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Abstract. Soil heterotrophic respiration (RH) is one of the largest and most uncertain components of the terrestrial carbon 

cycle, directly reflecting carbon loss from soils to the atmosphere. However, high variations and uncertainties of RH existing 20 

in global carbon cycling models require RH estimates from different angles, e.g., a data-driven angle.. To fill this knowledge 

gap, this study applied a Random Forest (RF) algorithm – a machine learning approach, to (1) develop a globally gridded RH 

dataset and (2) investigate its spatial- and temporal-patterns from 1980 to 2016 at the global scale by linking field observations 

from the Global Soil Respiration Database and global environmental drivers – temperature, precipitation, soil water content, 

etc. Finally, a globally gridded RH dataset was developed covering from 1980 to 2016 with a spatial resolution of half degree 25 

and a temporal resolution of one year. Globally, the average annual RH was 57.2±0.6 Pg C a-1 from 1980 to 2016, with a 

significantly increasing trend of 0.036±0.007 Pg C a-2. However, the temporal trend of the carbon loss from RH varied with 

climate zones that RH showed a significant and increasing trend in boreal and temperate areas, in contrast, such trend was 

absent in tropical regions. Temperature-driven RH dominated 39% of global land and was primarily distributed at high latitude 
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areas. While the areas dominated by precipitation and soil water content were mainly semi-arid and tropical areas, accounting 30 

for 36% and 25% of the global land, respectively, suggesting variations in the dominance of environmental controls on the 

spatial patterns of RH. The developed globally gridded RH dataset will further aid in understanding of the mechanisms of 

global soil carbon dynamics, serving as a benchmark to constrain terrestrial biogeochemical models. The dataset is publicly 

available at https://doi.org/10.6084/m9.figshare.8882567 (Tang et al., 2019a). 

 35 

1 Introduction 

Global soils and surface litter store up to 2- or 3-fold the amount of carbon present in the atmosphere (Trumbore, 2009) and 

therefore, a small change in soil carbon content could have profound effects on atmospheric CO2 and climate change (Köchy 

et al., 2015). Although global carbon flux from soil-to-atmosphere is increasing (Zhao et al., 2017), the degree to which future 

climate change will stimulate soil carbon loss via heterotrophic respiration (RH) remains highly uncertain (Bond-Lamberty et 40 

al., 2018; Friedlingstein et al., 2014; Trumbore and Czimczik, 2008), particularly for areas with a high temperature sensitivity, 

or rapid changes in precipitation frequency and intensity.  

Soil RH represents the carbon loss from the decomposition of litter detritus and soil organic matter by microorganisms 

(Subke et al., 2006), accounting for one of the largest components of the terrestrial carbon cycle (Bond‐Lamberty et al., 2016). 

However, RH’s feedback to climate variability is poorly understood. RH could affect future climate change via the 45 

mineralization of long-stored soil carbon, offsetting net primary production (NPP) and even converting terrestrial ecosystems 

from a carbon sink to a carbon source (Tremblay et al., 2018). Conversion of the sink/source role depends on how strongly 

large-scale process affected by environmental drivers, e.g. temperature, precipitation and soil organic carbon content (Hursh 

et al., 2017; Sierra et al., 2015), or extreme conditions, such as fire, human disturbance and drought (Kurz et al., 2013; 

Metsaranta et al., 2011). Although it is widely recognized that warming enhances CO2 release from soils, the magnitude of 50 

such release is uncertain due to variations in the temperature sensitivity of soil organic matter decomposition (Suseela et al., 

2012). In addition, environmental drivers of RH, e.g. temperature and soil moisture, are still undergoing changes under climate 

warming and can affect RH individually or interactively. Therefore, reducing RH uncertainty and clarifying the response of 

RH to environmental factors are essential for future projections of the impact of climate change on the terrestrial carbon balance.  

Due to the diurnal, seasonal and annual variability in RH, in addition to the difficulties of large-scale measurements, regional 55 

and global RH estimations mainly depend on modelling approaches using regional or global variables, such as temperature, 

precipitation and carbon supply (Bond-Lamberty and Thomson, 2010b; Hashimoto et al., 2015; Hursh et al., 2017). Besides 

temperature and precipitation, soil variables, such as water, carbon and nitrogen contents, are also important factors in the 

regulation of RH and should be considered for accurate RH estimations (Hursh et al., 2017; Zhao et al., 2017), although these 

variables vary with biome and climate.  60 
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Observational studies have examined the responses of soil respiration to different climatic variables at different locations 

across the globe (Bond-Lamberty and Thomson, 2010a; Zhou et al., 2016). Hashimoto et al. (2015) and Bond-Lamberty and 

Thomson (2010b) predicted global soil respiration rates using climate-derived models driving by temperature and precipitation, 

however, these models commonly explain less than 50% variations of soil respiration, requiring new techniques, potential new 

numerical/algorithmic methods to better quantify and understand the large-scale soil carbon fluxes (Bond-Lamberty, 2018). 65 

To improve the modelling accuracy, more recent studies have used linear regression or machine learning approaches including 

more abiotic or biotic variables, such as soil carbon supply, soil properties and NPP (Hursh et al., 2017; Zhao et al., 2017) and 

observations collected from newly published measurements (Jian et al., 2018; Zhao et al., 2017). On the other hand, including 

more variables in linear or non-linear regression models may cause overfitting and autocorrelation issues (Long and Freese, 

2006). To overcome overfitting and autocorrelation, machine learning approaches, such as the Random Forest (RF, Breiman, 70 

2001), have been applied to explore the hierarchical importance of environmental factors, such as temperature, soil water 

content (SWC), NPP and soil pH (Hursh et al., 2017). Machine learning techniques are highly effective because they are fully 

data adaptive, and do not require initial assumptions on functional relationships and can function with nonlinear dependencies 

(Bodesheim et al., 2018). Therefore, these approaches are beginning using in earth science, particularly in carbon and water 

flux modelling (Jung et al., 2010; Jung et al., 2017; Yao et al., 2018b), and may provide more reliable estimates of soil 75 

respiration (Bond-Lamberty, 2018; Zhao et al., 2017). However, no study to date has assessed the global variability of RH 

using empirical field observations to bridge the knowledge gap between local, regional and global scales.  

