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Response to Anonymous Referee 1 (RC1) 
 
We would like to thank the reviewer for the positive evaluation and for the useful feedback. Responses 
to comments are posted below the relevant comment. Referee comments are italicized. 
 5 
P2 L17-20: You list these other gridded CH4 inventories here but do not seem to compare to them later. 
I would like to see a comparison to at least some of them added, since at the moment you only compare 
to EDGAR, which is not sectorally resolved.  
 
Thank you for this suggestion. We have added a comparison to the UK gridded inventory to the revised 10 
manuscript.  
 
P3 L19: Why did you choose the year 2016? Comment on 2016 emissions in the context of interannual 
emission trends in emissions eg. was it a particularly low/high/normal year? Can you add a figure 
showing interannual emissions from these sectors and perhaps subsectors also for a relevant time range 15 
eg. 2000-2019?  
 
This year was chosen because at the time of inventory construction it was the most recent year available 
for Annex I national emissions from the UNFCCC. We have clarified this in the text. The UNFCCC 
(https://di.unfccc.int/detailed_data_by_party) allows you to access data regarding interannual emissions 20 
trends.  
 
P5 L10-11: How old were the estimates in the US inventory? Is the balance between sectors likely to 
have changed eg. as the energy landscape has changed? Did you need to account for this at all?  
 25 
Yes, it is likely that in the US there have been changes to the energy landscape from the US inventory 
year in 2012 to 2016. The scaling we mention in the text is done by subsector (we have added this to the 
text) so subsector emissions and the balance between sectors will match the national emissions reported 
to the UNFCCC for 2016. As the US EPA inventory is updated we will be able to substitute the new 
EPA gridded inventory for the Maasakkers et al. 2016 version to account for any spatial changes in 30 
emission sources. 
 
P8 L28: Why would the Global Carbon Project bottom up estimates be so much higher than your 
estimate? What differences are there in the calculation approach that would cause this?  
 35 
We have removed this sentence from the text because the bottom-up estimates are based primarily on 
outdated inventories including EDGAR v4.2 and the US EPA which uses outdated national emissions 
reported to the UNFCCC. 
 
P10 L19: How valid is this assumption, ie. what do you mean by “slowly”? Can you give a time and 40 
error range? Perhaps using activity data for 2013 emissions is fine but 1990 or 2030 emission spatial 
distribution may not be similar.  
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The rate of spatial change in emissions and the degree of the spatial variability will be very country 
specific, so it is hard to make any general statement. We have added a statement to that effect in the 
introduction of the text. 
 5 
P4 L3-5 seems to relate to P3 L30 with other information in between – this paragraph could be 
restructured to present the information more clearly.  
 
Done. 
 10 
P4 L27-31: You say “notably” to one or two countries for each case here. Are these the only countries 
for each case? Or the only countries with emissions above a certain level? If the latter, what cut off 
level did you use to define “notably”? 
 
Clarified. 15 
 
P5 L18-19: DrillingInfo.com is now enverus.com. Change in your reference list so that the link 
continues to be valid but add info also relevant to when you accessed it.  
 
Done. 20 
 
P6 L3-4: Again you use “notably” – please state more clearly how you defined this, eg. “the top five 
emitters in this category were...” or similar.  
 
Clarified. 25 
 
P8 L25-26: similar...to 
Corrected. 
 
 30 
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Response to Anonymous Referee 2 (RC2) 
 
We would like to thank the reviewer for the positive evaluation and for the useful feedback. Responses 
to comments are posted below the relevant comment. Referee comments are italicized. 
 5 
Page 2 lines 14-15: What are some of the other regional and global multi- species emission 
inventories? Suggest naming a few.  
 
We now name the inventories. 
  10 
Page 2 line 30: Why was the year 2016 chosen for the study?  
 
This year was chosen because at the time of inventory construction it was the most recent year available 
for Annex I national emissions from the UNFCCC. We have clarified this in the text. 
 15 
Page 6 lines 28-33: Is the refining rate threshold based on the largest refinery? Does it mean the same 
for processing plants, storage facilities, and compressor stations?  
 
Yes, an effort was made to find the largest processing plant and refinery. This is now stated. For 
storage, as we state in the text we simply use the US storage capacity and for compressor stations we 20 
use the upper limit of expected distances between stations. These are conservative thresholds and we 
have clarified this in the text. Our goal is to avoid false “hotspot” emissions at facilities rather than 
accurately estimate if facilities are missing. We now say this in the text. 
 
Page 5 line 19: Drillinginfo is now enverus. Please make the changes to the manuscript.  25 
 
Done. 
 
Page 4 line 9: The emission inventories over the US are for which year?  
 30 
Clarified. 
 
Page 8 line 32 Page 9 line 1: What do the authors mean to say in the line ‘Oil and gas emissions . . . of 
the two fuels’?  
 35 
Clarified. 
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Response to Short Comment 1 (Tonatiuh Guillermo Nuñez Ramirez) 
 
Thank you to Tonatiuh Guillermo Nuñez Ramirez for providing short comments. We found the 
comments helpful and have added a map of facilities to Figure 3 and a comparison with the UK gridded 
inventory to Figure 7. We also thank you for the suggestion of other possible data sources and will 5 
consider them for incorporation in any future updated versions of the inventory. 
 
Response to Short Comment 2 (Gabriel Oreggioni) 
 
Thank you to Gabriel Oreggioni for pointing out the new version of EDGAR and for providing 10 
additional details on this dataset. It will be useful to compare the fuel specific emissions available with 
EDGAR v5.0 with our work in the future. We now cite EDGAR v5.0 as the most recent version 
available. 
 
