
Journal: ESSD 

Title: Improved estimate of global gross primary production for reproducing its long-term variation, 

1982–2017 

MS No.: essd-2019-126 

MS Type: Data description paper 

 

Dear editor and reviewers, 

We are very grateful to your great efforts and constructive comments on our manuscript 

“Improved estimate of global gross primary production for reproducing its long-term variation, 1982–
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Response to Reviewer #1： 

 

1. LUE model is an important empirical model for estimating GPP. The authors added the impacts 

of CO2 concentration, diffuse/direct PAR, and VPD to the traditional LUE model, which showed 

improvement. 

Response: Thanks for your positive comments. We have revised the manuscript according to your 

comments point by point below. 

 

2. Line 18-35 In the abstract section, it is necessary to present some quantitative results that can 

directly prove the improvement of the revised EC-LUE model over other currently popular models. 

Response: As your suggestion, we adjusted and added more quantitative results to show the improvement 

of the revised EC-LUE model in the abstract section. The following is the revised abstract and the newly 

added sentences are underlined with red. 

“Abstract. Satellite-based models have been widely used to simulate vegetation gross primary 

production (GPP) at the site, regional, or global scales in recent years. However, accurately reproducing 

the interannual variations in GPP remains a major challenge, and the long-term changes in GPP remain 

highly uncertain. In this study, we generated a long-term global GPP dataset at 0.05° latitude by 0.05° 

longitude and 8-day interval by revising a light use efficiency model (i.e. EC-LUE model). In the revised 

EC-LUE model, we integrated the regulations of several major environmental variables: atmospheric 

CO2 concentration, radiation components, and atmospheric vapor pressure deficit (VPD). These 

environmental variables showed substantial long-term changes, which could greatly impact the global 

vegetation productivity. Eddy covariance (EC) measurements at 95 towers from the FLUXNET2015 

dataset, covering nine major ecosystem types around the globe, were used to calibrate and validate the 

model. In general, the revised EC-LUE model could effectively reproduce the spatial, seasonal, and 

annual variations in the tower estimated GPP at most sites. The revised EC-LUE model could explain 

71% of the spatial variations in annual GPP over 95 sites. At more than 95% of the sites, the correlation 

coefficients (R2) of seasonal changes between tower estimated and model simulated GPP are larger than 

0.5. Particularly, the revised EC-LUE model improved the model performance in reproducing the 

interannual variations in GPP, and the averaged R2 between annual mean tower estimated and model 

simulated GPP is 0.44 over all 55 sites with observations longer than 5-years, which is significantly 

higher than those of original EC-LUE model (R2 = 0.36) and other LUE models (R2 ranged from 0.06 to 

0.30 with an average value of 0.16). At the global scale, GPP derived from light use efficiency models, 

machine learning models, and process-based biophysical models exist substantial differences in 

magnitude and interannual variations. The revised EC-LUE model quantified the mean global GPP from 

1982 to 2017 as 106.2 ± 2.9 Pg C yr−1 with the trend 0.15 Pg C yr−1. Sensitivity analysis indicated that 

GPP simulated by the revised EC-LUE model was sensitive to VPD, radiation, and CO2 concentration. 

Over the period of 1982–2017, the CO2 fertilization effect on the global GPP (0.14 ± 0.001 Pg C yr−1) 

could be offset by the effect of increased VPD (−0.16 ± 0.02 Pg C yr−1). The long-term changes in the 

environmental variables could be well reflected in global GPP. Overall, the revised EC-LUE model is 

able to provide a reliable long-term estimate of global GPP. The GPP dataset is available at 

https://doi.org/10.6084/m9.figshare.8942336 (Zheng et al., 2019).” (Line 18-40 in the revised manuscript) 

 

3. Line 31-32 “The global GPP derived from different datasets exist substantial uncertainty in 

magnitude and interannual variations.” Which datasets and which models were used here? Do the 



authors mean different datasets used to drive the revised EC-LUE model? Or other models? 

Response: We mean different GPP datasets simulated by other models in different studies. We modified 

the sentence as follow: 

“At the global scale, GPP derived from light use efficiency models, machine learning models, 

and process-based biophysical models exist substantial differences in magnitude and interannual 

variations.” (Line 33-34 in the revised manuscript) 

 

4. Line 48 Do the authors mean process based ecosystem models by biophysical models? And 

empirical or data-driven models by satellite-based models? 

Line 48: Similarly, a model comparison showed that none of the examined 16 biophysical models 

nor the 3 satellite-based models could consistently reproduce the observed interannual variations 

in carbon exchange at 11 forest sites in North America (Keenan et al., 2012). 

Response: This sentence cited the results of Keenan et al., 2012, which includes 16 process-based 

biophysical models (i.e., BEPS, BIOME-BGC, Can-IBIS, CNCLASS, DLEM, ECOSYS, ED2, EDCM, 

ISAM, LoTEC-DA, LPJml, ORCHIDEE, SiB, SiB-CASA, SSiB2, and TECO) and 3 satellite-based 

model dataset (i.e., BESS, MODIS C5, and MODIS C5.1). BESS (Breathing Earth System Simulator) is 

a process-based model, and uses satellite-based leaf area index as driver. MODIS C5 and MODIS C5.1 

indicate two MODIS-GPP products, and are based on MODIS-GPP algorithm which is satellite-based 

light use efficiency model. We changed the original sentences to make it clear: 

“Similarly, a model comparison showed that none of the examined 16 process-based 

biophysical models or the 3 remote sensing products (BESS, MODIS C5, and MODIS C5.1) could 

consistently reproduce the observed interannual variations in GPP at 11 forest sites in North America 

(Keenan et al., 2012).” (Line 51-53 in the revised manuscript) 

 

5. Line 50 The starting and ending years could be given while reporting a trend. 

Line 50: Seven LUE models simulated the long-term trends of global GPP varied −0.15 to 1.09 Pg 

C yr−1 (Cai et al., 2014). 

Response: Thanks for your advice. We added starting and ending years as follow: 

“Seven LUE models simulated the long-term trends of global GPP varied from −0.15 to 1.09 

Pg C yr−1 over the period 2000–2010 (Cai et al., 2014).” (Line 53-54 in the revised manuscript) 

 

6. Line 70-90 (Major concern) The ratio of diffuse PAR is of course an important regulator of LUE 

for dense canopy. However, the amount of total PAR should not be ignored. LUE could rapidly 

decrease with the amount of total PAR because in clear sky the incident PAR could easily exceed 

light saturation point. 

Response: Thanks for your deep thoughts. It is indeed that light saturation is an important response of 

GPP to varying PAR. The instantaneous LUE decreases rapidly when PAR exceed light saturation point.  

This is an instantaneous phenomenon which is obvious and nonnegligible at the hourly scale. The revised 

EC-LUE model was developed at the 8-day scale, and the light saturation can hardly be observed for the 

accumulation of GPP from hourly to 8-day temporal scale. 

As an example, we examined the relation between GPP and PAR at hourly and 8-day scale at 

US-Ha1 site, respectively (Fig. R1). At hourly scale, there are obvious light saturation phenomenon when 

PAR exceeds 200 W m-2 (Fig. R1a). However, at 8-day scale, the “ratio between GPP and LAI” (named 

GPP/LAI hereafter) keep increasing when PAR around its maximum value at 120 W m-2 (Fig. R1b). 



Some low GPP/LAI values may introduced by unfavorable climate conditions (e.g., low temperature or 

high VPD) or the uncertainty/error of the EC measurements. So we did not integrate the light saturation 

phenomenon in our current model. 

 

Figure R1: Correlations of GPP and PAR at hourly and 8-day scale, taking US-Ha1 site as an example. 

At 8-day scale, we used the ratio between GPP and LAI to eliminate the influence of season patterns of 

LAI on GPP. 

 

7. Section 2.1 At which temporal and spatial resolutions were the model run? And some the 

variables in the equations were not explained, e.g. epsilon in eq 4. Line 113 intercellular [CO2]? 

Line 114 add concentration after the second CO2. How was 356.51 in eq 5 determined? 

Line 113-123: where 𝝋 is the CO2 compensation point in the absence of dark respiration (ppm); 

Ci is the leaf internal CO2 concentration; Ca is the atmospheric CO2 concentration; χ is the ratio of 

leaf internal to atmospheric CO2 which can be estimated as follows (Prentice et al., 2014; Keenan 

et al., 2016): 

𝛘 =
𝛆

𝛆+√𝐕𝐏𝐃
                 (4) 

𝛆 = √
𝟑𝟓𝟔.𝟓𝟏𝐊

𝟏.𝟔𝛈∗
                 (5) 

𝐊 = 𝐊𝐜(𝟏 +
𝐏𝟎

𝐊𝟎
)                (6) 



𝐊𝐜 = 𝟑𝟗. 𝟗𝟕 × 𝐞
𝟕𝟗.𝟒𝟑×(𝐓−𝟐𝟗𝟖.𝟏𝟓)

𝟐𝟗𝟖.𝟏𝟓𝐑𝐓               (7) 

𝐊𝐨 = 𝟐𝟕𝟒𝟖𝟎 × 𝐞
𝟑𝟔.𝟑𝟖×(𝐓−𝟐𝟗𝟖.𝟏𝟓)

𝟐𝟗𝟖.𝟏𝟓𝐑𝐓               (8) 

where Kc and Ko are the Michaelis–Menten constants for CO2 and O2; Po is the partial pressure of 

O2; Ta is air temperature (K); η* is the viscosity of water relative to its value at 25 °C depending 

on the air temperature (Korson et al., 1969); R is the molar gas constant (8.314 J mol−1 K−1). 

 

Response: The model was run at 8-day temporal resolution and 0.05°×0.05° spatial resolution. We added 

the information in the method section 2.4 (in the revised manuscript): 

“Using the averaged value of the optimized parameters (Table 3), a global GPP dataset at 0.05° 

× 0.05° spatial resolution and 8-day temporal resolution over 1982-2017 was produced.” (Line 207-208 

in the revised manuscript) 

About the Eqs. (4)-(8) (in the original manuscript), we referred from Prentice et al. (2014) and 

Keenan et al. (2016). ε in Eq (4) is a parameter related to the ‘carbon cost of water’, which means the 

sensitivity of VPD to χ. We added the explanation of ε in the revised manuscript. 

The 356.51 in Eq. (5) can be estimated using Eq (4)-(8) assuming the value of ε at 25℃ as 

0.8 (T=298.15 K; VPD=1 kPa) described in Keenan et al. (2016), and we cited this paper. 

In line 113 (in the original manuscript), we think the “leaf internal CO2” and “intercellular 

CO2” have a same meaning, so both are OK. 

According to the response above, we modified this part as following: 

“The effect of atmospheric CO2 concentration on GPP is determined by the following 

equations (Farquhar et al., 1980; Collatz et al., 1991): 

Cs =
Ci−φ

Ci+2φ
                 (5) 

Ci = Ca × χ                 (6) 

where 𝜑 is the CO2 compensation point in the absence of dark respiration (ppm); Ci is the leaf internal 

CO2 concentration; Ca is the atmospheric CO2 concentration; χ is the ratio of leaf internal to atmospheric 

CO2 concentration which can be estimated as follows (Prentice et al., 2014; Keenan et al., 2016): 

χ =
ε

ε+√VPD
                 (7) 

ε = √
356.51K

1.6η∗
                 (8) 

where ε is a parameter related to the ‘carbon cost of water’, which means the sensitivity of VPD to χ; 

K is the Michaelis–Menten coefficient of Rubisco; η* is the viscosity of water relative to its value at 

25 °C (Korson et al., 1969). 

K = Kc(1 +
P0

K0
)                (9) 

where Po is the partial pressure of O2; Kc and Ko are the Michaelis–Menten constants for CO2 and O2 

(Keenan et al., 2016): 

Kc = 39.97 × e
79.43×(Ta−298.15)

298.15×R×Ta               (10) 

Ko = 27480 × e
36.38×(Ta−298.15)

298.15×R×Ta               (11) 



where 𝑇𝑎 is air temperature (unit: K); R is the molar gas constant (8.314 J mol−1 K−1).” (Line 155-170 

in the revised manuscript) 

 

8. Line 145-155 The fluxnet GPP contains many datasets of GPP according to the reference CO2 

profile between sensor and canopy. Which dataset was used? And what is the temporal resolution 

of GPP, 30-min, daily, or 8-day? 

Response: In the FLUXNET2015 dataset, GPP was calculated considering flux portioning methods and 

friction velocity (USTAR) threshold. In our manuscript, we used the GPP variable GPP_NT_VUT_REF 

at daily temporal resolution in the FLUXNET2015 dataset. And, to match the temporal resolution of the 

remotely sensed LAI, we aggregated the daily GPP to 8-day temporal resolution. We modified the 

corresponding part to: 

“The FLUXNET2015 dataset (http://www.fluxdata.org) includes over 200 variables of carbon 

fluxes, energy fluxes, and meteorological variables collected and processed at sites by the FLUXNET 

community. In our study, ninety-five EC sites in FLUXNET2015 dataset were utilized to optimize the 

parameters and evaluate the performance of the revised EC-LUE model, including nine major terrestrial 

ecosystem vegetation types (Table 1): evergreen broadleaf forests (EBF), evergreen needleleaf forests 

(ENF), deciduous broadleaf forests (DBF), mixed forests (MF), grasslands (GRA), savannas (SAV), 

shrubland (SHR), wetlands (WET), and croplands (CRO). More information about the characteristics of 

these sites can be referred to the FLUXNET website. For each site, the daily GPP, PAR, air temperature 

(Ta), and VPD were used in our study. The GPP variable (GPP_NT_VUT_REF) used in this study was 

estimated from night-time partitioning method. The corresponding net ecosystem exchange (NEE) was 

generated using friction velocity (USTAR) threshold for each year (VUT), in which 40 versions of NEE 

were created by using different percentiles of USTAR thresholds. The model efficiency between each 

version and the others 39 versions were calculated to test their similarities and the reference (REF) NEE 

was selected as the one with higher model efficiency sum (the most similar to the others 39). The daily 

meteorological variables were gap-filled or downscaled from the ERA-interim reanalysis dataset in both 

space and time (Vuichard and Papale, 2015). The gap-filled technique of the carbon flux measurements 

and meteorological variables is the marginal distribution sampling (MDS) method described in 

Reichstein et al. (2005). For each variable, we aggregated the daily values to 8-day time step. Only the 

8-day measurements with more than 5-day valid values were used” (Line 108-123 in the revised 

manuscript) 

 

9. Line 164 Daily mean air temperature? 

Line164-165: In our study, we obtained the daily air temperature (Ta, ℃), dew point temperature 

(Td, ℃), direct PAR, and diffuse PAR at 0.625° in longitude by 0.5° in latitude from 1982 to 

2017. 

