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Abstract. Soil heterotrophic respiration (RH) is one of the largest and most uncertain components of the terrestrial carbon
cycle, directly reflecting carbon loss from soils to the atmosphere. However, high variations and uncertainties of RH existing
in global carbon cycling models require RH estimates from different angles, e.g., a data-driven angle.. To fill this knowledge
gap, this study applied a Random Forest (RF) algorithm — a machine learning approach, to (1) develop a globally gridded RH
dataset and (2) investigate its spatial- and temporal-patterns from 1980 to 2016 at the global scale by linking field observations
from the Global Soil Respiration Database and global environmental drivers — temperature, precipitation, soil water content,
etc. Finally, a globally gridded RH dataset was developed covering from 1980 to 2016 with a spatial resolution of half degree
and a temporal resolution of one year. Globally, the average annual RH was 57.240.6 Pg C a* from 1980 to 2016, with a
significantly increasing trend of 0.0360.007 Pg C a. However, the temporal trend of the carbon loss from RH varied with
climate zones that RH showed a significant and increasing trend in boreal and temperate areas, in contrast, such trend was

absent in tropical regions. Temperature-driven RH dominated 39% of global land and was primarily distributed at high latitude
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areas. While the areas dominated by precipitation and soil water content were mainly semi-arid and tropical areas, accounting
for 36% and 25% of the global land, respectively, suggesting variations in the dominance of environmental controls on the
spatial patterns of RH. The developed globally gridded RH dataset will further aid in understanding of the mechanisms of
global soil carbon dynamics, serving as a benchmark to constrain terrestrial biogeochemical models. The dataset is publicly
available at https://doi.org/10.6084/m9.figshare.8882567 (Tang et al., 2019a).

1 Introduction

Global soils and surface litter store up to 2- or 3-fold the amount of carbon present in the atmosphere (Trumbore, 2009) and
therefore, a small change in soil carbon content could have profound effects on atmospheric CO; and climate change (K&thy
et al., 2015). Although global carbon flux from soil-to-atmosphere is increasing (Zhao et al., 2017), the degree to which future
climate change will stimulate soil carbon loss via heterotrophic respiration (RH) remains highly uncertain (Bond-Lamberty et
al., 2018; Friedlingstein et al., 2014; Trumbore and Czimczik, 2008), particularly for areas with a high temperature sensitivity,

or rapid changes in precipitation frequency and intensity.

Soil RH represents the carbon loss from the decomposition of litter detritus and soil organic matter by microorganisms
(Subke et al., 2006), accounting for one of the largest components of the terrestrial carbon cycle (Bond-Lamberty et al., 2016).
However, RH’s feedback to climate variability is poorly understood. RH could affect future climate change via the
mineralization of long-stored soil carbon, offsetting net primary production (NPP) and even converting terrestrial ecosystems
from a carbon sink to a carbon source (Tremblay et al., 2018). Conversion of the sink/source role depends on how strongly
large-scale process affected by environmental drivers, e.g. temperature, precipitation and soil organic carbon content (Hursh
et al., 2017; Sierra et al., 2015), or extreme conditions, such as fire, human disturbance and drought (Kurz et al., 2013;
Metsaranta et al., 2011). Although it is widely recognized that warming enhances CO; release from soils, the magnitude of
such release is uncertain due to variations in the temperature sensitivity of soil organic matter decomposition (Suseela et al.,
2012). In addition, environmental drivers of RH, e.g. temperature and soil moisture, are still undergoing changes under climate
warming and can affect RH individually or interactively. Therefore, reducing RH uncertainty and clarifying the response of

RH to environmental factors are essential for future projections of the impact of climate change on the terrestrial carbon balance.

Due to the diurnal, seasonal and annual variability in RH, in addition to the difficulties of large-scale measurements, regional
and global RH estimations mainly depend on modelling approaches using regional or global variables, such as temperature,
precipitation and carbon supply (Bond-Lamberty and Thomson, 2010b; Hashimoto et al., 2015; Hursh et al., 2017). Besides
temperature and precipitation, soil variables, such as water, carbon and nitrogen contents, are also important factors in the
regulation of RH and should be considered for accurate RH estimations (Hursh et al., 2017; Zhao et al., 2017), although these

variables vary with biome and climate.
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Observational studies have examined the responses of soil respiration to different climatic variables at different locations
across the globe (Bond-Lamberty and Thomson, 2010a; Zhou et al., 2016). Hashimoto et al. (2015) and Bond-Lamberty and
Thomson (2010b) predicted global soil respiration rates using climate-derived models driving by temperature and precipitation,
however, these models commonly explain less than 50% variations of soil respiration, requiring new techniques, potential new
numerical/algorithmic methods to better quantify and understand the large-scale soil carbon fluxes (Bond-Lamberty, 2018).
To improve the modelling accuracy, more recent studies have used linear regression or machine learning approaches including
more abiotic or biotic variables, such as soil carbon supply, soil properties and NPP (Hursh et al., 2017; Zhao et al., 2017) and
observations collected from newly published measurements (Jian et al., 2018; Zhao et al., 2017). On the other hand, including
more variables in linear or non-linear regression models may cause overfitting and autocorrelation issues (Long and Freese,
2006). To overcome overfitting and autocorrelation, machine learning approaches, such as the Random Forest (RF, Breiman,
2001), have been applied to explore the hierarchical importance of environmental factors, such as temperature, soil water
content (SWC), NPP and soil pH (Hursh et al., 2017). Machine learning techniques are highly effective because they are fully
data adaptive, and do not require initial assumptions on functional relationships and can function with nonlinear dependencies
(Bodesheim et al., 2018). Therefore, these approaches are beginning using in earth science, particularly in carbon and water
flux modelling (Jung et al., 2010; Jung et al., 2017; Yao et al., 2018b), and may provide more reliable estimates of soil
respiration (Bond-Lamberty, 2018; Zhao et al., 2017). However, no study to date has assessed the global variability of RH

using empirical field observations to bridge the knowledge gap between local, regional and global scales.