 15 
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A global gridded (0.1º x 0.1º) inventory of methane emissions from 
oil, gas, and coal exploitation based on national reports to the United 
Nations Framework Convention on Climate Change 
Tia R. Scarpelli1, Daniel J. Jacob1, Joannes D. Maasakkers1, Melissa P. Sulprizio1, Jian-Xiong Sheng1, 
Kelly Rose2, Lucy Romeo2, John R. Worden3, and Greet Janssens-Maenhout4 5 
1Harvard University, Cambridge, MA 02138, United States 
2U.S. Department of Energy, National Energy Technology Laboratory, Albany, OR 97321, United States 
3Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, United States 
4European Commission Joint Research Centre, Ispra (Va), Italy 

Correspondence to: Tia R. Scarpelli (tscarpelli@g.harvard.edu) 10 

Abstract. Individual countries report national emissions of methane, a potent greenhouse gas, in accordance with the United 

Nations Framework Convention on Climate Change (UNFCCC). We present a global inventory of methane emissions from 

oil, gas, and coal exploitation that spatially allocates the national emissions reported to the UNFCCC (Scarpelli et al., 2019). 

Our inventory is at 0.1° x 0.1° resolution and resolves the subsectors of oil and gas exploitation, from upstream to 

downstream, and the different emission processes (leakage, venting, flaring). Global emissions for 2016 are 41.5 Tg a-1 for 15 

oil, 24.4 Tg a-1 for gas, and 31.3 Tg a-1 for coal. An array of databases is used to spatially allocate national emissions to 

infrastructure including wells, pipelines, oil refineries, gas processing plants, gas compressor stations, gas storage facilities, 

and coal mines. Gridded error estimates are provided in normal and lognormal forms based on emission factor uncertainties 

from the IPCC. Our inventory shows large differences with the EDGAR v4.3.2 global gridded inventory both at the national 

scale and in finer-scale spatial allocation. It shows good agreement with the gridded version of the United Kingdom’s 20 

National Atmospheric Emissions Inventory (NAEI). There are significant errors on the 0.1° x 0.1° grid associated with the 

location/magnitude of large point sources but these are smoothed out when averaging the inventory over a coarser grid. Use 

of our inventory as prior estimate in inverse analyses of atmospheric methane observations allows investigation of individual 

subsector contributions and can serve policy needs by evaluating the national emissions totals reported to the UNFCCC. 

Gridded data sets can be accessed at https://doi.org/10.7910/DVN/HH4EUM. 25 

1 Introduction 

Methane is the second most important anthropogenic greenhouse gas after CO2, with an emission-based radiative forcing of 

1.0 W m-2 since pre-industrial times as compared to 1.7 W m-2 for CO2 (Myhre, 2013). Major anthropogenic sources of 

methane include the oil/gas industry, coal mining, livestock, rice cultivation, landfills, and wastewater treatment. Individual 

countries must estimate and report their anthropogenic methane emissions by source to the United Nations in accordance 30 

with the United Nations Framework Convention on Climate Change (UNFCCC, 1992). These estimates rely on emission 
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factors (amount emitted per unit of activity) that can vary considerably between countries in particular for oil and gas 

(Larsen, 2015). This variation may reflect differences in infrastructure between countries but also large uncertainties (Allen 

et al., 2015; Brantley et al., 2014; Mitchell et al., 2015; Omara et al., 2016; Robertson et al., 2017), including a possible 

under-accounting of abnormally high emitters (Duren et al., 2019; Zavala-Araiza et al., 2015). 

 5 

Top-down inverse analyses of atmospheric methane observations can provide a check on the national emission inventories 

(Jacob et al., 2016), but they require prior information on the spatial distribution of emissions within the country. This 

information is not available from the UNFCCC reports. The EDGAR global emission inventory with 0.1° x 0.1° gridded 

resolution (European Commission, 2011, 2017) has been used extensively as prior estimate for methane emissions in inverse 

analyses. EDGAR prioritizes the use of a consistent methodology between countries for emissions estimates, including the 10 

use of IPCC Tier 1 methods (IPCC, 2006), and then spatially distributes emissions using proxy data like satellite 

observations of gas flaring (Janssens-Maenhout et al., 2019). However, its oil/gas emissions show large differences 

compared to inventories that utilize more detailed data specific to a country or region (Jeong et al., 2014; Lyon et al., 2015; 

Maasakkers et al., 2016; Sheng et al., 2017). The latest public version, EDGAR v5.0 (Crippa et al., 2019; European 

Commission, 2019), provides separate gridded products for oil, gas, and coal exploitation emissions for each year from 1970 15 

to 2015 but with no further subsector breakdown. Some other regional and global multi-species emission inventories also 

include methane but have coarse spatial and/or sectoral resolution, such as CEDS (Hoesly et al., 2018), REAS (Kurokawa et 

al., 2013), or GAINS (Höglund-Isaksson, 2012). Gridded emission inventories for the oil, gas, and coal sectors with 

subsectoral and/or point source information have been produced for individual production fields (Lyon et al., 2015), 

California (Jeong et al., 2014; Jeong et al., 2012; Zhao et al., 2009), and a few countries including Australia (Wang and 20 

Bentley, 2002), Switzerland (Hiller et al., 2014), the United Kingdom (Defra and BEIS, 2019), China (Peng et al., 2016; 

Sheng et al., 2019), the US (Maasakkers et al., 2016), and Canada and Mexico (Sheng et al., 2017).     

