Dear Editor,

Please find enclosed the revised manuscript (Manuscript ID: essd-2019-122) entitled "Temporal inventory of glaciers in the Suru sub-basin, western Himalaya: Impacts of the regional climate variability". On behalf of all the authors, I would like to thank the editorial team of the Earth System Science Data for timely processing of the manuscript and two anonymous referees for their critical reviews and the following constructive suggestions for improving the original manuscript:

- Enhance the climate study by incorporating error statistics, comparative analysis of used gridded data with in-situ data and explanation for the obtained trends.
- Revise the figures so that the readers could better relate the text with the respective figures and avoid confusion.
- Incorporate statistical significance of non-climatic parameters (size, debris cover, elevation, slope) to explain the effect of spatial characteristics on LR and GHR glaciers.
- Add more data from the field to ensure data consistency.

In line with the listed major suggestions, we have addressed to all the comments and now revised the manuscript accordingly:

- Climate study is enhanced by adding meteorological data (temperature and precipitation) derived from nearby stations of Kargil and Leh (IMD and the changes have been incorporated in the revised manuscript.
- Figures: 3, 6 and 7 (revised manuscript) have been simplified and updated as suggested by the reviewers.
- Statistical tests of the non climatic factors (size, slope, mean elevation, debris cover) have now been performed and incorporated in the revised manuscript.
- Field data obtained from other glacier has been incorporated in the revised manuscript.

Our responses to the Reviewers comments and revised manuscript are attached with this letter. I confirm that all the authors have approved the submission of this manuscript and it is not currently under consideration for publication elsewhere.

Thanks for your consideration.

Yours Sincerely,

Aparna Shukla
Response to the comments on "Temporal inventory of glaciers in the Suru sub-basin, western Himalaya: Impacts of the regional climate variability" by Shukla et al., 2019

Referee # 1:

Comment 1: Long-term climate data presentation and analysis needs attention. Page 8, Line 183; Mean precipitation of the SSB for the period 1901-2017 has been 393 ±76 mm. However, if we see plots in figure 3(d), 3(e) and 3(f), monthly mean precipitation for the same period are quite high indicating high precipitation during the same period.

Response 1: Thanks for pointing out. The annual average precipitation for the Suru sub-basin amounts to 393 ±76 mm during the period 1901-2017. However, the monthly mean precipitation values during the same period had been overestimated due to computational error. This error was introduced due to the variance in formats available for the CRU-TS derived precipitation data and hence was mistaken with the other format (mm/day). The error has now been rectified in the revised manuscript (Page 8; Figure 3d, 3e & 3f). The revised figures (3d, 3e, 3f) show monthly mean precipitation (Jan-Dec) variations of 33 ±14 mm/month in the entire Suru sub-basin, while 37 ±15 mm/month and 30 ±12 mm/month in the GHR and LR, respectively during the period 1901-2017.
Figure 3 (revised manuscript): Annual and seasonal variability in the climate data for the period 1901-2017. (a), (b) and (c) 5 year moving average of the mean annual precipitation (mm) and temperature (°C) recorded for 5 grids covering the glaciers in the entire Suru sub-basin (SSB), Greater Himalayan Range (GHR) and Ladakh Range (LR) (sub-regions), respectively during the period 1901-2017. The light and dark grey colored lines depict the respective trend lines for precipitation and temperature conditions during the period 1901-2017. (d), (e) and (f) Monthly mean precipitation and temperature data for the entire SSB, GHR and LR (sub-regions), respectively for the time period 1901-2017.

Comment 2: Figure 3(a), 3(b) and 3(c) shows continuous increase in the temperature during the period 1995-96 onwards till 2005-06. It shows sudden change in the temperature pattern. The reason for the sudden shift in temperature pattern should be discussed. It will be interesting to see the temperature pattern of the IMD recorded data at Leh or any other in-situ recorded data in the study region during the same period.