The newly-emerged Dynamic Global Vegetation Models from the TRENDY model ensembles and Earth System Models
have been widely used to investigate major physiological and ecological processes and ecosystem structures, providing a novel
database and approach to examine and estimate RH at the global scale (Zhu et al., 2017), although RH improvements in Earth
System Models are still required (Shao et al., 2013). TRENDY and Earth System Model simulations incorporating a RH
component are commonly calibrated and validated by eddy covariance measurements, e.g. net ecosystem carbon exchange,
however, modelled RHs from these models have not yet been calibrated and validated using field observations. Therefore,
these modelled RHs may be fundamentally different from observed values and no global observations exist to evaluate model
effectiveness. Consequently, a data-driven RH dataset could improve our understanding of the underlying mechanisms of RH
variability to climate change at the global scale, and could serve as a benchmark to constrain terrestrial biogeochemical models.

Thus, we used a RF algorithm to estimate global RH based on updated RH observations from the Global Soil Respiration
Dataset (SRDB, Bond-Lamberty and Thomson, 2010a) with the objectives of: (1) developing a globally gridded RH product
(named data-derived RH); (2) detecting the spatial- and temporal-patterns of RH; (3) identifying the dominant driving factors
for spatial- and temporal-variabilities of RHs; and (4) comparing the data-derived RH dataset with RH generated by Dynamic
Global Vegetation Models from the TRENDY ensembles.
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2 Materials and methods
2.1 Soil heterotrophic respiration database development

The basis of the database developed here included observed global RH values from SRDB (Bond-Lamberty and Thomson,

2010a), which was freely obtained at https://github.com/bpbond/srdb. The database was further updated using observations

collected from Chinese peer-review publications at the China Knowledge Resource Integrated Database (www.cnki.net) until
March 2018. This study included the RH data for: (1) annual RH as directly reported in publications with at least one year
continuous measurements; (2) the start- and end-year were extracted from SRDB, directly from publications or calculated by
the “years of data” in the SRDB; (3) observations measured by alkali absorption or soda lime approaches were not included
because of their potential underestimation of respiration flux with an increasing pressure in the measurement chamber
(Pumpanen et al., 2004); (4) experiments with treatments, such as nitrogen manipulation, or fertilization, were excluded, and
only RH measurements from the control treatment were included (Jian et al., 2018); (5) SRDB observations labelled as
“potential problem” (“Q10”), “suspected problem” (“Q11”), “known problem” (“Q12”), “duplicate” (“Q13”) and
“inconsistency” (“Q14”) were not included (Bond-Lamberty and Thomson, 2010a). Finally, the newly updated database
included 504 RH observations in total. Although most of the observations were from China, America and Europe, this database

covered all the major terrestrial biomes across the world (Fig. 1).
2.2 Climate and soil data

To investigate the global spatial-temporal RH patterns, global spatial-temporal grids of RH driving factors were required.
A total of nine global variables were included (Supplementary Table S1): monthly gridded data of temperature, precipitation,
diurnal temperature range from Climatic Research Unit TS v.4.01 over 1901-2016 (https://crudata.uea.ac.uk, Harris et al.,
2014); shortwave radiation (SWR, https://www.esrl.noaa.gov, Kalnay et al., 1996); gridded soil organic carbon content (Hengl
et al., 2017) and nitrogen content from https://webmap.ornl.gov/ogc/index.jsp (Global Soil Data, 2000); monthly gridded
nitrogen deposition dataset from the global Earth System Models of GISS-E2-R, CCSM-CAM3.5 and GFDL-AM3 from 1850
to 2000s  (https://www.isimip.org, Lamarque et al., 2013); monthly Palmer Drought Severity Index (PDSI,

https://www.esrl.noaa.gov/psd/, Dai et al., 2004) and (SWC, https://www.esrl.noaa.gov, van den Dool et al., 2003). Before
further data analysis, monthly data were aggregated to an annual scale. These variables could stand for different environmental
controls on RH. For example, temperature, precipitation and SWC are critical environmental controls on microbial activities
for soil organic matter decomposition (Jian et al., 2018; Suseela et al., 2012; Tremblay et al., 2018). Soil organic matter, soil
carbon stock and soil nitrogen are important carbon and nitrogen substrates for microbes that are related to the decomposition
of soil organic matter (Tremblay et al., 2018). The drought index (PDSI) and diurnal temperature range to represent water and
temperature stress on RH (Berryman et al., 2015; Zhu and Cheng, 2011). Then the global environmental drivers for each given