Response: Yes, modified. 

“In our study, we obtained the daily mean air temperature (Ta, ℃), mean dew point 

temperature (Td, ℃), total PAR (PARdr, MJ m-2 d-1), and total diffuse PAR (PARdf, MJ m-2 d-1) at 0.625° 

in longitude by 0.5° in latitude from 1982 to 2017.” (Line130-132 in the revised manuscript) 

 

10. Line 203-207 Those lines should go to method section. 

Line 203-207: This study used EC measurements at 42 sites to calibrate the parameter values and 

43 sites to validate the model accuracy of the revised EC-LUE model. The parameters (εmsu, εmsh, 

http://www.fluxdata.org/


𝛗, and VPD0) of each vegetation type are shown in Table 3. We evaluated the model performance 

by using the tower-derived meteorology data and global reanalysis meteorology, respectively. In 

general, the revised EC-LUE model could effectively reproduce the spatial, seasonal, and annual 

variations in the tower-estimated GPP at most of the calibration and validation sites (Figs. 1–4). 

Response: Yes, we agree that the contents about “calibration and validation” and “parameters” in these 

lines should be moved to method section. According to the suggestion of the second reviewer, we have 

used cross-validation method to estimate model parameters, and we rewrite this part and put them into 

method section “section 2.4 Model calibration and validation”: 

“Cross-validation method was used to calibrate and validate the revised EC-LUE model. Fifty 

percent of the sites were randomly selected to calibrate model parameters for each vegetation type, and 

the remaining 50% of the sites were used to validate the model. This parameterization process was 

repeated until all possible combinations of 50% sites were achieved for each vegetation type. The 

nonlinear regression procedure (Proc NLIN) in the Statistical Analysis System (SAS, SAS Institute Inc., 

Cary, NC, USA) was applied to optimize the model parameters (εmsu, εmsh, φ, and VPD0) using 8-day 

estimated GPP based on EC measurements. The mean GPP simulations of 8-day from all validation runs 

only were used to model validation. Mean calibrated parameter values from all model runs were used to 

simulate GPP over the global scale (Table 3).” (Line 189-195 in the revised manuscript) 

After consideration, we keep the result contents in these lines “In general, the revised EC-

LUE model could effectively reproduce the spatial, seasonal, and annual variations in the tower-

estimated GPP at most of the calibration and validation sites (Figs. 1–3).” in “section 3.1 Model 

performance”. 

 

11. Figure 4 (Major concern) Fig 4 could be expanded to better compare the performance of the 

revised EC-LUE model with other models in capturing the inter-annual and intraannual GPP 

variations, to show the improvement of the revised EC-LUE model. This is important because there 

are a number of the existing models (process-based and the empirical LUE models as well the 

machine learning method). While the results about spatial and temporal variations of the GPP 

(from the new model and other models) should be compressed or even dropped. 

Response: Thank you. The main objective of our manuscript is focused on the improvement of the LUE 

models and produced a long-term GPP dataset. So, we compare the interannual variations of the revised 

EC-LUE model with other LUE models (CASA, CFix, CFlux, MODIS, VPM, VPRM, and the original 

EC-LUE model) as shown in Fig. 4. It is a good idea to compare with other kind models (process-based 

models and machine learning methods). However, we really appreciate the understanding that this 

comparison is quite beyond the field of this study. Moreover, due to large data gaps of measurements 

derived from eddy covariance towers, we need run process-based models at eddy covariance towers and 

obtain the corresponding simulations with observations of GPP in order to evaluate the model 

performance. This work needs contributions of model PIs, and which probably need take long time and 

great efforts. In addition, previous studies have provided the insights on this issue. Keenan et al. (2012) 

compared the performance of 16 process-based biophysical models and 3 satellite-based models 

(including the MODIS product) in reproducing the interannual variations in GPP. The result indicated 

the MODIS model performance was comparable to the process-based biophysical models. In our 

manuscript, the revised EC-LUE model (averaged R2 = 0.44) was significantly better than the MODIS 

model (averaged R2 = 0.17) at interannual scale. Therefore, we can conclude the similar result that our 

model was better than the process-based biophysical models compared in Keenan et al. (2012). 



We rearranged the figures, Fig. 3 in the revised manuscript is the original Fig. 4. 

 

 
Figure 3: Site percentage of (a) correlation coefficients (R2), and (b) regression slopes between the model simulated 

and tower-based interannual variabilities in GPP. (c) Averaged values (error bars represent the standard deviations) 

of R2 and slope for various LUE models. rEC-LUE(T) and rEC-LUE(R) indicate the revised EC-LUE models derived 

from tower-derived meteorology data and meteorological reanalysis dataset. The R2 and slopes of the other seven 

LUE models (i.e., EC-LUE, VPRM, VPM, MODIS, CFlux, CFix, and CASA) in the figure were obtained from the 

study by Yuan et al. (2014). ** and * indicate a significant difference in statistic variables (R2 and slope) between 

the rEC-LUE(T) and other LUE models (i.e., rEC-LUE(T) and other seven LUE models ) at p-value < 0.01 and p-

value < 0.05, respectively. 
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Response to Reviewer #2: 

 

1. This paper reported some improvements of global gross primary production using the revised 

EC-LUE model. Overall, it lacks in detailed explanation and thorough validation to show the 

novelty of the proposed model if any. English must be significantly improved. Thus, I recommend 

rejecting the paper. Please see several major comments below. 

Response: Thanks for your deep thoughts and comments. The poor model performance in reproducing 

the interannual variability of GPP has been one of the most important uncertainties of satellite-based 

models, which will restrict our ability for quantifying the long-term trend of GPP over regional and global 

scales. This study aims to improve the model performance of a LUE model in reproducing interannual 

variability and produce a new long-term global GPP dataset. Meanwhile, we revised the manuscript 

according to your comments, and added detailed information on model parameterization and validation 

(please refer the following responses). 

 

2. Details are missing in many parts. Justification should follow when a decision or selection is done. 

For example, what is the rationale of dividing data into calibration and validation, and how was it 

done? How was the parameter optimization conducted? How was the collocation of different input 

data done? These are just a few of them. Readers don’t know what and how the authors exactly 

did, which limit the understanding of the proposed model and its evaluation. 

Response: Sorry for confusion. We checked carefully the manuscript and made sure to represent the 

method, data and result clear. Here, the reviewer mentioned the model parameterization method, and we 

responded details in the next comment. 

 

3. Calibration vs. validation. As empirical models are dependent on data, a more robust approach 

should be adopted. Calibration sites were randomly selected? What if different calibration sites 

are used? A bootstrapping method might be adopted to see if consistent results can be achieved 

using different calibration data. Or n-fold cross validation would work. If consistent results were 

not obtained, the proposed model would be inherently unstable. 

Response: Thanks for your constructive comments. In the revised manuscript, we used cross validation 

method to calibrate model parameters. Cross validation method need more sites for each vegetation types, 

so we added the study sites from 84 to 95. We updated all the related method and result sections 

thoroughly (including all the tables and figures, and the related methods and results). And we produced 

and analyzed the global GPP datasets using the new parameters. Here we show the cross-validation 

method and the optimized parameter table. Other related modifications are too long to show here, please 

see them in the revised manuscript. 

The detailed description on the cross-validation method is: 

“Cross-validation method was used to calibrate and validate the revised EC-LUE model. Fifty 

percent of the sites were randomly selected to calibrate model parameters for each vegetation type, and 

the remaining 50% of the sites were used to validate the model. This parameterization process was 

repeated until all possible combinations of 50% sites were achieved for each vegetation type. The 

nonlinear regression procedure (Proc NLIN) in the Statistical Analysis System (SAS, SAS Institute Inc., 

Cary, NC, USA) was applied to optimize the model parameters (εmsu, εmsh, φ, and VPD0) using 8-day 

estimated GPP based on EC measurements. The mean GPP simulations of 8-day from all validation runs 

only were used to model validation. Mean calibrated parameter values from all model runs were used to 



simulate GPP over the global scale (Table 3).” (Line 189-195 in the revised manuscript) 

The table of the optimized parameters are shown in Table 3: 

Table 3: Optimized parameters (εmsu, εmsh, φ, and VPD0) of the revised EC-LUE model for 

different vegetation types. 

Vegetation 

Types 

DBF ENF EBF MF GRA CRO-C3 CRO-C4 SAV SHR WET 

εmsu (g C MJ-1) 1.28 ± 0.36 1.72 ± 0.42 1.67 ± 0.85 1.38 ± 0.21 1.16 ± 0.15 1.25 ± 0.42 2.46 ± 0.78 2.24 ± 0.68 1.21 ± 0.25 1.34 ± 0.26 

 εmsh (g C MJ-1) 3.59 ± 0.66 3.87 ± 0.58 4.35 ± 0.72 3.29 ± 0.63 1.91 ± 0.46 2.46 ± 0.52 5.64 ± 1.02 4.26 ± 0.95 2.71 ± 0.52 2.62 ± 0.49 

𝜑 (ppm) 32 ± 8.25 25 ± 7.59 20 ± 6.36 49 ± 11.25 57 ± 11.85 43 ± 9.56 54 ± 15.36 54 ± 12.23 34 ± 7.59 36 ± 10.32 

VPD0 (kPa) 1.15 ± 0.25 1.34 ± 0.26 0.57 ± 0.15 0.62 ± 0.14 1.69 ± 0.35 1.02 ± 0.19 1.53 ± 0.31 1.65 ± 0.26 1.34 ± 0.21 0.62 ± 0.12 

 

Additionally, we examined the variability of model performance by using different 

combinations of calibration and validation sites (Fig. R1). We calculated the mean R2 and RMSE across 

all validation sites for each combination, and used the coefficient of variation (CV) of R2 and RMSE of 

all combinations to indicate the impacts of combinations on model performance. The averaged R2 over 

all combinations ranged from 0.62 (EBF) to 0.88 (DBF) among various vegetation types, and the CV 

values of R2 were mostly less than 0.11 (except EBF, CV = 0.32) (Fig. R1a-b). The averaged RMSE 

ranged from 1.33 g C m−2 d−1 (CRO-C3) to 5.84 g C m−2 d−1 (SRH) with CV varying from 0.06 to 0.30 

(Fig. R1c-d). From statistics (mean, SD, and CV) of R2 and RMSE, we can conclude our proposed model 

is robust with high accuracy. 

 

 



Figure R1: Model performance for all the combinations of calibration and validation sites in cross-validation. (a) 

Averaged values of R2 (error bars represent the standard deviation, namely SD), (b) coefficient of variation (CV) 

of R2 (CV = SD/mean); (c) Averaged values of RMSE (error bars represent the SD), (b) CV of RMSE. 

 

4. Seasonal analysis using time-series data should be conducted. Figs 2 and 3 are not sufficient to 

say that the proposed model showed a good performance in reproducing the seasonal variations in 

GPP as they don’t contain any seasonal information. You may conduct statistical analysis by season, 

not simply based on stations. 

 

Figure 2: Comparisons of 8-day mean GPP between the observations at 42 calibration sites and 

the model simulations. Solid and open dots indicate the GPP simulations derived from tower-

derived meteorology data and meteorological reanalysis dataset, respectively. 



 

Figure 3: Comparisons of 8-day mean GPP between the observations at 43 validation sites and the 

model simulations. Solid and open dots indicate the GPP simulations derived from tower-derived 

meteorology data and meteorological reanalysis dataset, respectively. 

Response: In the revised manuscript we used cross-validation method, so we combined Figs. 2-3 to Fig. 

2. In Figs. 2-3 (in the original manuscript), we calculated the correlation (R2) between simulated and 

observed GPP at 8-day step for each site, and the correlation (R2) indicates the consistence of temporal 

changes between GPP simulations and observations. We added these explanations as following: 

“In Fig. 2, we compared the modelled GPP and tower GPP at 8-day step for each site to 

examine the capacity of our model in reproducing the seasonal variations.” (Line 237-238 in the revised 

manuscript) 

In addition, in the revised manuscript, we also added another index (Kendall’s coefficient of 

rank correlation τ) to further quantify the agreement between the simulated and tower estimated GPP at 

seasonal patterns (Fig. 2d). We updated the Methods (Section 2.4 Model calibration and validation), 

Results (Section 3.1 Model performance), and Fig. 2d in the revise manuscript as following. 

Methods (Section 2.4 Model calibration and validation): 

“Additionally, Kendall’s coefficient of rank correlation τ (Kanji, 1999) was used to quantify 

the agreement of seasonal changes between the simulated and tower estimated GPP. The Kendall 

coefficient measured the tendency coherence between predicted and observed GPP by comparing the 

ranks assigned to successive pairs. If GPPsim,j − GPPsim,i and GPPobs,j − GPPobs,i have the same sign 

(positive or negative), the pair would be concordant, or discordant. A time-series data with 𝑛 

observations, the Kendall’s coefficient of rank correlation τ can be expressed: 



τ =
C−D

n(n−1)/2
                 (20) 

where n(n − 1)/2 is the total combination of pairs, C is the number of concordant pairs, and D is the 

number of discordant pairs. The Kendall’s coefficient ranged from -1 (C = 0) to 1 (D = 0). The Kendall’s 

coefficient is much closer to 1, which means a stronger positive relationship between the seasonal 

patterns of the simulated and tower estimated GPP.” (Line 197-206 in the revised manuscript) 

Results (Section 3.1 Model performance): 

“The averaged Kendall’s correlation coefficient (τ) was 0.63, indicating that the model 

simulated GPP had a strong seasonal coherence with tower estimated GPP. Similar to R2, the lower 

Kendall’s correlation coefficient (τ) value sites were also located in the tropical forest areas.” (Line 244-

246 in the revised manuscript) 

 

Figure 2: Comparisons of 8-day mean GPP between the model simulated GPP and tower estimated GPP. 

