiope et al. (2019) suggested a minimum global total submarine seepage emissions of 3.9 Tg CH4 yr-1 simply 1345 

summing published regional emission estimates for 15 areas for identified emission areas (above 7 Tg CH4 

yr-1 when extrapolated to include non-measured areas). These recent results, based on different approaches, 

suggest that the current estimate of 20 Tg CH4 yr-1 is too large and needs revision.  

Therefore, as discussed in Section 3.2.2, we report here a reduced range of 5-10 Tg CH4 yr-1 for marine 

geological emissions compared to the previous budget, with a mean value of 7 Tg CH4 yr-1. 1350 

Hydrate emissions. Among the different origins of oceanic methane, hydrates have attracted a lot of 

attention. Methane hydrates (or sometimes called clathrates) are ice-like crystals formed under specific 

temperature and pressure conditions (Milkov, 2005). The stability zone for methane hydrates (high pressure, 

ambient temperatures) can be found in the shallow lithosphere (i.e. <2,000 m depth), either in the continental 

sedimentary rocks of polar regions, or in the oceanic sediments at water depths greater than 300 m 1355 

(continental shelves, sediment-water interface) (Kvenvolden and Rogers, 2005; Milkov, 2005). Methane 

hydrates can be either of biogenic origin (formed in situ at depth in the sediment by microbial activity) or of 

thermogenic origin (non-biogenic gas migrated from deeper sediments and trapped due to 

pressure/temperature conditions or due to some capping geological structure such as marine permafrost). The 

total stock of marine methane hydrates is large but uncertain, with global estimates ranging from hundreds 1360 

to thousands of Pg CH4 (Klauda and Sandler, 2005; Wallmann et al., 2012). 

Concerning more specifically atmospheric emissions from marine hydrates, Etiope (2015) points out that 

current estimates of methane air-sea flux from hydrates (2-10 Tg CH4 yr-1 in e.g. Ciais et al. (2013) or 

Kirschke et al., 2013) originate from the hypothetical values of Cicerone and Oremland (1988). No 

experimental data or estimation procedures have been explicitly described along the chain of references since 1365 

then (Lelieveld et al., 1998; Denman et al., 2007; Kirschke et al., 2013; IPCC, 2001). It was estimated that 

~473 Tg CH4 have been released in the water column over 100 years (Kretschmer et al., 2015). Those few 

Tg per year become negligible once consumption in the water column has been accounted for. While events 

such as submarine slumps may trigger local releases of considerable amounts of methane from hydrates that 

may reach the atmosphere (Etiope, 2015; Paull et al., 2002), on a global scale, present-day atmospheric 1370 

methane emissions from hydrates do not appear to be a significant source to the atmosphere, and at least 

formally, we should consider 0 Tg CH4 yr-1 emissions. 
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Estimates of total (biogenic and geological) open and coastal oceanic emissions. Summing biogenic, 

geological and hydrate emissions from open and coastal ocean (excluding estuaries) leads to a total of 9 Tg 

CH4 yr-1 (range 5-17). A recent work (Weber et al, 2019) suggests a new robust estimate of the 1375 

climatological oceanic flux based on the statistical mapping of methane supersaturation measurements 

collected as part of the MEMENTO project (Kock and Bange, 2015) for the diffusive fluxes. The ebullitive 

fluxes were estimated by combining previous estimates of seafloor ebullition from various geologic sources 

(Hornafius et al., 1999;Kvenvolden and Rogers, 2005), observed bubble size distributions (Wang et al., 

2016), and a bubble model to estimate the transfer efficiency of methane from the seafloor to atmosphere 1380 

(McGinnis et al., 2006). Using these methods, the diffusive flux was estimated as 2-6 Tg CH4 yr-1 and the 

ebullitive flux as 2-11 Tg CH4 yr-1, giving a total (open and coastal) oceanic flux estimate of 6-15 Tg CH4 

yr-1 (90% confidence interval) when the probability distributions for the two pathways are combined. Another 

recent estimate based on the biogeochemistry model PlankTOM10 (Le Quéré et al., 2016) calculates an open 

and coastal ocean methane flux (excluding estuaries) of 8 [-13/ +19] Tg CH4 yr-1 (Buitenhuis et al., in prep, 1385 

2019), with a coastal contribution of 44%. 

Our estimate agrees well with the estimates of 6-15 Tg CH4 yr-1 by Weber et al. (2019) and 8 Tg CH4 yr-1 

(Buitenhuis et al., in prep, 2019). Distribution of open and coastal oceanic fluxes from Weber et al. (2019) is 

shown in Fig. 4. This more robust estimate took benefit from synthesis of in situ measurements of 

atmospheric and surface water methane concentrations and of bubbling areas, and of the development of 1390 

process-based models for oceanic methane emissions. Methane emissions from brackish water were not 

estimated in Saunois et al. (2016) and additional 4 Tg CH4 yr-1 are reported in this budget, leading to similar 

total oceanic emissions despite a reduced estimate in geological off shore emissions compared to Saunois et 

al. (2016). 

3.2.7 Terrestrial permafrost and hydrates 1395 

Permafrost is defined as frozen soil, sediment, or rock having temperatures at or below 0°C for at least two 

consecutive years (Harris et al., 1988). The total extent of permafrost in the Northern Hemisphere is about 

14 million km2, or 15% of the exposed land surface (Obu et al., 2019). As the climate warms, large areas of 

permafrost are also warming and if soil temperatures pass 0°C, thawing of the permafrost occurs. Permafrost 

thaw is most pronounced in southern, spatially isolated permafrost zones, but also occurs in northern 1400 

continuous permafrost (Obu et al., 2019). Thaw occurs either as a gradual, often widespread deepening of 

the active layer or as more rapid localised thaw associated to loss of massive ground ice (thermokarst) (Schuur 

et al., 2015). A total of 1035 ± 150 Pg of carbon can be found in the upper 3 meters or permafrost regions, or 

~1300 Pg of carbon (1100 to 1500) Pg C for all permafrost (Hugelius et al., 2014).  
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The thawing permafrost can generate direct and indirect methane emissions. Direct methane emissions rely 1405 

on the release of methane contained in the thawing permafrost. This flux to the atmosphere is small and 

estimated to be at maximum 1 Tg CH4 yr-1 at present (USEPA, 2010a). Indirect methane emissions are 

probably more important. They rely on: 1) methanogenesis induced when the organic matter contained in 

thawing permafrost is released; 2) the associated changes in land surface hydrology possibly enhancing 

methane production (McCalley et al., 2014); and 3) the formation of more thermokarst lakes from erosion 1410 

and soil collapsing. Such methane production is probably already significant today and could be more 

important in the future associated with a strong positive feedback to climate change (Schuur et al., 2015). 

However, indirect methane emissions from permafrost thawing are difficult to estimate at present, with very 

few data to refer to, and in any case largely overlap with wetland and freshwater emissions occurring above 

or around thawing areas. For instance, based on lake and soil measurements (Walter Anthony et al., 2016) 1415 

found that methane emissions (~4 Tg CH4 yr-1) from thermokarst areas of lakes that have expanded over the 

past 60 years were directly proportional to the mass of soil carbon inputs to the lakes from the erosion of 

thawing permafrost. 

Here, we choose to report only the direct emission range of 0-1 Tg CH4 yr-1, keeping in mind that current 

wetland, thermokarst lakes and other freshwater methane emissions already likely include a significant 1420 

indirect contribution originating from thawing permafrost. For the next century, it is estimated that 5-15% of 

the terrestrial permafrost carbon pool is vulnerable to release in the form of greenhouse gases, corresponding 

to 130-160 Pg C (Koven et al., 2015). The likely progressive release in the atmosphere of such an amount of 

carbon as carbon dioxide and methane may have a significant impact on climate change trajectory (Schuur 

et al., 2015). The underlying methane hydrates represent a substantial reservoir of methane, estimated up to 1425 

530 000 Tg of CH4 (Ciais et al., 2013). Although local to regional studies are conducted (e.g. Kuhn et al., 

2018; Kohnert et al., 2017), present and future emissions related to this reservoir are difficult to assess for all 

the Arctic at the moment and still require more work. 

3.2.8 Vegetation 

Three distinct pathways for the production and emission of methane by living vegetation are considered here 1430 

(see (Covey and Megonigal, 2019) for an extensive review). Firstly, plants produce methane through an 

abiotic photochemical process induced by stress (Keppler et al., 2006). This pathway was initially criticized 

(e.g., Dueck et al., 2007; Nisbet et al., 2009), and although numerous studies have since confirmed aerobic 

emissions from plants and better resolved its physical drivers (Fraser et al. 2015), global estimates still vary 

by two orders of magnitude (Liu et al., 2015). This source has not been confirmed in-field however, and 1435 

although the potential implication for the global methane budget remains unclear, emissions from this source 

are certainly much smaller than originally estimated in Keppler et al. (2006) (Bloom et al., 2010; Fraser et 
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al., 2015). Second, and of clearer significance, plants act as “straws”, drawing up and releasing microbially 

produced methane from anoxic soils (Rice et al., 2010; Cicerone and Shetter, 1981). For instance, because in 

the forested wetlands of Amazonia, tree stems are the dominant ecosystem flux pathway for soil-produced 1440 

methane, including stem emissions in ecosystem budgets can reconcile regional bottom-up and top-down 

estimates (Pangala et al., 2017). Third, the stems of both living trees (Covey et al., 2012) and dead wood 

(Covey et al., 2016) provide an environment suitable for microbial methanogenesis. Static chambers 

demonstrate locally significant through-bark flux from both soil- (Pangala et al., 2013; 2015), and tree stem-

based methanogens (Wang et al., 2016; Pitz and Megonigal, 2017). A recent synthesis indicates stem CH4 1445 

emissions significantly increase the source strength of forested wetland, and modestly decrease the sink 

strength of upland forests (Covey and Megonigal, 2019). The recent but sustained scientific activity about 

CH4 dynamics in forested ecosystems reveals a far more complex story than previously thought, with an 

interplay of, productive/consumptive, aerobic/anaerobic, biotic/abiotic, processes occurring between 

upland/wetland soils, trees, and the atmosphere. Understanding the complex processes that regulate CH4 1450 

source–sink dynamics in forests and estimating their contribution to the global methane budget requires 

cross-disciplinary research, more observations, and new models that can overcome the classical binary 

classifications of wetland versus upland forest and of emitting versus uptaking soils (Barba et al., 2019) ; 

Covey and Megonigal, 2019). Although we recognize these emissions are potentially large (particularly tree 

transport from inundated soil), global estimates for each of these pathways remain highly uncertain and/or 1455 

are currently ascribed here to other flux categories sources (e/g. inland waters, wetlands, upland soils).  

3.3 Methane sinks and lifetime  

Methane is the most abundant reactive trace gas in the troposphere and its reactivity is important to both 

tropospheric and stratospheric chemistry. The main atmospheric sink of methane (~90% of the total sink 

mechanism) is oxidation by the hydroxyl radical (OH), mostly in the troposphere (Ehhalt, 1974). Other losses 1460 

are by photochemistry in the stratosphere (reactions with chlorine atoms (Cl) and atomic oxygen (O(1D)), 

oxidation in soils (Curry, 2007; Dutaur and Verchot, 2007), and by photochemistry in the marine boundary 

layer (reaction with Cl; Allan et al. (2007), Thornton et al. (2010) . Uncertainties in the total sink of methane 

as estimated by atmospheric chemistry models are in the order of 20-40% (Kirschke et al., 2013). It is much 

less (10-20%) when using atmospheric proxy methods (e.g. methyl chloroform, see below) as in atmospheric 1465 

inversions (Kirschke et al., 2013). Methane is a significant source of water vapor in the middle to upper 

stratosphere, and influences stratospheric ozone concentrations by converting reactive chlorine to less 

reactive hydrochloric acid (HCl). In the present release of the global methane budget, we estimate bottom-

up methane chemical sinks and lifetime based on global model results from the Climate Chemistry Model 

Initiative (CCMI) (Morgenstern et al., 2017). 1470 
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3.3.1 Tropospheric OH oxidation  

OH radicals are produced following the photolysis of ozone (O3) in the presence of water vapour. OH is 

destroyed by reactions with CO, CH4, and non-methane volatile organic compounds but since OH exists in 

photochemical equilibrium with HO2, the net effect of CH4 oxidation on the HOx budget also depends on the 

level of NOx (Lelieveld et al., 2002) and other competitive oxidants. Considering its very short lifetime (up 1475 

to a few seconds, Lelieveld et al., 2004), it is not possible to estimate global OH concentrations directly from 

observations. Observations are generally carried out within the boundary layer, while the global OH 

distribution and variability are more influenced by the free troposphere (Lelieveld et al., 2016). Following 

the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), which studied the long-

term changes in atmospheric composition between 1850 and 2100 (Lamarque et al., 2013), a new series of 1480 

experiments was conducted by several chemistry-climate models and chemistry-transport models 

participating in the Chemistry-Climate Model Initiative (CCMI) (Morgenstern et al., 2017). Over the period 

2000-2010, the multi-model mean (11 models) global mass-weighted OH tropospheric concentration was 

11.7±1.0 x 105 molec cm-3 (range 9.9-14.4 x 105 molec cm-3, (Zhao et al., 2019) consistent with the previous 

estimates from ACCMIP (11.7±1.0 x 105 molec cm-3, with a range of 10.3-13.4 x 105 molec cm-3, 1485 

Voulgarakis et al. (2013) for year 2000) and the estimates of Prather et al. (2012) at 11.2±1.3 x 105 molec 

cm-3. Indeed Lelieveld et al. (2016) suggest that tropospheric OH is buffered against potential perturbations 

from emissions, mostly due to chemistry and transport connections in the free troposphere, through transport 

of oxidants such as ozone. (Nicely et al., 2017) attribute the differences in OH simulated by different 

chemistry transport models to, in decreasing order of importance, different chemical mechanisms, various 1490 

treatment of the photolysis rate of ozone, and modeled ozone and carbon monoxide. Besides the uncertainty 

on global OH concentrations, there is an uncertainty in the spatial and temporal distribution of OH. Models 

often simulate higher OH in the northern hemisphere leading to a NH/SH OH ratio greater than 1 (Naik et 

al., 2013; Zhao et al., 2019). A methane inversion using a NH/SH OH ratio higher than 1 infers higher 

methane emissions in the Northern hemisphere and lower in the tropics and in the Southern hemisphere (Patra 1495 

et al., 2014). However, there is evidence for parity in inter-hemispheric OH concentrations (Patra et al., 2014), 

which needs to be confirmed by other observational and model-derived estimates. 