site were extracted by site longitudes and latitudes corresponding to annual RH observations. If the environmental driver is
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not in a spatial resolution of 0.5°, we first re-sampled this environmental driver to a 0.5° resolution using the bilinear

interpolation.
2.3 RH from TRENDY models

In the last several decades, TRENDY models were developed to simulate key processes (e.g. photosynthesis, respiration,
evapotranspiration, phenology and carbon allocation) that drive the dynamics of global terrestrial ecosystems (Piao et al.,
2015). TRENDY models follow a common protocol and use the same climate-forcing data from National Centres for
Environmental Prediction at a spatial resolution of 0.5< For modelled products with different spatial resolutions, new errors
will be produced when re-sampling to 0.5< Therefore, to compare the dynamics in the data-derived RH dataset and TRENDY
RH dataset, we used model outputs from seven TRENDY models: Community Land Model-4.5 (CLM4, Lawrence et al.,
2011); Integrated Science Assessment Model (ISAM, Cao, 2005); Lund-Potsdam-Jena (LPJ, Sitch et al., 2003); Lund-
Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS, Smith et al., 2001); VEgetation-Global-Atmosphere-Soil (VEGAS,
Zeng et al., 2005); and Vegetation Integrative Simulator for Trace gases (VISIT, Kato et al., 2013). Additionally, the RH
dataset generated empirically by Hashimoto et al. (2015) was compared (termed as Hashimoto RH), which was publicly
available (http://cse.ffpri.affrc.go.jp/shojih/data/index.html) and estimated from a global relationship between RH and soil

respiration (Bond-Lamberty et al., 2004), and the total soil respiration was predicted from a climate-driven model using

precipitation and temperature based on the observations from SRDB. More details can be found in Hashimoto et al. (2015).
2.4 RF-based RH Modelling

RF is amachine learning approach that uses a large number of ensemble regression trees, but a random selection of predictive
variables (Breiman, 2001). Two free parameter settings are required, which are the number of trees and candidate variables
for each split. However, the RF model is not usually sensitive to the number of trees or variables. A RF regression can deal
with a large number of features, assisting a feature selection based on the importance value of each variable and the avoidance
of overfitting (Bodesheim et al., 2018; Jian et al., 2018). In the present study, a RF model was trained using 9 variables
(supplementary Table 1) in the “caret” package (version 6.0-80, accessed on May 27, 2018) in R (R Core Team, 2018), which
was then implemented to predict RH for each grid at a spatial resolution of 0.5< To characterize the performance of RF, a 10-
fold cross-validation was applied, which meant that the dataset was stratified into 10 parts and each part contained roughly
equal number of samples. The target values for each of these 10 parts were predicted based on the training models using the
remaining nine parts. Two model evaluation statistics were used, including modelling efficiency (R?) and root mean square
error (RMSE, Tang et al., 2019b; Yao et al., 2018b).

2.5 Trend analysis

A trend analysis of RH was estimated by the Theil-Sen linear regression and tested with the Mann-Kendall non-parametric
test. The Theil-Sen estimator is a non-parametric slope estimator based on median values, and this approach was widely used

for time-series analysis, e.g. carbon fluxes (Dai et al., 2016), and vegetation greening and browning (Pan et al., 2018) . The
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Mann-Kendall non-parametric test was employed to investigate the significant changes in RH trend at a significance level of
0.05.

2.6 Relationships between RH and temperature, precipitation and SWC

Although previous studies have used precipitation as a proxy for SWC (Bond-Lamberty and Thomson, 2010b; Chen et al.,
2010), this may result in variability in soil respiration estimates (Jassal et al., 2007; Zhang et al., 2006), because the relationship
between SWC and soil respiration was much more complex than that between soil respiration and temperature or precipitation
(Jian et al., 2018). Therefore, mean annual temperature (MAT), precipitation (MAP) and SWC were all considered as
potentially important proxies driving RH (Bond-Lamberty et al., 2016; Reichstein and Beer, 2008). Annual mean RH was
regressed against the three proxies. The relationships between the data-derived RH and MAT/MAP/SWC were assessed locally
for each grid cell by calculating the correlations using partial correlation analysis. When analysing the partial correlations
between RH and the proxy, the other two proxies were controlled to remove their confounding effects on RH. The correlation
strengths of MAT, MAP and SWC were used to derive RGB combinations and indicate the drivers of RH.

2.7 The comparison map profile method

To detect the spatial similarity and difference patterns between the data-derived RH and TRENDY and Hashimoto RH
values from 1981 to 2010, we utilized the comparison map profile (CMP) method (Gaucherel et al., 2008). This method was
based on the absolute distances (D) and cross-correlation coefficients (CC) across multiple scales, with D and CC reflecting
the similarity and the spatial structures of two compared images with the same sizes, respectively (Gaucherel et al., 2008). The
D value between moving windows (from 3 %3 to 41 %41 pixels in present study) of two compared images was calculated by
Equation (1):

D =abs(x — ) (1)

Where, X and y represent mean values calculated over two moving windows. Finally, the mean D value was calculated as an

average of different moving windows.