Solid and open dots indicate the GPP simulations derived from tower-derived meteorology data and 

meteorological reanalysis dataset, respectively. 

Figure 2 (continue) 



 

 

5. More supporting references should follow in lines 250-251 if you want to say the decreased GPP 

was due to excessive precipitation and hot temp. In other words, both precipitation and 

temperature in Amazon significantly increased from 1982 to 2017? Seasonal factors might affect? 

Line 250-251: The decreased GPP areas were mainly distributed in the tropic regions with 

abundant precipitation and high temperature, particularly in the Amazon forest. 

Response: Sorry for confusion. It is not our purpose to say the abundant precipitation and high 

temperature is the cause of decreased GPP in tropic regions. We revised the sentence to: 

“The decreased GPP was found in the tropic regions, especially in the Amazon forest.” (Line 

274 in the revised manuscript). 

The decreased GPP in the tropic regions were mainly due to the suppression of the increased 

atmospheric water demand indicated by atmosphere vapor pressure deficit (VPD). We have reported the 

detailed cause of GPP decreases responded to the increased VPD in our recent paper (Yuan et al., 2019), 

therefore, we appreciate your understanding that we did not discuss the details. In addition, the main 

objective of this manuscript is to introduce the revised EC-LUE model and long-term global GPP dataset 

produced by EC-LUE model.  

 

6. Scale issues should be carefully examined. Input data have different scales and the ground GPP 

measurements don’t have the same scale with input data. What kinds of approaches were 

conducted when matching input data on the same spatial domain? How did the authors mitigate 

or consider the different scale issues between site GPP data and input variables? 



Response: At global scale, the spatial resolution of satellite-based GLASS LAI dataset is 0.05° latitude 

by 0.05° longitude. We downscaled the meteorological reanalysis data (temperature, direct PAR, diffuse 

PAR, and VPD) to 0.05° latitude by 0.05° longitude using the bilinear interpolation method to match the 

spatial resolution of LAI. We have reported the detailed method in the manuscript:  

“We aggregated the daily variables (air temperature, VPD, direct PAR, and diffuse PAR) to 8-

day interval temporal resolution. And these variables were resampled to the spatial resolution of 0.05° 

latitude by 0.05° longitude using the bilinear interpolation method.” (Line 136-138 in the revised 

manuscript) 

At site level, we calibrated and validated the model using the tower observed meteorology 

data and global reanalysis meteorology data, respectively. The tower observed meteorology data were 

directly obtained from the measurement of FLUXNET and the global reanalysis meteorology data were 

extracted from the processed global 0.05°×0.05° reanalysis data. The model performance slightly 

decreases when using the meteorological reanalysis compared to that driven by tower-derived 

meteorology data (please refer to the section 3.1 in the revised manuscript). To further mitigate the 

uncertainty, we used the parameters optimized by global reanalysis meteorology data to simulate the GPP 

at global scale. 

And we discussed the uncertainty introduced by the mismatches between eddy covariance flux 

footprint and image pixels of the input dataset in section 4.3 Model uncertainty: 

“Additionally, the uncertainty of the revised EC-LUE model may arise by scale mismatches 

between eddy covariance flux footprint and input dataset. The eddy covariance flux footprint is generally 

less than 3 km2 and varies depending on the wind speed, wind direction and the atmospheric stability 

(Tan et al., 2006). In our studies, the revised EC-LUE model was run at 0.05 degree (~5 km2) spatial 

resolution. The uncertainty of simulated GPP introduced by the scale effect is inevitable but smaller than 

that introduced by the model structures, parameters or input datasets (Sjostrom et al., 2013; Zheng et al., 

2018).” (Line 392-396 in the revised manuscript) 

 

7. Lines 282-285. Needs more uncertainty analysis by factor (e.g., radiation) to support this. 

Line 282-285: In contrast, 74% of the sites showed higher R2 values (>0.5) for the revised EC-LUE 

model. The improvements of the revised EC-LUE model in reproducing interannual variations are 

owing to the integration of several important environmental drivers for vegetation production (i.e., 

atmospheric CO2 concentration, radiation components, and VPD), which exhibited large 

variations and contributed significantly to vegetation production at interannual scale. 

Response: This statement is based on the results presented by Fig. 3 in the revised manuscript (namely 

Fig. 4 in the original manuscript). The comparison showed the revised EC-LUE model has the better 

performance for reproducing the interannual variability in GPP compared to the original EC-LUE and 

other LUE models. It is a very good idea to identify the contributions of various factors to improve the 

model ability. However, to our knowledge, there is no recognized methods to conduct the uncertainty 

analysis by factors, and it will be very interesting to develop this method. However, we appreciate your 

understanding that it will beyond the scope of this study, and this manuscript is data description paper 

and the main purpose is to introduce the model methods and describe the global dataset of GPP with 

long-term series. 



 
Figure 3: Site percentage of (a) correlation coefficients (R2), and (b) regression slopes between the model 

simulated and tower-based interannual variabilities in GPP. (c) Averaged values (error bars represent the 

standard deviations) of R2 and slope for various LUE models. rEC-LUE(T) and rEC-LUE(R) indicate the 

revised EC-LUE models derived from tower-derived meteorology data and meteorological reanalysis 

dataset. The R2 and slopes of the other seven LUE models (i.e., EC-LUE, VPRM, VPM, MODIS, CFlux, 

CFix, and CASA) in the figure were obtained from the study by Yuan et al. (2014). ** and * indicate a 

significant difference in statistic variables (R2 and slope) between the rEC-LUE(T) and other LUE models 

(i.e., rEC-LUE(T) and other seven LUE models ) at p-value < 0.01 and p-value<0.05, respectively. 

 

8. Line 325. throughout the seasons? or different results by season? Again, seasonal analysis should 

be conducted. 

Line 325: The revised EC-LUE model showed the lowest accuracy for the evergreen broadleaf 

forests in the tropic areas (Figs. 2–3). 

Response: “throughout the seasons”. As the response of comment #4, we test the seasonal performance 

of the revised EC-LUE model for each site. We also added another index (Kendall’s coefficient of rank 

correlation τ) to further quantify the agreement between the simulated and tower estimated GPP at 

seasonal patterns in the revised manuscript (Fig. 2d in the revised manuscript). 

 

9. Figure 8. Comparison by region (or continent) would make the paper robust. Are there any 

merits of using the proposed model in terms of the spatial domain? 

Response: As your suggestion, we added the comparison between our model and other models across 

bioclimatic zones in the Köppen-Geiger climate classification map (Beck et al., 2018) before the Fig. 8 

(in the original manuscript). Because we have rearranged the figures in our manuscript, the comparison 

across bioclimatic zones is Fig. 7 in the revised manuscript. We added the following comparison: 

“At regional scale, we compared the annual mean GPP between the revised EC-LUE model 

and other models across the bioclimatic zones in the Köppen-Geiger climate classification map (Beck et 

al., 2018) (Fig. 7). The GPP of the revised EC-LUE model was comparable to the mean value of other 

models for each bioclimatic zone (Fig. 7a). The GPP of different models exhibited large discrepancies in 

tropical regions (Af/Am/Aw) (Fig. 7a). The correlations (R2) of GPP across all the bioclimatic zones 

between the revised EC-LUE model and other models ranged from 0.73 (LPX-Bern) to 0.95 (FLUXCOM 



MARS, FLUXCOM RF) (Fig. 7b).” (Line 325-331 in the revised manuscript) 

 

Figure 7: Comparisons of long-term (1982 to 2010s) averaged GPP between the revised EC-LUE model 

and other models across bioclimatic zones in the Köppen-Geiger climate classification map (Beck et al., 

2018). (a) the regional averaged value (b) correlation coefficients (R2) of GPP at all the bioclimatic zones 

between the revised EC-LUE model and other models. These models including machine learning models 

(FLUXCOM ANN, FLUXCOM MARS, FLUXCOM RF; Jung et al., 2017), biophysical models BEPS 

(Ju et al., 2006; Liu et al., 2018), and ten biophysical models in TRENDY (CABLE, CLASS, CLM, 

ISAM, JSBACH, JULES, LPJ-GUESS, LPX-Bern, ORCHIDEE, and VISIT). The abbreviations for the 

bioclimatic zones are as follows: Af, tropical, rainforest; Am, tropical, monsoon; Aw, tropical, savannah; 

BWh, arid, desert, hot; BWk, arid, desert, cold; BSh, arid, steppe, hot; BSk, arid, steppe, cold; Csa, 

temperate, dry summer, hot summer; Csb, temperate, dry summer, warm summer; Csc, temperate, dry 

summer, cold summer; Cwa, temperate, dry winter, hot summer; Cwb, temperate, dry winter, warm 

summer; Cwc, temperate, dry winter, cold summer; Cfa, temperate, no dry season, hot summer; Cfb  

temperate, no dry season, warm summer; Cfc, temperate, no dry season, cold summer; Dsa, cold, dry 

summer, hot summer; Dsb, cold, dry summer, warm summer; Dsc, cold, dry summer, cold summer; Dsd, 

cold, dry summer, very cold winter; Dwa, cold, dry winter, hot summer; Dwb, cold, dry winter, warm 

summer; Dwc, cold, dry winter, cold summer; Dwd, cold, dry winter, very cold winter; Dfa, cold, no dry 

season, hot summer; Dfb, cold, no dry season, warm summer; Dfc, cold, no dry season, cold summer; 

Dfd, cold, no dry season, very cold winter; ET, polar, tundra; EF, polar, frost. 

 

10. Lines 371-372. Don’t see any conclusive results to say that the model has a unique superiority 

in reproducing the inter annual variations in GPP at both site level and global scales. Superiority 

to what? Any comparison with other models (e.g., machine learning or physical models) to show 



the inter annual variations? 

Line 371-372: The revised EC-LUE performed well in simulating the spatial, seasonal, and 

interannual variations in global GPP. Particularly, it has a unique superiority in reproducing the 

interannual variations in GPP at both site level and global scales. 

Response: In our manuscript, we compared the model performance at interannual variations of the 

revised EC-LUE model with other LUE models, such as the original EC-LUE model, CASA, CFix, 

CFlux, MODIS, VPM, and VPRM. The result showed the revised EC-LUE indeed has a unique 

superiority in reproducing interannual variations than other LUE models. Over the sites with longer 5-

year observations, the averaged R2 between annual mean tower-estimated and model simulated GPP are 

0.44 for the revised EC-LUE model, which is significantly higher than those of original EC-LUE model 

(R2 = 0.36) and other LUE models (R2 ranged from 0.06 to 0.30 with an average value of 0.16), and these 

results have been represented at Fig. 3 (in the revised manuscript). 

We appreciate your understanding that we don’t compare it with other kind models because 

the main objective of our manuscript is focused on the improvement of the LUE models and produced a 

long-term GPP dataset. Moreover, due to large data gaps of measurements derived from eddy covariance 

towers, we need run process-based models at eddy covariance towers and obtain the corresponding 

simulations with observations of GPP in order to evaluate the model performance. This work needs 

contributions of model PIs, and which probably need take long time and great efforts. In addition, 

previous studies have provided the insights on this issue. Keenan et al. (2012) compared the performance 

of 16 process-based biophysical models and 3 satellite-based models (including the MODIS product) in 

reproducing the interannual variations in GPP. The result indicated the MODIS model performance was 

comparable to the process-based biophysical models. In our manuscript, the revised EC-LUE model 

(averaged R2 = 0.44) was significantly better than the MODIS model (averaged R2 = 0.17) at interannual 

scale. Therefore, we can conclude the similar result that our model was better than the process-based 

biophysical models compared in Keenan et al. (2012). 

In order to emphasize that we conducted the comparison with other LUE models, we revised 

these sentences you mentioned (Line 371-372 in the original manuscript) as following: 

“The revised EC-LUE performed well in simulating the spatial, seasonal, and interannual 

variations in GPP across the globe. Particularly, it has a unique superiority in reproducing the interannual 

variations in GPP (R2 = 0.44) compared with the original EC-LUE model (R2 = 0.36) and other LUE 

models (R2 ranged from 0.06 to 0.30 with an average value of 0.16).” (Line 405-407 in the revised 

manuscript) 

The comparisons with other LUE models are shown in the abstract, result, and discussion 

section. 

In the abstract section: 

“Particularly, the revised EC-LUE model improved the model performance in reproducing the 

interannual variations in GPP, and the averaged R2 between annual mean tower estimated and model 

simulated GPP is 0.44 over all 55 sites with observations longer than 5-years, which is significantly 

higher than those of original EC-LUE model (R2 = 0.36) and other LUE models (R2 ranged from 0.06 to 

0.30 with an average value of 0.16).” (Line 29-33 in the revised manuscript) 

In the result section: 

“The result showed that the revised EC-LUE model could effectively determine the 

interannual variations in GPP (Fig. 3). Approximately 42% and 40% of the sites showed higher R2 values 

(>0.5) by using the tower-derived meteorology data and the meteorological reanalysis dataset (Fig. 3a). 