OH concentrations and their changes can be sensitive to climate variability (e.g. Pinatubo eruption, 

Dlugokencky et al., 1996 ,Turner et al., 2018), biomass burning (Voulgarakis et al., 2015), and anthropogenic 

activities. For instance, the increase of the oxidizing capacity of the troposphere in South and East Asia 1500 

associated with increasing NOX emissions (Mijling et al., 2013) and decreasing CO emissions (Yin et al., 

2015), possibly enhances CH4 consumption and therefore limits the atmospheric impact of increasing 

emissions (Dalsøren et al., 2009). Despite such large regional changes, the global mean OH concentration 
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was suggested to have changed only slightly over the past 150 years (Naik et al., 2013). This is due to the 

compensating effects of the concurrent increases of positive influences on OH (water vapour, tropospheric 1505 

ozone, nitrogen oxides (NOx) emissions, and UV radiation due to decreasing stratospheric ozone), and of 

OH sinks (methane burden, carbon monoxide and non-methane volatile organic compound emissions and 

burden). However the sign and integrated magnitude (from 1850 to 2000) of OH changes is uncertain, varying 

from -13% to +15% among the ACCMIP models (mean of -1%, Naik et al., 2013). Dentener et al. (2003) 

found a positive trend in global OH concentrations of 0.24 ± 0.06% yr−1 between 1979 and 1993, mostly 1510 

explained by changes in the tropical tropospheric water vapor content. Accurate methyl chloroform 

atmospheric observations together with estimates of its emissions (Montzka and Fraser, 2003) allow an 

estimate of OH concentrations and changes in the troposphere since the 1980s. Montzka et al. (2011) inferred 

small inter-annual OH variability and trends (typical OH changes from year to year of less than 3%), and 

attributed previously estimated large year-to-year OH variations before 1998 (e.g. Bousquet et al. (2005), 1515 

Prinn et al. (2001) to overly large sensitivity of OH concentrations inferred from methyl chloroform 

measurements to uncertainties in the latter’s emissions. However, Prinn et al. (2005) also showed lower post-

1998 OH variability that they attributed to the lack of strong post-1998 El Nino’s. CCMI models show OH 

inter-annual variability ranging from 0.4% to 1.8% (Zhao et al., 2019) over 2000-2010, consistent, albeit 

lower, than the value deduced from methyl chloroform measurements. However these simulations take into 1520 

account meteorology variability but not emission interannual variability (e.g., from biomass burning) and 

thus are expected to simulate lower OH inter annual variability than in reality. Using an empirical model 

constrained by global observations of ozone, water vapor, methane, and temperature as well as the simulated 

effects of changing NOx emissions and tropical expansion, Nicely et al. (2017) found an inter-annual 

variability in OH of about 1.3-1.6 % between 1980 and 2015, in agreement with Montzka et al. (2011). As 1525 

methyl chloroform has reached very low concentrations in the atmosphere, in compliance with the regulations 

of the Montreal Protocol and its Amendments, a replacement compound is needed to estimate global OH 

concentrations. Several HCFCs and HFCs have been tested (Miller et al., 1998; Montzka et al., 2011; Huang 

and Prinn, 2002; Liang et al., 2017) to infer OH but do not yet provide equivalent results to methyl 

chloroform.  1530 

We report here a climatological range of 553 [476-677] Tg CH4 yr-1 derived from the seven models that 

contributed to CCMI for the total tropospheric (tropopause height at 200 hPa) loss of methane by OH 

oxidation over the period 2000-2009, which is slightly higher than the one from the ACCMIP models (528 

[454-617] Tg CH4 yr-1 reported in Kirschke et al. (2013) and Saunois et al., 2016). 
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3.3.2 Stratospheric loss 1535 

CH4 enters the stratosphere primarily via slow ascent through the tropical tropopause region and reaches 

higher altitudes and latitudes via the stratospheric general circulation - the Brewer-Dobson circulation 

(Brewer, 1949; M B Dobson et al., 1946). Some troposphere-stratosphere exchange also happens across the 

extratropical tropopause due to mixing (e.g., Holton et al., 1986; (Hoor et al., 2004). Reeburgh (2007) 

estimated that approximately 60 Tg CH4 enters the stratosphere per year, which is likely subject to inter 1540 

annual variability (e.g., Noël et al., 2018). In the stratosphere, CH4 is lost through reactions with excited 

atomic oxygen O(1D), atomic chlorine (Cl), atomic fluorine (F), and OH (le Texier et al., 1988; Brasseur and 

Salomon, 2006). The combined effects of transport and chemical loss lead to the typical CH4 distributions 

observed in the stratosphere, which vary with the strength of the Brewer-Dobson circulation on seasonal to 

interannual timescales (Jones and Pyle, 1984; Randel et al., 1998). Note that strong subsidence in the polar 1545 

vortex impacts the isotope fractionation of methane in Arctic polar air, leading to high isotope enrichments 

(Röckmann et al., 2011).      This increase in stratospheric water vapour due to methane destruction leads to 

a positive radiative forcing and stimulates the production of OH through its reaction with atomic oxygen 

(Forster et al., 2007). Uncertainties in the chemical loss of stratospheric methane are large, due to uncertain 

inter-annual variability in stratospheric transport as well as its chemical interactions and feedbacks with 1550 

stratospheric ozone (Portmann et al., 2012). Particularly, the fraction of stratospheric loss due to the different 

oxidants is still uncertain, with possibly 20-35% due to halons, about 25% due to O(1D) mostly in the high 

stratosphere and the rest due to stratospheric OH (McCarthy et al., 2003). In this study, seven chemistry 

climate models from the CCMI project (Table S4) are used to provide estimates of methane chemical loss, 

including reactions with OH, O(1D), and Cl; CH4 photolysis is also included but occurs only above the 1555 

stratosphere. Considering a 200 hPa tropopause height, the CCMI models suggest an estimate of 31 [12-37] 

Tg CH4 yr-1 for the methane stratospheric sink for the period 2000-2010 (Table S4). The 20 Tg difference 

compared to the mean value reported by Kirschke et al. (2013) and Saunois et al. (2016) for the same period 

(51 [16-84] Tg CH4 yr-1), is probably due to the plausible double-counting of O(1D) and Cl oxidations in our 

previous calculation, as the chemistry-climate models usually report the total chemical loss of methane (not 1560 

OH oxidation only). 

We report here a climatological range of 12-37 Tg CH4 yr-1 associated to a mean value of 31 Tg CH4 yr-1. 

3.3.3 Tropospheric reaction with Cl 

Halogen atoms can also contribute to the oxidation of methane in the troposphere. Allan et al. (2005) 

measured mixing ratios of methane and δ13C-CH4 at two stations in the southern hemisphere from 1991 to 1565 

2003, and found that the apparent kinetic isotope effect of the atmospheric methane sink was significantly 
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larger than that explained by OH alone. A seasonally varying sink due to atomic chlorine (Cl) in the marine 

boundary layer of between 13 and 37 Tg CH4 yr-1 was proposed as the explanatory mechanism (Allan et al., 

2007; Platt et al., 2004). This sink was estimated to occur mainly over coastal and marine regions, where 

NaCl from evaporated droplets of seawater react with NO2 to eventually form Cl2, which then UV-dissociates 1570 

to Cl. However significant production of nitryl chloride (ClNO2) at continental sites has been recently 

reported (Riedel et al., 2014) and suggests the broader presence of Cl, which in turn would expand the 

significance of the Cl sink in the troposphere. Recently, using a chemistry transport model, (Hossaini et al., 

2016) suggest a chlorine sink in the lower range of Allan et al. (2007), ~12-13 Tg CH4 yr-1 (about 2.5 % of 

the tropospheric sink). They also estimate that ClNO2 yields a 1 Tg yr-1 sink of methane. Another modelling 1575 

study of (Wang et al., 2019a) produced a more comprehensive analysis of global tropospheric chlorine 

chemistry and found a chlorine sink of 5 Tg yr-1, representing only 1% of the total methane tropospheric sink. 

Both the KIE approach and chemistry transport model simulations carry uncertainties (extrapolations based 

on only a few sites and use of indirect measurements, for the former; missing sources, coarse resolution, 

underestimation of some anthropogenic sources for the latter). However, (Gromov et al., 2018) found that 1580 

chlorine can contribute only 0.23% the tropospheric sink of methane (about 1 Tg CH4 yr-1) in order to balance 

the global 13C(CO) budget.  

Awaiting further work to better assess the magnitude of the chlorine sink in the methane budget, we suggest 

a lower estimate but a larger range than in Saunois et al., (2016) and report the following climatological value 

for the 2000s: 11 [1-35] Tg CH4 yr-1. 1585 

3.3.4 Soil uptake 

Unsaturated oxic soils are sinks of atmospheric methane due to the presence of methanotrophic bacteria, 

which consume methane as a source of energy. Dutaur and Verchot (2007) conducted a comprehensive meta-

analysis of field measurements of CH4 uptake spanning a variety of ecosystems. Extrapolating to the global 

scale, they reported a range of 36 ± 23 Tg CH4 yr-1, but also showed that stratifying the results by climatic 1590 

zone, ecosystem and soil type led to a narrower range (and lower mean estimate) of 22 ± 12 Tg CH4 yr-1. 

Modelling studies, employing meteorological data as external forcing, have also produced a considerable 

range of estimates. Using a soil depth-averaged formulation based on Fick’s law with parameterizations for 

diffusion and biological oxidation of CH4, Ridgwell et al. (1999) estimated the global sink strength at 38 Tg 

CH4 yr-1, with a range 20-51 Tg CH4 yr-1 reflecting the model structural uncertainty in the base oxidation 1595 

parameter. Curry (2007) improved on the latter by employing an exact solution of the one-dimensional 

diffusion-reaction equation in the near-surface soil layer (i.e., exponential decrease in CH4 concentration 

below the surface), a land surface hydrology model, and calibration of the oxidation rate to field 

measurements. This resulted in a global estimate of 28 Tg CH4 yr-1 (9-47 Tg CH4 yr-1), the result reported by 
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(Zhuang et al., 2013), Kirschke et al. (2013) and Saunois et al. (2016). Ito and Inatomi (2012) used an 1600 

ensemble methodology to explore the variation in estimates produced by these parameterizations and others, 

which spanned the range 25-35 Tg CH4 yr-1. (Murguia-Flores et al., 2018) further refined the Curry (2007) 

model’s structural and parametric representations of key drivers of soil methanotrophy, demonstrating good 

agreement with the observed latitudinal distribution of soil uptake (Dutaur and Verchot, 2007). Their model 

simulated a methane soil sink of 32 Tg CH4 yr-1 for the period 2000-2017 (Fig. 4), compared to 38 and 29 1605 

Tg CH4 yr-1 using the Ridgwell et al. (1999) and Curry (2007) parameterizations, respectively, under the 

same meteorological forcing. As part of a more comprehensive model accounting for a range of methane 

sources and sinks, Tian et al. (2010, 2015, 2016) computed vertically-averaged CH4 soil uptake including the 

additional mechanisms of aqueous diffusion and plant-mediated (aerenchyma) transport, arriving at the 

estimate 30±19 Tg CH4 yr-1 (Tian et al., 2016). The still more comprehensive biogeochemical model of Riley 1610 

et al. (2011) included vertically resolved representations of the same processes considered by Tian et al. 