Response 2: Agreed. The mean annual temperature depicted in figure 3(a), 3(b) and 3(c) shows an overall increase of 0.71°C, 0.72°C, 0.71°C in the Suru sub-basin, GHR and LR, respectively, during 1995/96 till 2005/06 period as mentioned by the referee. The globally averaged combined land and ocean surface temperature data of 1983-2012 period is considered as the warmest 30-year period in the last 1400 years (IPCC, 2013). This unprecedented rate of warming has been primarily attributed to the rapid scale of industrialization, increase in regional population and anthropogenic activities prevalent during this time period (Bajracharya et al., 2008; IPCC, 2013). Thus, one of the probable reason for this sudden increment in temperature pattern is possibly due to the greenhouse effect from enhanced emission of black carbon in this region (by 61%) from 1991-2001 (Sahu et al., 2008). Evidences of incessant increase in temperature during 1990s have also been observed (through chronology of Himalayan Pine) from the contemporaneous surge in tree growth rate (Singh and Yadav 2000). In fact, 50% of the years since 1970 have experienced considerably high solar irradiance and warm phases of ENSO, which is possibly one of the reasons for the considerable rise in temperature throughout the Himalaya (Shekhar et al., 2017). The same has now been discussed in the revised manuscript as suggested (Page: 19, lines: 502-512).
Due to the unavailability of in-situ climate dataset for the Suru sub-basin, station data is obtained from nearest stations of Kargil and Leh and compared with the CRU-TS derived data for the entire Suru sub-basin during 1901-2002 period.

Figure R1(Figure 4 of the revised manuscript): Mean annual temperature and precipitation patterns of CRU-TS derived gridded data and IMD recorded station at different locations.

The mean annual temperature pattern of Suru sub-basin shows a near decreasing trend till 1936, with an increase thereafter. Similar trends have been observed for Kargil and Leh, despite their distant location from the Suru sub-basin (areal distance of Kargil and Leh is ~63 and 126 km, respectively from the centre of Suru sub-basin). However, it is noteworthy to mention that all the locations had attained maximum mean annual temperature in 1999 (Suru: 2.02°C; Kargil: 6.84°C; Leh: -0.5°C).

Indeed, these results are interesting and we observe an almost similar trend in all the cases (Figure R1), with an accelerated warming post 1995/96. However, the magnitude varies, with longterm mean annual temperature of 0.9, 5.5 and -2.04°C observed in Suru sub-basin, Kargil and Leh, respectively (Figure R1). While the change (increase) in mean annual temperature observed during the same period, i.e., 1901-2002 is found to be 0.34, 0.13 and 0.44 °C in Suru sub-basin, Kargil and Leh, respectively. The possible reason for this difference in their magnitudes could possibly be attributed to their distinct geographical locations and difference in their nature, with former being point, while latter being the interpolated gridded data.

Comment 3: A comparison of the CRU data with in-situ (temperature and precipitation) in the study region will provide information about the biases in the CRU data.
Response 3: Agreed. Due to the unavailability of meteorological observatories in the Suru sub-basin, station data is obtained from nearest available IMD sites, i.e., Kargil and Leh and compared with their respective CRU-TS data (mean annual temperature and precipitation).

![Figure R2](Image)

Figure R2 (Figure 5 of the revised manuscript): Analysis of meteorological (mean annual temperature and precipitation) datasets derived from Indian Meteorological Department (IMD) stations at (a) Kargil & (b) Leh and the respective [(c) Kargil and (d) Leh] gridded data obtained from climate research unit (CRU)-time series (TS).

Though varying in magnitude, the climate data obtained from IMD as well as CRU-TS suggest almost similar trends of temperature and precipitation during the period 1901-2002 for both Kargil and Leh (Figure R2). The annual mean temperature/precipitation have amounted to 5.5°C/589 mm (IMD) and 2.4°C/315 mm (CRU-TS) in Kargil, while -2.04/279 mm (IMD) and -0.09/216 mm (CRU-TS) in Leh during the period 1901-2002 (Figure R2). We observed that climatic variables show lower magnitude in case of CRU-TS as compared to the station data from IMD (except CRU-TS derived temperature data recorded for Leh). The possible reason for this difference between CRU-TS and station data can primarily be attributed to the difference in their nature, with former being point, while latter being a gridded data (0.5° latitude and
longitude grid cells). This analysis aptly brings out the bias in the CRU TS gridded data. Majorly the comparison shows that though the gridded data correctly bring out the temporal trends in meteorological data but differ with station data in magnitude (being on lower side than the station estimates). This helps us better appreciate the climate variations in the Suru sub-basin as well, since we learn that the reported temperature and precipitation changes are probably on the lower side of the actual variations.