The averaged R2 for the revised EC-LUE model was 0.44 by using the tower-derived meteorology data, 

which was significantly higher than the original EC-LUE model (R2 = 0.36) and other LUE models (R2 

ranged from 0.06 to 0.30 with an average value of 0.16) (Fig. 3c). The averaged R2 for the revised EC-

LUE model was 0.42 by using the meteorological reanalysis dataset. The averaged slopes of the revised 

EC-LUE model were 0.60 and 0.57 by using the tower-derived meteorology data and the meteorological 

reanalysis dataset (Fig. 3c)” (Line 252-259 in the revised manuscript) 

In the discussion section: 

“Numerous studies have shown that most GPP models can reproduce the spatial changes in 

GPP but failed to reproduce the temporal variations (Keenan et al., 2012; Yuan et al., 2014). Therefore, 

the capacity to reproduce realistic interannual variations for a GPP model is significantly important. In 

our study, the revised EC-LUE model performed a higher accuracy in reproducing the interannual 

variations in GPP than did the original EC-LUE model and other LUE models. Yuan et al. (2014) reported 

that the averaged slope of the regression relation between the mean annual GPP simulated by seven LUE 

models and the mean annual GPP estimated from EC tower ranged from 0.19 to 0.56 (Fig. 3c). While 

the revised EC-LUE model showed a higher slope of regression relation (0.60), which is much closer to 

1 than that obtained from other LUE models (Fig. 3c). The VPM GPP showed less interannual variations 

across most biomes (R2 <0.5), probably because of the insensitivity of the environmental stress factors 

at the interannual scale (Zhang et al., 2017). In contrast, 42% of the sites showed higher R2 values (>0.5) 

for the revised EC-LUE model.” (Line 296-305 in the revised manuscript) 

 

11. English needs to be carefully revised. 

Response: We thoroughly checked and improved English usages of the revised manuscript. And we also 

polished the English in a professional agency. 
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Abstract. Satellite-based models have been widely used to simulate vegetation gross primary production (GPP) at the site, 

regional, or global scales in recent years. However, accurately reproducing the interannual variations in GPP remains a major 

challenge, and the long-term changes in GPP remain highly uncertain. In this study, we generated a long-term global GPP 20 

dataset at 0.05° latitude by 0.05° longitude atand 8-day interval by revising a light use efficiency model (i.e. EC-LUE model). 

In the revised EC-LUE model, we integrated the regulations of several major environmental variables: atmospheric CO2 

concentration, radiation components, and atmospheric vapor pressure deficit (VPD). These environmental variables showed 

substantial long-term changes, which could greatly impact the global vegetation productivity. Eddy covariance (EC) 

measurements at 8495 towers from the FLUXNET2015 dataset, covering nine major ecosystem types ofaround the globe, were 25 

used to calibrate and validate the model. In general, the revised EC-LUE model could effectively reproduce the spatial, seasonal, 

and annual variations in the tower estimated GPP at most sites. The revised EC-LUE model could explain 83% and 6871% of 

the spatial variations in annual GPP over 95 sites. At more than 95% of the spatial variations in the annual GPP at 42 

calibrationsites, the correlation coefficients (R2) of seasonal changes between tower estimated and 43 validation sites, 

respectively. In particular, the revised EC-LUE model could very well reproduce (~74% sites R2 >model simulated GPP are 30 

larger than 0.5; averaged R2 = 0.65). Particularly, the revised EC-LUE model improved the model performance in reproducing 

the interannual variations in GPP at 51, and the averaged R2 between annual mean tower estimated and model simulated GPP 

is 0.44 over all 55 sites with observations greaterlonger than 5-years. At , which is significantly higher than those of original 

EC-LUE model (R2 = 0.36) and other LUE models (R2 ranged from 0.06 to 0.30 with an average value of 0.16). At the global 

scale, sensitivityGPP derived from light use efficiency models, machine learning models, and process-based biophysical 35 
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models exist substantial differences in magnitude and interannual variations. The revised EC-LUE model quantified the mean 

global GPP from 1982 to 2017 as 106.2±2.9 Pg C yr−1 with the trend 0.15 Pg C yr−1. Sensitivity analysis indicated that the 

GPP simulated by the revised EC-LUE model was sensitive to atmospheric CO2 concentration, VPD, and radiation. Over the 

period of 1982–2017, the CO2 fertilization effect on the global GPP (0.22 ± 0.07 Pg C yr−1) could be partly offset by increased 

VPD (−0.17 ± 0.06 Pg C yr−1). The long-term changes ofin environmental variables could be well reflected in the global GPP 40 

dataset. The CO2 fertilization effect on the global GPP (0.14 ± 0.001 Pg C yr−1) could be offset by the increased VPD (−0.16 

± 0.02 Pg C yr−1). The global GPP derived from different datasets exist substantial uncertainty in magnitude and interannual 

variations. The magnitude of global summed GPP simulated by the revised EC-LUE model was comparable to other global 

models. While the revised EC-LUE model has a unique superiority in simulating the interannual variations in GPP at both site 

level and global scales. The revised EC-LUE model provides. Overall, the revised EC-LUE model is able to provide a reliable 45 

long-term estimate of global GPP because of integrating the important environmental variables. The. The GPP dataset is 

available at https://doi.org/10.6084/m9.figshare.8942336 (Zheng et al., 2019). 

1 Introduction 

Vegetation gross primary production (GPP) is the largest carbon flux component within terrestrial ecosystems and plays an 

essential role in regulating the global carbon cycle (Canadell et al., 2007; Zhao et al., 2010). As a primary variable of the 50 

terrestrial ecosystem cycle, GPP estimates will substantially determine other variables of the carbon cycle (Yuan et al., 2011). 

Satellite-based GPP models have been developed based on the light use efficiency (LUE) principle (Monteith, 1972; Potter et 

al., 1993; Running et al., 2004; Xiao et al., 2005; Yuan et al., 2007). Thus far, LUE models have been a major tool for 

investigating the spatio-temporal changes in GPP and the environmental dominates, either independently or by combining with 

other ecosystem models (Keenan et al., 2016; Smith et al., 2016). 55 

However, current LUE models exhibit a poor performance in reproducing the interannual variations in GPP. A previous study 

indicated that seven LUE models only could only explain 6–36% of the interannual variations in GPP at 51 eddy covariance 

(EC) towers (Yuan et al., 2014). Similarly, a model comparison showed that none of the examined 16 process-based 

biophysical models noror the 3 satellite-based modelsremote sensing products (BESS, MODIS C5, and MODIS C5.1) could 

consistently reproduce the observed interannual variations in carbon exchangeGPP at 11 forest sites in North America (Keenan 60 

et al., 2012). Seven LUE models simulated the long-term trends ofin global GPP varied from −0.15 to 1.09 Pg C yr−1 over the 

period 2000–2010 (Cai et al., 2014). An important reason for the poor performance in modeling the interannual variability is 

that the effect of environmental regulations on vegetation production is not completely integrated ininto the LUE models 

(Stocker et al., 2019). In particular, the long-term changes in several environmental variables are very important for accurately 

simulating the GPP series at the decadal scale. 65 

Several environmental variables should be included in GPP models. Firstly, as we all know the rising atmospheric CO2 

concentration in the past few decades substantially stimulated global vegetation growth (Zhu et al., 2016; Liu et al., 2017). 
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Field experiments using greenhouses or open-top chambers showed that an increase of approximateapproximately 300 ppm in 

CO2 concentration can increase C3 plantthe photosynthesis of C3 plants on the order of 60% (Norby et al., 1999). Free-air CO2 

enrichment (FACE) experiments generally confirmed the enhancement in net primary production (NPP) with the rising CO2 70 

concentration (Ainsworth and Long, 2005). For example, four FACE experiments indicated that the forest NPP consistently 

increased at the median of 23 ± 2% when the ambient CO2 concentration was elevated to approximately 550 ppm (Norby et 

al., 2005). According to observations, the atmospheric CO2 concentration has risen by approximately 20% from 340 ppm 

(1982) to 410 ppm (2018) (https://www.esrl.noaa.gov/). However, the effects of CO2 fertilization on GPP have not been 

integrated in most current satellite-based LUE models. 75 

Secondly, solar radiation, or more specifically the photosynthetic active radiation (PAR) substantially influences the vegetation 

production of the terrestrial ecosystem (Alton et al., 2007; Kanniah et al., 2012; Krupkova et al., 2017). Study indicated that 

the solar radiation incident at the earth surface underwent significant decadal variations (Wild et al., 2005). A comprehensive 

analysis based on the datasets of worldwide distributed sites indicated significant decreases in solar radiation (2% per decade) 

from the late 1950s to 1990 in the regions of Asia, Europe, North America, and Africa (Gilgen et al., 1998). A later assessment 80 

by Wild et al. (2005) showed that the radiation increased at widespread locations since the mid-1980s. 

However, it is not only the total amount of solar radiation or PAR incident at the earth surface, but also, more importantly, 

their partitioning into direct and diffuse radiations, that impact the vegetation productivity (Urban et al., 2007; Kanniah et al., 

2012). Increased proportion of diffuse radiation enhances vegetation photosynthesis, because a higher blue/red light ratio 

within the diffuse radiation may lead to higher light use efficiency (Gu et al., 2002; Alton et al., 2007). For example, the sharply 85 

increased diffuse radiation induced by the 1991 Mount Pinatubo eruption enhanced the noontime vegetation productivity of a 

deciduous forest in the next 2 years (Gu et al. 2003). Besides volcanic aerosols, clouds could also reduce the total and direct 

radiation, while increase the proportion of diffuse radiation. Yuan et al. (2010) found that the higher LUE at European forests 

than North America was because of the higher ratio of cloudy days in Europe. Yuan et al. (2014) further proved that the 

significantly underestimated GPP during cloudy days by six LUE models was because the effects of diffuse radiation on LUE 90 

were neglected in these models. 

Thirdly, atmospheric vapor pressure deficit (VPD) is another factor that should be included in GPP models. As an important 

driver of atmospheric water demand for plants, VPD influences terrestrial ecosystem function and photosynthesis (Rawson et 

al., 1977).; Yuan, et al., 2019). Rising air temperature increases the saturated vapor pressure at a rate of ~7%/K according to 

the Classius–Clapeyron relationship, and therefore, VPD will increase if the atmospheric water vapor content does not increase 95 

by exactly the same amount ofas the saturated vapor pressure. Numerous studies indicated significant changes in the relative 

humidity (ratio of actual water vapor pressure to saturated water vapor pressure) in both humid areas and continental areas 

located far from oceanic humidity (Van Wijngaarden and Vincent, 2004; Pierce et al., 2013). In particular, the global averaged 

land surface relative humidity decreased sharply after the late 1990s (Simmons et al. 2010; Willett et al. 2014). The leaf and 

canopy photosynthetic rate declinedeclines when the atmospheric VPD increases due to stomatal closure (Fletcher et al., 2007). 100 

A recent study highlighted that increases in VPD rather than changes in precipitation willwould be a dominant influence on 
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vegetation productivity (Konings et al., 2017). However, currently the influence of long-term VPD variations is not well 

expressed in many LUE models currently. 

We have developed a LUE model, namely the EC-LUE model, by integrating remote sensing data and eddy covariance data 

to simulate daily GPP (Yuan et al., 2007; 2010). The model has been evaluated using the observations at EC towers located in 105 

Europe, North America, China, and East Asia, covering various ecosystem types (Yuan et al., 2007; 2010; Li et al., 2013). In 

this study, we revised the EC-LUE model by integrating the impacts of several environmental variables (i.e., atmospheric CO2 

concentration, radiation components, and atmospheric VPD) across a long-term temporal scale. Firstly, we evaluated the 

effectiveness of the revised EC-LUE model in determining the spatial, seasonal, and interannual variations in GPP from 

multiple eddy covariance sites. ThenSecondly, a global GPP dataset at 0.05° spatial resolution was generated based on the 110 

optimized model. Finally, we analyzed the contributions of the aforementioned environmental variables to the global GPP and 

discussed the spatial and interannual variations in GPP from different global GPP datasets. 

2 Data and Methods 

2.1 Description of the2.1 revised EC-LUE model 

The terrestrial vegetation GPP can be expressed as follows in the revised EC-LUE model: 115 

GPP = (εmsu × APARsu + εmsh × APARsh) × Cs ×min(Ts,Ws)      (1) 

where εmsu is the maximum LUE of sunlit leaves; APARsu is the PAR absorbed by sunlit leaves; εmsh is the maximum LUE of 

shaded leaves; APARsh is the PAR absorbed by shaded leaves; Cs, Ts, and Ws represent the downward regulation scalars of 

atmospheric CO2 concentration ([CO2]), air temperature, and VPD on LUE ranging from 0 to 1; min represents the minimum 

value. 120 

The effect of atmospheric CO2 concentration on GPP is determined by the following equations (Farquhar et al., 1980; Collatz 

et al., 1991): 

Cs =
Ci−φ

Ci+2φ
            (2) 

Ci = Ca × χ            (3) 

where 𝜑 is the CO2 compensation point in the absence of dark respiration (ppm); Ci is the leaf internal CO2 concentration; Ca 125 

is the atmospheric CO2 concentration; χ is the ratio of leaf internal to atmospheric CO2 which can be estimated as follows 

(Prentice et al., 2014; Keenan et al., 2016): 

χ =
ε

ε+√VPD
            (4) 

ε = √
356.51K

1.6η∗
            (5) 

K = Kc(1 +
P0

K0
)            (6) 130 
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Kc = 39.97 × e
79.43×(T−298.15)

298.15RT           (7) 

Ko = 27480 × e
36.38×(T−298.15)

298.15RT           (8) 

where Kc and Ko are the Michaelis–Menten constants for CO2 and O2; Po is the partial pressure of O2; Ta is air temperature 

(K); η* is the viscosity of water relative to its value at 25 °C depending on the air temperature (Korson et al., 1969); R is the 

molar gas constant (8.314 J mol−1 K−1). 135 

Ts and Ws can be expressed as follows: 

Ts =
(T−Tmin)×(T−Tmax)

(T−Tmin)×(T−Tmax)−(T−Topt)×(T−Topt)
         (9) 

Ws =
VPD0

VPD0+VPD
            (10) 

where Tmin, Topt, and Tmax are the minimum, optimum, and maximum temperatures (K) for vegetation photosynthesis, 

respectively (Yuan et al., 2007); VPD0 is the half saturation coefficient of the VPD constraint equation (kPa). 140 

APARsu and APARsh can be expressed as follows (Chen et al., 1999): 

APARsu = (PARdir ×
cos(β)

cos(θ)
+

PARdif−PARdif,u

LAI
+ C) × LAIsu       (11) 

APARsh = (
PARdif−PARdif,u

LAI
+ C) × LAIsh         (12) 

PARdif,u = PARdif × exp⁡(
−0.5×Ω×LAI

cos⁡(θ̅)
)         (13) 

where PARdir is the direct PAR; PARdif is the diffuse PAR; PARdif,u is the diffuse PAR under the canopy; C represents the 145 

multiple scattering effects of direct radiation; Ω is the clumping index, which is set according to vegetation types (Tang et al., 

2007); θ is the solar zenith angle; β is the mean leaf–sun angle, which is set to 60°; θ̅ is the representative zenith angle for 

diffuse radiation transmission and can be expressed by LAI (Chen et al., 1999): 

cos(θ̅) = 0.537 + 0.025 × LAI          (14) 

The LAIs of shaded leaves (LAIsh) and sunlit leaves (LAIsu) in Eqs. (11) and (12) are computed following Chen et al (1999): 150 

LAIsu = 2 × cos(θ) × (1 − e
−0.5×Ω×

LAI

cos(θ))         (15) 

LAIsh = LAI − LAIsu           (16) 

The parameters εmsu, εmsh, φ, and VPD0 were calibrated using the estimated GPP from EC towers. The initial ranges of εmsu and 

εmsh were set to 0–12 g C MJ−1, φ was set to 0–100 ppm, VPD0 was set to 0–4 kPa. The optimized values of these parameters 

were adopted until the root mean square error (RMSE) of the model simulated and the EC estimated daily GPP approached to 155 

the minimum value. 