(2016), in addition to grid cell fractional inundation and, importantly, the joint limitation of uptake by both 

CH4 and O2 availability in the soil column. Riley et al. (2011) estimated a global CH4 soil sink of 31 Tg CH4 

yr-1 with a structural uncertainty of 15-38 Tg CH4 yr-1 (a higher upper limit resulted from an elevated gas 

diffusivity to mimic convective transport; as this is not usually considered, we adopt the lower upper bound 1615 

associated with no limitation of uptake at low soil moisture). A model of this degree of complexity is required 

to explicitly simulate situations where the soil water content increases enough to inhibit the diffusion of 

oxygen, and the soil becomes a methane source (Lohila et al., 2016). This transition can be rapid, thus creating 

areas (for example, seasonal wetlands) that can be either a source or a sink of methane depending on the 

season.  1620 

The previous Curry (2007) estimate might be revised upward based on subsequent work and the increase in 

CH4 concentration since that time, which gives a central estimate of 30.1 Tg CH4 yr-1. Considering structural 

uncertainty in the various models’ assumptions and parameters, we report here the median and range of Tian 

et al. (2016): 30 [11-49] Tg CH4 yr-1 for the periods 2000-2009 and 2008-2017. 

3.3.5 CH4 lifetime 1625 

The atmospheric lifetime of a given gas in steady state may be defined as the global atmospheric burden (Tg) 

divided by the total sink (Tg/yr) (IPCC, 2001). At steady state the atmospheric lifetime equals the decay time 

(e-folding time) of a perturbation. As methane is not in steady state at present, we fit a function that 

approaches steady state when calculating methane lifetime using atmospheric measurements (Sect. 4.1.1). 

Global models provide an estimate of the loss of the gas due to individual sinks, which can then be used to 1630 

derive lifetime due to a specific sink. For example, methane’s tropospheric lifetime is determined as global 

atmospheric methane burden divided by the loss from OH oxidation in the troposphere, sometimes called 
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“chemical lifetime”. While its total lifetime corresponds to the global burden divided by the total loss 

including tropospheric loss from OH oxidation, stratospheric chemistry and soil uptake. The CCMI models 

(described in Morgenstein et al., 2017) estimate the tropospheric methane lifetime at about 9 years (average 1635 

over years 2000-2009), with a range of 7.2-10.1 years (see Table S4). While this range agrees with previous 

values found in ACCMIP (9.3 [7.1-10.6] years, Voulgarakis et al. (2013); Kirschke et al., 2013), the mean 

value reported here is lower than previously reported, probably due to a smaller and different ensemble of 

climate models. Adding 35 Tg to account for the soil uptake to the total chemical loss of the CCMI models, 

we derive a total methane lifetime of 7.8 years (average over 2000-2009 with a range of 6.5-8.8 years). These 1640 

updated model estimates of total methane lifetime agree with the previous estimates from ACCMIP (8.2 [6.4-

9.2] years for year 2000, Voulgarakis et al., 2013). The model results for total methane lifetime are consistent 

with, though smaller than, the value estimated by Prather et al. (2012) derived from observations (9.1 ± 0.9 

years) and most commonly used in the literature (Ciais et al., 2013), and the steady-state calculation from 

atmospheric observations (9.3 yr, Sect. 4.1.1). This large spread in methane lifetime (between models, and 1645 

between models and observation based estimates) needs to be better understood and reduced to 1) close the 

present-day methane budget and past changes and 2) ensure an accurate forecast of future climate. 

4 Atmospheric observations and top-down inversions 

4.1 Atmospheric observations 

The first systematic atmospheric CH4 observations began in 1978 (Blake et al., 1982) with infrequent 1650 

measurements from discrete air samples collected in the Pacific at a range of latitudes from 67°N to 53°S. 

Because most of these air samples were from well-mixed oceanic air masses and the measurement technique 

was precise and accurate, they were sufficient to establish an increasing trend and the first indication of the 

latitudinal gradient of methane. Spatial and temporal coverage was greatly improved soon after (Blake and 

Rowland, 1986) with the addition of the Earth System Research Laboratory from US National Oceanic and 1655 

Atmospheric Administration (NOAA/ESRL) flask network (Steele et al. (1987), Fig. 1), and of the Advanced 

Global Atmospheric Gases Experiment (AGAGE) (Prinn et al, 2000; Cunnold et al., 2002), the 

Commonwealth Scientific and Industrial Research Organisation (CSIRO, Francey et al., 1999), the 

University of California Irvine (UCI, Simpson et al., 2012)  and other in situ and flask networks (e.g. ICOS 

network in Europe, https://www.icos-ri.eu/). The combined datasets provide the longest time series of 1660 

globally averaged CH4 abundance. Since the early-2000s, CH4 column averaged mole fractions have been 

retrieved through passive remote sensing from space (Buchwitz et al., 2005a,b; Frankenberg et al., 2005; 

Butz et al., 2011; Crevoisier et al., 2009; Hu et al., 2016). Ground-based Fourier transform infrared (FTIR) 

measurements at fixed locations also provide time-resolved methane column observations during daylight 
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hours, and a validation dataset against which to evaluate the satellite measurements (TCCON network, e.g. 1665 

Wunch et al., 2011; Bader et al., 2017). 

In this budget, in-situ observations from the different networks were used in the top-down atmospheric 

inversions to estimate methane sources and sinks over the period 2000-2017. Satellite observations from 

TANSO/FTS instrument on board the satellite GOSAT were used to estimate methane sources and sinks over 

the period 2009-2017. Other atmospheric data (FTIR, airborne measurements, AirCore…) exist but are not 1670 

specifically used in this study, however further information is provided in the Supplementary Material. These 

data are not commonly used to infer fluxes from global inversions (yet), but are used to verify their 

performance, see e.g. Bergamaschi et al. (2013). Isotopic atmospheric measurements of δ13CH4 can help to 

partition the different methanogenic processes of methane and δD-CH4 provides valuable information on the 

oxidation by the OH radicals (Röckmann et al., 2011) due to a fractionation of about 300‰. Integrating 1675 

isotopic information is important to improve our understanding of the methane budget. While box-model 

studies have used isotopic information to discuss methane source and sinks changes (Rice et al., 2016; Rigby 

et al., 2017; Schaefer et al., 2016; Turner et al., 2017; Schwietzke et al., 2016; Thompson et al., 2018), such 

approaches seem more reliable to assess global emission changes than to infer decadal budgets. Also such 

isotopic constraints have been used in analytical inversion framework (e.g., Milakoff Fletcher et al., 2004; 1680 

Bousquet et al., 2006), but have not yet been integrated in the inverse systems used in this study to perform 

top-down inversions (See Supplementary materials). 

4.1.1 In situ CH4 observations and atmospheric growth rate at the surface 

Four observational networks provide globally averaged CH4 mole fractions at the Earth’s surface: 

NOAA/ESRL (Dlugokencky et al., 1994), AGAGE (Prinn et al., 2000; 2018; Cunnold et al., 2002; Rigby et 1685 

al., 2008), CSIRO (Francey et al., 1999) and the University of California Irvine (UCI, Simpson et al., 2012). 

The data are archived at the World Data Centre for Greenhouse Gases (WDCGG) of the WMO Global 

Atmospheric Watch (WMO-GAW) program, including measurements from other sites that are not operated 

as part of the four networks. The CH4 in-situ monitoring network has grown significantly over the last decade 

due to the emergence of laser diode spectrometers which are robust and accurate enough to allow 1690 

deployments with minimal maintenance enabling the development of denser networks in developed countries 

(Yver Kwok et al., 2015; Stanley et al., 2018), and new stations in remote environment (Bian et al., 2016; 

Nisbet et al., 2019). 

The networks differ in their sampling strategies, including the frequency of observations, spatial distribution, 

and methods of calculating globally averaged CH4 mole fractions. Details are given in the supplementary 1695 

material of Kirschke et al. (2013). The global average values of CH4 concentrations presented here are 

computed using measurements through gas chromatography with flame ionization detection (GC/FID), 

https://doi.org/10.5194/essd-2019-128

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 19 August 2019
c© Author(s) 2019. CC BY 4.0 License.



52 
 

although chromatographic schemes vary among the labs. Because GC/FID is a relative measurement method, 

the instrument response must be calibrated against standards. The current WMO reference scale, maintained 

by NOAA/ESRL, WMO-X2004A (Dlugokencky et al., 2005), was updated in July 2015. NOAA and CSIRO 1700 

global means are on this scale. AGAGE uses an independent standard scale maintained by Tohoku University 

(Aoki et al., 1992), but direct comparisons of standards and indirect comparisons of atmospheric 

measurements show that differences are below 5 ppb (Vardag et al., 2014;Tans and Zellweger, 2014). UCI 

uses another independent scale that was established in 1978 and is traceable to NIST (Simpson et al., 2012; 

Flores et al., 2015), but has not been included in standard exchanges with other networks so differences with 1705 

the other networks cannot be quantitatively defined. Additional experimental details are presented in the 

supplementary material from Kirschke et al. (2013) and references therein. 

In Fig. 1, (a) globally averaged CH4 and (b) its growth rate (derivative of the deseasonalized trend curve) 

through to 2017 are plotted for the four measurement programs using a procedure of signal decomposition 

described in Thoning et al. (1989). We define the annual increase GATM as the increase in the growth rate 1710 

from Jan. 1 in one year to Jan. 1 in the next year. Agreement among the four networks is good for the global 

growth rate, especially since ~1990. The large differences observed mainly before 1990 reflect probably the 

different spatial coverage and stations of each network. The long-term behaviour of globally averaged 

atmospheric CH4 shows a decreasing but positive growth rate (defined as the derivative of the deseasonalized 

mixing ratio) from the early-1980s through 1998, a near-stabilization of CH4 concentrations from 1999 to 1715 

2006, and a renewed period with positive but stable growth rates since 2007, slightly larger after 2014. When 

a constant atmospheric lifetime is assumed, the decreasing growth rate from 1983 through 2006 implies that 

atmospheric CH4 was approaching steady state, with no trend in emissions. The NOAA global mean CH4 

concentration was fitted with a function that describes the approach to a first-order steady state (SS index): 

[CH4](t) = [CH4]ss-([CH4]ss-[CH4]0)e-t/τ; solving for the lifetime, τ, gives 9.3 years, which is very close to 1720 

current literature values (e.g., Prather et al., 2012).  

On decadal timescales, the annual increase is on average 2.1±0.3 ppb yr-1 for 2000-2009, 6.6±0.3 ppb yr-1 for 

2008-2017 and 6.1±1.0 ppb yr-1 for the year 2017. From 1999 to 2006, the annual increase of atmospheric 

CH4 was remarkably small at 0.6±0.1 ppb yr-1. After 2006, the atmospheric growth rate has recovered to a 

level similar to that of the mid-1990s (~5 ppb yr-1), or even to that of the 1980s for 2014 and 2015 (>10 ppb 1725 

yr-1). 

4.1.2 Satellite data of column average CH4  

In the 2000s, two space-borne instruments sensitive to atmospheric methane in the lower troposphere were 

put in orbit and have provided atmospheric methane column-averaged dry air mole fraction (XCH4), using 

shortwave Infrared spectrometry (SWIR). Satellite data of XCH4 have been primarily evaluated against the 1730 
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Total Carbon Column Observing Network (TCCON) data (e.g., Butz et al., 2011; Morino et al., 2011). The 

first space-borne instrument was the Scanning Imaging Absorption spectrometer for Atmospheric 

CartograpHY (SCIAMACHY). SCIAMACHY was operated on board the ESA ENVIronmental SATellite 

(ENVISAT) between 2003 and 2012 (Burrows et al., 1995; Buchwitz et al., 2006; Dils et al., 2006; 

Frankenberg et al., 2011). The use of SCIAMACHY in top-down approaches necessitates important bias 1735 

correction, especially after 2005. As the mission ended in 2012, we do not report any estimates based on 

SCIAMACHY data in this budget. In 2006, 2012 and 2018, the Infrared Atmospheric Sounding 

Interferometer (IASI) on board the European MetOp,A, B and C satellites have started to operate. Measuring 

the thermal radiation from Earth and the atmosphere in the TIR, they provide mid-to-upper troposphere 

columns of methane (representative of the 5-15 km layer) over the tropics using an infrared sounding 1740 

interferometer (Crevoisier et al., 2009). Despite their sensitivity being limited to the mid-to-upper 

troposphere, their use in flux inversions has shown consistent results in the tropics with surface and other 

satellite-based inversions (Cressot et al., 2014). However these satellite data, limited to the tropics and to the 

mid-to-upper troposphere are not used in this global methane budget. 

In January 2009, the JAXA satellite Greenhouse Gases Observing SATellite (GOSAT) was launched (Butz 1745 

et al., 2011; Morino et al., 2011) containing the TANSO-FTS instrument, which observes in the shortwave 

infrared (SWIR). Different retrievals of methane based on TANSO-FTS/GOSAT products are made available 

to the community (e.g. Yoshida et al., 2013; Schepers et al., 2012; Parker et al., 2011) based on two retrieval 

approaches, Proxy and Full Physics. The proxy method retrieves the ratio of methane column (XCH4) and 

carbon dioxide column (XCO2), from which XCH4 is derived after multiplication with transport model-1750 

derived XCO2 (Chevallier et al., 2010; Peters et al., 2007; Frankenberg et al., 2006). Computing the ratio 

between the nearby spectral absorption bands (1.65µm for CH4 and 1.60µm for CO2) effectively removes 

biases due to light scattering from clouds and aerosols. The second approach is the Full Physics algorithm, 

which retrieves the aerosol properties (amount, size and height) along with CO2 and CH4 columns (e.g. Butz 

et al., 2011). Although GOSAT retrievals still show significant unexplained biases and limited sampling in 1755 

cloud covered regions and in the high latitude winter, it represents an important improvement compared to 

SCIAMACHY both for random and systematic observation errors (see Table S2 of Buchwitz et al., 2016). 