The CC was calculated according to Equation (2):

(xij=)x(Yij—y)

1
CC = F 5:\]:1 Z-Ilyzl oxXay (2)
1 _
o7 = NZ_1 ?1:1 Z?’ﬂ(xij — X)? 3)

Where, x;j and y;; are pixel values at i"" row and j™ column of the moving windows of two compared images, respectively; N
represents the total number of pixels covered by each of moving windows; oy and oy stand for standard deviations of two
moving windows. Low D values reflect a goodness between the compared images, while low CC values suggest a low
similarity. Finally, the mean D and CC were calculated as the average from different moving windows.
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All data analysis mentioned above were conducted in R (version 3.5.0, access on April 2018).
3 Results
3.1 Spatial patterns of RH

Based on the 10-fold cross-validation, R?> and RMSE were 50% and 143 g C m2 a* (Fig. S1), respectively. This indicates
that the RF algorithm effectively captured the spatial- and temporal-variability of RH, therefore enabling deriving of a global
gridded RH dataset.

The data-derived RH dataset showed a strong spatial pattern globally (Fig. 2a). The largest RH fluxes occurred in tropical
areas (e.g. Amazon tropical forests) at > 700 g C m? a’*, followed by the subtropics, such as South China and America, and
humid temperate areas, e.g. North America, Western and Central Europe, with an annual RH of 400-600 g C m a. Relatively
low annual RH less than 200 g C m2 a* was generally observed in areas with cold and dry climates, such as boreal areas,
characterized by low temperatures and short growing seasons, dry or semi-arid regions (e.g. Northwest China), where water
availability limits ecosystem development. However, the most variable changes in RH over the time from 1980 to 2016 - using
standard deviation and coefficient of variation (CV, the ratio of the standard deviation and the mean) as a proxy (Fig. 2b an
S3), were found in boreal regions with RH higher than 70 g C m?a or a CV > 0.7. While the majority areas of RH variabilities
were lower than 30 g C m? a* ora CV < 0.3. Similarly, TRENDY RH showed similar patterns with the highest RH in warm
and humid areas and the lowest RH in cold and dry regions (Fig. S2). However, differences existed in the absolute RH fluxes
(Fig. S2). For example, CLM4 and VISIT models predicted RH to be higher than 1400 g C m? a* within Amazon forest
regions, while ISAM and LPJ-GUESS estimates were typically low at around 1000 g C m2 a’. However, the data-derived RH

dataset and Hashimoto RH showed the highest RH fluxes in tropical regions of about 800 g C m?2 a*.

To examine the similarity in the patterns between the data-derived RH dataset and TRENDY/Hashimoto RH, the CMP
method was employed (Fig. 3). Larger D and lower CC values indicate less consistent magnitudes and a local gradient
distribution between the two compared images. The data-derived RH dataset and Hashimoto RH differed greatly in East
Canada and the Middle East with D values higher 200 g C m2 a* and CC values lower than -0.5. Interestingly, the most
noticeable differences between the data-derived RH and mean TRENDY RH occurred in East Asia and the Middle East, where
D was higher than 500 g C m a’, while CCs were around -0.1. When assessing each TRENDY model individually (Figs. S4
and Sb), the differences between the data-derived RH dataset and TRENDY RH were even larger. The most remarkable
differences were found for CLM4 and VISIT models in regions where D was above 800 g C m?2 a** with CC values of about -
0.3 (East Asia and America).

Across the latitudinal gradients, zonal mean RH values increased from cold or dry areas (e.g. tundra, and desert or semi-arid
areas) to warm or humid areas (e.g. temperate and tropical areas, Fig. S6). The data-derived RH dataset varied from 6012 at
about 75°N to 640471 g C m2 a* at the equator, reflecting a higher resource limitation in high latitude areas and a less resource

limitation in low latitude areas. In the dry tropical areas (10°S -25°S and 10°N -25°N) limited by water, the zonal mean RH
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decreased slightly. With the increase of water availability, RH showed a second peak in the Northern and Southern
Hemispheres around 20°N and 40°S, respectively. Nonetheless, there was a high level of variability between the data-derived
RH and TRENDY/Hashimoto RH in the equatorial regions (Fig. S6), with predictions generally overestimating RH at the
equator. Peak RH values in the equatorial region ranged from 660465g C m* a* for ORCHIDEE model to above 12004460 g
C m*?a for CLM4 model, resulting in a considerably higher peak RH value for the model mean (9502300 g C m2 al).

3.2 Total RH

Over the last 37 years, the global RH has increased from 55.8 Pg C a’* (1 Pg = 1x10% g) in 1992 to 58.3 Pg C a! in 2010,
with an average of 57.240.6 Pg C a and strong annual variabilities (Fig. 4). Compared to the data-derived RH dataset,
TRENDY/Hashimoto RH was underestimated (Fig. 5a), with the exception of the VISIT model. ISAM predicted the lowest
global RH of 34.840.4 Pg C a*, while the VISIT model produced the highest RH of 59.940.6 Pg C a* (Fig. 5a). The model
mean RH was 47.620.5 Pg C a’l, underestimating RH by 9.6 Pg C a* (16%) in comparison to the data-derived RH dataset.
Due to this large divergence, the strength of correlation between the data-derived RH and TRENDY/Hashimoto RH varied
greatly from 0.06 to 0.72 (Fig. 5b). Boreal, temperate and tropical regions were the three most important contributors for the
global RH according to the K&pen — Geiger climate classification system (Peel et al., 2007), contributing 76% of the total
global RH. The mean RH of boreal, temperate and tropical areas were 10.840.3, 12.940.1 and 19.540.2 Pg C a’l, accounting
for 19%, 22% and 35% of the total global RH, respectively (Fig. S8).