2.2 Data from the eddy covariance towers 

The FLUXNET2015 dataset (http://www.fluxdata.orghttp://www.fluxdata.org) includes over 200 variables of carbon fluxes, 

energy fluxes, and meteorological datavariables collected and processed at sites by the FLUXNET community. In our study, 

http://www.fluxdata.org/
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eighty-fourninety-five EC sites in FLUXNET2015 dataset were utilized to optimize the parameters and evaluate the 160 

performance of the revised EC-LUE model, including nine major terrestrial ecosystem vegetation types (Table 1): evergreen 

broadleaf forests (EBF), evergreen needleleaf forests (ENF), deciduous broadleaf forests (DBF), mixed forests (MF), 

grasslands (GRA), savannas (SAV), shrubland (SHR), wetlands (WET), and croplands (CRO). More information about the 

characteristics of these sites can be referred to the FLUXNET website. For each site, the aggregated daily GPP, PAR, air 

temperature (Ta), and VPD were used in our study. The GPP variable (GPP_NT_VUT_REF) used in this study was estimated 165 

from night-time partitioning method. The corresponding net ecosystem exchange (NEE) was generated using variable friction 

velocity (USTAR) threshold for each year (VUT), in which 40 versions of NEE were created by using different percentiles of 

USTAR thresholds. The model efficiency between each version and the others 39 versions were calculated to test their 

similarities and the reference (REF) NEE was selected as the one with higher model efficiency sum (the most similar to the 

others 39). The daily meteorological variables were gap-filled and/or downscaled from the ERA-interim reanalysis dataset in 170 

both space and time (Vuichard and Papale, 2015). The carbon flux measurements (i.e., net ecosystem exchange (NEE)) were 

gap-filled and partitioned into GPP and ecosystem respiration (Re) using a nighttime based approach (Reichstein et al. 2005). 

The gap-filled technique of the carbon flux measurements and meteorological variables is the marginal distribution sampling 

(MDS) method described in Reichstein et al. (2005). For each variable, we aggregated the daily values to 8-day time step. 

Only the 8-day measurements with more than 5-day valid values were used. 175 

<<Table 1>> 

2.32 Data at the global scale 

The input data of the revised EC-LUE modelThe global scale datasets used in this study are shown in Table2Table 2. The 

global scale meteorological reanalysis dataset was derived from the second Modern-Era Retrospective analysis for Research 

and Applications (MERRA-2) dataset. It was produced by NASA’s Global Modeling and Assimilation Office that usesused 180 

an upgraded version of the GEOS-5 (Rienecker et al., 2011). It has been validated carefully using surface meteorological 

datasets and enhanced assimilation system to reduce the uncertainty in various meteorological variables globally. In our study, 

we obtained the daily mean air temperature (Ta, ℃), mean dew point temperature (Td, ℃), total direct PAR, (PARdr, MJ m-2 

d-1), and total diffuse PAR (PARdf, MJ m-2 d-1) at 0.625° in longitude by 0.5° in latitude from 1982 to 2017. VPD was calculated 

from air temperature and dew point temperature: 185 

SVP = 6.112 × e
17.67Ta
Ta+243.5           (171) 

RH = e
17.625Td
Td+243.04

−
17.625Ta
Ta+243.04           (182) 

VPD = SVP × (1 − RH)           (193) 

where SVP is the saturated vapor pressure (k Pa), and RH is the relative humidity. We aggregated the daily variables (air 

temperature, VPD, direct PAR, and diffuse PAR) to 8-day interval temporal resolution. And these variables were resampled 190 

to the spatial resolution of 0.05° latitude by 0.05° longitude using the bilinear interpolation method. 
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The 8-day Global LAnd Surface Satellite-leaf area index (GLASS LAI) dataset at 0.05° latitude by 0.05° longitude was adopted 

to indicate vegetation growth from 1982 to 2017. It was produced using the general regression neural networks (GRNNs) 

trained with the fused MOD15 LAI and CYCLOPES LAI and the preprocessed MODIS/AVHRR reflectance data over the 

BELMANIP sites (Xiao et al., 2016). Products validation and comparison showed that the GLASS LAI product was spatially 195 

complete and temporally continuous with lower uncertainty (Xu et al., 2018). 

Additionally, the MCD12Q1 product with IGBP classification scheme was used as land cover map and the. The ISLSCP II C4 

Vegetation Percentage map was used to separate the C3 and C4 crops. The NOAA’s Earth System Research Laboratory (ESRL) 

CO2 concentration dataset was used to express the CO2 fertilization effect. 

<<Table 2>> 200 

2.3 The revised EC-LUE model 

The terrestrial vegetation GPP can be expressed as follows in the revised EC-LUE model: 

GPP = (εmsu × APARsu + εmsh × APARsh) × Cs ×min(Ts,Ws)      (4) 

where εmsu is the maximum LUE of sunlit leaves; APARsu is the PAR absorbed by sunlit leaves; εmsh is the maximum LUE of 

shaded leaves; APARsh is the PAR absorbed by shaded leaves; Cs, Ts, and Ws represent the downward regulation scalars of 205 

atmospheric CO2 concentration ([CO2]), air temperature, and VPD on LUE ranging from 0 to 1; min represents the minimum 

value. 

The effect of atmospheric CO2 concentration on GPP is determined by the following equations (Farquhar et al., 1980; Collatz 

et al., 1991): 

Cs =
Ci−φ

Ci+2φ
            (5) 210 

Ci = Ca × χ            (6) 

where 𝜑 is the CO2 compensation point in the absence of dark respiration (ppm); Ci is the leaf internal CO2 concentration; Ca 

is the atmospheric CO2 concentration; χ is the ratio of leaf internal to atmospheric CO2 concentration which can be estimated 

as follows (Prentice et al., 2014; Keenan et al., 2016): 

χ =
ε

ε+√VPD
            (7) 215 

ε = √
356.51K

1.6η∗
            (8) 

where ε is a parameter related to the ‘carbon cost of water’, which means the sensitivity of VPD to χ; K is the Michaelis–

Menten coefficient of Rubisco; η* is the viscosity of water relative to its value at 25 °C (Korson et al., 1969). 

K = Kc(1 +
P0

K0
)            (9) 

where Po is the partial pressure of O2; Kc and Ko are the Michaelis–Menten constants for CO2 and O2 (Keenan et al., 2016): 220 

Kc = 39.97 × e
79.43×(Ta−298.15)

298.15×R×Ta           (10) 
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Ko = 27480 × e
36.38×(Ta−298.15)

298.15×R×Ta           (11) 

where 𝑇𝑎 is air temperature (unit: K); R is the molar gas constant (8.314 J mol−1 K−1). 

Ts and Ws can be expressed as follows: 

Ts =
(Ta−Tmin)×(Ta−Tmax)

(Ta−Tmin)×(Ta−Tmax)−(Ta−Topt)×(Ta−Topt)
        (12) 225 

Ws =
VPD0

VPD0+VPD
            (13) 

where Tmin, Topt, and Tmax are the minimum, optimum, and maximum temperatures for vegetation photosynthesis, respectively 

(Yuan et al., 2007); VPD0 is the half-saturation coefficient of the VPD constraint equation (k Pa). 

APARsu and APARsh can be expressed as follows (Chen et al., 1999): 

APARsu = (PARdir ×
cos(β)

cos(θ)
+

PARdif−PARdif,u

LAI
+ C) × LAIsu       (14) 230 

APARsh = (
PARdif−PARdif,u

LAI
+ C) × LAIsh         (15) 

PARdif,u = PARdif × exp⁡(
−0.5×Ω×LAI

cos⁡(θ̅)
)         (16) 

where PARdir is the direct PAR; PARdif is the diffuse PAR; PARdif,u is the diffuse PAR under the canopy; C represents the 

multiple scattering effects of direct radiation; Ω is the clumping index, which is set according to vegetation types (Tang et al., 

2007); θ is the solar zenith angle; β is the mean leaf–sun angle, which is set to 60°; θ̅ is the representative zenith angle for 235 

diffuse radiation transmission and can be expressed by LAI (Chen et al., 1999): 

cos(θ̅) = 0.537 + 0.025 × LAI          (17) 

The LAIs of shaded leaves (LAIsh) and sunlit leaves (LAIsu) in Eqs. (14) and (15) are computed following Chen et al (1999): 

LAIsu = 2 × cos(θ) × (1 − e
−0.5×Ω×

LAI

cos(θ))         (18) 

LAIsh = LAI − LAIsu           (19) 240 

2.4 Model calibration and validation 

Cross-validation method was used to calibrate and validate the revised EC-LUE model. Fifty percent of the sites were randomly 

selected to calibrate model parameters for each vegetation type, and the remaining 50% of the sites were used to validate the 

model. This parameterization process was repeated until all possible combinations of 50% sites were achieved for each 

vegetation type. The nonlinear regression procedure (Proc NLIN) in the Statistical Analysis System (SAS, SAS Institute Inc., 245 

Cary, NC, USA) was applied to optimize the model parameters (εmsu, εmsh, φ, and VPD0) using 8-day estimated GPP based on 

EC measurements. The mean GPP simulations of 8-day from all validation runs only were used to model validation. Mean 

calibrated parameter values from all model runs were used to simulate GPP over the global scale (Table 3). 

Three metrics, the coefficient of determination (R2), RMSE, and bias (the difference between observations and simulations) 

were adopted to evaluate the performance of the revised EC-LUE model. Additionally, Kendall’s coefficient of rank correlation 250 
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τ (Kanji, 1999) was used to quantify the agreement of seasonal changes between the simulated and tower estimated GPP. The 

Kendall coefficient measured the tendency coherence between predicted and observed GPP by comparing the ranks assigned 

to successive pairs. If GPPsim,j − GPPsim,i and GPPobs,j − GPPobs,i have the same sign (positive or negative), the pair would be 

concordant, or discordant. A time-series data with 𝑛 observations, the Kendall’s coefficient of rank correlation τ can be 

expressed: 255 

τ =
C−D

n(n−1)/2
            (20) 

where n(n − 1)/2 is the total combination of pairs, C is the number of concordant pairs, and D is the number of discordant 

pairs. The Kendall’s coefficient ranged from -1 (C = 0) to 1 (D = 0). The Kendall’s coefficient is much closer to 1, which 

means a stronger positive relationship between the seasonal patterns of the simulated and tower estimated GPP. 

Using the averaged value of the optimized parameters (Table 3), a global GPP dataset at 0.05° × 0.05° spatial resolution and 260 

8-day temporal resolution over 1982-2017 was produced. 

<<Table 3>> 

2.5 Environmental contributions to long-term changes in GPP 

To evaluate the contribution of the major environmental variables to GPP, including the atmospheric CO2 concentration 

([CO2]), climate, and satellite-based LAI, two types of experimental simulations wherewere performed. The first simulation 265 

experiment (SALL) was a normal model run, with all the environmental drivers changing over time. In the second type of 

simulation experiments (SCLI0, SLAI0, and SCO20), two driving factors could be varied with time while maintaining the third 

constant at an initial baseline level. For example, the SCLI0 simulation experiment allowed the LAI and atmospheric [CO2] to 

vary with time while the climate variables were kept constant at 1982 values. The SLAI0 and (SCO20) simulation experiments 

kept LAI and (atmospheric [CO2]]) constant at 1982 values and varied the other two variables. 270 

Considering the differences between the simulation results of the first type (SALL) and the second type (SCO20 and SLAI0) of 

experiments, the GPP sensitivities to atmospheric [CO2] (βCO2) and LAI (βLAI) were estimated as follows: 

∆GPP(SALL−SCO20)i = β
CO2

× ∆CO2(SALL−SCO20)i + ε        (2021) 

∆GPP(SALL−SLAI0)i = β
LAI

× ∆LAI(SALL−SLAII0)i + ε        (2122) 

where ΔGPPi, ΔCO2i, and ΔLAIi denote the differences in the GPP simulations, atmospheric [CO2], and LAI between the two 275 

model experiments from 1982 to 2017, and ε is the stochastic error term. 

The GPP sensitivities to the three climate variables: air temperature (βTa), VPD (βVPD), and PAR (βPAR) were calculated using 

a multiple regression approach: 

∆GPP(SALL−SCLI0)i = β
Ta
× ∆Ta(SALL−SCLI0)i + β

VPD
× ∆VPD(SALL−SCLI0)i

+ β
PAR

× ∆PAR(SALL−SCLI0)i
+ ε  (2223) 

where ΔTai, ΔVPDi, and ΔPARi denote the differences in Ta, VPD, and PAR time series between the two model experiments 280 

(SALL and SCLI0), respectively. The regression coefficient β was estimated using the maximum likelihood analysis. 
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2.5 Statistical analysis 

Coefficient of determination (R2), RMSE, and bias (the difference between observations and simulations) were adopted to 

evaluate the performance of the revised EC-LUE model. 