The newly-emerged Dynamic Global Vegetation Models from the TRENDY model ensembles and Earth System Models 

have been widely used to investigate major physiological and ecological processes and ecosystem structures, providing a novel 

database and approach to examine and estimate RH at the global scale (Zhu et al., 2017), although RH improvements in Earth 80 

System Models are still required (Shao et al., 2013). TRENDY and Earth System Model simulations incorporating a RH 

component are commonly calibrated and validated by eddy covariance measurements, e.g. net ecosystem carbon exchange, 

however, modelled RHs from these models have not yet been calibrated and validated using field observations. Therefore, 

these modelled RHs may be fundamentally different from observed values and no global observations exist to evaluate model 

effectiveness. Consequently, a data-driven RH dataset could improve our understanding of the underlying mechanisms of RH 85 

variability to climate change at the global scale, and could serve as a benchmark to constrain terrestrial biogeochemical models. 

Thus, we used a RF algorithm to estimate global RH based on updated RH observations from the Global Soil Respiration 

Dataset  (SRDB, Bond-Lamberty and Thomson, 2010a) with the objectives of: (1) developing a globally gridded RH product 

(named data-derived RH); (2) detecting the spatial- and temporal-patterns of RH; (3) identifying the dominant driving factors 

for spatial- and temporal-variabilities of RHs; and (4) comparing the data-derived RH dataset with RH generated by Dynamic 90 

Global Vegetation Models from the TRENDY ensembles.  
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2 Materials and methods 

2.1 Soil heterotrophic respiration database development 

The basis of the database developed here included observed global RH values from SRDB (Bond-Lamberty and Thomson, 95 

2010a),  which was freely obtained  at https://github.com/bpbond/srdb. The database was further updated using observations 

collected from Chinese peer-review publications at the China Knowledge Resource Integrated Database (www.cnki.net) until 

March 2018. This study included the RH data for: (1) annual RH as directly reported in publications with at least one year 

continuous measurements; (2) the start- and end-year were extracted from SRDB, directly from publications or calculated by 

the “years of data” in the SRDB; (3) observations measured by alkali absorption or soda lime approaches were not included 100 

because of their potential underestimation of respiration flux with an increasing pressure in the measurement chamber 

(Pumpanen et al., 2004); (4) experiments with treatments, such as nitrogen manipulation, or fertilization, were excluded, and 

only RH measurements from the control treatment were included (Jian et al., 2018); (5) SRDB observations labelled as 

“potential problem” (“Q10”), “suspected problem” (“Q11”), “known problem” (“Q12”), “duplicate” (“Q13”) and 

“inconsistency” (“Q14”) were not included (Bond-Lamberty and Thomson, 2010a). Finally, the newly updated database 105 

included 504 RH observations in total. Although most of the observations were from China, America and Europe, this database 

covered all the major terrestrial biomes across the world (Fig. 1). 

2.2 Climate and soil data 

To investigate the global spatial-temporal RH patterns, global spatial-temporal grids of RH driving factors were required. 

A total of nine global variables were included (Supplementary Table S1): monthly gridded data of temperature, precipitation, 110 

diurnal temperature range from Climatic Research Unit TS v.4.01 over 1901-2016 (https://crudata.uea.ac.uk, Harris et al., 

2014); shortwave radiation (SWR, https://www.esrl.noaa.gov, Kalnay et al., 1996); gridded soil organic carbon content (Hengl 

et al., 2017) and nitrogen content from https://webmap.ornl.gov/ogc/index.jsp (Global Soil Data, 2000); monthly gridded 

nitrogen deposition dataset from the global Earth System Models of GISS-E2-R, CCSM-CAM3.5 and GFDL-AM3 from 1850 

to 2000s  (https://www.isimip.org, Lamarque et al., 2013); monthly Palmer Drought Severity Index  (PDSI, 115 

https://www.esrl.noaa.gov/psd/, Dai et al., 2004) and  (SWC, https://www.esrl.noaa.gov, van den Dool et al., 2003). Before 

further data analysis, monthly data were aggregated to an annual scale. These variables could stand for different environmental 

controls on RH. For example, temperature, precipitation and SWC are critical environmental controls on microbial activities 

for soil organic matter decomposition (Jian et al., 2018; Suseela et al., 2012; Tremblay et al., 2018). Soil organic matter, soil 

carbon stock and soil nitrogen are important carbon and nitrogen substrates for microbes that are related to the decomposition 120 

of soil organic matter (Tremblay et al., 2018). The drought index (PDSI) and diurnal temperature range to represent water and 

temperature stress on RH (Berryman et al., 2015; Zhu and Cheng, 2011). Then the global environmental drivers for each given 

site were extracted by site longitudes and latitudes corresponding to annual RH observations. If the environmental driver is 

https://github.com/bpbond/srdb
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not in a spatial resolution of 0.5o, we first re-sampled this environmental driver to a 0.5o resolution using the bilinear 

interpolation.  125 

2.3 RH from TRENDY models 

In the last several decades, TRENDY models were developed to simulate key processes (e.g. photosynthesis, respiration, 

evapotranspiration, phenology and carbon allocation) that drive the dynamics of global terrestrial ecosystems (Piao et al., 