 

Here we create a global 0.1° x 0.1° gridded inventory of methane emissions from the oil, gas, and coal sectors, resolving 

individual activities (subsectors) and matching national emissions to those reported to the UNFCCC. The inventory 25 

effectively provides a spatially downscaled representation of the UNFCCC national reports by attributing the national 

emissions to the locations of corresponding infrastructure. Our premise is that the national totals reported by individual 

countries contain country-specific information that may not be publicly available or easily accessible. In addition, the 

UNFCCC national reports provide the most policy-relevant estimates of emissions to be evaluated with results from top-

down inverse analyses. Our downscaling relies on global data sets for oil/gas infrastructure locations available from Enverus 30 

(2017), Rose (2017), the National Energy and Technology Laboratory’s Global Oil & Gas Infrastructure (GOGI) inventory 

and geodatabase (Rose et al., 2018; Sabbatino et al., 2017), and other sources. National emissions from coal mining are 

distributed according to mine locations from EDGAR v4.3.2. We present results for 2016 which is the most recent year 

available from the UNFCCC, but our method is readily adaptable to other years.  
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2 Data and methods 

2.1 National emissions data 

Figure 1 gives a flow chart of the emission processes from oil, gas, and coal exploitation as resolved in our inventory. The 

emissions characterized here correspond to the IPCC (2006) category “fugitive emissions from fuels” (category code 1B). 

Here and elsewhere we refer to “sectors” as oil, gas, or coal. We refer to “subsectors” as the separate activities for each 5 

sector resolved in Fig. 1, e.g., “Gas production”. The subsectors were chosen to match UNFCCC reporting as much as 

possible. We refer to “processes” as the means of emission which can be leakage, venting, or flaring. Leakage emissions 

include all unintended emissions such as from equipment leaks, evaporation losses, and accidental releases. Coal emissions 

are lumped together, including contributions from surface and underground mines during mining and post-mining activities 

(IPCC, 2006), without further partitioning because the emissions are mainly at the locations of the mines. We create a 10 

separate gridded inventory file for each sector, subsector, and process as specified by the individual boxes of Fig. 1. The 

subsectors reported by countries to the UNFCCC vary, so our first step is to compile national emissions for each subsector 

and process listed in Fig. 1 so that emissions can then be allocated spatially as described in Sect. 2.2. 

2.1.1 UNFCCC reporting 

The UNFCCC receives inventory reports from 43 developed countries as ‘Annex I’ parties and communications from 151 15 

countries as ‘non-Annex I’ parties. The 43 Annex I countries report annually and disaggregate emissions to subsectors. Non-

Annex I countries report total emissions for the combined oil/gas sector and total emissions for the coal sector, but they are 

not required to report annually or to disaggregate emissions by subsectors. We use the UNFCCC GHG Data Interface as of 

May 2019 (UNFCCC, 2019) to download emissions reported by Annex I countries for the year 2016 and emissions reported 

by non-Annex I countries for the year 2016 if available or the most recent year if not.  20 

 

Annex I countries report oil/gas leakage emissions by subsector, and these emissions can be used in the inventory as 

reported. An exception is for gas transmission and gas storage which are only reported as a combined total and have to be 

disaggregated. Also, Annex I venting and flaring emissions are only reported as sector totals (oil venting, oil flaring, gas 

venting, and gas flaring) which have to be disaggregated to the subsectors of Fig. 1.  25 

 

The emissions reported for oil/gas and coal by non-Annex I countries have to be disaggregated to the subsectors of Fig. 1. If 

a non-Annex I country does not report coal emissions separate from oil/gas we treat it as a non-reporting country (Sect. 

2.1.3). Some non-Annex I countries choose to report oil/gas emissions by subsectors similar to Annex I countries. These 

reported emissions are not available in the GHG Data Interface and require inspection of reports submitted by each country, 30 

including National Communications (submitted every 4 years; COP, 2002) and Biennial Update Reports (submitted every 2 

years; COP, 2011). We inspect reports for countries with estimated or reported oil+gas emissions greater than or equal to 1 
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Tg a-1. These countries are Algeria, Brazil, China, India, Indonesia, Iran, Iraq, Malaysia, Nigeria, Qatar, Saudi Arabia, 

Uzbekistan, and Venezuela. The extent of emissions disaggregation by subsector for these non-Annex I countries varies. 

Algeria, India, Malaysia, Nigeria, Saudi Arabia, and Uzbekistan report similarly to Annex I countries while other countries 

only provide limited disaggregation. 

2.1.2 Disaggregation by subsectors and processes 5 

We disaggregate reported emissions as needed by estimating emissions for each subsector and process using IPCC Tier 1 

methods (IPCC, 2006) and then applying these relative subsector/process contributions to the reported emissions. We 

multiply the IPCC Tier 1 emission factor for each subsector to national activity data from the U.S. Energy and Information 

Administration (EIA, 2018a). Oil production volume is used as activity data for emissions from oil exploration and 

production, while volume of oil refined is used for oil refining emissions. Oil transported by pipeline (oil production + 10 

imported volume) is used for oil transport leakage emissions and 50% of oil production volume is used for oil transport 

venting emissions (assumed to occur during truck and rail transport). Total gas production volume is used as activity data for 

gas production and processing; marketable gas volume (consumed gas + exported gas) is used for gas transmission and 

storage; and gas consumption is used for gas distribution. Disaggregated subsector emissions from non-Annex I countries are 

then adjusted to 2016, if necessary, using the EIA activity data.  15 

 

We disaggregate Annex I venting and flaring emissions using the relative contribution of each subsector to total venting or 

flaring as estimated by IPCC Tier 1 methods. We cannot do this for the exploration or oil refining subsectors because IPCC 

methods do not separate venting and flaring emissions from leaks. Instead we compare the IPCC estimate for total emissions 

from each subsector (leakage + venting + flaring) with the reported leakage emissions. If the IPCC emissions total is greater 20 

than the reported leakage emissions we assume that the excess emissions can be attributed to venting and flaring. Venting 

and flaring emissions from gas storage and gas distribution similarly cannot be separated from leaks, but we assume that 

leaks dominate these subsectors. 