3 Results 285 

3.1 Parameter optimization and model validation 

This study used EC measurements at 42 sites to calibrate the parameter values and 43 sites to validate the model 

accuracy of the revised EC-LUE model. The parameters (εmsu, εmsh, 𝛗, and VPD0) of each vegetation type are shown in 

Table 3. We evaluated the modelModel performance by using the tower-derived meteorology data and global reanalysis 

meteorology, respectively.  290 

In general, the revised EC-LUE model could effectively reproducingreproduce the spatial, seasonal, and annual variations in 

the tower- estimated GPP at most of the calibration and validation sites (Figs. 1–4). 

<< Table 3>> 

By using the tower-derived meteorology data, the). The revised EC-LUE model explained 7671% and 64% of the spatial 

variations in GPP across all the calibration and validation sites with no obvious systematic errors (Fig. 1(a)). Furthermore, the 295 

model respectively explained 83% and 67% of the spatial variations in GPP at the calibration and validation sites. In contrast, 

the model performance decreased when using EC sites by using the tower-derived meteorology data and the meteorological 

reanalysis dataset, explaining only 52% of the spatial variations in the GPP and slightly overestimating the GPP at the sites 

with low/moderate GPP values (Fig. 1(b)).respectively (Fig. 1). 

<<Figure 1>> 300 

Similarly, the revised EC-LUE model also shows a good performance in reproducing the seasonal variations in the GPP at 

most EC sites (FigsFig. 2–3). By). In Fig. 2, we compared the modeled GPP and tower GPP at 8-day step for each site to 

examine the capacity of our model in reproducing the seasonal variations. The averaged R2 were 0.81 and 0.76 by using the 

tower-derived meteorology data, the averaged R2 over the calibration and validation sites was 0.78 and 0.72 and the 

meteorological reanalysis dataset, respectively. Over 92Using the tower-derived meteorology data, over 95% of the calibration 305 

and validation sites showed high R2 (>0.5). The two low R2 (< 0.4) sites (i.e., MY-PSO, BR-Sa1 and BR-Sa3) were tropical 

forests without pronounced seasonal patternpatterns of GPP (Fig. 2(a); Fig. 3(a)).2a). The RMSE and the absolute value of 

bias varied from 0.6869 (CN-Du2) to 5.7263 (US-Ne1Ne2) g C m−2 d−1 and from 0.002004 (CA-NS1) to 2.12 (US-ARM40 

(CA-TP2) g C m−2 d−1, respectively. The averaged RMSE and the absolute value of bias over all the sites were 2.6413 and 

0.6781 g C m−2 d−1, respectively (Fig. 2(b)–(2b–c); Fig. 3(b)–(c)).). The averaged Kendall’s correlation coefficient (τ) was 310 

0.63, indicating that the model simulated GPP had a strong seasonal coherence with tower estimated GPP. Similar to R2, the 

lower Kendall’s correlation coefficient (τ) value sites were also located in the tropical forest areas. Additionally, there iswas 
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no obvious difference between the seasonal GPP performance whenby using the tower-derived meteorology data and the 

meteorological reanalysis dataset (FigsFig. 2–3). 

<< Figure 2/ Figure 3>> 315 

The ability of the LUE models to reproduce the interannual variations in GPP was investigated at 5155 EC towers with 

observations greater than 5-years (Table 1; Fig. 43). We examined the relations between the mean annual GPP simulations 

and observations at each site and used the coefficient correlation (R2) and slope of the regression relationship to investigate 

the model capability in simulating the interannual variations in GPP. The result showed that the revised EC-LUE model could 

effectively determine the interannual variations in GPP (Fig. 43). Approximately 7442% and 40% of the sites showed higher 320 

R2 values (>0.5) for bothby using the tower-derived meteorology data and the meteorological reanalysis meteorology derived 

modelsdataset (Fig. 4(a)).3a). The mean values ofaveraged R2 betweenfor the revised EC-LUE model simulated GPP andwas 

0.44 by using the tower estimated GPP were 0.65 and 0.61 for the models derived from tower-derived meteorology and 

reanalysis meteorology, and both the R2 values aredata, which was significantly higher than the original EC-LUE model (R2 

= 0.36) and other LUE models (<(R2 ranged from 0.06 to 0.30 with an average value of 0.16) (Fig. 4(c)).3c). The averaged R2 325 

for the revised EC-LUE model was 0.42 by using the meteorological reanalysis dataset. The averaged slopes of the revised 

EC-LUE model were 0.7160 and 0.64 for57 by using the tower-derived meteorology data and the meteorological reanalysis 

meteorology derived models, while the slope of the original EC-LUE model was 0.56dataset (Fig. 4(c)).3c). 

<<Figure 3>> 

<<Figure 4>> 330 

3.2 Spatio-temporal patterns of global GPP 

A global GPP dataset at 0.05° latitude by 0.05° longitude and 8-day interval was generated ranging from 1982 to 2017 based 

on the revised EC-LUE model. The long-term averaged value of the global summed GPP was 125.3 ± 3.13106.2 ± 2.9 Pg C 

yr−1 across the vegetated area. Fig. 54 shows the global distributed patternsdistribution pattern of the annual averaged GPP for 

each pixel. The GPP was high over the tropical forest areas, such as Amazon and Southeast Asia, where the moisture and 335 

temperature conditions are sufficient for photosynthesis (Fig. 5(a)).4a). The GPP decreased with the decreasing gradients of 

temperature and precipitation (Fig. 5(b)).4b). The moderate GPP was located in temperate and subhumid regions have 

moderate GPP; and the lowest GPP iswas located in arid or cold regions, where either precipitation or temperature is limited 

(Fig. 5(b)).4b). 

<<Figure 4>> 340 

<<Figure 5>> 

GPP trends over the period of 1982–2017 were determined for each pixel using a linear regression analysis (Fig. 65). In general, 

the revised EC-LUE model predicted an increased trend in the annual mean GPP from 1982 to 2017. Approximately 69.5% of 

the vegetated areas, mainly located in temperate and humid regions, showed increased trends. The spatial distributed 

patternspattern of the GPP trend along with the temperature and precipitation gradients was more heterogeneous than that of 345 
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the mean annual GPP (Fig. 5(b);4b; Fig. 6(b)).5b). The decreased GPP areas were mainly distributedwas found in the tropic 

regions with abundant precipitation and high temperature, particularly, especially in the Amazon forest. The extremely cold 

or arid areas exhibited less variations in GPP (Fig. 6(b)).5b). 

<<Figure 5>> 

<<Figure 6>> 350 

3.3 Contributions of environmental variables to GPP 

To quantify the contributions of the environmental variables to the long-term changes in GPP, we explored the sensitivity of 

global summed GPP to climate variables (i.e., VPD, Ta, and PAR), LAI, and atmospheric CO2 (Fig. 76). The global summed 

GPP generated from different experimental simulations (section 2.45) exhibited differently in terms of the annual mean value, 

trend, and standard deviation (Fig. 7(a)).6a). The normal simulated GPP (SALL GPP, all the environmental drivers changing 355 

over time) significantly increased at the rate of 0.1715 Pg C yr−1, while the increasing rate of SCLI0 GPP (climate variables were 

kept constant at 1982 values) was even greater (0.3641 Pg C yr−1). On the contrary, the SLAI0 GPP (LAI was kept constant at 

1982 values) showed a significantly decreasing trend (−0.06 Pg C yr−1), and the SCO20 GPP (atmospheric [CO2] was kept 

constant at 1982 values) showed an insignificantly increasingdecreasing trend at the rate of -0.04 Pg C yr−1 and -0.07 Pg C 

yr−1 (Fig. 7(a)).6a). The GPP sensitivity analysis showed that the global GPP decreased by approximately 6.67 ± 5.04 Pg C 360 

with a 0.1 kPa increase in VPD. This is, which was comparable to the increase in GPP with a 100 ppm rise in atmospheric 

[CO2] (i.e., βCO2 = 7.62 ± 0.04 Pg C 100 ppm−1) or 0.1 unit greening of LAI (i.e., βLAI = 5.984.78 ± 0.0972 Pg C 0.1 unit−1) or 

100 MJ increase in PAR (i.e., βPAR = 5.76 ± 0.2373 ± 3.22 Pg C 100 MJ−1) (Fig. 7(b)).6b). The global GPP increased by 12.31 

± 0.61 Pg C with a 100 ppm−1 rise of atmospheric [CO2] (i.e., βCO2 = 12.31 ± 0.61 Pg C 100 ppm−1). Over the period of 1982–

2017, the increased VPD resulted in the global GPP decreases of −0.1617 ± 0.0206 Pg C yr−1, which offsetcould partly 365 

counteract the fertilization effect of CO2 (0.1422 ± 0.00107 Pg C yr−1). The global GPP showed a decreased trend after 2001 

due to the joint effect of increased VPD and decreased PAR (Fig. 7(c)).6c). While the increased trend of GPP before 2000 was 

mainly affected by the increased PAR and rising atmospheric [CO2], greening of LAI , and increased PAR (Fig. 7(c)).6c). 

<<Figure 6>> 

<<Figure 7>> 370 

4 Discussion 

4.1 Model accuracy analysis 

Numerous studies have shown that most GPP models can reproduce the spatial changes in GPP but failed to reproduce the 

temporal variations (Keenan et al., 2012; Yuan et al., 2014). Therefore, the capacity to reproduce realistic interannual variations 

for a GPP model is significantly important. In our study, the revised EC-LUE model performed a higher accuracy in 375 

reproducing the interannual variations in GPP than did the original EC-LUE model and other LUE models. Yuan et al. (2014) 
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reported that the averaged slope of the regression relation between the mean annual GPP simulated by seven LUE models and 

the mean annual GPP estimated from EC tower data ranged from 0.19 to 0.56 (Fig. 4(c)).3c). While the revised EC-LUE model 

showed a higher slope of regression relation (0.7160), which is much closer to 1 than that obtained from other LUE models 

(Fig. 4(c)).3c). The VPM GPP showed less interannual variationvariations across most biomes (R2 <0.5), probably because of 380 

the insensitivity of the environmental stress factors at the interannual scale (Zhang et al., 2017). In contrast, 7442% of the sites 

showed higher R2 values (>0.5) for the revised EC-LUE model. The improvements of the revised EC-LUE model in 

reproducing interannual variations are owing to the integration of several important environmental drivers for vegetation 

production (i.e., atmospheric CO2 concentration, radiation components, and VPD), which exhibited large variations and 

contributed significantly to vegetation production at interannual scale. 385 

By integrating the atmospheric CO2 concentration, the revised EC-LUE model suggested a CO2 sensitivity (βCO2) of 7.6212.31 

± 0.0461 Pg C per 100 ppm (Fig. 7(b)),6b), which indicates an increase of 11.6.1% in GPP with a rise of 100 ppm in 

atmospheric [CO2]. Our estimate is comparable to the observed response of NPP to the increased CO2 in the FACE experiments 

(13% per 100 ppm) and estimates of other ecosystem models (5–20% per 100 ppm) (Piao et al., 2013). The elevated 

atmospheric CO2 concentration substantially contributes to the vegetation productivity. 390 

The evaporation fraction (EF), namely the ratio of evapotranspiration (ET) to net radiation (Rn), was used to indicate the water 

stress on vegetation growth in the original EC-LUE model (Yuan et al., 2007; 2010). While the atmospheric VPD was used to 

indicate water stress to avoid the aggregated errors from ET simulations in the revised EC-LUE model. Physiologically, 

vegetation production is sensitive to both atmospheric VPD and soil moisture availability to roots. Recent studies highlighted 

that the increase in VPD had a larger limitation to the surface conductance and evapotranspiration than soil moisture over short 395 

time scales in many biomes (Novick et al., 2016; Sulman et al., 2016). Other studies have also suggested substantial impacts 

of VPD on vegetation growth (de Cárcer et al., 2018; Ding et al., 2018), forest mortality (Williams et al., 2013), and crop 

yields (Lobell et al., 2014). It is increasingly important to integrate the atmospheric water constraint to the carbon and water 

flux modellingmodeling. 

4.2 Comparison of global GPP productproducts 400 

Global and regional GPP estimates remain highly uncertain despite the substantial advances in remote sensing technology, 

ground observations, and theory of carbon flux modeling (Zheng et al., 2018; Ryu et al., 2019). At regional scale, we compared 

the annual mean GPP between the revised EC-LUE model and other models across the bioclimatic zones in the Köppen-Geiger 

climate classification map (Beck et al., 2018) (Fig. 7). The GPP of the revised EC-LUE model was comparable to the mean 

value of other models for each bioclimatic zone (Fig. 7a). The GPP of different models exhibited large discrepancies in tropical 405 

regions (Af/Am/Aw) (Fig. 7a). The correlations (R2) of GPP across all the bioclimatic zones between the revised EC-LUE 

model and other models ranged from 0.73 (LPX-Bern) to 0.95 (FLUXCOM MARS, FLUXCOM RF) (Fig. 7b). 

<<Figure 7>> 
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2019). Our At global scale, our study showed large differences in the magnitude of global GPP estimated by various models 

varying from 92.7 to 168.7 Pg C yr−1 (Figs. 8–9). The LUE models simulated the global GPP ranging from 92.7 to 133.7 Pg 410 

C yr−1 (Fig. 9(a1)).9a1). Several machine learning approaches estimated the global GPP ranging from 108.9111.0 to 144.2 Pg 

C yr−1 (Fig. 9(a2)).9a2). A comparison of ten global terrestrial ecosystem models of TRENDY showed that the global GPP 

ranged from 118.6107.8 to 168.7154.9 Pg C yr−1 (Fig. 9(a3)).9a3). The revised EC-LUE model quantified the mean global 

GPP from 1982 to 2017 as 125.3 ± 3.1106.2 ± 2.9 Pg C yr−1. Other studies also support ourthe conclusion that there are 

large uncertainties in the GPP estimates. By comparing diverse GPP models and products, Anav et al. (2015) reported that the 415 

global GPP ranged from 112 to 169 Pg C yr−1. Seven satellite-based LUE models estimated the global GPP ranged from 95.1 

to 139.7 Pg C yr−1 over the period of 2000–2010 (Cai et al., 2014). 