2015). TRENDY models follow a common protocol and use the same climate-forcing data from National Centres for 

Environmental Prediction at a spatial resolution of 0.5°. For modelled products with different spatial resolutions, new errors 130 

will be produced when re-sampling to 0.5°. Therefore, to compare the dynamics in the data-derived RH dataset and TRENDY 

RH dataset, we used model outputs from seven TRENDY models: Community Land Model-4.5 (CLM4, Lawrence et al., 

2011); Integrated Science Assessment Model (ISAM, Cao, 2005); Lund-Potsdam-Jena (LPJ, Sitch et al., 2003); Lund-

Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS, Smith et al., 2001); VEgetation-Global-Atmosphere-Soil (VEGAS, 

Zeng et al., 2005); and Vegetation Integrative Simulator for Trace gases (VISIT, Kato et al., 2013). Additionally, the RH 135 

dataset generated empirically by Hashimoto et al. (2015) was compared (termed as Hashimoto RH), which was publicly 

available (http://cse.ffpri.affrc.go.jp/shojih/data/index.html) and estimated from a global relationship between RH and soil 

respiration (Bond-Lamberty et al., 2004), and the total soil respiration was predicted from a climate-driven model using 

precipitation and temperature  based on the observations from SRDB. More details can be found in Hashimoto et al. (2015).  

2.4 RF-based RH Modelling 140 

RF is a machine learning approach that uses a large number of ensemble regression trees, but a random selection of predictive 

variables (Breiman, 2001). Two free parameter settings are required, which are the number of trees and candidate variables 

for each split. However, the RF model is not usually sensitive to the number of trees or variables. A RF regression can deal 

with a large number of features, assisting a feature selection based on the importance value of each variable and the avoidance 

of overfitting (Bodesheim et al., 2018; Jian et al., 2018). In the present study, a RF model was trained using 9 variables 145 

(supplementary Table 1) in the “caret” package (version 6.0-80, accessed on May 27, 2018) in R (R Core Team, 2018), which 

was then implemented to predict RH for each grid at a spatial resolution of 0.5°. To characterize the performance of RF, a 10-

fold cross-validation was applied, which meant that the dataset was stratified into 10 parts and each part contained roughly 

equal number of samples. The target values for each of these 10 parts were predicted based on the training models using the 

remaining nine parts. Two model evaluation statistics were used, including modelling efficiency (R2) and root mean square 150 

error (RMSE, Tang et al., 2019b; Yao et al., 2018b).  

2.5 Trend analysis 

A trend analysis of RH was estimated by the Theil-Sen linear regression and tested with the Mann-Kendall non-parametric 

test. The Theil-Sen estimator is a non-parametric slope estimator based on median values, and this approach was widely used 

for  time-series analysis, e.g. carbon fluxes (Dai et al., 2016), and vegetation greening and browning (Pan et al., 2018) . The 155 

http://cse.ffpri.affrc.go.jp/shojih/data/index.html
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Mann-Kendall non-parametric test was employed to investigate the significant changes in RH trend at a significance level of 

0.05.  

2.6 Relationships between RH and temperature, precipitation and SWC 

Although previous studies have used precipitation as a proxy for SWC (Bond-Lamberty and Thomson, 2010b; Chen et al., 

2010), this may result in variability in soil respiration estimates (Jassal et al., 2007; Zhang et al., 2006), because the relationship 160 

between SWC and soil respiration was much more complex than that between soil respiration and temperature or precipitation 

(Jian et al., 2018). Therefore, mean annual temperature (MAT), precipitation (MAP) and SWC were all considered as 

potentially important proxies driving RH (Bond‐Lamberty et al., 2016; Reichstein and Beer, 2008). Annual mean RH was 

regressed against the three proxies. The relationships between the data-derived RH and MAT/MAP/SWC were assessed locally 

for each grid cell by calculating the correlations using partial correlation analysis. When analysing the partial correlations 165 

between RH and the proxy, the other two proxies were controlled to remove their confounding effects on RH. The correlation 

strengths of MAT, MAP and SWC were used to derive RGB combinations and indicate the drivers of RH.  

2.7 The comparison map profile method 

To detect the spatial similarity and difference patterns between the data-derived RH and TRENDY and  Hashimoto RH 

values from 1981 to 2010, we utilized the comparison map profile (CMP) method (Gaucherel et al., 2008). This method was 170 

based on the absolute distances (D) and cross-correlation coefficients (CC) across multiple scales, with D and CC reflecting 

the similarity and the spatial structures of two compared images with the same sizes, respectively (Gaucherel et al., 2008). The 

D value between moving windows (from 3 × 3 to 41 × 41 pixels in present study) of two compared images was calculated by 

Equation (1):  

D = abs(𝑥̅ − 𝑦̅)       (1) 175 

Where, 𝑥 ̅and 𝑦̅ represent mean values calculated over two moving windows. Finally, the mean D value was calculated as an 

average of different moving windows. 