This analysis has been incorporated in the climate analysis section of the revised manuscript (Page: 11-13; lines: 276-308).

Comment 4: Page 13, Line 339; How authors will explain the mean slope variation of 16.2° ±71° to 41° ±66°?

Response 4: Thanks for pointing it. In this study, range of slope was reported initially depicting minimum and maximum variations in the overall data, i.e., in 16.2° ±71°, 16.2° was the average minimum slope and 71° was the deviation in this minimum slope considering the entire basin. Similarly, in 41° ±66°, 41° was the average maximum slope while 66° was the deviation in this maximum slope considering the entire basin. However, we now realize this form of data representation misleading. Therefore, the mean slope of the GHR and LR glaciers have now been mentioned, which has varied from 24 ±6° to 25 ±6°, respectively. The same has now been incorporated in the revised manuscript (Page: 15, Line: 380).

Comment 5: Figure 4(a) Frequency distribution histogram depicting maximum frequency in the percent area change between 0.52-0.97. How it concludes that majority of the glaciers have undergone an area loss of 3.3%.

Response 5: The statement mentioning that the majority of the glaciers have undergone area change of 3.3% was based on mid-point of a legend category (0.8-6%) as shown in the chloropleth map. This was misleading as the categories of percent area change depicted in histogram differed from those shown in the chloropleth map. However, now we have simplified the histogram and the chloropleth map by keeping same divisions (range of percent area change) for both.
In the revised Figure 6a, it may be observed that majority of the glaciers have undergone area change of the range 6-12% and same is depicted in the chloropleth.

Figure 6 (revised): (a) Percent area loss of the glaciers in the SSB during the period 1971-2017. Frequency distribution histogram depicting that majority of the glaciers have undergone an area loss in the range 6-12%. (b) Hypsometric distribution of glacier area in the GHR and LR regions.
during the period (I) 1971-2000 and (II) 2000-2017. (A), (B), (C) and (D) insets in (II) shows the significant change in area at different elevation range of the GHR and LR glaciers.

Comment 6: Figure 5; Majority of the glaciers have undergone length change of 5% is not seen in the frequency distribution histogram.

Response 6: The statement mentioning that the majority of the glaciers have undergone length change of 5% was based on mid-point of a legend category (0.9-8%) as shown in the chloropleth map. This was misleading as the categories of percent length change depicted in histogram differed from those shown in the chloropleth map. However, now we have simplified the histogram and the chloropleth map by keeping same divisions (range of percent length change) for both.

In the revised Figure 7, it may be observed that majority of the glaciers have undergone length change of the range 6-14% and same is depicted in the chloropleth.
Figure 7 (revised): Percent length change of the glaciers in the SSB during the period 1971-2017. Frequency distribution histogram showing that majority of the glaciers have undergone length change in the range 6-14%.

Comment 7: What could be the possible reasons of decrease in SLA in LR glaciers despite of increase in temperature and retreat in glacier length in the region?

Response 7: Yes, if we simply try to equate the absolute temperature change in LR with the overall SLA and/or length changes observed in this region then the results might seem counter-intuitive. However, such is not the case. While SLA [often used as a reliable proxy for glacier mass balance changes (Guo et al., 2014)] responds directly to the changes in meteorological variables mostly temperature, length changes or retreat are much delayed response of the glaciers towards climate change (Bolch et al., 2012; Paul et al., 2017). Besides, glacier retreat is often strongly influenced by the local snout characteristics and conditions such as presence of proglacial lakes, supraglacial debris coverage and differential shadowing (Sakai, 2012; Shukla and Qadir, 2016; Garg et al., 2017). For these reasons, SLA and retreat trends may not always be in-sync.

Coming to the reported increase in temperature in the LR, this increase has been estimated using following formulation which takes into account longterm mean and trends of entire temperature data series in the form of Sen’s slope.

\[
\text{Change in Temperature and Precipitation} = \left(\beta \ast L \right)/M
\]

where \(\beta \) is Sen's slope estimator, \(L \) is length of period and \(M \) is the long term mean.