<<Figure 8>> 

The interannual variability and trend in GPP also vary substantially with different models. This study showed that the 

interannual variability (standard deviation) ranged from 0.3332 to 6.795.89 Pg C yr−1, with the trends varying from −0.0705 420 

to 0.84 Pg C yr−21 (Fig. 9). The biophysical models showed large interannual variability, with the standard deviation ranging 

from 1.38 to 6.795.89 Pg C yr−1. The LUE models estimated the interannual variability varyingvaried from 1.30 to 3.13 Pg C 

yr−1. In contrast, the machine learning models exhibited less interannual variability with standard deviation under 1.0 Pg C 

yr−1. The interannual variability of the revised EC-LUE model was 3.12.9 Pg C yr−1 (Figs. 9(b1)–(9b1–b3)).). In general, the 

GPP interannual variability before the year 2000 year was greater than that after the year 2001 for most of the biophysical 425 

models and LUE models (Figs. 9(b1)–(9b1–b3)).). Most GPP models showed an increased trend or insignificant trend during 

all valid years and before 2000. Similar to the standard deviation, the trends of machine learning models were less than other 

models. Compared with the other models, CLASS and the revised EC-LUE model showed a significant decreasing trend after 

2001 (Figs. 9(c1)–(9c1–c3)),), probably because of the joint effect of increased VPD and decreased PAR (Fig. 7(c)).6c). 

<<Figure 9>> 430 

4.3 Model uncertainty 

The revised EC-LUE model showed the lowest accuracy for the evergreen broadleaf forests in the tropic areas (FigsFig. 2–3). 

Similarly, other satellite-based models exhibited a large uncertainty in the GPP simulations over tropical forest areas (Ryu et 

al., 2011; Yuan et al., 2014). MODIS GPP product (MOD17) underestimated the GPP at high productivity sites over the 

tropical evergreen forests (de Almeida et al., 2018). Regarding the quality of satellite data, a high cloud cover exists over 435 

tropical regions, introducing large uncertainties to FAPAR/LAI and other vegetation indices (e.g., NDVI and EVI). For 

example, less reliable MOD15 FAPAR data duringfrom January to April because of the cloudiness contamination, which could 

substantially affect the seasonality of GPP estimates (de Almeida et al., 2018). In additionFurthermore, the quality of satellite 

data even affects the evaluation of the interannual variations. Saleska et al. (2007) reported that a large scale green-up in the 

Amazon evergreen forests during the drought in 2005 using MODIS EVI data. However, an opposite conclusion was arrived 440 

when cloud-contaminated data were excluded from the analysis, showing no obvious green-up in the Amazon evergreen forests 
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during the drought in 2005 (Samanta et al., 2010). Additionally, several subsequent studies found increased LAI and EVI 

during the dry season in the Amazon evergreen forests; however, a recent study highlighted that the apparent seasonal changes 

in EVI result from the variations in the sun-sensor geometry rather than vegetation greenness (Morton et al., 2014). 

The latest study highlighted that the aggregate canopy phenology rather than the climate changes is the main causescause of 445 

the seasonal changes in photosynthesis in evergreen broadleaf forests (Wu et al., 2016). In particularlyparticular, the new leaf 

growing synchronously with dry season litterfall may shift the old canopy to be younger, which can explain the significant 

seasonal increase (~27%) in the ecosystem photosynthesis. Therefore, the vertical changes in leaf age and photosynthesis 

ability with canopy depth are important to simulate the seasonal variations in carbon flux in tropical forests (Wu et al., 2017). 

These leaf trait related parameters can be simulated from the narrow-band spectra of leaves (Serbin et al., 2012; Dechant et al., 450 

2017). Nevertheless, because of the limitation in obtaining the large scale hyperspectral remote sensing data, regional or global 

estimation of these parameters are currently unavailable. 

The revised EC-LUE model does not integrate the regulation of soil nitrogen content on vegetation production. Atmospheric 

nitrogen deposition has exhibited a large increasing trend in the past few decades because of the excessive fossil fuel 

combustion in the industrial and transportation sectors and the abuse of nitrogenous fertilizer in the agricultural practice 455 

(Galloway et al., 2004). And the global land atmospheric nitrogen deposition is expected to further increase dramatically from 

25–40 Tg N yr-1 in the 2000s to 60–100 Tg N yr-1 in 2100 (Lamarque et al., 2005). A meta-analysis of worldwide nitrogen 

addition experiments found that nitrogen addition could have a significantly positive effect on vegetation productivity (Liu 

and Greaver, 2009). As most terrestrial ecosystems are nitrogen limited, quantifying the spatio-temporal distributions of 

vegetation nitrogen content at large scales is essential to improve the accuracy of carbon flux estimation. Several studies 460 

quantified the leaf nitrogen content by detecting the nitrogen absorption spectra from the narrow-band of hyperspectral data 

(Cho, 2007). However, leaf water, starch, lignin, and cellulose overlap with the absorption characters of nitrogen in the 

shortwave infrared bands, making it difficult to retrieve the nitrogen content (Kokaly and Clark, 1999). AdditionallyWhat’s 

more, canopy structures, background, and the illumination/viewing geometry, can further decrease the capacity to detect leaf 

nitrogen (Yoder and Pettigrew-Crosby, 1995; Knyazikhin et al., 2013). Advances in inversion and statistical models of leaf or 465 

canopy nitrogen have emerged (Asner et al., 2011; Dechant et al., 2017; Wang et al., 2018), but these methods require further 

evaluation over large regions and the global map of leaf or canopy nitrogen is not available yet. 

Additionally, the uncertainty of the revised EC-LUE model may arise by scale mismatches between eddy covariance flux 

footprint and input dataset. The eddy covariance flux footprint is generally less than 3 km2 and varies depending on the wind 

speed, wind direction and atmospheric stability (Tan et al., 2006). In our studies, the revised EC-LUE model was run at 0.05 470 

degree (~5 km2) spatial resolution. The uncertainty of simulated GPP introduced by the scale effect is inevitable but smaller 

than that introduced by the model structures, parameters or input datasets (Sjostrom et al., 2013; Zheng et al., 2018). 
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5 Data availability 

The 0.05° × 0.05° global GPP dataset for 1982-2017 is available at https://doi.org/10.6084/m9.figshare.8942336 (Zheng et al., 

2019). The dataset is provided in hdf format at 8-day interval. The valid value is ranged from 0 to 3000, and the background 475 

fillfilled value is 65535. The scale factor of the data is 0.01. Each hdf file represents an 8-day GPP at daily value (unit: g C m-

2 day-1). To obtain the summation of each 8-day (or 5-day or 6-day) period, please multiply the GPP value by corresponding 

days (8 for the first 45 values, and 5 or 6 for the last value in a year). 

6 Conclusion 

In this study, we produced a long-term global GPP dataset by integrating several major long-term environmental variables: 480 

into a light use efficiency model, including atmospheric CO2 concentration, radiation components, and atmospheric water 

vapor pressure. These environmental variables showed substantial long-term changes and contributed significantly to 

vegetation production at interannual scale. The revised EC-LUE performed well in simulating the spatial, seasonal, and 

interannual variations in global GPP. across the globe. Particularly, it has a unique superiority in reproducing the interannual 

variations in GPP at both site level(R2 = 0.44) compared with the original EC-LUE model (R2 = 0.36) and global scales. 485 

Therefore, theother LUE models (R2 ranged from 0.06 to 0.30 with an average value of 0.16). The GPP dataset derived from 

the revised EC-LUE model provides an alternative and reliable estimates of global GPP at the long-term scale by integrating 

the important environmental variables. 
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Tables 

 

Table 1: Information on the eddy covariance (EC) sites used in this study for model calibration and validation. 750 

Site Name Latitude Longitude Vegetation Type Study Period 

Model 

calibration*DE-

Kli 

50.89oN 13.52oE CRO 2004-2012 

DE-RuS 50.87oN 6.45oE CRO 2011-2012 

FI-Jok 60.90oN 23.51oE CRO-C3 20002001-2003 

US-Ne3*FR-

Gri 
48.84oN41.17oN 1.95oE96.43oW CRO-C3/C4 2001-20112005-2012 

*US-ARM 36.61oN 97.49oW CRO-C3/C4 2003-2012 

*FR-GriUS-

Ne1 
48.84oN41.16oN 1.95oE96.47oW CRO-C4 2004-20112001-2012 

DE-Kli*US-

Ne2 
41.16oN50.89oN 96.47oW13.52oE CRO-C4 2004-20112001-2012 

US-KS2 28.61oN 80.67oW SHR 2003-2006 

*DK-Sor 55.49oN 11.64oE DBF 1996-2014 

*US-UMBNe3 41.17oN45.56oN 96.43oW84.71oW DBFCRO 2000-20112001-2012 

CA-TPD 42.64oN 80.56oW DBF 2012-2014 

*DE-Hai 51.08oN 10.45oE DBF 2000-20112012 

*DK-Sor 55.49oN 11.64oE DBF 2001-2012 

*FR-Fon 48.48oN 2.78oE DBF 2005-2012 

IT-PT1 45.20oN 9.06oE DBF 2002-2004 

*IT-Ro2 42.39oN 11.92oE DBF 2002-2008; 2010-2012 

JP-MBF 44.39oN 142.32oE DBF 2004-2005 

*US-Ha1 42.54oN 72.17oW DBF 1991-20111992-2012 

*US-MMS 39.32oN 86.41oW DBF 1999-20112012 

*US-Oho 41.55oN 83.84oW DBF 2004-20112012 

*US-UMB 45.56oN 84.71oW DBF 2000-2012 

*US-UMd 45.56oN 84.70oW DBF 2008-2012 

*US-WCr 45.81oN 90.08oW DBF 1999-2006; 2011-2012 

*BR-Sa1 2.86oS 54.96oW EBF 2002-2005; 2008-2011 

BR-Sa3 3.02oS 54.97oW EBF 2001-2003 

CN-Din 23.17oN 112.54oE EBF 2003-2005 

*FR-Pue 43.74oN 3.60oE EBF 2000-2012 

*GF-Guy 5.28oN 52.92oW EBF 2004-20142012 
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*BR-Sa1MY-

PSO 
2.86oS97oN 54.96oW102.31oE EBF 2008-20112003-2009 

IT-La2 45.95oN 11.29oE ENF 2001 

*CA-QfoNS1 49.69oN55.88oN 74.34oW98.48oW ENF 2003-20102002-2005 

*US-NR1 40.03oN 105.55oW ENF 1999-2011 

*RU-Fyo 56.46oN 32.92oE ENF 1998-2011 

*CA-NS2 55.91oN 98.52oW ENF 2001-2005 

*NL-Loo 52.17oN 5.74oE ENF 1996-2011 

*DE-Obe 50.78oN 13.72oE ENF 2008-2011 

*FI-Hyy 61.85oN 24.30oE ENF 1996-2011 

US-Me6 44.32oN 121.61oW ENF 2010-2011 

CA-SF1 54.49oN 105.82oW ENF 2003-2006 

*CZ-BK1 49.50oN 18.54oE ENF 2004-2011 

*CA-SF2NS3 54.25oN55.91oN 105.88oW98.38oW ENF 20012002-2005 

CA-NS4 55.91oN 98.38oW ENF 2003-2005 

CN-HaM 37.37oN 101.18oE GRA 2002-2004 

US-IB2 41.84oN 88.24oW GRA 2004-2011 

CN-Du2 42.05oN 116.28oE GRA 2007-2008 

CN-Cng 44.59oN 123.51oE GRA 2007-2010 

*CH-Cha 47.21oN 8.41oE GRA 2006-2008; 2010-2011 

*CH-Oe1 47.29oN 7.73oE GRA 2002-2008 

CN-Cha 42.40oN 128.10oE MF 2003-2005 

*CA-Gro 48.22oN 82.16oW MF 2003-2011 

*US-PFa 45.95oN 90.27oW MF 1996-2011 

CN-Ha2 37.61oN 101.33oE WET 2003-2005 

RU-Che 68.61oN 161.34oE WET 2002-2005 

US-WPT 41.46oN 83.00oW WET 2011-2013 

*US-Ton 38.43oN 120.97oW SAV 2001-2011 

Model validation 

*US-Ne2 41.16oN 96.47oW CRO-C3/C4 2001-2011 

*DE-Kli 50.89oN 13.52oE CRO-C3 2004-2014 

*US-Ne1 41.16oN 96.47oW CRO-C4 2001-2011 

DE-RuS 50.87oN 6.45oE CRO-C4 2011-2014 

*US-UMd 45.56oN 84.70oW DBF 2007-2014 
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*US-WCr 45.81oN 90.08oW DBF 1999-2006 