The CC was calculated according to Equation (2):  

CC =
1

𝑁2
∑ ∑

(𝑥𝑖𝑗−𝑥̅)×(𝑦𝑖𝑗−𝑦̅)

𝜎𝑥×𝜎𝑦

𝑁
𝑗=1

𝑁
𝑖=1      (2) 

𝜎𝑥
2 =

1

𝑁2−1
∑ ∑ (𝑥𝑖𝑗 − 𝑥̅)2𝑁

𝑗=1
𝑁
𝑖=1      (3) 180 

Where, xij and yij are pixel values at ith row and jth column of the moving windows of two compared images, respectively; N 

represents the total number of pixels covered by each of moving windows; σx and σy stand for standard deviations of two 

moving windows. Low D values reflect a goodness between the compared images, while low CC values suggest a low 

similarity. Finally, the mean D and CC were calculated as the average from different moving windows.  
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All data analysis mentioned above were conducted in R (version 3.5.0, access on April 2018).  185 

3 Results 

3.1 Spatial patterns of RH 

Based on the 10-fold cross-validation, R2 and RMSE were 50% and 143 g C m-2 a-1 (Fig. S1), respectively. This indicates 

that the RF algorithm effectively captured the spatial- and temporal-variability of RH, therefore enabling deriving of a global 

gridded RH dataset. 190 

The data-derived RH dataset showed a strong spatial pattern globally (Fig. 2a). The largest RH fluxes occurred in tropical 

areas (e.g. Amazon tropical forests) at > 700 g C m-2 a-1, followed by the subtropics, such as South China and America, and 

humid temperate areas, e.g. North America, Western and Central Europe, with an annual RH of 400-600 g C m-2 a-1. Relatively 

low annual RH less than 200 g C m-2 a-1 was generally observed in areas with cold and dry climates, such as boreal areas, 

characterized by low temperatures and short growing seasons, dry or semi-arid regions (e.g. Northwest China), where water 195 

availability limits ecosystem development. However, the most variable changes in RH over the time from 1980 to 2016 - using 

standard deviation and coefficient of variation (CV, the ratio of the standard deviation and the mean) as a proxy (Fig. 2b an 

S3), were found in boreal regions with RH higher than 70 g C m-2 a-1 or a CV > 0.7. While the majority areas of RH variabilities 

were lower than 30 g C m-2 a-1 or a CV < 0.3. Similarly, TRENDY RH showed similar patterns with the highest RH in warm 

and humid areas and the lowest RH in cold and dry regions (Fig. S2). However, differences existed in the absolute RH fluxes 200 

(Fig. S2). For example, CLM4 and VISIT models predicted RH to be higher than 1400 g C m-2 a-1 within Amazon forest 

regions, while ISAM and LPJ-GUESS estimates were typically low at around 1000 g C m-2 a-1. However, the data-derived RH 

dataset and Hashimoto RH showed the highest RH fluxes in tropical regions of about 800 g C m-2 a-1. 

To examine the similarity in the patterns between the data-derived RH dataset and TRENDY/Hashimoto RH, the CMP 

method was employed (Fig. 3). Larger D and lower CC values indicate less consistent magnitudes and a local gradient 205 

distribution between the two compared images. The data-derived RH dataset and Hashimoto RH differed greatly in East 

Canada and the Middle East with D values higher 200 g C m-2 a-1 and CC values lower than -0.5. Interestingly, the most 

noticeable differences between the data-derived RH and mean TRENDY RH occurred in East Asia and the Middle East, where 

D was higher than 500 g C m-2 a-1, while CCs were around -0.1. When assessing each TRENDY model individually (Figs. S4 

and S5), the differences between the data-derived RH dataset and TRENDY RH were even larger. The most remarkable 210 

differences were found for CLM4 and VISIT models in regions where D was above 800 g C m-2 a-1 with CC values of about -

0.3 (East Asia and America).  

Across the latitudinal gradients, zonal mean RH values increased from cold or dry areas (e.g. tundra, and desert or semi-arid 

areas) to warm or humid areas (e.g. temperate and tropical areas, Fig. S6). The data-derived RH dataset varied from 60±12 at 

about 75oN to 640±71 g C m-2 a-1 at the equator, reflecting a higher resource limitation in high latitude areas and a less resource 215 

limitation in low latitude areas. In the dry tropical areas (10oS -25oS and 10oN -25oN) limited by water, the zonal mean RH 
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decreased slightly. With the increase of water availability, RH showed a second peak in the Northern and Southern 

Hemispheres around 20oN and 40oS, respectively. Nonetheless, there was a high level of variability between the data-derived 

RH and TRENDY/Hashimoto RH in the equatorial regions (Fig. S6), with predictions generally overestimating RH at the 

equator. Peak RH values in the equatorial region ranged from 660±65g C m-2 a-1 for ORCHIDEE model to above 1200±460 g 220 

C m-2 a-1 for CLM4 model, resulting in a considerably higher peak RH value for the model mean (950±300 g C m-2 a-1).  

3.2 Total RH 

Over the last 37 years, the global RH has increased from 55.8 Pg C a-1 (1 Pg = 1×1015 g) in 1992 to 58.3 Pg C a-1 in 2010, 

with an average of 57.2±0.6 Pg C a-1 and strong annual variabilities (Fig. 4). Compared to the data-derived RH dataset, 

TRENDY/Hashimoto RH was underestimated (Fig. 5a), with the exception of the VISIT model. ISAM predicted the lowest 225 

global RH of 34.8±0.4 Pg C a-1, while the VISIT model produced the highest RH of 59.9±0.6 Pg C a-1 (Fig. 5a). The model 

mean RH was 47.6±0.5 Pg C a-1, underestimating RH by 9.6 Pg C a-1 (16%) in comparison to the data-derived RH dataset. 

Due to this large divergence, the strength of correlation between the data-derived RH and TRENDY/Hashimoto RH varied 

greatly from 0.06 to 0.72 (Fig. 5b). Boreal, temperate and tropical regions were the three most important contributors for the 

global RH according to the Köppen – Geiger climate classification system (Peel et al., 2007), contributing 76% of the total 230 

global RH. The mean RH of boreal, temperate and tropical areas were 10.8±0.3, 12.9±0.1 and 19.5±0.2 Pg C a-1, accounting 

for 19%, 22% and 35% of the total global RH, respectively (Fig. S8).  