Contrary to this, the reported SLA changes are simple difference between the average SLAs of 1977 and 2017. Thus, the SLA changes seem counter-intuitive to the temperature variations and do not correlate well with it. However, if we break this long time frame of 40 years (1977–2017) into shorter time periods then we find that the SLA in LR had been responding excellently to the ongoing temperature changes (Table R1). Also, the SLA and temperature changes have, as expected, high negative correlation with each other (i.e., -0.82).

Table RT1: Period wise variations in SLA of the LR glaciers and changes in temperature conditions during the corresponding time interval.
<table>
<thead>
<tr>
<th>Time Period</th>
<th>SLA change (m)</th>
<th>Temperature change (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1977-94</td>
<td>12.55</td>
<td>Decrease in temp by 0.11</td>
</tr>
<tr>
<td>1994-2000</td>
<td>-103.31</td>
<td>Increase in temp by 0.71</td>
</tr>
<tr>
<td>2000-17</td>
<td>108.96</td>
<td>Increase in temp by 0.02</td>
</tr>
</tbody>
</table>

Where, (-ve) sign: rise in SLA, (+ve) sign: decrease in SLA

Comment 8: Page 16; Line 405; there is a large difference in the number of glaciers reported in the sub basin by earlier researchers and reported in the present paper. It needs discussion and possible reasons. Is there any difference in defining a glacier?

Response 8: Statistics of the year 2000 reveal a total of 240 glaciers in the Suru sub-basin (Page 16; Line: 404 of the original manuscript). This is, though comparable with that reported by Sangewar and Shukla, (2009) i.e. 284, varies drastically from SAC report, (2016) and RGI (2 different analysts) [110 and (514 & 304), respectively]. One possible reason could be the difference in methodology adopted for glacier delineation leading to systematic errors (Page: 16; Lines: 410-411 of the original manuscript). Secondly, the involvement of multiple analysts may introduce random errors, as in case of RGI (Page: 16; Lines: 411-412 of the original manuscript).

Yes, as already pointed out there is a difference in defining a glacier in these studies, which is yet another plausible reason for introducing the bias in the glacier count. RGI have provided separate glacier id to each polygon in the Sub-basin, which might be the reason for overestimation of glaciers. While no such information regarding the definition of glacier has been provided in the SAC report, (2016). However, in this study, the glacierets / tributary glaciers contributing to the main trunk are considered as a single glacier entity, which is a standard procedure for assigning the glacier id. The statement was somehow missing from the original manuscript which would have created the confusion, therefore, now it has been incorporated in the revised manuscript (Page 10, lines 239-240).

Comment 9: Page 18, Line 462; statement 'However a sudden decrease in the precipitation anomaly is observed in the year 2016 with an increase thereafter', it is not clear to me that Figure 3(a), (b) and (c) are showing 'precipitation' or 'precipitation anomaly'? Year 2016 is missing in the Figure.
Response 9: Figure 3(a) (b) and (c) are showing '5 year moving average of average annual precipitation'. The statement mentioned in the original manuscript regarding ‘precipitation anomaly’ was previously included in the graphs. However, these graphs were changed (with different mode of representation) later owing to more information shown by present graphs included in the manuscript (Figure 3). These lines should have been removed from the text as well. We regret their inclusion. The vertical bars show 5 year moving average of mean annual precipitation during the period 1901-2017.

Comment 10: Page 18, Line 462-463; statement regarding mean annual precipitation is not clear if I look at Figure.

Response 10: Similar to Response 9

Comment 11: Page 18, Line 463-464; ‘temperature and precipitation anomaly' not understood.

Response 11: Thanks for pointing out. The statement mentioned in the original manuscript regarding ‘temperature and precipitation anomaly’ was previously included in the graphs. However, these graphs were changed (with different mode of representation) later owing to more information shown by present graphs included in the manuscript (Figure 3). These lines should have been removed from the text as well. We regret their inclusion. The statement has now been edited to "Besides these general trends in mean annual temperature and precipitation, an overall absolute increase in the mean annual temperature (T_{max} & T_{min}) and precipitation data have been noted as 0.77 °C (0.25 °C & 1.3 °C) and 158 mm, respectively during the period 1901-2017" (Revised manuscript; Page 19; lines 512-514).