3.3 Trends in RH

Globally, although there was a great inter-annual variability in RH, the total RH has significantly increased at a rate of
0.03620.007 Pg C a?from 1980 to 2016 (p = 0.000, Fig. 4). Comparison of the data-derived RH dataset and TRENDY RH
during the period of 1981 to 2010 was performed. The data-derived RH increased at 0.04140.01 Pg C a2 (Fig. S7), which was
lower than that of TRENDY RH (0.057+40.009 Pg C a?) and Hashimoto RH (0.057+0.009 Pg C a2). Additionally, temporal
trends varied greatly among TRENDY models (Fig. S7), with the largest increasing trend of 0.12340.013 Pg C a2 for LPJ-
GUESS and the largest decreasing trend of -0.018+0.007 Pg C a2 for ISAM.

Temporal trends varied among climate zones. RH in boreal and temperate areas increased by 0.02020.004 and 0.00740.002
Pg C a2 from 1980 to 2016 (both ps < 0.001, Fig. S8), respectively, while RH in tropical areas did not show a significant
temporal trend, although inter-annual variabilities were observed (p = 0.362, Fig. S8). TRENDY/Hashimoto RHs showed
significant increasing temporal trends in boreal, temperate and tropical regions, except ISAM and ORCHIDEE models (Fig.

S9-11). However, the increasing magnitude varied among different TRENDY models.

From 1980 to 2016, the global RH was expected to be driven by multiple environmental factors, such as temperature and
precipitation. During this period, MAT and MAP levels increased significantly by 0.3440.032°C and 6.69+2.399 mm per
decade, respectively (p < 0.01, Figs. S12a and b). Therefore, the correlations between RH and MAT/MAP were evaluated.
Globally, RH was significantly correlated with MAT (R? = 0.56, p < 0.001) and MAP (R? = 0.42, p < 0.001, Fig. 6) anomalies.
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On average, the global RH increased by 1.0840.163 Pg C a* per 1°C increase in MAT and 0.2320.046 Pg C a™* per 10 mm
increment in MAP.

3.4 Spatial pattern of RH trends

Spatially, the data-derived RH trends presented heterogeneous geographical patterns (Fig. 2c). Positively increasing trends of
RH were found for more than half of the global land areas (59%, calculated from cell areas; Fig. S13). Generally, the increasing
rates of RH were lower than 3 g C m a2, in contrast, the highest RH increase was above 6 g C m? a2in boreal regions, such
as Russia, North Canada and the Tibetan Plateau. RH exhibited a decreasing trend in 41% of the global land area and most
considerably in South Asia (Fig. 2c). Similar to the data-derived RH trends, RH trends estimated by the TRENDY/Hashimoto
RH trend also showed heterogeneous geographical patterns (Fig. S14). However, large discrepancies were found among
TRENDY/Hashimoto RH (Fig. 2c and S14). Generally, the largest increase in RH trends occurred in boreal areas, except for
outputs by LPJ-GUESS and LPJ models, which showed a decreasing trend for most boreal areas. There was a decreasing trend

across most of tropics (e.g. Southeast Asia), with the exception of VEGAS model (Fig. S14).
3.5 Dominant factors in RH annual variability

MAT and MAP were the most important factors dominating RH in 39% and 36% of global land areas, respectively (Fig.
S15). While SWC dominated the remaining 25% of global land areas. Spatially, the dominant drivers controlling RH varied
greatly across the globe (Fig. 2d), with the area dominated by temperature mainly distributed in boreal areas above 50°N. This
was also observed in the relatively high and positive partial correlation coefficient between temperature and RH (Fig. S15a).
While precipitation dominated temperate areas between 25°N and 50°N (such as North China, the Middle East and America),
where a wide distribution of desert or semi-arid regions occur, SWC dominated in tropic areas, such the Amazon, India and

Africa. Similarly, water availability (SWC and precipitation) were also main driving factors for RH in Australia.

Spatial patterns in environmental controls on TRENDY/Hashimoto RH varied greatly compared to the data-derived RH
dataset or among TRENDY models (Figs. 2d and S15-17). Water availability (including precipitation and SWC) appeared to
be more important than temperature. The percentage of the areas dominated by temperature (mainly distributed in boreal areas,
except for in ISAM model outputs) was less than the areas dominated by precipitation and SWC (globally distributed) (Fig.
S17). In terms of the mean TRENDY RH, precipitation dominated most of global land areas (43%), followed by SWC (36%)
and temperature (21%) (Fig. S15).

4 Discussion
4.1 Annual RH
4.1.1 Comparison with Hashimoto RH

Despite the increasing efforts to quantify the global carbon cycle, large uncertainties still remain in the spatial- and temporal-

patterns in RH. To the best of our knowledge, this is the first study to apply the RF approach to predict the spatial- and



280

285

290

295

300

305

310

temporal-patterns of global RH using field observations. Globally, the mean RH amounted to 57.240.6 Pg C a’* from 1980 to
2016, 13.6 Pg C a! higher than RH from a satellite-driven estimate (Konings et al., 2019), and 6.4 Pg C a higher than
Hashimoto RH (Hashimoto et al., 2015). The differences between the data-driven RH and Hashimoto may be due to several
reasons, Firstly, the two RH products covered different land areas, with the data-derived RH dataset covering a higher land
area. If the data-derived RH dataset was masked by Hashimoto RH over 1981-2010, the total RH was 51.840.6 Pg C a*, close
to that of Hashimoto RH with 51.140.7 Pg C a™* (Fig. S18), respectively. However, the spatial- and temporal-patterns varied
greatly (Figs. 3 and 5).