3.3 Trends in RH 

Globally, although there was a great inter-annual variability in RH, the total RH has significantly increased at a rate of 

0.036±0.007 Pg C a-2 from 1980 to 2016 (p = 0.000, Fig. 4). Comparison of the data-derived RH dataset and TRENDY RH 235 

during the period of 1981 to 2010 was performed. The data-derived RH increased at 0.041±0.01 Pg C a-2 (Fig. S7), which was 

lower than that of TRENDY RH (0.057±0.009 Pg C a-2) and Hashimoto RH (0.057±0.009 Pg C a-2). Additionally, temporal 

trends varied greatly among TRENDY models (Fig. S7), with the largest increasing trend of 0.123±0.013 Pg C a-2 for LPJ-

GUESS and the largest decreasing trend of -0.018±0.007 Pg C a-2 for ISAM.  

Temporal trends varied among climate zones. RH in boreal and temperate areas increased by 0.020±0.004 and 0.007±0.002 240 

Pg C a-2 from 1980 to 2016 (both ps < 0.001, Fig. S8), respectively, while RH in tropical areas did not show a significant 

temporal trend, although inter-annual variabilities were observed (p = 0.362, Fig. S8). TRENDY/Hashimoto RHs showed 

significant increasing temporal trends in boreal, temperate and tropical regions, except ISAM and ORCHIDEE models (Fig. 

S9-11). However, the increasing magnitude varied among different TRENDY models. 

From 1980 to 2016, the global RH was expected to be driven by multiple environmental factors, such as temperature and 245 

precipitation. During this period, MAT and MAP levels increased significantly by 0.34±0.032oC and 6.69±2.399 mm per 

decade, respectively (p < 0.01, Figs. S12a and b). Therefore, the correlations between RH and MAT/MAP were evaluated. 

Globally, RH was significantly correlated with MAT (R2 = 0.56, p < 0.001) and MAP (R2 = 0.42, p < 0.001, Fig. 6) anomalies. 
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On average, the global RH increased by 1.08±0.163 Pg C a-1 per 1oC increase in MAT and 0.23±0.046 Pg C a-1 per 10 mm 

increment in MAP. 250 

3.4 Spatial pattern of RH trends 

Spatially, the data-derived RH trends presented heterogeneous geographical patterns (Fig. 2c). Positively increasing trends of 

RH were found for more than half of the global land areas (59%, calculated from cell areas; Fig. S13). Generally, the increasing 

rates of RH were lower than 3 g C m-2 a-2, in contrast, the highest RH increase was above 6 g C m-2 a-2 in boreal regions, such 

as Russia, North Canada and the Tibetan Plateau. RH exhibited a decreasing trend in 41% of the global land area and most 255 

considerably in South Asia (Fig. 2c). Similar to the data-derived RH trends, RH trends estimated by the TRENDY/Hashimoto 

RH trend also showed heterogeneous geographical patterns (Fig. S14). However, large discrepancies were found among 

TRENDY/Hashimoto RH (Fig. 2c and S14). Generally, the largest increase in RH trends occurred in boreal areas, except for 

outputs by LPJ-GUESS and LPJ models, which showed a decreasing trend for most boreal areas. There was a decreasing trend 

across most of tropics (e.g. Southeast Asia), with the exception of VEGAS model (Fig. S14).  260 

3.5 Dominant factors in RH annual variability 

MAT and MAP were the most important factors dominating RH in 39% and 36% of global land areas, respectively (Fig. 

S15). While SWC dominated the remaining 25% of global land areas. Spatially, the dominant drivers controlling RH varied 

greatly across the globe (Fig. 2d), with the area dominated by temperature mainly distributed in boreal areas above 50oN. This 

was also observed in the relatively high and positive partial correlation coefficient between temperature and RH (Fig. S15a). 265 

While precipitation dominated temperate areas between 25oN and 50oN (such as North China, the Middle East and America), 

where a wide distribution of desert or semi-arid regions occur, SWC dominated in tropic areas, such the Amazon, India and 

Africa. Similarly, water availability (SWC and precipitation) were also main driving factors for RH in Australia.  

Spatial patterns in environmental controls on TRENDY/Hashimoto RH varied greatly compared to the data-derived RH 

dataset or among TRENDY models (Figs. 2d and S15-17). Water availability (including precipitation and SWC) appeared to 270 

be more important than temperature. The percentage of the areas dominated by temperature (mainly distributed in boreal areas, 

except for in ISAM model outputs) was less than the areas dominated by precipitation and SWC (globally distributed) (Fig. 

S17). In terms of the mean TRENDY RH, precipitation dominated most of global land areas (43%), followed by SWC (36%) 

and temperature (21%) (Fig. S15).  

4 Discussion 275 

4.1 Annual RH 

4.1.1 Comparison with Hashimoto RH 

Despite the increasing efforts to quantify the global carbon cycle, large uncertainties still remain in the spatial- and temporal-

patterns in RH. To the best of our knowledge, this is the first study to apply the RF approach to predict the spatial- and 
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temporal-patterns of global RH using field observations. Globally, the mean RH amounted to 57.2±0.6 Pg C a-1 from 1980 to 280 

2016, 13.6 Pg C a-1 higher than RH from a satellite-driven estimate (Konings et al., 2019), and 6.4 Pg C a-1 higher than 

Hashimoto RH (Hashimoto et al., 2015). The differences between the data-driven RH and Hashimoto may be due to several 

reasons, Firstly, the two RH products covered different land areas, with the data-derived RH dataset covering a higher land 

area. If the data-derived RH dataset was masked by Hashimoto RH over 1981-2010, the total RH was 51.8±0.6 Pg C a-1, close 

to that of Hashimoto RH with 51.1±0.7 Pg C a-1 (Fig. S18), respectively. However, the spatial- and temporal-patterns varied 285 

greatly (Figs. 3 and 5).  