2.1.3 Non-reporting countries 

For the few countries that do not report emissions from oil, gas, and coal to the UNFCCC we estimate emissions following 25 

IPCC Tier 1 methods applied to the 2016 EIA activity data. This is the case notably for Libya and Equatorial Guinea which 

both have total emissions greater than 0.1 Tg a-1. We also use this method for countries that do not separately report coal and 

oil/gas emissions, notably Angola which is the only such country that has total emissions greater than 0.1 Tg a-1. For the 

countries that do not have EIA activity data, notably Uganda and Madagascar which account for most of the pipelines and 

wells in such countries, we use the infrastructure data described in Sect. 2.2 together with the average emissions per 30 

infrastructure element based on countries that do report emissions.  
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2.1.4 Coal emissions 

For coal, Annex I emissions for 2016 are used as reported. Non-Annex I emissions reported as total coal emissions are 

adjusted to 2016 as needed using activity data provided by the EIA (2018a). For the few countries that do not report to the 

UNFCCC, we use the coal emissions data embedded in EDGAR v4.3.2 Fuel Exploitation with additional information from 

EDGAR to separate coal from oil/gas; these countries account for less than 1% of global coal emissions. 5 

2.2 Spatially mapping emissions 

Our next step is to allocate the national emissions from each subsector of Fig. 1 spatially on a 0.1o x 0.1o grid. National 

emissions are allocated following the procedure described below for all countries except for the contiguous US (Maasakkers 

et al., 2016) and for oil/gas in Canada and Mexico (Sheng et al., 2017), where we use existing inventories constructed for 

2012 on the same 0.1o x 0.1o grid and scaled here by subsector to match the corresponding national UNFCCC reports for 10 

2016. We estimate emissions for Alaska using the EPA State Inventory Tool (EPA, 2018) following the methods outlined in 

the Alaska Greenhouse Gas Emission Inventory (Alaska Department of Environmental Conservation, 2018) and apply the 

procedures described below to distribute these emissions spatially. Other previously reported gridded national emission 

inventories are not used here due to their limited spatial resolution and/or limited disaggregation of emissions (Hiller et al., 

2014; Höglund-Isaksson, 2012; Kurokawa et al., 2013; Wang and Bentley, 2002). We will use the gridded version of the UK 15 

National Atmospheric Emissions Inventory (NAEI; Defra and BEIS, 2019) as independent evaluation of our inventory in 

Sect. 3.3. 

2.2.1 Allocating upstream emissions to wells 

Upstream emissions, including exploration and production, are allocated spatially to wells as illustrated in Fig. 2. Our 

principal source information on wells is Enverus (2017). It provides worldwide point locations of onshore and offshore 20 

wells, well activity status, and well content. Well activity status is used to separate active from inactive wells. Inactive wells 

are assumed not to emit. Well content is used to separate oil and gas wells, though this separation can be difficult as oil wells 

also have production of associated gas. We label wells as unknown content if their content is either unavailable or not clearly 

defined as oil or gas (this makes up approximately 24% of Enverus wells outside North America). We uniformly distribute 

emissions over the appropriate wells in each country. Within each country we determine the percentage of wells with 25 

unknown content and uniformly distribute this percentage of total oil and gas upstream emissions to those wells. We then 

uniformly distribute the remaining oil and gas emissions to oil and gas wells, respectively.  

 

Well data are missing from Enverus for a number of countries. An alternative global well database with wells drilled up to 

2016 is available from Rose (2017) based on a combination of open source data and proprietary data from IHS Markit (2017) 30 

and mapped on a 0.1o x 0.1o grid (total number of wells per grid cell). The Rose database does not include information on oil 
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versus gas content. We use this database for all countries that are either missing from the Enverus database or for which the 

Rose database has 50% greater number of wells than Enverus. This includes 47 of the 134 countries with active well 

infrastructure. Of those 47 countries, the ones with the greatest number of wells are Russia, United Arab Emirates (UAE), 

China, Libya, Saudi Arabia, Turkmenistan, Ukraine, and Azerbaijan. We distribute total upstream emissions from both oil 

and gas uniformly over all active wells within each country. The Rose database includes offshore wells, but they are not 5 

identified by country so we rely solely on Enverus for offshore wells. Between the Enverus and Rose databases, over 99% of 

global upstream emissions can be spatially allocated. The rest are allocated along pipelines. 