GOSAT-2 was launched in October 2018 with expected improved precision and accuracy (JAXA, 2019). 

Atmospheric inversions based on SCIAMACHY or GOSAT CH4 retrievals have been carried out by different 

research groups (Fraser et al., 2013; Cressot et al., 2014; Alexe et al., 2015; Bergamaschi et al., 2013; 1760 

Locatelli et al., 2015; Jacob et al., 2016;Maasakkers et al., 2019;Pandey et al., 2017) and are reported in 

Saunois et al. (2016) Here, only inversions using GOSAT retrievals are used.  
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4.2 Top-down inversions used in the budget 

An atmospheric inversion is the optimal combination of atmospheric observations, of a model of atmospheric 

transport and chemistry, and of a prior estimate of methane sources and sinks in order to provide improved 1765 

estimates of the latter (fluxes and their uncertainty). The theoretical principle of methane inversions is 

detailed in the Supplementary material (ST2) and an overview of the different methods applied to methane 

is presented in (Houweling et al., 2017). 

We consider here an ensemble of inversions gathering various chemistry transport models, differing in 

vertical and horizontal resolutions, meteorological forcings, advection and convection schemes, boundary 1770 

layer mixing; we assume that this model range is sufficient to cover the range of transport model errors in 

the estimate of methane fluxes. General characteristics of the inversion systems are provided in Table 4. 

Further details can be found in the referenced papers and in the Supplementary Material. Each group was 

asked to provide gridded flux estimates for the period 2000-2017, using either surface or satellite data, but 

no additional constraints were imposed so that each group could use their preferred inversion setup. A set of 1775 

prior emission distributions was built from the most recent inventories or model-based estimates (see 

Supplementary Material), but its use was not mandatory (Table S6). This approach corresponds to a flux 

assessment, but not to a model inter-comparison. Posterior uncertainty is time and computer resource 

consuming, especially for the 4D-var approaches that use Monte Carlo methods. Consequently, posterior 

uncertainty has been provided by only two groups and is found to be lower than the ensemble spread. Indeed, 1780 

chemistry transport models differ in inter-hemispheric transport, stratospheric methane profiles and OH 

distribution, which limitations are not fully taken into account in the individual posterior uncertainty. As a 

result, the reported range for top-down approaches is narrower than expected when fully accounting for the 

individual estimates uncertainty. In other words, the range minimum is higher than the lowest estimate less 

its uncertainty, and the range maximum lower than the highest estimate plus its uncertainty. 1785 

Nine atmospheric inversion systems using global Eulerian transport models were used in this study compared 

to eight in Saunois et al. (2016). Each inversion system provided one or several simulations, including 

sensitivity tests varying the assimilated observations (surface or satellite) or the inversion setup. This 

represents a total of 22 inversion runs with different time coverage: generally 2000-2017 for surface-based 

observations, and 2010-2017 for GOSAT-based inversions (Table 4 and Table S6). When multiple sensitivity 1790 

tests were performed we used the mean of this ensemble as to not to overweight one particular inverse system. 

It should also be noticed that some satellite-based inversions are in fact combined satellite and surface 

inversions as they use satellite retrievals and surface measurements simultaneously (Bergamaschi et al., 2013; 

Alexe et al., 2015; Houweling et al., 2014). Nevertheless, these inversions are still referred to as satellite-

based inversions.  Bias correction procedures have been developed to assimilate GOSAT data (Monteil et 1795 
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al., 2013; Cressot et al., 2014; Houweling et al., 2014; Locatelli et al., 2015; Alexe et al., 2015). Although 

partly due to transport model errors, significant to large corrections applied to the satellite total column CH4 

data question the comparably low systematic errors reported in satellite validation studies using TCCON 

(Dils et al., 2014; CCI-Report, 2016).  

Each group provided gridded monthly maps of emissions for both their prior and posterior total and for 1800 

sources per category (see the categories Sect. 2.3). Results are reported in Sect. 5. Atmospheric sinks from 

the top-down approaches have been provided for this budget, and are compared with the values reported in 

Kirschke et al. (2013). Not all inverse systems report their chemical sink; as a result, the global mass 

imbalance for the top-down budget is derived as the difference between individual modelled sources and 

sinks (when available).  1805 

The last year of reported inversion results is 2017 (inversions until mid 2018), which represents a two year-

lag with the present, which is a two-year shorter lag than for the last release (Saunois et al., 2016). Satellite 

observations are linked to operational data chains and are generally available days to weeks after the 

recording of the spectra. Surface observations can lag from months to years because of the time for flask 

analyses and data checks in (mostly) non-operational chains. With operational networks such as ICOS in 1810 

Europe, these lags will be reduced in the future with the daily production of Near-Real time data. In addition, 

the final six months of inversions are generally ignored (spin down) because the estimated fluxes are not 

constrained by as many observations as the previous months. Also, the long inversion runs and analyses can 

take months to be performed. The GCP-CH4 budget aims to represent the most recent years by reducing the 

analysis time and shortening the in-situ atmospheric observation release, so that the last year of the budget 1815 

presents no more than a 2-year lag with the release date of the budget, as for this release. 

5 Methane budget: top-down and bottom-up comparison 

5.1 Global methane budget  

5.1.1 Global budget of total methane emissions 

Top-down estimates. At the global scale, the total emissions inferred by the ensemble of 22 inversions is 1820 

572 Tg CH4 yr-1 [538-593] for the 2008-2017 decade (Table 3), with the highest ensemble mean emission of 

591 Tg CH4 yr-1 [552-614] for 2017. Global emissions for 2000-2009 (545 Tg CH4 yr-1) are consistent with 

Saunois et al. (2016) and the range of uncertainties for global emissions, 522-559 Tg CH4 yr-1 is in line with 

Saunois et al. (2016) (535-569), although the ensemble of inverse systems contributing to this budget is 

different than for Saunois et al. (2016). Indeed, only six inverse systems of the nine examined here (Table 1825 
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S7) contributed to the Saunois et al. (2016) budget . The range reported are the minimum and maximum 

values among studies and do not reflect the individual full uncertainties. 

Bottom-up estimates. The estimates made via the bottom-up approaches considered here are quite different 

from the top-down results, with global emissions about 25% larger, 737 Tg CH4 yr-1 [593-880] for 2008-

2017 (Table 3). Moreover, the range estimated using bottom up approaches does not overlap with that of the 1830 

top-down estimates. The bottom-up estimates are given by the sum of individual anthropogenic and natural 

processes, with no constraint to the total. For the period 2000-2009, the discrepancy between bottom-up and 

top down was 30% of the top-down estimates in Saunois et al. (2016) (167 Tg CH4 yr-1); this has been reduced 

by only 5 % (now 158 Tg CH4 yr-1 for the same period). This reduction is due to 1) a better agreement in the 

anthropogenic emissions (top-down and bottom-up difference reducing from 19 Tg CH4 yr-1 to 3 Tg CH4 yr-1835 
1); 2) a reduction in the estimates of some natural sources other than wetlands based on recent literature (7 

Tg CH4 yr-1 from geological sources, 8 Tg CH4 yr-1 from wild animals, and 3 Tg CH4 yr-1 from allocation of 

wildfires to biomass & biofuel burning, see Table 3) and 3) a reduction of 35 Tg CH4 yr-1 in the bottom-up 

estimates of wetland emissions by models when excluding lakes and paddies as wetlands (see Sect. 5.1.2 

below). These reductions (-69 Tg CH4 yr-1) in the bottom-up budget are negated by revised freshwater 1840 

emissions to higher values (+ 37 Tg CH4 yr-1) resulting from the integration of a recent study on lake, pond 

and reservoir emissions (DelSontro et al., 2018, see Sect. 3.2.2) and the integration of estuary emissions in 

this budget (+4 Tg CH4 yr-1). Also, the uncertainty range of some emissions has decreased in this study 

compared to Kirschke et al. (2013) and Saunois et al. (2016), for example for oceans, termites, wild animals, 

and geological sources. However, the uncertainty in the global budget is still high because of the large range 1845 

reported for emissions from freshwater systems. Still, as noted in Kirschke et al. (2013), such large global 

emissions from the bottom-up approaches are not consistent with atmospheric constraints brought by OH 

optimization and are very likely overestimated. This overestimation likely results from errors related to up-

scaling and/or double counting of some natural sources (e.g. wetlands, other inland water systems, see Sect. 

5.1.2). 1850 

5.1.2 Global methane emissions per source category 

The global methane budget for five source categories (see Sect. 2.3) for 2008-2017 is presented in Fig. 5, 

Fig. 6, and Table 3. Top-down estimates attribute about 60% of total emissions to anthropogenic activities 

(range of [55-70] %), and 40% to natural emissions. As natural emissions from bottom-up models are much 

larger, the anthropogenic versus natural emission ratio is more balanced in the bottom-up budget (~50% 1855 

each). A current predominant role of anthropogenic sources of methane emissions is consistent with and 

strongly supported by available ice core and atmospheric methane records. These data indicate that 

atmospheric methane varied around 700 ppb during the last millennium before increasing by a factor of 2.6 
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to ~1800 ppb since pre-industrial times. Accounting for the decrease in mean-lifetime over the industrial 

period, Prather et al. (2012) estimated from these data a total source of 554 ±56 Tg-CH4 in 2010 of which 1860 

about 64% (352±45 Tg-CH4) of anthropogenic origin, consistent with the range of our synthesis. 

 

Wetlands. For 2008-2017, the top-down and bottom-up derived estimates of 178 Tg CH4 yr-1 (range 155-

200) and 149 Tg CH4 yr-1 (range 102-182), respectively, are statistically consistent. Bottom-up mean wetland 

emissions for the 2000-2009 period are smaller in this study than those of Saunois et al. (2016). Conversely, 1865 

the current 2000-2009 mean top-down wetland estimates are larger than those of Saunois et al. (2016) (Table 

3). The reduction in wetland emissions from bottom-up models is related to an updated wetland extent data 

set (WAD2M, see Sect. 3.2.1). Interestingly, while top-down wetlands emissions estimates are higher than 

in Saunois et al. (2016), the range has been reduced by about 50 %. As reported in Saunois et al. (2016), all 

biogeochemical wetland models were forced with the same wetland extent and climate forcing (see Sect 1870 

3.2.1), with the result that the amplitude of the range of emissions of 102-179 is similar to that in Saunois et 

al. (2016) (151-222 for 2000-2009), and narrowed by a third compared to the previous estimates from Melton 

et al. (2013) (141-264) and from Kirschke et al. (2013) (177-284). This suggests that differences in wetland 

extent explain about a third (30-40%) of the former range of the emission estimates of global natural 

wetlands. The remaining range is due to differences in model structures and parameters. Bottom-up and top-1875 

down estimates differ more in this study (~30 Tg yr-1 for the mean) than in Saunois et al. (2016) (~17 Tg yr-

1), due to reduced estimates from the bottom-up models and increased estimates from the top-down models. 

Natural emissions from freshwater systems are not included in the prior fluxes entering the top-down 

approaches. However, emissions from these non-wetland systems may be accounted for in the posterior 

estimates of the top-down models, as these two sources are close and probably overlap at the rather coarse 1880 

resolution of the top-down models. In the top-down budget, natural wetlands represent 30% on average of 

the total methane emissions but only 22% in the bottom-up budget (because of higher total emissions 

inferred). Neither bottom-up nor top-down approaches included in this study derive significant changes in 

wetland emissions between the two decades 2000-2009 and 2008-2017 at the global scale. 

Other natural emissions. The discrepancy between top-down and bottom-up budgets is the largest for the 1885 

natural emission total, which is 371 Tg CH4 yr-1 [245-488] for bottom-up and only 215 Tg CH4 yr-1 [176-

248] for top-down over the 2008-2017 decade. Sources other than wetlands (Fig. 5 and 6), namely freshwater 

systems, geological sources, termites, oceans, wild animals, and permafrost, are more likely to explain this 

large discrepancy. For the 2008-2017 decade, top-down inversions infer non-wetland emissions of 37 Tg 

CH4 yr-1 [21-50], whereas the sum of the individual bottom-up emissions is 199 Tg CH4 yr-1 [64-284]. 1890 

Atmospheric inversions infer about the same amount over the decade 2000-2009, which is almost half of the 

value reported in Saunois et al. (2016) (64 [21-132] Tg CH4 yr-1). This is either due to 1) a more consistent 
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way of considering other natural emission in the various inverse systems or 2) difference in the ensemble of 

top-down inversions reported here. Regarding the bottom-up budget, the two main contributors to the larger 

bottom-up total are freshwaters (~75%) and geological emissions (~15%), both of which have large 1895 

uncertainties and lack of spatially explicit representation (for freshwaters). Because of the discrepancy, this 

category represents 7% of total emissions in the top-down budget, but up to 25% in the bottom-up budget. 