Secondly, the two RH products used different variables and algorithms for RH predictions. RH was not only affected by 

temperature and precipitation, but also by carbon substrates, soil nutrient levels and other variables (Hursh et al., 2017). Besides 

temperature and precipitation, we also included SWC, soil nitrogen and carbon contents as indicators for environmental and 

nutrient constraints on RH. Conversely, Hashimoto RH was estimated from a climate-driven model including only temperature 290 

and precipitation as the driving variables (Hashimoto et al., 2015). This simple model can partly explain the reasons that 

Hashimoto RH could not capture the significant decrease in RH in 1982 and 1991 due to El Chichón and Pinatubo eruptions, 

respectively (Zhu et al., 2016), while the data-derived RH dataset and TRENDY RH successfully captured such effects.  

Thirdly, the linear model between total soil respiration and RH was developed based on forest ecosystems (Bond-Lamberty 

et al., 2004; Hashimoto et al., 2015), which could be another uncertainty when applying this linear model to other ecosystems, 295 

e.g. croplands and grasslands.  

4.1.2 Comparison with TRENDY models 

As data-derived RH dataset often serve as a benchmark for terrestrial biogeochemical models, the data-derived RH dataset 

was compared with TRENDY models from 1980 to 2010. Although the data-derived RH dataset lied within the model range 

(34.8±0.4 Pg C a-1 for ISAM to 59.9±0.6 Pg C a-1 for VISIT, Fig. 5a), the mean TRENDY RH was underestimated by 16% 300 

compared to the data-derived RH dataset. Due to the different temporal trends among TRENDY models and their low spatial 

correlations to the data-derived RH dataset (correlation efficiencies ranging from 0.06 to 0.72, Fig. 6b), TRENDY RH clearly 

have different sensitivities to climate variations. Additionally, the difference in RH magnitude and spatial pattern varied 

considerably, as shown by analysis of absolute distances and cross-correlations. This effect was mostly notable in tropical 

areas in VISIT and CLM4 models (Figs. S4 and S5). This phenomenon may be associated to several reasons. Firstly, plant 305 

functional types differed among TRENDY models. For example, the VEGAS model included four plant functional types (Zeng 

et al., 2005), while the LPJ model defined ten plant functional types (Sitch et al., 2003).  

Secondly, for each set of equations, constant vegetation parameters (e.g. photosynthetic capacity) were applied across time 

and space for most TRENDY models, which may induce an RH bias. Model parameters using short-term observations do not 

account for the inter-annual variability of climatic and soil conditions, generating a simplistic representation of RH due to the 310 

inability to capture the response of RH to new environmental controls in short-term observations.  
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Thirdly, models that do not consider nitrogen constraint could overestimate the increasing trend of RH, because nitrogen 

limitation was globally observed (LeBauer and Treseder, 2008). This could explain why the CLM4 model with a nitrogen 

constraint produced a much smaller increasing trend compared to other TRENDY models, with the exception of ISAM (Fig. 

S7). Therefore, including soil nitrogen as a driving variable in modelling RH in this dataset had the advantage to detect the 315 

nitrogen constrain on RH. 

Fourthly, the lacking of the representation of human activities and agricultural management (e.g. fertilization and irrigation) 

may underestimate RH, because fertilization and irrigation were important practices to increase RH (Chen et al., 2018; Zhou 

et al., 2016). This could explain why five of seven TRENDY models could not explain the significant increasing change of 

RH in middle China (Fig. S14), which experienced an intensive use of fertilization for food security in recent decades.  320 

Finally, uncertainties and differences in model structures could also lead to inconclusive RH estimations. Although the same 

climatic data, e.g. temperature and precipitation, were used for TRENDY models to reduce the uncertainty causing by various 

meteorological forcings, systematic errors may be caused by applying a particular forcing and the errors might be propagated 

to model outputs (Anav et al., 2015). Therefore, TRENDY models should be improved by incorporating more processes such 

as nutrient constrains and an assessment of the model response to environmental variability (Keenan et al., 2012; Wang et al., 325 

2014; Yao et al., 2018b).  

4.2 Linkage to global carbon balance 

If assuming the global ratio of RH/total soil respiration ranged from 0.56 (Hashimoto et al., 2015) to 0.63 ((Bond-Lamberty 

et al., 2018), annual soil respiration varied from 90.8 to 102.1 Pg C a-1, within the reported values of 83 to 108 Pg C a-1 based 

on recent studies (Bond-Lamberty and Thomson, 2010b; Hursh et al., 2017). This indirectly highlights the reliability of the 330 

use of RF for global RH prediction. Moreover, these findings also have important indications to carbon balance estimations. 

According to a recent NPP estimate from observations and IPCC report data (IPCC, 2013; Li et al., 2017), the global NPP 

ranged from 61.5 to 60 Pg C a-1, respectively. The residual between RH and NPP (net ecosystem production) was 2.8-4.3 Pg 

C a-1, which is similar to the global estimates of net ecosystem production from the International Geosphere-Biosphere 

Programme, which ranged from 1.9 to 4.1 Pg C a-1 from 1959 to 2016 (Le Quéré et al., 2013; Le Quéré et al., 2016; Le Quéré 335 

et al., 2014). With a 1oC increase in global MAT, RH will increase by 1.08 Pg C a-1 globally, and such increase is 0.23 Pg C 

a-1 for 10 mm increment in global MAP. These findings indicate that carbon fluxes from the decomposition of soil organic 

matter and litter (RH) maybe positively feedback to global climate change -  typically characterized by the increasing 

temperature and the changes in precipitation (IPCC, 2013).  