2.2.2 Allocating emissions to midstream infrastructure 

Midstream emissions from oil refining, oil transport, gas processing, gas transmission, and gas storage within a given 

country are allocated using GOGI infrastructure locations (Rose et al., 2018; Sabbatino et al., 2017) as shown in Fig. 2. 10 

Spatial information on non-well infrastructure in Alaska is taken from the U.S. Energy Mapping System (EIA, 2018b). Oil 

refining emissions are attributed evenly to refinery locations within a given country. Oil transport emissions can occur during 

pipeline, truck, or tanker transport but we assume that they are mainly along pipelines and allocate them by pipeline length 

on a 0.1o x 0.1o grid. Gas processing, transmission, and storage emissions are distributed uniformly among the processing 

plant, compressor station, and storage facilities, respectively, in each country. Annex I countries report “Other” emissions for 15 

oil and gas which are distributed equally to wells and pipelines. 

 

The GOGI database was created through a machine-learning web search of public databases for mention of oil and gas 

infrastructure, so it is limited to open-source information available as of 2017. It misses some infrastructure locations (Rose 

et al., 2018), so the spatial allocation of emissions within a country may be biased to the identified locations. To alleviate this 20 

problem, we check each country for exceedance of an oil or gas volume-per-facility threshold (e.g., volume of gas processed 

per day per processing plant). These thresholds, given below, are conservative in that they are based on the world’s largest 

facilities or the upper limit of infrastructure design. If the threshold is exceeded we estimate the percentage of facilities 

missing, and the corresponding percentage of subsector emissions is allocated to pipelines since non-well infrastructure tends 

to lie along pipeline routes. Visual inspection suggests that countries with pipelines in the GOGI database are not missing 25 

any significant pipeline locations which is consistent with a gap analysis for that database (Rose et al., 2018).  

 

For oil refining in each country, we determine a refining rate per refinery by distributing the total volume of oil refined (EIA, 

2018a) for 2016 over the GOGI refineries in that country. If the refining rate exceeds the threshold set by the Jamnagar 

Refinery in India of 1.24 million barrels of crude oil per day (Duddu, 2013), then oil refining emissions corresponding to the 30 

missing refineries are allocated to pipelines. The same is done for processing plants, storage facilities, and compressor 

stations. Processing plants are missing if production of natural gas (EIA, 2018a) distributed over processing plants exceeds 

57 million cubic meters of gas per day per facility based on the Ras Laffan processing plant in Qatar (Hydrocarbons-
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Technology, 2017). Storage facilities are missing if production of marketable gas (EIA, 2018a) exceeds 68 billion cubic feet 

per year per facility, corresponding to the total US capacity determined from marketable gas volume and number of active 

storage facilities (EIA, 2015). Compressor stations are missing if the implied gas pipeline length (CIA, 2018) between GOGI 

stations is more than 100 miles.  

 5 

We separate the GOGI pipelines into oil and gas when possible though a significant number have unknown content. For each 

country, we determine the percentage of pipelines with unknown content and distribute this percentage of total oil and gas 

pipeline emissions to those pipelines. The remaining oil and gas emissions are allocated to oil and gas pipelines, 

respectively. In order to avoid allocating Russia’s significant gas transmission emissions to unknown content pipelines, we 

instead use a gridded 0.1o x 0.1o map of gas pipelines based on the detailed Oil & Gas Map of Russia/Eurasia & Pacific 10 

Markets (Petroleum Economist Ltd, 2010).  

2.2.3 Allocating downstream emissions 

Downstream gas distribution emissions are associated with residential and industrial gas use. We allocate these emissions 

within each country on the basis of population using the Gridded Population of the World (GPW) v4.10 30 arc second map 

(CIESIN, 2017) for 2010. Midstream emissions are also allocated to population for countries missing in the GOGI database 15 

(<1% of global midstream emissions).  

2.2.4 Allocating coal emissions 

Coal mining and post-mining emissions from individual countries are allocated spatially to mines based on EDGAR v4.3.2 

emission grid maps for 2012 (0.1° x 0.1° resolution). A specific inventory for China shows a greater number of mines than 

EDGAR v4.3.2 (Sheng et al., 2019), but to the authors’ knowledge EDGAR is the only fine resolution database of coal mine 20 

locations with global coverage. EDGAR v4.3.2 estimates surface and underground mine emissions separately but distributes 

them to mines as a combined total, so emissions from both types of mines are combined here. Alaskan emissions are 

allocated to Alaska’s single operational coal mine, Usibelli (EIA, 2018b). 

2.3 Error estimates 

Inverse analyses of atmospheric methane observations require error estimates on the prior emission inventories as a basis for 25 

Bayesian optimization (Jacob et al., 2016). Here we use uncertainty ranges from IPCC (2006) to estimate error standard 

deviations in our inventory. The IPCC reports relative uncertainty ranges for the emission factors used in Tier 1 national 

estimates, as summarized in Table 1. Uncertainties in national estimates are dominated by emission factors (typically 50-

100%) as compared to the better known activity data (5-25%; IPCC, 2006). The emission factor uncertainties in Table 1 

correspond to the subsectors and processes of our inventory (Fig. 1). We differentiate between Annex I and non-Annex I 30 

countries based on IPCC uncertainty ranges for ‘Developed’ and ‘Developing’ countries.  
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In the absence of better information, we interpret the IPCC uncertainty ranges as representing the 95% confidence intervals. 