Secondly, the two RH products used different variables and algorithms for RH predictions. RH was not only affected by
temperature and precipitation, but also by carbon substrates, soil nutrient levels and other variables (Hursh et al., 2017). Besides
temperature and precipitation, we also included SWC, soil nitrogen and carbon contents as indicators for environmental and
nutrient constraints on RH. Conversely, Hashimoto RH was estimated from a climate-driven model including only temperature
and precipitation as the driving variables (Hashimoto et al., 2015). This simple model can partly explain the reasons that
Hashimoto RH could not capture the significant decrease in RH in 1982 and 1991 due to EI Chichén and Pinatubo eruptions,
respectively (Zhu et al., 2016), while the data-derived RH dataset and TRENDY RH successfully captured such effects.

Thirdly, the linear model between total soil respiration and RH was developed based on forest ecosystems (Bond-Lamberty
et al., 2004; Hashimoto et al., 2015), which could be another uncertainty when applying this linear model to other ecosystems,

e.g. croplands and grasslands.
4.1.2 Comparison with TRENDY models

As data-derived RH dataset often serve as a benchmark for terrestrial biogeochemical models, the data-derived RH dataset
was compared with TRENDY models from 1980 to 2010. Although the data-derived RH dataset lied within the model range
(34.840.4 Pg C a* for ISAM to 59.940.6 Pg C a* for VISIT, Fig. 5a), the mean TRENDY RH was underestimated by 16%
compared to the data-derived RH dataset. Due to the different temporal trends among TRENDY models and their low spatial
correlations to the data-derived RH dataset (correlation efficiencies ranging from 0.06 to 0.72, Fig. 6b), TRENDY RH clearly
have different sensitivities to climate variations. Additionally, the difference in RH magnitude and spatial pattern varied
considerably, as shown by analysis of absolute distances and cross-correlations. This effect was mostly notable in tropical
areas in VISIT and CLM4 models (Figs. S4 and S5). This phenomenon may be associated to several reasons. Firstly, plant
functional types differed among TRENDY models. For example, the VEGAS model included four plant functional types (Zeng
et al., 2005), while the LPJ model defined ten plant functional types (Sitch et al., 2003).

Secondly, for each set of equations, constant vegetation parameters (e.g. photosynthetic capacity) were applied across time
and space for most TRENDY models, which may induce an RH bias. Model parameters using short-term observations do not
account for the inter-annual variability of climatic and soil conditions, generating a simplistic representation of RH due to the

inability to capture the response of RH to new environmental controls in short-term observations.
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Thirdly, models that do not consider nitrogen constraint could overestimate the increasing trend of RH, because nitrogen
limitation was globally observed (LeBauer and Treseder, 2008). This could explain why the CLM4 model with a nitrogen
constraint produced a much smaller increasing trend compared to other TRENDY models, with the exception of ISAM (Fig.
S7). Therefore, including soil nitrogen as a driving variable in modelling RH in this dataset had the advantage to detect the

nitrogen constrain on RH.

Fourthly, the lacking of the representation of human activities and agricultural management (e.g. fertilization and irrigation)
may underestimate RH, because fertilization and irrigation were important practices to increase RH (Chen et al., 2018; Zhou
et al., 2016). This could explain why five of seven TRENDY models could not explain the significant increasing change of

RH in middle China (Fig. S14), which experienced an intensive use of fertilization for food security in recent decades.

Finally, uncertainties and differences in model structures could also lead to inconclusive RH estimations. Although the same
climatic data, e.g. temperature and precipitation, were used for TRENDY models to reduce the uncertainty causing by various
meteorological forcings, systematic errors may be caused by applying a particular forcing and the errors might be propagated
to model outputs (Anav et al., 2015). Therefore, TRENDY models should be improved by incorporating more processes such
as nutrient constrains and an assessment of the model response to environmental variability (Keenan et al., 2012; Wang et al.,
2014; Yao et al., 2018b).

4.2 Linkage to global carbon balance

If assuming the global ratio of RH/total soil respiration ranged from 0.56 (Hashimoto et al., 2015) to 0.63 ((Bond-Lamberty
et al., 2018), annual soil respiration varied from 90.8 to 102.1 Pg C a’%, within the reported values of 83 to 108 Pg C a™* based
on recent studies (Bond-Lamberty and Thomson, 2010b; Hursh et al., 2017). This indirectly highlights the reliability of the
use of RF for global RH prediction. Moreover, these findings also have important indications to carbon balance estimations.
According to a recent NPP estimate from observations and IPCC report data (IPCC, 2013; Li et al., 2017), the global NPP
ranged from 61.5 to 60 Pg C a™, respectively. The residual between RH and NPP (net ecosystem production) was 2.8-4.3 Pg
C a, which is similar to the global estimates of net ecosystem production from the International Geosphere-Biosphere
Programme, which ranged from 1.9 to 4.1 Pg C a* from 1959 to 2016 (Le Qué&éet al., 2013; Le Qué&éet al., 2016; Le Qu&é
et al., 2014). With a 1°C increase in global MAT, RH will increase by 1.08 Pg C a* globally, and such increase is 0.23 Pg C
a! for 10 mm increment in global MAP. These findings indicate that carbon fluxes from the decomposition of soil organic
matter and litter (RH) maybe positively feedback to global climate change - typically characterized by the increasing

temperature and the changes in precipitation (IPCC, 2013).
4.3 Dominant factors in RH