Improved area estimates of the different freshwater systems would be beneficial. For example, stream fluxes 

are difficult to assess because of the high-expected spatial and temporal variability (Natchimuthu et al., 2017) 

and very uncertain areas of headwater streams where methane-rich groundwater may be rapidly degassed. 1900 

There are also uncertainties in the geographical distinction between wetlands, small lakes (e.g. thermokarst 

lakes), and floodplains that need more attention to avoid double counting. In addition, major uncertainty is 

still associated with the representation of ebullition. The intrinsic nature of this large but very locally 

distributed flux highlights the need for cost-efficient high-resolution techniques for resolving the spatio-

temporal variations of these fluxes. In this context of observational gaps in space and time, freshwater fluxes 1905 

are considered biased until measurement techniques designed to properly account for ebullition become more 

common (Wik et al., 2016a). On the contrary, global estimates for freshwater emissions rely on up-scaling 

of uncertain emission factors and emitting areas, with probable overlapping with wetland emissions 

(Kirschke et al., 2013; Saunois et al., 2016), which may also lead to an overestimate. More work is needed, 

both for flux densities and emission areas, based on observations and process modelling, to overcome these 1910 

uncertainties.  

For geological emissions, relatively large uncertainties come from the extrapolation of only a subset of direct 

measurements to estimate the global fluxes. Moreover, marine seepage emissions are still widely debated 

(Berchet et al., 2016), and particularly diffuse emissions from microseepages are highly uncertain. However, 

summing up all bottom-up fossil-CH4 related sources (including the anthropogenic emissions) leads to a total 1915 

of 172 Tg CH4 yr-1 [129-219] in 2008-2017, which is about 30% (23%) of global methane emissions inferred 

by top-down (bottom-up) approaches. Our results are in agreement with the value inferred from 14C 

atmospheric isotopic analyses 30% contribution of fossil-CH4 to global emissions (Lassey et al., 2007b; 

Etiope et al., 2008). Uncertainties on bottom-up estimates of natural emissions lead to probably overestimated 

total methane emissions resulting in a lower contribution compared to Lassey et al. (2007b). All non-1920 

geological and non-wetland land source categories (wild animals, termites, permafrost) have been evaluated 

at a lower level than in Kirschke et al. (2013) and Saunois et al. (2016), and contribute only 13 Tg CH4 yr-1 

[4-19] to global emissions. From a top-down point of view, the sum of all natural sources is more robust than 

the partitioning between wetlands and other natural sources. To reconcile top-down inversions and bottom-

up estimates, the estimation and proper partition of methane emissions between wetlands and freshwater 1925 

systems should still receive a high priority. Also, including all known spatio-temporal distribution of natural 
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emissions in top-down prior fluxes would be a step forward to consistently comparing natural versus 

anthropogenic total emissions between top-down and bottom-up approaches. 

Anthropogenic emissions. Total anthropogenic emissions for the period 2008-2017 were assessed to be 

statistically consistent between top-down (357 Tg CH4 yr-1, range [334-375]) and bottom-up approaches (366 1930 

Tg CH4 yr-1, range [348-392]). The partitioning of anthropogenic emissions between agriculture and waste, 

fossil fuels extraction and use, and biomass and biofuel burning, also shows good consistency between top-

down and bottom-up approaches, though top-down approaches suggest less fossil fuel and more agriculture 

and waste emissions than bottom-up estimates (Table 3 and Fig. 5 and 6). For 2008-2017, agriculture and 

waste contributed 219 Tg CH4 yr-1 [175-239] for the top-down budget and 206 Tg CH4 yr-1 [191-223] for the 1935 

bottom-up budget. Fossil fuel emissions contributed 109 Tg CH4 yr-1 [79-168] for the top-down budget and 

127 Tg CH4 yr-1 [111-154] for the bottom-up budget. Biomass and biofuel burning contributed 30 Tg CH4 yr-

1 [22-36] for the top-down budget and 29 Tg CH4 yr-1 [25-39] for the bottom-up budget. Biofuel methane 

emissions rely on very few estimates at the moment (Wuebbles and Hayhoe (2002), GAINS model). 

Although biofuel is a small source globally (~12 Tg CH4 yr-1), more estimates are needed to allow a proper 1940 

uncertainty assessment. Overall for top-down inversions the global fraction of total emissions for the different 

source categories is 38% for agriculture and waste, 19% for fossil fuels, and 5% for biomass and biofuel 

burnings. With the exception of biofuel emissions, the uncertainty associated with global anthropogenic 

emissions appears to be smaller than that of natural sources but with asymmetric uncertainty distribution 

(mean significantly different than median). In poorly observed regions, top-down inversions rely on the prior 1945 

estimates and bring little or no additional information to constrain (often) spatially overlapping emissions 

(e.g. in India, China). Therefore, the relative agreement between top-down and bottom-up approaches may 

indicate the limited capability of the inversion to separate the emissions, and should therefore be treated with 

caution. 

5.1.3 Global budget of total methane sinks 1950 

Top-down estimates. The CH4 chemical removal from the atmosphere is estimated to 518 Tg CH4 yr-1 over 

the period 2008-2017, with an uncertainty of about 5% (range 474-532 Tg CH4 yr-1). All the inverse models 

account for CH4 oxidation by OH and O(1D), and some include stratospheric chlorine oxidation (Table S6). 

In addition, most of the top-down models use OH distribution from the TRANSCOM experiment (Patra et 

al., 2011), probably explaining the rather low uncertainty compared to bottom-up estimates (see below). 1955 

Differences between transport models affect the chemical removal of CH4, leading to different chemical loss, 

even with the same OH distribution. However, uncertainties in the OH distribution and magnitude (Zhao et 

al., 2019) are not fully taken into account here, while it could contribute to a significant change in the 

chemical sink (and then in the derived posterior emissions). The chemical sink represents more than 90% of 
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the total sink, the rest being due to soil uptake (38 [27-45] Tg CH4 yr-1). Half of the top-down models use the 1960 

climatological soil uptake magnitude (37-38 Tg CH4 yr-1) and distribution from Ridgwell et al. (1999), while 

half of the models use an estimate from the biogeochemical model VISIT (Ito and Inatomi, 2012), which 

calculates varying uptake between 31 and 38 Tg CH4 yr-1 over the 2000-2017 period. These model input 

estimates are somewhat higher than the central value for bottom-up estimates of the soil sink cited in Sec. 

3.3.4, leading to a correspondingly larger top-down central estimate. For overall consistency in the CH4 1965 

budget, future top-down estimates should take the updated range of bottom-up estimates into consideration. 

Bottom-up estimates. The total chemical loss for the 2000s reported here is  595 Tg CH4 yr-1 with an 

uncertainty of 22%. The chemistry climate models show an uncertainty of about 20% on the CH4 chemical 

sink (tropospheric OH plus stratospheric loss). Differences in chemical schemes (especially in the 

stratosphere) and in the volatile organic compound treatment probably explain most of the discrepancies 1970 

among models (Zhao et al., 2019). More work is still needed to better understand the derived range in CH4 

chemical lifetime and to narrow it down in order to better assess the methane budget and the future climate 

projections. Recent studies have also highlighted the large uncertainty on the tropospheric chlorine source 

(see Sect. 3.3.3). The impact of tropospheric chlorine on methane needs to be better assessed, and then tested 

in the top-down systems. While the bottom-up mean estimate of the soil uptake is currently at 30 Tg CH4 yr-1975 
1, most of the top-down models use higher prior values. Due to mass-balance, decreasing the soil uptake in 

the top-down simulations would decrease the derived total surface methane emissions, thus further increasing 

the discrepancy between bottom up and top down approaches.  

5.2 Latitudinal methane budget  

5.2.1 Latitudinal budget of total methane emissions 1980 

The latitudinal breakdown of emissions inferred from atmospheric inversions reveals a dominance of tropical 

emissions at 366 Tg CH4 yr-1 [321-399], representing 64% of the global total (Table 5). Thirty-two per cent 

of the emissions are from the mid-latitudes (185 Tg CH4 yr-1 [166-204]) and 4% from high latitudes (above 

60°N). The ranges around the mean latitudinal emissions are larger than for the global methane sources. 

While the top-down uncertainty is about 5% at the global scale, it increases to 10% for the tropics and the 1985 

northern mid-latitudes to more than 25% in the northern high-latitudes (for 2008-2017, Table 5). Both top-

down and bottom-up approaches show that methane emissions have increased by 20 Tg CH4 yr-1 and 18 Tg 

CH4 yr-1 in the tropics and in the northern mid-latitudes between 2000-2009 and 2008-2017, respectively. 

For the 2008-2017 budget, different inversions assimilated either satellite or ground-based observations. It is 

of interest to determine whether these two different types of data provide consistent surface emissions. To do 1990 

so, we calculated the global and hemispheric methane emissions using satellite-based inversions and ground-
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based inversions separately for the 2010-2017 time period, which is the longest time period for which results 

from both GOSAT satellite-based and surface-based inversions were available. At the global scale, satellite-

based inversions infer almost identical emissions to ground-based inversions (difference of 3 [0-7] Tg CH4 

yr-1), when comparing consistently surface versus satellite-based inversions for each system. This difference 1995 

is lower that in Saunois et al. (2016) where satellite-based inversions reported 12 Tg higher global methane 

emissions compared to surface-based inversions. Differences in the ensemble (no SCIAMACHY retrieval 

used here) and the treatment of satellite data within each system compared to Saunois et al. (2016) explain 

the contrasting results. Averaged across the inversions, the global difference between satellite and surface-

based inversions (3 [0-7] Tg CH4 yr-1) is not significant compared to the range derived from the different 2000 

systems (range of 20 Tg CH4 yr-1 using surface or satellite observations only). At the latitudinal scale, 

emissions vary between the satellite-based and surface-based inversions. Large absolute differences 

(satellite-based minus surface-based inversions) are observed over the tropical region, between -13 and +26 

Tg CH4 yr-1 below 30°N, and in the northern mid-latitudes (between -20 and +15 Tg CH4 yr-1). Satellite data 

provide stronger constraints on fluxes in tropical regions than surface data, due to a much larger spatial 2005 

coverage. It is therefore not surprising that differences between these two types of observations are found in 

the tropical band, and consequently in the northern mid-latitudes to balance total emissions, thus affecting 

north-south gradient of emissions. The results presented here clearly show that the models differ in the 

regional attribution of methane emissions when using satellite observations compared to surface-based 

inversions. However, the differences are not systematically consistent in sign among the different systems 2010 

(some showing positive/negative differences for the Tropics and the opposite in the northern mid-latitudes), 

and depend on whether of not a bias correction is applied to the satellite data based on surface observations. 

Also, the way the stratosphere is treated in the atmospheric models used to produce atmospheric methane 

columns from remote-sensing measurements (e.g. GOSAT or TCCON) also requires further investigation 

(Locatelli et al., 2015; Monteil et al., 2011; Bergamaschi et al., 2009; Saad et al., 2016; Houweling et al., 2015 

2017). Some studies have developed methodologies to extract tropospheric partial column abundances from 

the TCCON data (Saad et al., 2014; Wang et al., 2014). Such partitioning could help to explain the 

discrepancies between atmospheric models and satellite data. 

5.2.2 Latitudinal methane emissions per source category 

The analysis of the latitudinal methane budget per source category (Fig. 7) can be performed both for bottom-2020 

up and top-down approaches but with limitations. On the bottom-up side, some natural emissions are not 

(yet) available at regional scale (mainly inland waters). Therefore, for freshwater emissions, we applied the 

latitudinal contribution of Bastviken et al. (2011) to the global reported value. Further details are provided in 

the Supplementary to explain how the different bottom-up sources were handled. On the top-down side, as 
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already noted, the partition of emissions per source category has to be considered with caution. Indeed, using 2025 

only atmospheric methane observations to constrain methane emissions makes this partition largely 

dependent on prior emissions. However, differences in spatial patterns and seasonality of emissions can be 

utilized to constrain emissions from different categories by atmospheric methane observations (for those 

inversions solving for different sources categories, see Sect. 2.3). 

Agriculture and waste are the largest sources of methane emissions in the tropics (130 [121-137] Tg CH4 yr-2030 
1 for the bottom-up budget and 139 [127-157] for the top-down budget, about 38% of total methane emissions 

in this region). Although, wetland emissions are nearly as large with 115 [71-146] Tg CH4 yr-1 for the bottom-

up budget and 132 [102-155] Tg CH4 yr-1 for the top-down budget. One top-down model suggests lower 

emissions from agriculture and waste compared to the ensemble but suggests higher emissions from fossil 

fuel: this recalls the necessary caution when discussing sectorial partitioning when using top-down 2035 

inversions. Anthropogenic emissions dominate in the northern mid-latitudes, with a highest contribution from 

agriculture and waste emissions (42% of total emissions), closely followed by fossil fuel emissions (31% of 

total emissions). Boreal regions are largely dominated by wetland emissions (60% of total emissions). 