4.3 Dominant factors in RH 340 

Dominant factors driving RH varied spatially. As temperature and energy were the most limited climatic factors in high 

latitude areas, temperature was a dominant factor for RH in high latitudinal regions above 50oN (Fig. 2d), with low 

temperatures leading to low RH (Fig. 2a). Similarly, due to the limited amount of precipitation, RH in semi-arid areas was 
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mainly controlled by precipitation, which was consistent with reported both field observations (Bai et al., 2008) and modelling 

studies (Gerten et al., 2008). SWC control of RH in tropical areas could be explained by the mechanisms of RH. Excessively 345 

high SWC can reduce the diffusion of oxygen, while excessively low SWCs could limit water and soluble substrate 

availabilities, preventing microbial activities (Luo and Zhou, 2006; Xu et al., 2004). Suseela et al. (2012) proposed that RH 

fluxes declined sharply when volumetric soil moisture reduced below ~15% or exceeded ~26%, which supported the findings 

of the present study. However, it should be noted that dominant environmental controls on spatial carbon flux gradients might 

vary among different years (Reichstein et al., 2007), such as with climatic extremes. 350 

4.4 Temporal variability of tropical, temperate and boreal areas 

RH in tropical areas did not exhibit a significantly temporal pattern between 1981 and 2010 (Fig. S8, p = 0.362), indicating 

that in our model, climate change did not affect RH fluxes in these areas. However, RH in boreal and temperature areas 

experienced significant increasing trends of 0.020±0.004 and 0.007±0.002 Pg C a-2, respectively (Fig. S7), suggesting that a 

positive feedback may occur with climate change. Tremblay et al. (2018) proposed that the increased RH was mainly related 355 

to the increasing temperature in boreal forest soils, which supported the findings of the present study. It should be noted that 

both the data-derived RH dataset and Hashimoto/TRENDY RH in boreal areas showed a temporally increasing trend from 

1981 to 2010, although the magnitude of increase differed (Fig. S9). Furthermore, despite the ISAM model showing a 

decreasing trend for temperate and tropic regions, the ISAM model had an increasing trend in RH from 1981 to 2010 in boreal 

areas (Fig. S9). These results indicate that boreal regions are becoming increasingly important in global carbon cycling and 360 

that the increasing trend may continue due to a large amount of carbon stored in soils. Therefore, climate change may 

fundamentally alter carbon cycling in boreal areas through changes in the decomposition rate of soil organic matter (Crowther 

et al., 2016; Hashimoto et al., 2015; Schuur et al., 2015). Furthermore, the response of RH to climate variability varied with 

climate zone, indicating that different carbon loss rates from RH will occur in different regions to climate change. 

4.5 Advantages, limitations and uncertainties 365 

Based on the updated SRDB database, we used a RF algorithm to predict the spatial- and temporal-patterns of RH at the 

global scale and its response to environmental variables, and the data-derived RH could serve as a benchmark for terrestrial 

biogeochemical models and reduce RH uncertainties. This data-derived RH dataset provided several advantages to the 

estimation of global RH compared to previous studies, e.g. Hashimoto et al. (2015) and Konings et al. (2019). Firstly, we 

compiled up-to-date field observations from SRDB and Chinese peer-review literatures up to March 2018, including 504 370 

observations in total covering the majority global terrestrial ecosystems and climate zones (Fig. 1). Secondly, total RH and its 

inter-annual variability were assessed for boreal, temperate and tropical zones – three main global climate zones. Analysis 

from the data-derived RH dataset further concluded that RH in different climate zones responded differently to global climate 

change. Thirdly, we applied the RF to predict and mapped RH at the global scale using climate and soil predictors. Compared 

to the linear regression analysis for predicting soil respiration (as no such global RH predictions were previously available for 375 
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comparison) with model efficiencies of <50% (Bond-Lamberty and Thomson, 2010b; Hashimoto et al., 2015; Hursh et al., 

2017), the RF algorithm achieved a higher model efficiency of 50%. In addition to a feature selection according the importance 

value of each variable and avoiding overfitting (Bodesheim et al., 2018; Jian et al., 2018), the RF algorithm improved RH 

modelling accuracies and reduced uncertainties. Meanwhile, the data-derived RH dataset was cross-validated globally by a 

10-fold cross-validation (see “materials and methods” section), which could improve its reliability and feasibility compared to 380 

TRENDY based RH that were not validated and calibrated by field observations, bridging the knowledge gap between local, 

regional and global scales temporally and spatially with a large number of empirical field measurements. 

However, although the data-derived RH dataset could be used as a benchmark for the verification of global carbon cycle 

modelling, bridging the knowledge-gaps between local, regional and global scales, few uncertainties and limitations still 

remained. Firstly, the RF algorithm constructed a model based on the training dataset and was typically data limited in terms 385 

of quantity, quality and representativeness. Uneven data distribution has been a known issue in many ecological studies across 

the world, e.g. Bond-Lamberty and Thomson (2010b), Jung et al. (2011), Xu and Shang (2016) and Yao et al. (2018a). The 

RH observations were mainly from China, Europe and North America, while there were a lack of RH observations in Russia, 

Africa, Australia and Southwestern Asia in our study. Thus the uneven coverage of the observations was an important source 

of uncertainty to develop the data-derived RH dataset, which may cause a bias of the RF model towards the areas with more 390 

observations. However, our dataset covered a large climatic and edaphic gradient covering the major land covers and climate 

zones. Therefore, in future studies, increasing field observations in unsampled areas should greatly improve our ability to 

evaluate spatial- and temporal-patterns of RH at the global scale and model global carbon cycle to climate change.  