Dominant factors driving RH varied spatially. As temperature and energy were the most limited climatic factors in high
latitude areas, temperature was a dominant factor for RH in high latitudinal regions above 50°N (Fig. 2d), with low

temperatures leading to low RH (Fig. 2a). Similarly, due to the limited amount of precipitation, RH in semi-arid areas was
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mainly controlled by precipitation, which was consistent with reported both field observations (Bai et al., 2008) and modelling
studies (Gerten et al., 2008). SWC control of RH in tropical areas could be explained by the mechanisms of RH. Excessively
high SWC can reduce the diffusion of oxygen, while excessively low SWCs could limit water and soluble substrate
availabilities, preventing microbial activities (Luo and Zhou, 2006; Xu et al., 2004). Suseela et al. (2012) proposed that RH
fluxes declined sharply when volumetric soil moisture reduced below ~15% or exceeded ~26%, which supported the findings
of the present study. However, it should be noted that dominant environmental controls on spatial carbon flux gradients might

vary among different years (Reichstein et al., 2007), such as with climatic extremes.
4.4 Temporal variability of tropical, temperate and boreal areas

RH in tropical areas did not exhibit a significantly temporal pattern between 1981 and 2010 (Fig. S8, p = 0.362), indicating
that in our model, climate change did not affect RH fluxes in these areas. However, RH in boreal and temperature areas
experienced significant increasing trends of 0.02040.004 and 0.00740.002 Pg C a?, respectively (Fig. S7), suggesting that a
positive feedback may occur with climate change. Tremblay et al. (2018) proposed that the increased RH was mainly related
to the increasing temperature in boreal forest soils, which supported the findings of the present study. It should be noted that
both the data-derived RH dataset and Hashimoto/TRENDY RH in boreal areas showed a temporally increasing trend from
1981 to 2010, although the magnitude of increase differed (Fig. S9). Furthermore, despite the ISAM model showing a
decreasing trend for temperate and tropic regions, the ISAM model had an increasing trend in RH from 1981 to 2010 in boreal
areas (Fig. S9). These results indicate that boreal regions are becoming increasingly important in global carbon cycling and
that the increasing trend may continue due to a large amount of carbon stored in soils. Therefore, climate change may
fundamentally alter carbon cycling in boreal areas through changes in the decomposition rate of soil organic matter (Crowther
et al., 2016; Hashimoto et al., 2015; Schuur et al., 2015). Furthermore, the response of RH to climate variability varied with

climate zone, indicating that different carbon loss rates from RH will occur in different regions to climate change.
4.5 Advantages, limitations and uncertainties

Based on the updated SRDB database, we used a RF algorithm to predict the spatial- and temporal-patterns of RH at the
global scale and its response to environmental variables, and the data-derived RH could serve as a benchmark for terrestrial
biogeochemical models and reduce RH uncertainties. This data-derived RH dataset provided several advantages to the
estimation of global RH compared to previous studies, e.g. Hashimoto et al. (2015) and Konings et al. (2019). Firstly, we
compiled up-to-date field observations from SRDB and Chinese peer-review literatures up to March 2018, including 504
observations in total covering the majority global terrestrial ecosystems and climate zones (Fig. 1). Secondly, total RH and its
inter-annual variability were assessed for boreal, temperate and tropical zones — three main global climate zones. Analysis
from the data-derived RH dataset further concluded that RH in different climate zones responded differently to global climate
change. Thirdly, we applied the RF to predict and mapped RH at the global scale using climate and soil predictors. Compared

to the linear regression analysis for predicting soil respiration (as no such global RH predictions were previously available for
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comparison) with model efficiencies of <50% (Bond-Lamberty and Thomson, 2010b; Hashimoto et al., 2015; Hursh et al.,
2017), the RF algorithm achieved a higher model efficiency of 50%. In addition to a feature selection according the importance
value of each variable and avoiding overfitting (Bodesheim et al., 2018; Jian et al., 2018), the RF algorithm improved RH
modelling accuracies and reduced uncertainties. Meanwhile, the data-derived RH dataset was cross-validated globally by a
10-fold cross-validation (see “materials and methods” section), which could improve its reliability and feasibility compared to
TRENDY based RH that were not validated and calibrated by field observations, bridging the knowledge gap between local,

regional and global scales temporally and spatially with a large number of empirical field measurements.