The uncertainty on wetland emissions is larger in the bottom-up models than in the top-down models, while 

uncertainty in anthropogenic emissions is larger in the top-down models than in the inventories. The large 2040 

uncertainty in tropical wetland emissions (65%) results from a heterogeneous spread among the bottom-up 

land-surface models. Although they are using the same wetland extent, their responses in terms of flux density 

show different sensitivity to temperature, vapour pressure, precipitation, and radiation. 

More regional discussions were developed in Saunois et al. (2016) and are updated in Stavert et al. 
(2019). 2045 

6 Future developments, missing elements, and remaining uncertainties  

Kirschke et al. (2013) and Saunois et al. (2016) identified four main shortcomings in the assessment of 

regional to global CH4 budgets. Although progress has been made, they are still relevant and we revisit them 

here.  

 2050 

Annual to decadal CH4 emissions from natural sources (wetlands, freshwater, geological) are highly 

uncertain. Since Saunois et al., (2016), several workshops (e.g. Turner et al., 2019) and publications (e.g. 

Thornton et al., 2016b; Knox and al., 2019) contributed to develop previous recommendations and strategies 

to reduce uncertainties of methane emissions due to wetlands and other freshwater systems. The main 

outcomes of these activities include i) the reduced estimate (by ~20%, i.e. 35 Tg CH4 yr-1) of the global 2055 

wetland emissions, due to a refined wetland extent analysis and modifications of land surface model 

calibration, ii) the initiation of international efforts to develop a high-resolution (typically tens of meters) 
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classification of saturated soils and inundated surfaces based on satellite data (visible and microwave), 

surface inventories, and expert knowledge, avoiding double counting between wetlands and other freshwater 

systems, iii) further development of an on-going effort to collect flux measurements within the FLUXNET 2060 

activity (FLUXNET-CH4, Knox et al., 2019) and use them to provide global flux maps based on machine 

learning approaches and to constrain land surface models. More flux measurements in the tropics and 

measurements of the isotopic atmospheric composition of the various ecosystems (bogs/swamps, C3/C4 

vegetation…) will also help to better constrain methane fluxes as well as their isotopic signature in wetland 

models. Together with FLUXNET-CH4 data, it will allow further refinement of parameterizations of the land 2065 

surface models (Turetsky et al., 2014; Glagolev et al., 2011). There is still a need for more systematic 

measurements from sites reflecting the diversity of lake morphologies to better understand the short-term 

biological control on ebullition variability, which remains poorly known (Wik et al., 2014, 2016). Similarly, 

more local measurements of CH4 and its isotopes, using continuous laser based techniques, would allow 

confirmation of the estimation of geological methane emissions. Further efforts are still needed in: i) 2070 

extending the monitoring of the methane emissions all year round from the different natural sources 

(wetlands, freshwaters and geological) complemented with key environmental variables to allow proper 

interpretation (e.g. soil temperature and moisture, vegetation types, water temperature, acidity, nutrient 

concentrations, NPP, soil carbon density); ii) finalizing the on-going efforts to develop process–based 

modelling approaches to estimate freshwater emissions instead of data-driven up scaling of unevenly-2075 

distributed and local flux observations; and iii) again, finalizing the global high resolution classification of 

saturated soils and inundated surfaces which will prevent double counting between wetlands and freshwater 

systems. The remaining large uncertainties strongly suggest the need to develop more integrated studies 

including the different systems (wetlands, ponds, lakes, reservoirs, streams, rivers, estuaries, and marine 

systems), to avoid double counting issues but also to account for lateral fluxes.  2080 

 

The partitioning of CH4 emissions and sinks by region and process is not sufficiently constrained by 

atmospheric observations in top-down models. In this work, we report inversions assimilating satellite data 

from GOSAT, which bring more constraints than surface stations, especially over tropical continents. Future 

satellite instruments, if their systematic errors can be as low as few ppb, will significantly enhance the 2085 

capabilities to monitor CH4 emissions from space and will largely extend the spatial coverage of the 

atmospheric monitoring system. Particularly promising are new satellite missions with high spatial resolution 

and "imaging capabilities" (Crisp et al., 2018), such as the TROPOMI instrument on Sentinel 5P, launched 

in October 2017 (Hu et al., 2018). With a relatively high spatial resolution (7km x 7km), TROPOMI promises 

to provide much more methane data than GOSAT or GOSAT-2, reducing the impact of random errors on the 2090 

retrieval of methane emissions. TROPOMI has already proven to be useful by detecting large and isolated 
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CH4 enhancements in South Sudan pointing to emissions from tropical wetlands (Hu et al., 2018), but still 

has to evaluate the magnitude of its systematic errors. In this context, intrinsic low-bias observation systems 

from space, such as active LIDAR techniques (Ehret et al., 2017), are promising to overcome issues of 

systematic errors (Bousquet et al., 2018). The extension of the CH4 surface networks to poorly observed 2095 

regions (e.g. Tropics, China, India, high latitudes) and to the vertical dimension (Aircraft regular campaigns, 

e.g. Sweeney et al. (2015), Paris et al. (2010); Aircore campaigns, (e.g. Membrive et al., 2017; Andersen et 

al., 2018); TCCON observations, e.g. (Wunch et al., 2019; Wunch et al., 2011) are still critical observations 

to complement satellite data that do not observe well in cloudy regions and at high latitudes, and also to 

evaluate and eventually correct satellite biases (Buchwitz et al., 2016). Such data already exist for China 2100 

(Fang et al., 2015), India (Tiwari and Kumar, 2012; Lin et al., 2015) and Siberia (Sasakawa et al., 2010; 

Winderlich et al., 2010) and could be assimilated in inversions if made available more systematically to the 

scientific community. Observations from other tracers could help partitioning the different CH4 emitting 

processes (Turner et al., 2019). Carbon monoxide (e.g. Fortems-Cheiney et al., 2011) can provide useful 

constraints for biomass burning emissions, and ethane for fugitive emissions (e.g. Simpson et al., 2012; 2105 

Turner et al., 2019). Methane isotopes can provide additional constraints to partition the different CH4 sources 

and sinks, if isotopic signatures can be better known spatially and temporally (Ganesan et al., 2018): 

radiocarbon for fossil / non-fossil emissions (Petrenko et al., 2017; Lassey et al., 2007a,b), 13CH4 for biogenic 

/ pyrogenic / thermogenic emissions, CH3D for OH loss (Röckmann et al., 2011), and emerging clumped 

isotope measurements for biogenic/thermogenic emissions (Stolper et al., 2014) and OH loss (Haghnegahdar 2110 

et al., 2017). However, additional tracers can also bring contradictory trends in emissions such as the ones 

suggested for the post-2007 period by 13C (Schaefer et al., 2016), and ethane (Hausmann et al., 2016). Such 

discrepancies have to be understood and solved to be able to properly use additional tracers to constrain CH4 

emissions. Although we have used here a state-of-the-art ensemble of Chemistry Transport Models (CTM) 

and Climate Chemistry Models (CCM) simulations from the CCMI (Chemistry-Climate Model Initiative, 2115 

Morgenstern et al., 2018); Lamarque et al., 2013), the uncertainty on the derived CH4 chemical loss from the 

chemistry climate models remains the same compared to the previous intercomparison project ACMIP, and 

more work is still needed to investigate the reasons. In addition, the magnitude of the CH4 loss through 

oxidation by tropospheric chlorine is debated in the recent literature. More modeling and instrumental studies 

should be devoted to reducing the uncertainty of this potential additional sink before integrating it in top-2120 

down models. The development of regional components of the global CH4 budget is also a way to improve 

global totals by feeding them with regional top-down and bottom-up approaches (Stavert et al., 2019). Such 

efforts have started for the US (e.g. (Miller et al., 2013), Europe (e.g. (Henne et al., 2016;Bergamaschi et al., 

2018b), South and East Asia Asia (Patra et al., 2013; Lin et al., 2018) and for the Arctic (e.g. Bruhwiler et 

al., 2015; (Thompson et al., 2017), where seasonality (e.g. Zona et al. (2016) for tundra) and magnitude (e.g. 2125 
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Berchet et al. (2016) and Thornton et al. (2016a) for continental shelves) of methane emissions remain poorly 

understood. The on-going European project VERIFY (https://verify.lsce.ipsl.fr) aims at better estimating 

European greenhouse gas emissions, including CH4 emissions. The development of the RECCAP-2 project 

should also provide a scientific framework to further refine GHG budgets, including methane, at regional 

scales (https://www.reccap2-gotemba2019.org/).  2130 

Overall, synergies between observation networks with complementary capacities (surface, troposphere, 

remote sensing from the surface, satellites) should be favored  to increase the constraints on the global 

methane budget, while reducing biases in satellite data assimilated in atmospheric inversions. 

 

The ability to explain observed atmospheric trends by using changes in sectorial emission from bottom-up 2135 

inventories remains limited. Most inverse groups use the EDGARv4.3.2 inventory as a prior (or the previous 

EDGARv4.2). EDGAR is the historical annual gridded anthropogenic inventory used in the modelling 

community. However, discrepancies in both regional and sectorial totals between EDGAR and other 

emission inventories are important. The drivers of the discrepancies are unclear but are likely to be a 

combination of differences in methodologies and sectorial definitions. This suggests that more extensive 2140 

comparisons and exchange between the different datasets teams would favour a path towards increased 

consistency. More regular updates of emission inventories will also reduce the need for extending them 

beyond their available coverage. The consistent use of updated activity data within each inventory will  also 

help track the most recent changes and assess temporal and regional emissions changes.  

 2145 

Uncertainties in the modelling of atmospheric transport and chemistry limit the optimal assimilation of 

atmospheric observations and increase the uncertainties of the inversion-derived flux estimates. The 

TRANSCOM experiment synthesized in Patra et al. (2011) showed a large sensitivity of the representation 

of atmospheric transport on methane concentrations in the atmosphere. As an illustration, in their study, the 

modelled CH4 budget appeared to depend strongly on the troposphere-stratosphere exchange rate and thus 2150 

on the model vertical grid structure and circulation in the lower stratosphere. Locatelli et al. (2015) studied 

the sensitivity of inversion results to the representation of atmospheric transport and suggested that regional 

changes in the balance of CH4 emissions between inversions may be due to different characteristics of the 

transport models used in their approach. Bruhwiler et al. (2017) questioned the strong trend inferred for the 

US natural gas emission from a top-down perspective (Turner et al., 2016) and showed how, among others, 2155 

atmospheric transport and choice of upwind background can influence the trend in atmospheric column 

average methane. On the chemistry side, Nicely et al. (2017) found that the main cause of the large differences 

in the CTM representation of CH4 lifetime are the variations in the chemical mechanisms implemented in the 

models. Using the ensemble of CTMs and CCMs from the CCMI experiment (Morgenstern et al., 2018), 
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Zhao et al. (2019) quantified the range of CH4 loss induced by the ensemble of OH fields to be equivalent to 2160 

about half of the discrepancies between CH4 observations and simulations as forced by the current 

anthropogenic inventories. These results emphasize the need to first assess, and then improve, atmospheric 

transport and chemistry models, especially on the vertical, and to integrate robust representation of OH fields 

in the atmospheric models. In addition, as stated in Sect. 3.3.4, top-down models may consider testing 

updated and varying soil uptake estimates, especially considering a warmer climate. Indeed, for top-down 2165 

models resolving for the net flux of CH4 at the surface integrating a larger estimate of soil uptake would 

allow larger emissions, and then reduce the uncertainty with the bottom-up estimates of total CH4 sources. 

Finally, top-down models need to consider using the newly available updated gridded products for the 

different natural sources of CH4 within their prior to be able to better compare the top-down budget with the 

bottom-up budget. 2170 

7 Conclusions 

We have built a global methane budget by using and synthesizing a large ensemble of published methods 

and  results with consistent approaches, including atmospheric observations and inversions (top-down 

models), process-based models for land surface emissions and atmospheric chemistry, and inventories of 

anthropogenic emissions (bottom-up models and inventories). For the 2008-2017 decade, global CH4 2175 

emissions are 572 Tg CH4 yr-1 (range of 538-593), as estimated by top-down inversions. About 60% of global 

emissions are anthropogenic (range of 50-70%). Bottom-up models and inventories suggest much larger 

global emissions (737 Tg CH4 yr-1 [593-880]) mostly because of larger and more uncertain natural emissions 

from inland water systems, natural wetlands and geological leaks, and some likely unresolved double 

counting of these sources. It is also likely that some of the individual bottom-up emission estimates are too 2180 

high, leading to larger global emissions from the bottom-up perspective than the atmospheric constraints 

suggest.  

The latitudinal breakdown inferred from top-down approaches reveals a dominant role of tropical emissions 

(~64%) compared to mid (~32%) and high (~4%) northern latitudes (above 60°N) emissions.  

Our results, including an extended set of atmospheric inversions, are compared with the previous budget 2185 

syntheses of Kirschke et al. (2013) and Saunois et al. (2016), and show overall good consistency when 

comparing the same decade (2000-2009) at the global and latitudinal scales. While, a comparison of top-

down emissions estimates determined with and without satellite data agreed well globally they differed 

significantly at the latitudinal scale. Most worryingly, these differences were not even consistent in sign with 

some models showing notable increases in a given latitudinal flux and others decreases. This suggests that 2190 

while the inclusion of satellite data may, in the future, significantly increase our ability to attribute fluxes 
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regionally this is not currently the case due to their existing inherent biases along with the inconsistent 

application of methods to account for these biases and differences in model stratospheric transport. 