The ranges are generally asymmetric, but we approximate them in Table 1 in terms of either (1) a relative error standard 

deviation (RSD) assuming a normal error probability density function (pdf), or (2) a geometric error standard deviation 

(GSD) assuming a lognormal error pdf. The 95% confidence interval then represents ± 2 standard deviations in linear space 5 

for the normal pdf and in log space for the lognormal pdf. For the assumption of a normal error pdf, we take the average of 

the IPCC upper and lower uncertainty limits for each subsector and halve this value to get the RSD with an allowable 

maximum RSD of 100%. For the assumption of a lognormal error pdf, the IPCC limits are log-transformed, halved, averaged 

and transformed back to linear space to yield the GSD for the lognormal error pdf. The lower limits of the IPCC uncertainty 

ranges are capped at 90% when determining the GSD. We provide both normal and log-normal error standard deviations in 10 

our inventory, as both may be useful for inverse analyses. Assuming a normal error pdf has the advantage of providing a 

proper model of mean emissions, while assuming a log-normal error pdf has the advantage of enforcing positivity and better 

allowing for anomalous emitters (Maasakkers et al., 2019). 

 

Our relative errors are defined by the national scale errors and we apply them to the 0.1o x 0.1o grid for lack of better 15 

information. An error analysis for the gridded EPA inventory based on comparison to a more detailed inventory for 

Northeast Texas (Barnett Shale) showed that the error in emissions from oil systems was not significantly higher on the 0.1o 

x 0.1o grid than the national error estimate of 87%, while the error for gas systems on the 0.1o x 0.1o grid was twice the 

national estimate of 25% (Maasakkers et al., 2016). That work further showed that displacement error due to spatial 

misallocation of emissions is negligibly small as long as the error in emission location is considered isotropic. Further error 20 

evaluation is presented in Section 3.3 by comparison to the UK’s independently developed gridded national inventory. 

3 Results & discussion 

3.1 Global, national, and grid scale emissions 

Table 2 lists the 2016 global methane emissions from oil, gas, and coal, broken down by the subsectors and processes 

resolved in our inventory. Total emission from fuel exploitation is 97.2 Tg a-1 including 41.5 Tg a-1 from oil, 24.4 Tg a-1 25 

from gas, and 31.3 Tg a-1 from coal. Oil emissions are mainly from production, in part because oil fields often lack the 

capability to capture associated gas. Gas emissions are distributed over the upstream, midstream, and downstream 

subsectors. EDGAR v4.3.2 has a similar global total for fuel exploitation (107 Tg a-1), but the spatial distribution is very 

different as shown in Sect. 3.2. Top-down inverse analyses compiled by the Global Carbon Project give a range of 90-137 

Tg a-1 for fuel exploitation in 2012 (Saunois et al., 2016).  30 
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Figure 3 lists the top 20 emitting countries for oil, gas, and coal in our inventory. These account for over 90% of each 

sector’s global emission. The largest emissions are from Russia for oil, the US for gas, and China for coal. Oil and gas 

emissions for individual countries tend to be dominated by one of the two fuels. Notable exceptions are Russia, the US, Iran, 

Canada, and Turkmenistan which have large contributions from both. Annex I and non-Annex I countries reporting to the 

UNFCCC account for 49% and 47% of global emissions, respectively, with the remaining 4% of emissions contributed by 5 

countries that do not report to the UNFCCC. 

 

Figure 4 shows the global distribution of methane emissions separately for oil, gas, and coal. Oil emissions are mainly in 

production fields. Contributions from gas production, transmission, and distribution can all be important with the dominant 

subsector varying between countries. The highest emissions are from oil/gas production fields, gas transmission routes, and 10 

coal mines. Most emissions along gas transmission routes are from compressor stations, processing plants, and storage 

facilities.  

3.2 Comparison to the EDGAR v4.3.2 global gridded inventory 

Figure 5 compares the spatial distribution of our 2016 emissions from fuel exploitation (sum of the oil, gas, and coal 

emissions from Fig. 4) to the corresponding 2012 emissions in EDGAR v4.3.2 (European Commission, 2017; Janssens-15 

Maenhout et al., 2019). There are large differences between the inventories in terms of spatial patterns within each country, 

due to differences in both subsector contributions and spatial allocation of these contributions. Emissions along pipelines are 

generally lower in our work and emissions from production fields are generally higher. EDGAR v4.3.2 has more of a 

tendency to allocate midstream emissions to pipelines rather than to specific facilities.  

 20 

National total emissions in our inventory (based on UNFCCC reports) are also very different from EDGAR. Figure 6 

compares national emissions from fuel exploitation as reported to the UNFCCC versus EDGAR v4.3.2 emissions in the 

same year. Russia, Venezuela, and Uzbekistan report emissions that are more than a factor of 2 greater than EDGAR v4.3.2. 

Iraq, Qatar, and Kuwait report emissions that are more than an order of magnitude lower than EDGAR v4.3.2 though their 

last reporting years are old (1997, 2007, and 1994, respectively). The discrepancies between our work and EDGAR v4.3.2 in 25 

Russia and the Middle East lead to a greater emissions contribution from high latitudes and a lesser contribution from low 

latitudes in the Northern Hemisphere in our work.  

 

The causes of differences between the UNFCCC national totals used in our work and EDGAR v4.3.2 are country-specific 

and difficult to explain without knowledge of EDGAR v4.3.2 estimates for each emission subsector. Emission factors per 30 

unit of activity inferred from the UNFCCC reports can vary by orders of magnitude between countries (Larsen, 2015). This 

may reflect real differences in regulation of venting and flaring (especially for oil production), maintenance and age of 

infrastructure, and the size and number of facilities within a country. For example, Middle East countries report low 
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emissions relative to their production volumes and this may reflect a tendency to have a small number of high-producing 

wells. In contrast, Russia and Uzbekistan report high emissions relative to oil production and gas processing volumes. For 

Russia, differences may be due to the inclusion of accidental releases in UNFCCC reporting which are not considered by 

EDGAR v4.3.2 (Janssens-Maenhout et al., 2019). Russia also reports large emissions from intentional venting. The National 

Report of Uzbekistan (2016) attributes their high emissions to leaky infrastructure and recent increases in produced and 5 

transported gas volumes which may lead to operation of equipment at over-capacity. Beyond these considerations, there may 

also be large errors in the emission estimates reported by individual countries to the UNFCCC. Inverse analyses of 

atmospheric methane observations using our inventory as prior estimate would provide insight into these errors.  