However, although the data-derived RH dataset could be used as a benchmark for the verification of global carbon cycle
modelling, bridging the knowledge-gaps between local, regional and global scales, few uncertainties and limitations still
remained. Firstly, the RF algorithm constructed a model based on the training dataset and was typically data limited in terms
of quantity, quality and representativeness. Uneven data distribution has been a known issue in many ecological studies across
the world, e.g. Bond-Lamberty and Thomson (2010b), Jung et al. (2011), Xu and Shang (2016) and Yao et al. (2018a). The
RH observations were mainly from China, Europe and North America, while there were a lack of RH observations in Russia,
Africa, Australia and Southwestern Asia in our study. Thus the uneven coverage of the observations was an important source
of uncertainty to develop the data-derived RH dataset, which may cause a bias of the RF model towards the areas with more
observations. However, our dataset covered a large climatic and edaphic gradient covering the major land covers and climate
zones. Therefore, in future studies, increasing field observations in unsampled areas should greatly improve our ability to

evaluate spatial- and temporal-patterns of RH at the global scale and model global carbon cycle to climate change.

Secondly, the misrepresentation of human activities, particularly regarding to land management and land use change, could
result in uncertainties in RH (Bond-Lamberty et al., 2016; Tang et al., 2016). These human activities include both site-level in
situ information and the corresponding global grids. Otherwise, such information must not be included as corresponding site
information or globally gridded datasets are missing or insufficient. Although soil organic carbon stock, soil nitrogen content,
SWC and shortwave radiation were selected as inputs for the development of the RF model, which could partly capture land
use change, the impacts of land use change on the inter-annual variability of RH have not been fully qualified in the present

study. Therefore, further efforts are required to characterize and quantify the effects of land use change on the global RH.

Thirdly, the date-derived RH dataset was derived at an annual timescale, which may cause an additional uncertainty
regarding to the inter-annual variability of RH. Therefore, the need for a larger number of global observations and to develop
finer-scale temporal dynamics need further exploration, in combination with remote-sensing measurements and field
observations, which may provide new insights into terrestrial ecosystem carbon dynamics at the global scale. Besides, without
consideration of the temporal changes of soil organic carbon content from 1980 to 2016 might be another uncertainty because
the increase of productivity driven by CO; fertilization would increase litter input into soils. However, there is a lack of sail
organic carbon content that considering its temporal changes based on observations, which has constrained the further analysis

of the effects of the temporal changes of soil organic carbon content on RH.
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Finally, we developed a global RH at a half-degree spatial resolution, which included a scale mismatch between the
observations and global gridded variables. This could be a great challenge for spatial modelling and using global gridded
variables with a finer resolution is encouraged to overcome this limitation (Xu and Shang, 2016). On the other hand, the study
sites were globally distributed and there was a large climatic and edaphic gradient covering the major land covers and biomes,

which should reflect a larger variability than the site-to-grid mismatch.
5 Data availability

The developed globally gridded RH database, the field RH observation dataset and R codes to produce the main results are
publicly free for scientific purpose, which can be downloaded at https://doi.org/10.6084/m9.figshare.8882567 (Tang et al.,
2019a).

6 Conclusions

Data-derived global RH dataset may be used as a benchmark for terrestrial biogeochemical models, however, no such study
has yet been conducted to assess the global variability in RH using a large dataset of empirical measurements to bridge the
knowledge gap between local, regional and global scales. To fill this knowledge gap, we developed a globally gridded RH
dataset, which was 0.5° x<0.5° from 1980 to 2016 with an annually temporal resolution, using a RF algorithm by linking field
observations and global variables. Robust conclusions include: (1) Annual mean RH was 57.240.6 Pg C a* between 1980 and
2016, with an increasing trend of 0.03620.007 Pg C a2, indicating an increase in carbon loss from soils to the atmosphere; (2)
Significant temporal trends were observed in the RH in boreal and temperate areas, although none were found in tropical
regions. This indicates that the temporal trend in RH varied with climate zones, highlighting their different sensitivities to
climate change; (3) The magnitude and dominant factors of the data-derived RH TRENDY RH varied greatly, indicating that
future efforts should focus on improving the representation of RH and its response to environmental variability in terrestrial
biogeochemical models; (4) More field observations are required in areas with limited observational datasets, with the
integration of smaller-scale temporal dynamics (rather than annual timescales) potentially providing new insights into
terrestrial ecosystem carbon dynamics at the global scale; (5) The data-derived RH dataset could serve as a benchmark to
constrain the terrestrial biogeochemical models, further contributing to improve our understanding of the mechanisms of global

soil carbon dynamics.
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Figure 1. Distributions of the study sites for RH observations.
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Figure 2. Spatial patterns of (a) mean data-derived RH (b) standard deviations, (c) temporal trends of annual heterotrophic

respiration (RH) from 1980 to 2016, while (d) dominant environmental drivers for the inter-annual variability of global RH.

MAT = mean annual temperature; MAP = mean annual precipitation; SWC = soil water content.
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Figure 3. Comparing data-derived RH dataset with Hashimoto RH (a, c) and mean RH of TRENDY models (b, d) based on

absolute distances (g C m?2a, a, b) and cross-correlations (c, d). The absolute distances and cross-correlations were calculated

using comparison map profile method (Gaucherel et al., 2008).
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Figure 4. Inter-annual changes in global heterotrophic respiration (RH) from 1980 to 2016. The grey area indicates 95%
confidence intervals. For the linear regression model, R? = 0.429 and p < 0.01.
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715 Figure 6. The relationships between heterotrophic respiration (RH) and mean annual temperature (a) or precipitation
anomalies (b). The change was calculated as the difference of each given year to the average over 1980 to 2016. Grey areas

indicate 95% confidence intervals.
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