Among the different uncertainties raised in Kirschke et al. (2013), Saunois et al. (2016) estimated that 30-

40% of the large range associated with modelled wetland emissions in Kirschke et al. (2013) was due to the 2195 

estimation of wetland extent. Here, wetland emissions are 35 Tg CH4 yr-1 smaller than previous estimates 

due to a refinement of wetland extent. The magnitude and uncertainty of all other natural sources have been 

revised and updated, leading to smaller emission estimates for oceans, geological sources, and wild animals, 

and higher emission estimates and their range for freshwater systems. This result places a clear priority on 

reducing uncertainties in emissions from inland water systems by better quantifying the emission factors of 2200 

each contributing sub-systems (streams, rivers, lakes, ponds) and eliminating both uncertain up-scaling and 

likely double counting with wetland emissions. The development of process-based models for inland water 

emissions, constrained by local observations, remains a priority to reduce present uncertainties for inland 

water emissions. We also place importance in reducing uncertainties of the magnitude, regional distribution, 

inter-annual variability, and decadal trends of OH radicals in the troposphere and stratosphere, which have 2205 

improved only marginally since Kirschke et al. (2013) (Zhao et al, 2019). 

Our work also suggests the need for more interactions among groups developing emission inventories in 

order to clarify the definition of the sectorial breakdown in inventories. Such an approach would allow easier 

comparisons at the sub-category scale. We would also strongly benefit from on-going efforts to expand the 

network of atmospheric measurement stations into key tropical regions, including vertical profiles and 2210 

atmospheric columns (e.g. TCCON). Finally, additional tracers (methane isotopes, ethane, CO) have the 

potential to constrain the global methane cycle more fully if their information content relative to methane 

emission trends is consistent (Schaefer et al., 2016; Hausmann et al., 2016; Thompson et al., 2018).  

Building on the improvement of the points above, our aim is to update this budget synthesis as a living review 

paper regularly (~every two/three years). Each update will produce a more recent decadal CH4 budget, 2215 

highlight changes in emissions and trends, and incorporate newly available data and model improvements.  

In addition to the decadal CH4 budget presented in this paper, trends and year-to-year changes in the methane 

cycle have been thoroughly discussed in the recent literature (e.g. Nisbet et al., 2019; Turner et al., 2019). 

After almost a decade of stagnation in the late 1990s and early 2000s (Dlugokencky et al., 2011, Nisbet et 

al., 2016), a sustained atmospheric growth rate of more than +5 ppb yr-1 has been observed since 2007, with 2220 

a further acceleration after 2014 (Nisbet et al., 2019). The last budget presented in Saunois et al. (2016) has 

been followed by further syntheses analysing the trends and changes in the methane sources and sinks 

reported in the Global Methane Budget (Saunois et al., 2017), or extended with additional constraints (Turner 

et al., 2019). Nevertheless, no consensus has yet been reached in explaining the CH4 trend since 2007. A 

likely explanatory scenario, already discussed in Saunois et al. (2017), includes, by increasing order of 2225 
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uncertainty, a positive contribution from microbial and fossil sources (e.g. Nisbet et al., 2019; Schwietzke et 

al., 2016), a negative contribution (from biomass burning emissions before 2012 (Giglio et al., 2013; Worden 

et al., 2017), a downward revision of Chinese emissions (e.g. Peng et al., 2016), a negligible role of Arctic 

emissions (e.g. Saunois et al., 2017), a tropical dominance of the increasing emissions (e.g. Saunois et al., 

2017), and an ambiguous role of OH changes that cannot explain all the observed trend but could have limited 2230 

the required emission change to explain the observed atmospheric trend (e.g. Turner al., 2017; Rigby et al., 

2017; Dalsøren et al., 2016; McNorton et al., 2016, 2018). The challenging increase of atmospheric CH4 

during the past decade needs additional research to be fully understood (Nisbet et al., 2019; Turner et al., 

2019). The GCP will continue to take its part in analysing and synthesizing recent changes in the global to 

regional methane cycle based on the ensemble of top-down and bottom-up studies gathered for the budget 2235 

analysis presented here. 

8 Data availability 

The data presented here are made available in the belief that their dissemination will lead to greater 

understanding and new scientific insights on the methane budget and changes to it, and helping to reduce its 

uncertainties. The free availability of the data does not constitute permission for publication of the data. For 2240 

research projects, if the data used are essential to the work to be published, or if the conclusion or results 

largely depend on the data, co-authorship should be considered. Full contact details and information on how 

to cite the data are given in the accompanying database. 

The accompanying database includes one Excel file organized in the following spreadsheets and two netcdf 

files defining the regions used to extend the anthropogenic inventories. 2245 

The file Global_Methane_Budget_2000-2017_v0.xlsx includes (1) a summary, (2) the methane observed 

mixing ratio and growth rate from the four global networks (NOAA, AGAGE, CSIRO and UCI), (3) the 

evolution of global anthropogenic methane emissions (including biomass burning emissions) used to produce 

Fig. 2, (4) the global and latitudinal budgets over 2000–2009 based on bottom-up approaches, (5) the global 

and latitudinal budgets over 2000–2009 based on top-down approaches, (6) the global and latitudinal budgets 2250 

over 2008–2017 based on bottom-up approaches, (7) the global and latitudinal budgets over 2008– 2017 

based on top-down approaches, (8) the global and latitudinal budgets for year 2017 based on bottom-up 

approaches, (9) the global and latitudinal budgets for year 2017 based on top-down approaches, and (10) the 

list of contributors to contact for further information on specific data.  

This database is available from ICOS (https://doi.org/10.18160/GCP-CH4-2019, Saunois et al., 2019) and 2255 

the Global Carbon Project (http://www.globalcarbonproject.org). 
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Table 1: B-U models and inventories for anthropogenic and biomass burning inventories used in this study. *Due 
to its limited sectorial breakdown this dataset was not used in Table 3. ^Extended to 2017 for this study as 
described in Section 3.1.1. 

B-U models and 
inventories 

Contribution Time period 
(resolution) 

Gridded References 

CEDS (country based) Fossil fuels, 
Agriculture and 
waste, Biofuel 

1970-2015^ 
(yearly) 

no  (Hoesly et al., 2018) 
  

CEDS (gridded)* Fossil fuels, 
Agriculture and 
waste, Biofuel 

1970-2014 
(monthly) 

0.5x0.5° (Hoesly et al., 2018) 
  

EDGARv4.2.3 Fossil fuels, 
Agriculture and 
waste, Biofuel 

1990-2012^ 
 (yearly) 

0.1x0.1° (Janssens-Maenhout et al., 
2019) 

IIASA GAINS 
ECLIPSEv6 

Fossil fuels, 
Agriculture and 
waste, Biofuel 

1990-2015^ 
(1990-2015 yearly, 
>2015 5-yr interval 

interpolated to yearly) 

0.5x0.5° (Höglund-Isaksson, 2012) 

USEPA Fossil fuels, 
Agriculture and 
waste, Biofuel, 

Biomass Burning 

1990-2030 
(10-yr interval, 

interpolated to yearly) 

no (USEPA, 2012) 

FAO-CH4 Agriculture, Biomass 
Burning 

1961-2016^ 
1990-2016 
(Yearly) 

no (Frederici et al., 
2015 ;Tubiello et al., 2014, 

2019) 

FINNv1.5 Biomass burning 2002-2018 
(daily) 

1km 
resolution 

(Wiedinmyer et al., 2011) 

GFASv1.3 Biomass burning 2003-2016 
(daily) 

0.1x0.1° (Kaiser et al., 2012) 

GFEDv4.1s Biomass burning 1997-2017 
(monthly) 

 0.25x0.25° (Giglio et al., 2013) 

QFEDv2.5 Biomass burning 2000-2017 
(daily) 

0.1x0.1° (Darmenov, 2015) 
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Table 2: Biogeochemical models that computed wetland emissions used in this study. Runs were performed for 
the whole period 2000-2017. Models run with prognostic (using their own calculation of wetland areas) and/or 
diagnostic (using WAD2M) wetland surface areas (see Sect 3.2.1).  

Model Institution Prognostic Diagnostic References 

CLASS-CTEM Environment 
and Climate 

Change 
Canada 

y y Arora, Melton and 
Plummer (2018) 
Melton and Arora (2016) 

DLEM Auburn 
University 

n y Tian et al., (2010;2015) 

ELM Lawrence 
Berkeley 
National 

Laboratory 

y y  
Riley et al. (2011) 

JSBACH MPI n y XXX 

JULES UKMO y y Hayman et al. (2014) 

LPJ GUESS Lund 
University 

n y McGuire et al. (2012)  

LPJ MPI MPI n y Kleinen et al. (2012) 

LPJ-WSL NASA GSFC y y Zhang et al. (2016b) 

LPX-Bern University of 
Bern 

y y Spahni et al. (2011) 

ORCHIDEE LSCE y y Ringeval et al. (2011) 

TEM-MDM Purdue 
University 

n y Zhuang et al. (2004) 

TRIPLEX_GHG UQAM n y Zhu et al., (2014;2015) 

VISIT NIES y y Ito and Inatomi (2012) 
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Table 3: Global methane emissions by source type in Tg CH4 yr-1 from Saunois et al. (2016) (left column pair) and 
for this work using bottom-up and top-down approaches). Because top-down models cannot fully separate 
individual processes, only five categories of emissions are provided (see text). Uncertainties are reported as [min-
max] range of reported studies. Differences of 1 Tg CH4 yr-1 in the totals can occur due to rounding errors. 

 Saunois et al. (2016) This work 
Period of time 2000-2009 2000-2009 2008-2017 2017 
Approaches bottom-up top-down bottom-up top-down bottom-up top-down bottom-

up 
top-down 

NATURAL 
SOURCES 

382  
[255-519] 

234  
[194-292] 

369  
[245-485] 

214  
[176-243] 

371  
[245-488] 

215  
[176-248] 

367  
[243-489] 

228  
[183-266] 

Natural wetlands 183 
[151-222] 

166 
[125-204] 

147 
[102-179] 

180 
[153-196] 

149 
[102-182] 

178  
[155-200] 

145 
[100-183] 

189  
[155-217] 

Other natural 
sources 

199 
[104-297] 

68 
[21-130] 

222 
[143-306] 

35  
[21-47] 

222 
[143-306] 

37  
[21-50] 

222 
[143-306] 

39 
[21-50] 

Other land sources 185 
[99-272] 

 209 
[134-284] 

     

Freshwaters a 
 

Geological 
(onshore) 

Wild animals 
Termites 
Wildfires 

Permafrost soils 
(direct) 

Vegetation 

122 
[60-180] 
40 [30-56] 
 
10 [5-15] 
9 [3-15] 
3 [1-5] 
1 [0-1] 
 
(*) 

 159 
[117-212] 
38 [13-53] 
 
2 [1-3] 
9 [3-15] 
(**) 
1 [0-1] 
 
(*) 

     

Oceanic sources 
Geological 
(offshore) 

Biogenic open and 
coastal b 

14 [5-25] 
12 [5-20] 
 
2 [0-5] 

 13 [9-22] 
7 [5-12] 
 
6 [4-10] 

     

ANTHROPOGENI
C SOURCES 

338 
[329-342] 

319 
[255-357] 

334 
[325-357] 

331 
[310-346] 

366 
[348-392] 

357 
[334-375] 

378 
[357-404] 

362 
[339-379] 

Agriculture and 
waste  

190 
[174-201] 

183 
[112-241] 

192 
[178-206] 

202 
[173-219] 

206 
[191-223] 

219 
[175-239] 

213 
[198-233] 

227 
[205-246] 

Enteric ferm. & 
manure 

Landfills & waste 
Rice cultivation 

103 
[95-109]c 
57 [51-61]c 

29 [23-35]c 

 104 
[93-109] 

60 [55-63] 

28 [23-34] 

 111 
[106-116] 

65 [60-69] 

30 [25-38] 

 115 
[110-121] 

68 [64-73] 

30 [24-39] 

 

Fossil fuels 
 

Coal mining  
Oil & Gas 

Industry  
Transport 

112 
[107-126] 
36 [24-43]c 
76 [64-85]cf 

- 

- 

101 
[77-126] 
 

110 
[93-129] 
31 [24-42] 
73 [59-85] 
2 [0-6] 
4 [1-11] 

100 
[70-149] 

127 
[111-154] 
42 [29-60] 
79 [66-92] 
3 [0-7] 
4 [1-12] 

109 
[79-168] 

134 
[117-161] 
43 [31-62] 
83 [69-97] 
3 [0-8] 
4 [1-13] 

107 
[90-120] 

Biomass & biof. 
burn. 