3.3 Comparison to the United Kingdom national gridded inventory 

The UK Department for Environment, Food, and Rural Affairs (Defra) and Department for Business, Energy, and Industrial 10 

Strategy (BEIS) produce a gridded version of their annual National Atmospheric Emissions Inventory (NAEI) with 0.01° x 

0.01° resolution. This provides an opportunity for evaluating our spatial allocation of emissions since the allocation in the 

NAEI inventory is better informed by local data, including direct reporting of emissions by large emitters which account for 

35% of fuel exploitation emissions.  

 15 

Figure 7 compares our inventory for fuel exploitation to the most recent version of the NAEI in 2017 (Defra and BEIS, 

2019) and to EDGAR v4.3.2 in 2012 (European Commission, 2017). National totals are identical in our inventory and the 

NAEI, as would be expected since the NAEI is used for UNFCCC reporting. The EDGAR v4.3.2 national total agrees with 

the 2012 NAEI (0.34 Tg a-1)  with greater coal emission compared to 2017. The differences with the EDGAR v4.3.2 spatial 

distribution are very large. Our inventory shows spatial distributions that are broadly consistent with the NAEI, with high 20 

emissions in populated areas and production regions. Some rural areas have zero emissions in the NAEI but small (non-zero) 

emissions in our inventory because of our allocation of distribution emissions by population. These areas may in fact not 

have access to natural gas. The NAEI has fewer offshore sources than our work because it only accounts for the offshore 

wells that led to the discovery of a field, rather than all wells used to exploit a field (Tsagatakis et al., 2019).  

 25 

Figure 8 shows the spatial correlation coefficient of emissions between our inventory and the NAEI as a function of grid 

resolution. The correlation is low at 0.1° x 0.1° (r = 0.23) but increases rapidly as grid resolution is coarsened to 0.2° x 0.2° 

(r = 0.45), 0.5° x 0.5° (r = 0.83), and 1° x 1° (r = 0.93). At fine resolution there are slight differences in facility locations, in 

particular coal mines, that lead to displacement errors. There are also differences in the emissions from individual facilities 

reported to the NAEI that are not resolved in our inventory. These errors are rapidly smoothed out as the inventory is 30 

averaged over a coarser grid. 
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4 Data availability 

The annual gridded emission fields and gridded errors for each subsector in Fig. 1 are available on the Harvard Dataverse at 

https://doi.org/10.7910/DVN/HH4EUM (Scarpelli et al., 2019). Input data and code is available upon reasonable request. 

5 Conclusions 

We have constructed a global inventory of methane emissions from oil, gas, and coal with 0.1o x 0.1o resolution by spatially 5 

allocating the national emissions reported by individual countries to the United Nations Framework Convention on Climate 

Change (UNFCCC). The inventory differentiates oil/gas contributions from individual subsectors along the production and 

supply chain, and from specific processes (leakage, venting, flaring), and spatially allocates the emissions from each 

subsector and process using infrastructure databases. It also includes error estimates based on IPCC. Comparison with the 

EDGAR v4.3.2 inventory shows large differences in terms of both national emissions and their spatial distribution. 10 

Comparison with the gridded version of the UK National Atmospheric Emissions Inventory (NAEI) shows overall good 

agreement but significant errors on the 0.1° x 0.1° grid that are smoothed out when our inventory is averaged on a coarser 

grid.  

 

Our inventory is designed for use as prior estimate in inverse analyses of atmospheric methane observations aiming to 15 

improve knowledge of methane emissions. Corrections to emission estimates revealed by the inverse analyses can be of 

direct benefit to policy by identifying biases in the national inventories reported to UNFCCC. Our inventory is for 2016 but 

can be readily adjusted to subsequent years by updating the reported UNFCCC emissions and the Energy Information 

Administration’s (EIA) activity data, assuming that the spatial distribution of emissions changes slowly. The validity of this 

assumption will depend on the country and on the time horizon for the adjustment. In North America at least, there has been 20 

little change over the past decade in spatial patterns of anthropogenic methane observed with the GOSAT satellite instrument 

(Sheng et al., 2018). 
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Table 1. Uncertainty ranges for IPCC emission factors and corresponding error standard deviations.a 

Subsector Annex I countries Non-Annex I countries 
Lower 

(%) 
Upper 

(%) 
RSD 
(%) 

GSD Lower 
(%) 

Upper 
(%) 

RSD 
(%) 