*FR-Fon 48.48oN 2.78oE DBF 2005-2011 

JP-MBF 44.39oN 142.32oE DBF 2004-2005 

IT-PT1 45.20oN 9.06oE DBF 2002-2004 

*IT-Ro2 42.39oN 11.92oE DBF 2002-2011 

*FR-Pue 43.74oN 3.60oE EBF 2000-2011 

MY-PSO 2.97oN 102.31oE EBF 2003-2009 

BR-Sa3 3.02oS 54.97oW EBF 2000-2003 

*IT-Lav 45.96oN 11.28oE ENF 2003-2011 

*IT-Ren 46.59oN 11.43oE ENF 1999-2004; 2009-2011 

*CA-NS5 55.86oN 98.49oW ENF 2001-2005 

*DE-ThaCA-

Qfo 
50.96oN49.69oN 13.57oE74.34oW ENF 1997-20112003-2010 

*CA-TP3SF1 42.71oN54.49oN 80.35oW105.82oW ENF 2003-20112006 

*CA-SF2 54.25oN 105.88oW ENF 2001-2005 

*CA-TP1 42.66oN 80.56oW ENF 2003-20112012 

*CA-NS3TP2 55.91oN42.77oN 98.38oW80.46oW ENF 2001-20052003-2007 

CA-NS1 55.88oN 98.48oW ENF 2002-2005 

DE-Lkb 49.10oN 13.30oE ENF 2009-2011 

*US-Me2 44.45oN 121.56oW ENF 2002-2011 

*IT-SRoCA-

TP3 
43.73oN42.71oN 10.28oE80.35oW ENF 19992003-2012 

CN-Qia 26.74oN 115.06oE ENF 2003-2005 

*CZ-BK1 49.50oN 18.54oE ENF 2004-2012 

DE-Lkb 49.10oN 13.30oE ENF 2009-2012 

*DE-Obe 50.78oN 13.72oE ENF 2008-2012 

*DE-Tha 50.96oN 13.57oE ENF 1996-2012 

*FI-Hyy 61.85oN 24.30oE ENF 1996-2012 

IT-La2 45.95oN 11.29oE ENF 2001 

*CA-TP2IT-

Lav 
42.77oN45.96oN 80.46oW11.28oE ENF 2003-20072012 

*IT-Ren 46.59oN 11.43oE ENF 1999-2012 

*IT-SRo 43.73oN 10.28oE ENF 2001-2012 

*NL-Loo 52.17oN 5.74oE ENF 1996-2012 

*RU-Fyo 56.46oN 32.92oE ENF 1998-2012 

*US-Blo 38.90oN 120.63oW ENF 1997-2007 

RU-Ha1*US-

Me2 
54.73oN44.45oN 90.00oE121.56oW GRAENF 2002-20042012 



 

28 

 

US-Me6 44.32oN 121.61oW ENF 2011-2012 

*US-NR1 40.03oN 105.55oW ENF 1999-2012 

*CH-Cha 47.21oN 8.41oE GRA 2006-2008; 2010-2012 

*CH-Fru 47.12oN 8.54oE GRA 
2006-2008; 2010-

20112012 

*CH-Oe1 47.29oN 7.73oE GRA 2002-2008 

CN-Cng 44.59oN 123.51oE GRA 2007-2010 

CN-Du2 42.05oN 116.28oE GRA 2007-2008 

CN-HaM 37.37oN 101.18oE GRA 2002-2003 

*CZ-BK2 49.49oN 18.54oE GRA 2006-2011 

*NL-Hor 52.24oN 5.07oE GRA 2004-2011 

RU-Ha1 54.73oN 90.00oE GRA 2002-2004 

US-AR1 36.43oN 99.42oW GRA 2009-2012 

US-AR2 36.64oN 99.60oW GRA 2009-2012 

*US-Goo 34.25oN 89.87oW GRA 2002-2006 

*US-AR2IB2 36.64oN41.84oN 99.60oW88.24oW GRA 20092005; 2007-2011 

*BE-BraUS-

AR1 
51.31oN36.43oN 99.42oW4.52oE GRAMF 

2009-20111999-2002; 

2004-2012 

*BE-Vie 50.31oN 6.00oE MF 1999-20111997-2012 

*CA-Gro 48.22oN 82.16oW MF 2004-2012 

CN-Cha 42.40oN 128.10oE MF 2003-2005 

JP-SMF 35.26oN 137.08oE MF 2003-2006 

*US-PFa 45.95oN 90.27oW MF 1996-2012 

*US-Syv 46.24oN 89.35oW MF 2001-2006; 2012 

AU-Ade 13.08oS 131.12oE SAV 2007-2009 

AU-Cpr*BE-

Bra 
34.00oS51.31oN 4.52oE140.59oE MFSAV 1999-2011-2012 

*AU-DaS 14.16oS 131.39oE SAV 2008-2012 

AU-Dry 15.26oS 132.37oE SAV 2009-2012 

AU-RDF 14.56oS 132.48oE SAV 2011-2012 

SD-Dem 13.28oN 30.48oE SAV 2007-2009 

*US-Ton 38.43oN 120.97oW SAV 2001-2012 

ZA-Kru 25.02oS 31.50oE SAV 2009-2012 

CA-NS6 55.92oN 98.96oW SRH 2002-2005 

CA-NS7 56.64oN 99.95oW SRH 2003-2005 

JP-SMF*CA-

SF3 
35.26oN54.09oN 137.08oE106.01oW MFSRH 2002-2006 

ES-LgS 37.10oN 2.97oW SRH 2007-2009 

US-KS2 28.61oN 80.67oW SRH 2003-2006 
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CN-Ha2 37.61oN 101.33oE WET 2003-2005 

DE-Akm 53.87oN 13.68oE WET 2010-2012 

DE-SfN 47.81oN 11.33oE WET 2012 

DE-Spw 51.89oN 14.03oE WET 2010-2012 

RU-Che 68.61oN 161.34oE WET 2002-2004 

US-Ivo 68.49oN 155.75oW WET 2004-2007 

DE-Akm 53.87oN 13.68oE WET 2009-2014 

DE-Spw 51.89oN 14.03oE WET 2010-2011 

*US-Los 46.08oN 89.98oW WET 2000-2001-2008; 2010 

DE-SfNUS-

WPT 
47.81oN41.46oN 11.33oE83.00oW WET 2011-2012-2014 

* indicates the site was used to investigate the interannual variations in GPP with observations greater than 5-years. 
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Table 2: Input datadatasets used to drive the revised EC-LUE model. 

Variable Dataset/provider Source 

Air temperature MERRA2 https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ 

Dew point temperature MERRA2 https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ 

Direct PAR MERRA2 https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ 

Diffuse PAR MERRA2 https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ 

LAI GLASS http://www.glass.umd.edu/Download.html 

Landcover map MCD12Q1 https://lpdaac.usgs.gov/products/mcd12q1v006/ 

C4 crop percentage ISLSCP II C4 Vegetation Percentage https://doi.org/10.3334/ORNLDAAC/932 

CO2 concentration NOAA’s Earth System Research Laboratory www.esrl.noaa.gov/gmd/ccgg/trends/ 
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Table 3: Optimized parameters (εmsu, εmsh, 𝛗, and VPD0) of the revised EC-LUE model for different vegetation types. 

Vegetation 

Types 
DBF ENF EBF MF GRA CRO-C3 CRO-C4 SAV SHR WET 

εmsu (g C MJ-1) 
1.1628 ± 

0.36 

1.8072 ± 

0.42 

1.7167 ± 

0.85 

1.1638 ± 

0.21 

1.16 ± 

0.8315 

1.1725 ± 

0.42 

2.3546 ± 

0.78 

2.0524 ± 

0.68 

1.21 ± 

0.8625 

1.2334 ± 

0.26 

 εmsh (g C MJ-1) 
3.3359 ± 

0.66 

3.9587 ± 

0.58 

3.974.35 ± 

0.72 

3.1629 ± 

0.63 

1.7591 ± 

0.46 

2.3846 ± 

0.52 

5.5464 ± 

1.02 

34.26 ± 

0.95 

2.4271 ± 

0.52 

2.4562 ± 

0.49 

𝜑 (ppm) 32 ± 8.25 25 ± 7.59 20 ± 6.36 49 ± 11.25 57 ± 11.85 43 ± 9.56 54 ± 15.36 54 ± 12.23 34 ± 7.59 36 ± 10.32 

VPD0 (kPak 

Pa) 

1.15 ± 

0.9325 

1.34 ± 

0.7226 

0.4457 ± 

0.15 

0.5862 ± 

0.14 

1.3169 ± 

0.35 

1.02 ± 

0.8219 

1.53 ± 

0.9431 

1.2465 ± 

0.26 

1.2334 ± 

0.21 

0.4262 ± 

0.12 
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Figures 
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Figure 1: Comparisons between annual mean GPP estimated from EC towers and annual mean GPP simulated by the revised EC-

LUE model. The modeled GPP were simulated using (a) tower-derived meteorology (calibration: y = 0.82x + 0.75, R2 = 0.83; 

validation: y = 0.75x + 1.13, R2 = 0.68) and (b) global reanalysis meteorology (calibration: y = 0.60x + 1.66, R2 = 0.62; validation: y 765 
= 0.56x + 1.84, R2 = 0.40).. The black lines are the regression lines, and the red dash lines are the 1:1 lines. The insert equations are 

the regression equations derived from all the sites. 
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Figure 2: Comparisons of 8-day mean GPP between the observations at 42 calibration sites and the model simulations. Solid and 

open dots indicate the GPP simulations derived from tower-derived meteorology data and meteorological reanalysis dataset, 

respectively. 
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Figure 3: Comparisons of 8-day mean GPP between the observations at 43 validation sites and the model simulations. Solid and 

open dots indicate the GPP simulations derived from tower-derived meteorology data and meteorological reanalysis dataset, 

respectively. 
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Figure 2: Comparisons of 8-day mean GPP between the model simulated GPP and tower estimated GPP. Solid and open dots indicate 

the GPP simulations derived from tower-derived meteorology data and meteorological reanalysis dataset, respectively. 
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Figure 2 (continue) 785 

 

 

  



 

36 

 

 

 790 

 

Figure 3: Site percentage of (a) correlation coefficients (R2), and (b) regression slopes between the model simulated and tower-based 

interannual variabilities in GPP. (c) Averaged values (error bars represent the standard deviations) of R2 and slope for various LUE 

models. rEC-LUE (T) and rEC-LUE (R) indicate the revised EC-LUE models derived from tower-derived meteorology data and 

meteorological reanalysis dataset. The mean value of R2 and slopes of the other seven LUE models (i.e., EC-LUE, VPRM, VPM, 795 
MODIS, CFlux, CFix, and CASA) in the figure were obtained from the study by Yuan et al. (2014). ** and * indicate a significant 

difference in statistic variables (R2 and slope) between the rEC-LUE(T) and other LUE models (i.e., rEC-LUE(T) and other seven LUE 

models ) at p-value < 0.01 and p-value<0.05, respectively. 
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Figure 54: Spatial pattern of global GPP simulated by the revised EC-LUE model during 1982–2017: (a) averaged annual GPP, (b) 

averaged annual GPP at different temperature and precipitation gradients. 
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Figure 65: Spatial pattern of global GPP trend simulated by the revised EC-LUE models during 1982–2017: (a) trend of annual 

GPP, (b) trend of annual GPP at different temperature and precipitation gradients. 810 
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Figure 76: Long-term changes in global GPP and the environmental regulations: (a) Global summed GPP derived from the four 

experimental simulations in section 2.45, (b) GPP sensitivity to climate variables (i.e., VPD, TTa, and PAR), LAI, and atmospheric 815 
CO2, (c) contributions of climate variables (i.e., VPD, TTa, and PAR), LAI, and atmospheric CO2 to GPP changes over 1982–2017, 

1982–2000, and 2001–2017. * indicates the significant level at p-value<0.05. 
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Figure 7: Comparisons of long-term (1982 to 2010s) averaged GPP between the revised EC-LUE model and other models across 820 
bioclimatic zones in the Köppen-Geiger climate classification map (Beck et al., 2018). (a) the regional averaged value (b) correlation 

coefficients (R2) of GPP across all the bioclimatic zones between the revised EC-LUE model and other models. These models 

including machine learning models (FLUXCOM ANN, FLUXCOM MARS, FLUXCOM RF; Jung et al., 2017), biophysical models 

BEPS (Ju et al., 2006; Liu et al., 2018), and ten biophysical models in TRENDY (CABLE, CLASS, CLM, ISAM, JSBACH, JULES, 

LPJ-GUESS, LPX-Bern, ORCHIDEE, and VISIT). The abbreviations for the bioclimatic zones are as follows: Af, tropical, 825 
rainforest; Am, tropical, monsoon; Aw, tropical, savannah; BWh, arid, desert, hot; BWk, arid, desert, cold; BSh, arid, steppe, hot; 

BSk, arid, steppe, cold; Csa, temperate, dry summer, hot summer; Csb, temperate, dry summer, warm summer; Csc, temperate, 

dry summer, cold summer; Cwa, temperate, dry winter, hot summer; Cwb, temperate, dry winter, warm summer; Cwc, temperate, 

dry winter, cold summer; Cfa, temperate, no dry season, hot summer; Cfb  temperate, no dry season, warm summer; Cfc, temperate, 

no dry season, cold summer; Dsa, cold, dry summer, hot summer; Dsb, cold, dry summer, warm summer; Dsc, cold, dry summer, 830 
cold summer; Dsd, cold, dry summer, very cold winter; Dwa, cold, dry winter, hot summer; Dwb, cold, dry winter, warm summer; 

Dwc, cold, dry winter, cold summer; Dwd, cold, dry winter, very cold winter; Dfa, cold, no dry season, hot summer; Dfb, cold, no 

dry season, warm summer; Dfc, cold, no dry season, cold summer; Dfd, cold, no dry season, very cold winter; ET, polar, tundra; 

EF, polar, frost. 
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Figure 8: Comparisons of annual global summed GPP estimates from various models. The datasets or model algorithms were 

obtained from: EC-LUE (Cai et al., 2014), MODIS (Smith et al., 2016), MOD17 C6 (Running et al., 2004), PR (Keenan et al., 2016), 840 
VPM (Zhang et al., 2017), FLUXCOM (Jung et al., 2017), SVR (Kondo et al., 2015), BESS (Jiang and Ryu, 2016), BEPS (Ju et al., 
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2006; Liu et al., 2018), and TRENDY. Ten of the twelve biophysical models (except BESS and BEPS) were the models in TRENDY. 

(CABLE, CLASS, CLM, ISAM, JSBACH, JULES, LPJ-GUESS, LPX-Bern, ORCHIDEE, and VISIT). 
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Figure 9: Comparison of (a1)–(a3) averaged annual GPP, (b1)–(b3) interannual variability in annual GPP represented by standard 

deviation (SD), and (c1)–(c3) annual GPP trend among different GPP datasets or models. The references of these models are the 

same as in Figure 9. ∗ indicates that the valid period of the dataset is beginningbegins from 2000 or 2001. TRENDYavg is the averaged 

GPP of the ten TRENDY models. 850 
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