Biomass burning 
Biofuel burning 

30 [26-34] 
 
18 [15-20] 
12 [9-14] 

35 [16-53] 
 

32 [26-46] 
 
19 [15-32] 
12 [9-14] 

29 [23-35] 30 [26-40] 
 
17 [14-26] 
12 [10-14] 

30 [22-36] 28 [22-37] 
 
16 [11-24] 
12 [10-14] 

28 [25-32] 

SINKS         
Total chemical loss 
 

Tropospheric OH 
 

Stratospheric loss 
Tropospheric Cl 

604 
[483-738] 
528 
[454-617] 
51 [16-84] 
25 [13-37] 

514d 

 
 
 
 

595 
[489-749] 
553 
[476-677] 
31 [12-37] 
11 [1-35] 

505 
[459-516] 

 518 
[474-532] 

 531 
[502-540] 

Soil uptake 28 [9-47] 32 [27-38] 30 [11-49] 34 [27-41]  38 [27-45]  40 [37-47] 
Sum of sources 719 

[583-861] 
552 
[535-566] 

703  
[570-842] 

545  
[522-559] 

737  
[593-880] 

572  
[538-593] 

745  
[600-893] 

591  
[552-614] 
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Sum of Sinks 632 
[592-785] 

546d 625  
[500-798] 

540  
[486-556] 

 556 
[501-574] 

 571 
[540-585] 

Imbalance  6e  4 [-11-36]  16 [0- 47]  11 [0- 39] 
Atmospheric 
growth 

 6.0 
[4.9-6.6] 

      

(*) uncertain but likely small for upland forest and aerobic emissions, potentially large for forested wetland, but likely included elsewhere 
(**) We stop reporting this value to avoid potential double counting with satellite-based products of biomass burning (see Sect. 3.1.5)  
a: Freshwater includes lakes, ponds, reservoirs, streams and rivers 
b: includes flux from hydrates considered at 0 for this study, includes estuaries 
c: For IIASA inventory the breakdown of agriculture and waste (rice, Enteric fermentation & manure, Landfills & waste) and fossil fuel 
(coal, oil, gas & industry) sources used the same ratios as the mean of EDGAR and USEPA inventories in Saunois et al. (2016). 
d: total sink was deduced from global mass balance and not directly computed in Saunois et al. (2016). 
e: computed as the difference of global sink and soil uptake in Saunois et al. (2016). 
f: Industry and transport emissions were included in the Oil & Gas category in Saunois et al. (2016) 
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Table 4: Top-down studies used in our new analysis, with their contribution to the decadal and yearly estimates 
noted. For decadal means, top down studies have to provide at least 8 years of data over the decade to contribute 
to the estimate. 

Model Institution Observation 
used 

Time 
period 

Number of 
inversions 

2000-
2009 

2008- 
2017 

2017 References 

Carbon Tracker-
Europe CH4 

FMI Surface 
stations 

2000-2017 1 y y y Tsuruta et al. 
(2017) 

Carbon Tracker-
Europe CH4 

FMI GOSAT 
NIES L2 

v2.72 
 

2010-2017 1 n y y Tsuruta et al. 
(2017) 

GELCA NIES Surface 
stations 

2000-2015 1 y y n Ishizawa et al. 
(2016) 

LMDz-PYVAR LSCE/CEA Surface 
stations 

2010-2016 2 n y n Yin et al. (2019) 

LMDz-PYVAR LSCE/CEA GOSAT 
Leicester 

2010-2016 4 n y n Yin et al. (2019) 

LMDz-PYVAR LSCE/CEA GOSAT 
Leicester 

2010-2017 2 n y y Zheng et al. 
(2018a, 2018b) 

MIROC4-
ACTM 

JAMSTEC Surface 
stations 

2000-2016 1 y y n Patra et al. (2016; 
2018) 

NICAM-TM NIES Surface 
stations 

2000-2017 1 y y y Niwa et al. 
(2017a; 2017b) 

NIES-TM-
FLEXPART 

(NTF) 

NIES Surface 
stations 

2000-2017 1 y y y Maksyutov et al. 
(2019); Wang et 

al. (2019b) 

NIES-TM-
FLEXPART 

(NTF) 

NIES GOSAT 
NIES L2 

v2.72 

2010-2017 1 n y y Maksyutov et al. 
(2019); Wang et 

al., (2019b) 

TM5-CAMS TNO/VU Surface 
stations 

2000-2017 1 y y y Segers and 
Houwelling 

(2018); 
Bergamaschi et al. 

(2010; 2013), 
Pandey et al. 

(2016) 

TM5-CAMS TNO/VU GOSAT 
ESA/CCI 

v2.3.8 

2010-2017 1 n y y Segers and 
Houwelling 

(2018,report); 
Bergamaschi et al. 
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(2010; 2013), 
Pandey et al. 

(2016)  

TM5-4DVAR EC-JRC Surface 
stations 

2000-2017 2 y y y Bergamaschi et al. 
(2013, 2018) 

TM5-4DVAR EC-JRC GOSAT 
OCPR v7.2 

2010-2017 2 n y y Bergamaschi et al. 
(2013, 2018) 

TOMCAT Uni. of 
Leeds 

Surface 
stations 

2003-2015 1 n y n McNorton et al. 
(2018) 
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Table 5: Global and latitudinal total methane emissions in Tg CH4 yr-1, as decadal means (2000-2009 and 2008-
2017) and for the year 2017, for this work using bottom-up and top-down approaches. Global emissions for 2000-
2009 are also compared with Saunois et al. (2016) and Kirschke et al. (2013) for top-down and bottom-up 
approcahes. Latitudinal total emissions for 2000-2009 are compared with Saunois et al. (2016) for top-down 
studies only. Uncertainties are reported as [min-max] range. Differences of 1 Tg CH4 yr-1 in the totals can occur 
due to rounding errors. 

Period 2000-2009 2008-2017 2017 
Approach Bottom-up Top-down Bottom-up Top-down Bottom-up Top-down 
Global       

This work 
 

Saunois et al. 
(2016) 

Kirschke et al. 
(2013) 

703 
 [570-842] 

719 
 [583-861] 

678 
 [542-852] 

545  
[522-559] 

552 
 [535-566] 

553 
 [526-569] 

737  
[593-880] 

- 
 
- 

572  
[538-593] 

- 
 
- 

745  
[600-893] 

- 
 
- 

591 
 [552-614] 

- 
 
- 

90°S-30°N       
This work 

 
Saunois et al. 

(2016) 

410  
[336-522] 

- 

346  
[320-379] 

356  
[334-381] 

430  
[357-544] 

- 

366 
 [321-399] 

- 

435 
 [362-552] 

- 

379 
[332-405]  

- 

30°N-60°N        
This work 

 
Saunois et al. 

(2016) 

250  
[205-330] 

- 

178  
[159-199] 

176 
[159-195] 

268  
[223-346] 

- 

185  
[166-204] 

- 

276  
[230-352] 

- 

187  
[171-202] 

- 

60°N-90°N        
This work 

 
Saunois et al. 

(2016) 

41  
[29-65] 

- 

23  
[17- 32] 

20  
[15-25] 

39  
[26-63] 

- 

22  
[17- 29] 

- 

36  
[24- 60] 

- 

24 
 [20- 28] 

- 
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Table 6: Latitudinal methane emissions in Tg CH4 yr-1 for the last decade 2008-2017, based on top-down and 
bottom-up approaches. Uncertainties are reported as [min-max] range of reported studies. Differences of 1 Tg 
CH4 yr-1 in the totals can occur due to rounding errors. For bottom-up approaches, other natural sources (as a 
result total methane emissions and natural emissions) are not reported here due to a lack of spatial distribution 
for some sources (freshwater). Bottom-up anthropogenic estimates are based only on the gridded products from 
EDGARv4.3.2 and GAINS. 

 

Latitudinal band < 30°N 30°N-60°N 60°-90°N 

Approach Bottom-up Top-Down Bottom-up Top-Down Bottom-up Top-Down 

Natural Sources 227 [71-146] 158 [115-189]  115 [71- 193] 41 [29-52] 31 [18- 55] 16 [11-20] 

Natural Wetland 115 [71-146] 133 [102-155] 25 [11-44] 32 [24-41] 9 [2-18] 13 [7-16]  

Other natural 112 [84-194] 25 [14-36] 90 [60-149] 9 [4-14]  22 [16-37] 3 [0-4]  

Anthropogenic 
sources 

203 [202-204] 208 [186-229] 153 [152-153] 144 [117-170] 8 [8-8] 6 [2-10] 

Agriculture & 
Waste 

130 [121-137] 139 [127-157] 80 [77-84] 78 [67-87] 1 [1-1] 1 [1-2] 

Fossil Fuels 42 [40-46] 47 [37-52] 65 [58-71]  60 [34-85]  7 [6-8] 4 [2-7]  

Biomass & biofuel 
burning 

20 [18-22] 22 [18-28] 8 [6-9] 6 [5-8]  1 [0-1] 1 [1-1] 

Sum of sources 430 [357-544] 366 [321-399] 268 [223-346] 185 [166-204]  39 [26- 63] 22 [17- 29]  
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Figure 1: Globally averaged atmospheric CH4 (ppb) (a) and its annual growth rate GATM (ppb yr-1) (b) from four 
measurement programs, National Oceanic and Atmospheric Administration (NOAA), Advanced Global 
Atmospheric Gases Experiment (AGAGE), Commonwealth Scientific and Industrial Research Organisation 
(CSIRO), and University of California, Irvine (UCI). Detailed descriptions of methods are given in the 
supplementary material of Kirschke et al. (2013). 
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Figure 2: Global anthropogenic methane emissions (including biomass burning) from historical inventories and 
future projections (in Tg CH4 yr-1). USEPA and GAINS estimates have been linearly interpolated from the 5-year 
original products to yearly values. After 2005, USEPA original estimates are projections. The SSP scenarios used 
in CMIP6 are presented in Gidden et al. (2018). The red marker highlights the emissions in 2017 from the CEDS 
inventory extended to 2017 for this study. 
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Figure 3: Methane emissions from four source categories: natural wetlands (excluding lakes, ponds, and rivers), 
biomass and biofuel burning, Agriculture and Waste, and Fossil fuels for the 2008-2017 decade in mg CH4 m-2 
day-1. The wetland emission map represents the mean daily emission average over the 13 biogeochemical models 
listed in Table 2 and over the 2008-2017 decade. Fossil fuel and Agriculture and Waste emission maps are derived 
from the mean estimates of gridded CEDS, EGDARv4.3.2 and GAINS models. The biomass and biofuel burning 
map results from the mean of the biomass burning inventories listed in Table 1 added to the mean of the biofuel 
estimate from CEDS, EDGARv4.3.2 and GAINS models. 
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Figure 4: Methane emissions (mg CH4 m-2 day-1) from three natural sources: geological (Etiope et al., 2019), 
termites (this study) and oceans (Weber et al., 2019), and methane uptake in soils (mg CH4 m-2 day-1) presented in 
positive units, and based on Murguia-Flores et al. (2018). 
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Figure 5: Methane global emissions from the five broad categories (see Sect. 2.3) for the 2008-2017 decade for T-
D inversions models (left light coloured boxplots) in Tg CH4 yr-1 and for B-U models and inventories (right dark 
coloured boxplots). Median value, first and third quartiles are presented in the boxes. The whiskers represent the 
minimum and maximum values when suspected outliers are removed (see Sect. 2.2). Suspected outliers are 
marked with stars when existing. B-U quartiles are not available for B-U estimates. Mean values are represented 
with “+” symbols, these are the values reported in Table 3. 
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Figure 6: Global Methane Budget for the 2008-2017 decades. Both bottom-up (left) and top-down (right) estimates 
are provided for each emission and sink category in Tg CH4 yr-1, as well as for total emissions and total sinks.  

  

Top-down 
view  (TD) 

Bottom-up 
view (BU) 

GLOBAL METHANE BUDGET 2008-2017

EMISSIONS BY SOURCE
In teragrams of CH4 per year (Tg CH4 / yr)

Natural fluxes Natural and anthropogenic Anthropogenic fluxes

Agriculture and wasteFossil fuel
production and use

Biomass & biofuel
burning

Sink from
chemical reactions
in the atmosphere

Other natural
emissions

Inland waters, geological,
oceans, termites, 

wild animals, permafrost

Sink in soilsWetlands

CH4 ATMOSPHERIC 
CHANGETOTAL EMISSIONS TOTAL SINKS

109
(79-168)

219
(175-239)

30
(26-40)

178
(155-200)

37
(21-50)

572
(538-593)

556
(501-574)

595
(489-749)

127
(111-154)

206
(191-223)

30
(22-36)

149
(102-182)

222
(143-306)

> 100 16
(0-47)

518
(474-532)

38
(27-45)

625
(500-798)

30
(11-49)

737
(593-880)
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Figure 7: Methane latitudinal emissions from the five broad categories (see Sect. 2.3) for the 2008-2017 decade for 
top-down inversions models (left light coloured boxplots) in Tg CH4 yr-1 and for bottom-up models and inventories 
(right dark coloured boxplots). Median value, first and third quartiles are presented in the boxes. The whiskers 
represent the minimum and maximum values when suspected outliers are removed (see Sect. 2.2). Suspected 
outliers are marked with stars as shown. B-U quartiles are not available for B-U estimates. Mean values are 
represented with “+” symbols, these are the values reported in Table 6. 
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