GSD 

Oil         
 Explorationb 100 100 50 2.11 12.5 800 100 1.79 
 Production (leakage) 100 100 50 2.11 12.5 800 100 1.79 
 Production (venting) 75 75 37.5 1.63 75 75 37.5 1.63 
 Production (flaring) 75 75 37.5 1.63 75 75 37.5 1.63 
 Refining  100 100 50 2.11 100 100 50 2.11 
 Transport (leakage) 100 100 50 2.11 50 200 62.5 1.57 
 Transport (venting) 50 50 25 1.32 50 200 62.5 1.57 
Gas         
 Explorationb 100 100 50 2.11 12.5 800 100 1.79 
 Production (leakage) 100 100 50 2.11 40 250 72.5 1.55 
 Production (flaring) 25 25 12.5 1.14 75 75 37.5 1.63 
 Processing (leakage) 100 100 50 2.11 40 250 72.5 1.55 
 Processing (flaring) 25 25 12.5 1.14 75 75 37.5 1.63 
 Transmission (leakage) 100 100 50 1.41 40 250 72.5 1.55 
 Transmission (venting) 75 75 37.5 1.63 40 250 72.5 1.55 
 Storage (leakage) 20 500 100 1.65 20 500 100 1.65 
 Distribution (leakage) 20 500 100 1.65 20 500 100 1.65 
Coal 66 200 66.5 1.72 66 200 66.5 1.72 

a The uncertainty ranges (lower, upper) are provided by the IPCC and apply to the estimation of national emissions using 
emission factors specified in Tier 1 methods (IPCC, 2006). We interpret them here as 95% confidence intervals, and infer the 
corresponding relative standard deviation (RSD, %) for the assumption of a normal error pdf and geometric standard 
deviation (GSD, dimensionless) for the assumption of a lognormal pdf. The IPCC provides uncertainty ranges for 5 
‘developed’ and ‘developing’ countries and we apply them to Annex I and non-Annex I countries, respectively. 
b Well drilling  
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Table 2. Global methane emissions from oil, gas, and coal in 2016a. 

Sector/Subsector Total (Tg a-1) 

Oil  41.5 
 Exploration 1.4 
 Production (leakage) 17.8 

Production (venting) 21.6 
 Production (flaring) 0.5 
 Refining  0.1 
 Transport (leakage) <0.1 
 Transport (venting) <0.1 
Gas 24.4 
 Exploration <0.1 
 Production (leakage) 7.4 

Production (flaring) <0.1 
 Processing (leakage) 2.3 

Processing (flaring) 0.1 
 Transmission (leakage) 7.1 

Transmission (venting) 0.6 
 Storage (leakage) 1.0 
 Distribution (leakage) 5.7 
Coal  31.3 
Total  97.2 
a From national totals reported to the UNFCCC with further 
subsector disaggregation, year adjustment, and supplemental 
information as given in the text.   
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Figure 1. Methane emissions from oil, gas, and coal as resolved in our inventory. Emissions for oil and 
gas are separated into subsectors representing the different lifecycle stages. Each box in the figure 
corresponds to a separate 0.1o x 0.1o gridded product in the inventory.   
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Figure 2. Global distributions of oil/gas wells (Enverus, 2017; Rose, 2017), pipelines (EIA, 2018b; 
Petroleum Economist Ltd, 2010; Platts, 2008; Sabbatino et al., 2017), and midstream facilities 
(Sabbatino et al., 2017) used in our inventory. Well locations for individual countries are from the 5 
Enverus (2017) database where available, and from the Rose (2017) database everywhere else (see 
text). Wells and pipelines are gridded data at 0.1o x 0.1o grid resolution but are shown here with 
0.2o x 0.2o resolution for visibility.  
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Figure 3. Methane emissions in 2016 from the top 20 emitting countries for the oil,  gas, and coal sectors. Arrows next 
to the top bars (highest emitting countries) indicate that emissions are not to scale. 
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Figure 4. Global distribution of 2016 methane emissions from  oil,  gas, and  coal in our inventory. 
The inventory is at 0.1o x 0.1o grid resolution but coal is shown here at 1º x 1º resolution for 
visibility. Emissions below 10-1 Mg a-1 km-2 are not shown. 
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Figure 5. Total methane emissions from fuel exploitation (sum of oil, gas, and coal) in 2016 from this work (top) and in 2012 from 
EDGAR v4.3.2 (bottom; European Commission, 2017). Emissions below 10-1 Mg a-1 km-2 are not shown. 
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Figure 6. Comparison of national methane emissions from fuel exploitation (sum of oil, gas, and coal) reported by individual 
countries to the UNFCCC (2019) and estimated by the EDGAR v4.3.2 inventory (European Commission, 2017). The figure shows 
the ratio of UNFCCC to EDGAR v4.3.2 national emissions with warmer colors indicating higher UNFCCC emissions. Emissions 
are taken from the most recent year reported to the UNFCCC prior to or in 2012 and compared to EDGAR for the same year. The 5 
reporting year for non-Annex I countries with emissions greater than 1 Tg a-1 in either inventory is shown to the right. Countries 
in dark grey do not report fuel exploitation emissions to the UNFCCC or have zero emissions. 

 

 
Figure 7. Methane emissions from fuel exploitation in the United Kingdom. Our inventory (for 2016) is compared to the gridded 10 
National Atmospheric Emissions Inventory (NAEI) for 2017 (Defra and BEIS, 2019) and EDGAR v4.3.2 for 2012 (European 
Commission, 2017). Emissions below 10-1 Mg a-1 km-2 are not shown. National total emissions are given inset. We have masked 
EDGAR offshore emissions using the other two inventories.  
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Figure 8. Spatial correlation between gridded United Kingdom 
emissions in our inventory and in the National Atmospheric 
Emissions Inventory (NAEI; Defra and BEIS, 2019). The figure 
shows the Pearson correlation coefficient (r) at the native 0.1° x 5 
0.1° grid resolution of our inventory and after averaging over 
coarser grid resolutions up to 1° x 1°. 
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