Secondly, the misrepresentation of human activities, particularly regarding to land management and land use change, could 

result in uncertainties in RH (Bond‐Lamberty et al., 2016; Tang et al., 2016). These human activities include both site-level in 395 

situ information and the corresponding global grids. Otherwise, such information must not be included as corresponding site 

information or globally gridded datasets are missing or insufficient. Although soil organic carbon stock, soil nitrogen content, 

SWC and shortwave radiation were selected as inputs for the development of the RF model, which could partly capture land 

use change, the impacts of land use change on the inter-annual variability of RH have not been fully qualified in the present 

study. Therefore, further efforts are required to characterize and quantify the effects of land use change on the global RH.  400 

Thirdly, the date-derived RH dataset was derived at an annual timescale, which may cause an additional uncertainty 

regarding to the inter-annual variability of RH. Therefore, the need for a larger number of global observations and to develop 

finer-scale temporal dynamics need further exploration, in combination with remote-sensing measurements and field 

observations, which may provide new insights into terrestrial ecosystem carbon dynamics at the global scale. Besides, without 

consideration of the temporal changes of soil organic carbon content from 1980 to 2016 might be another uncertainty because 405 

the increase of productivity driven by CO2 fertilization would increase litter input into soils. However, there is a lack of soil 

organic carbon content that considering its temporal changes based on observations, which has constrained the further analysis 

of the effects of the temporal changes of soil organic carbon content on RH.  
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Finally, we developed a global RH at a half-degree spatial resolution, which included a scale mismatch between the 

observations and global gridded variables. This could be a great challenge for spatial modelling and using global gridded 410 

variables with a finer resolution is encouraged to overcome this limitation (Xu and Shang, 2016). On the other hand, the study 

sites were globally distributed and there was a large climatic and edaphic gradient covering the major land covers and biomes, 

which should reflect a larger variability than the site-to-grid mismatch.  

5 Data availability 

The developed globally gridded RH database, the field RH observation dataset and R codes to produce the main results are 415 

publicly free for scientific purpose, which can be downloaded at https://doi.org/10.6084/m9.figshare.8882567 (Tang et al., 

2019a).  

6 Conclusions 

Data-derived global RH dataset may be used as a benchmark for terrestrial biogeochemical models, however, no such study 

has yet been conducted to assess the global variability in RH using a large dataset of empirical measurements to bridge the 420 

knowledge gap between local, regional and global scales. To fill this knowledge gap, we developed a globally gridded RH 

dataset, which was 0.5o × 0.5o from 1980 to 2016 with an annually temporal resolution, using a RF algorithm by linking field 

observations and global variables. Robust conclusions include: (1) Annual mean RH was 57.2±0.6 Pg C a-1 between 1980 and 

2016, with an increasing trend of 0.036±0.007 Pg C a-2, indicating an increase in carbon loss from soils to the atmosphere; (2) 

Significant temporal trends were observed in the RH in boreal and temperate areas, although none were found in tropical 425 

regions. This indicates that the temporal trend in RH varied with climate zones, highlighting their different sensitivities to 

climate change; (3) The magnitude and dominant factors of the data-derived RH TRENDY RH varied greatly, indicating that 

future efforts should focus on improving the representation of RH and its response to environmental variability in terrestrial 

biogeochemical models; (4) More field observations are required in areas with limited observational datasets, with the 

integration of smaller-scale temporal dynamics (rather than annual timescales) potentially providing new insights into 430 

terrestrial ecosystem carbon dynamics at the global scale; (5) The data-derived RH dataset could serve as a benchmark to 

constrain the terrestrial biogeochemical models, further contributing to improve our understanding of the mechanisms of global 

soil carbon dynamics. 
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Figure 1. Distributions of the study sites for RH observations.  
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 695 

Figure 2. Spatial patterns of (a) mean data-derived RH (b) standard deviations, (c) temporal trends of annual heterotrophic 

respiration (RH) from 1980 to 2016, while (d) dominant environmental drivers for the inter-annual variability of global RH. 

MAT = mean annual temperature; MAP = mean annual precipitation; SWC = soil water content. 
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 700 

Figure 3. Comparing data-derived RH dataset with Hashimoto RH (a, c) and mean RH of TRENDY models (b, d) based on 

absolute distances (g C m-2 a-1, a, b) and cross-correlations (c, d). The absolute distances and cross-correlations were calculated 

using comparison map profile method (Gaucherel et al., 2008). 
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 705 

Figure 4. Inter-annual changes in global heterotrophic respiration (RH) from 1980 to 2016. The grey area indicates 95% 

confidence intervals. For the linear regression model, R2 = 0.429 and p < 0.01. 
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Figure 5. (a) Total global heterotrophic respiration (RH, mean ± standard deviation of annual RH from 1981 to 2010) fluxes 710 

and (b) the correlation coefficient analysed by Pearson correlation between data-derived RH and TRENDY /Hashimoto RH. 

The red dashed line (a) represents the average of data-derived RH from 1981 to 2010.  
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Figure 6. The relationships between heterotrophic respiration (RH) and mean annual temperature (a) or precipitation 715 

anomalies (b). The change was calculated as the difference of each given year to the average over 1980 to 2016. Grey areas 

indicate 95% confidence intervals. 