Comment 12: It is advised to draw a trend line for temperature and precipitation variation in Figure 3.

Response 12: Thanks for the suggestion. A trend line for temperature and precipitation variations have now been added in Figure 3 of the revised manuscript.

Comment 13: Page 18, Line 466; 'Percentage increase in the average, maximum and minimum temperature observed to be 99,12 and 17%', generally temperature variation is not shown in percentage. I will give an example, if mean temperature varies from 0.1°C to 0.2°C for one year and next year it drops to 0.1°C again, should one conclude that temperature variation was 100%
increasing for the first year and 100% decreasing for next year. Statement will be misleading, since the temperature variation was minimal. If the unit of temperature changes from °C to K, then still the statement will hold good? It is advised not to represent temperature variation in % throughout the manuscript.

Response 13: Agreed. As suggested, we have now reported the temperature and precipitation changes in absolute form rather than in percentage.

Referee #2:

General comments:

Comment GC1: The study by Shukla et al. entitled, "Temporal inventory of glaciers in the Suru sub-basin, western Himalaya" provides very useful data sets of glaciers in the Suru sub-basin in Western Himalaya that are very useful for better understanding the status and fate of the glaciers in the Western Himalaya. The data and manuscript quality is good, except that it would require a major revision to make it in the framework of data paper. Currently, larger focus is on the scientific implications of the data, which is not focus of the journal. While authors have also followed standard methods to process and analyze the data, the methods are not unique.

Response GC1: We agree with your opinion regarding focus of the journal, which aims at publishing articles with original research dataset having the potential to contribute significantly towards the field of Earth Science. In line with the intent of the journal:

1. We have prepared a multi-temporal inventory for four different time periods, which in itself is unique and scarce in the Himalayan region. Apart from addressing the discrepancies, this research also aims to update the data presented in existing inventories (of Suru sub-basin) in order to have a recent and more accurate estimate of glaciers.
2. Inherent data characteristics (glacier area, length, debris cover and snow line altitude changes) have also been assessed to understand the spatial and temporal variability of the glaciers in response to the climate change.
3. Besides, the response of glaciers in Suru sub-basin has also been assessed with respect to other basins of the Himalaya to develop a regional picture.
4. The influence of factors other than climate such as glacier size, regional hypsometry, elevation range, slope, aspect and presence of proglacial lakes have also been evaluated to understand the heterogeneous response of the glaciers.

To accomplish our objectives, a hybrid methodology is adopted, in which the snow-ice boundaries are mapped using a semi-automatic technique of NDSI and debris coverage through manual digitization. Similar methods of glacier mapping have been employed in other glaciological studies (Bolch et al, 2010; Bhambri et al., 2011; Frey et al., 2012; Chand and Sharma, 2015; Mir et al., 2017; Murtaza and Romshoo, 2015; Molg et al., 2018). In addition, methods have also been employed for estimation of uncertainties which might have introduced from various sources (Hall et al., 2003; Granshaw and Fountain, 2006; Paul et al., 2013;17).

Comment GC2: Overall, large amount of digitization work has been done for this study. However, the Suru basin is a small sub-basin of the Indus river basin, with only 11% of its area is covered with glaciers. So the authors need to substantially revise the manuscript to be useful as a regional representative of Western Himalayan glaciers. Considering the unique scope of the journal, it would therefore, require that the authors to incorporate similar dataset from other distinct basins of Upper Indus Basin to make it more regionally relevant.

Response GC2: Thanks for the suggestion. Suru is actually a sub-basin of Jhelum river basin, which comprises an overall basin area of 50,844 km² and glacierization of mere 1.4% (733 glaciers) (Bajracharya et al., 2019). In this respect, the Suru sub-basin covers ~9% basin area and 34% glacier count of the entire Jhelum river basin. The prime reason for selection of this very sub-basin for our study purpose was its significant amount of glacier coverage with respect to the entire basin size of the Jhelum.

Despite, low percentage coverage (11%), glaciers in the Suru sub-basin show large scale variability locally as well as regionally. Also, the study is unique in itself, as it presents a long time series data of glacier changes and climate patterns, which helps in developing a comprehensive understanding of glacier response on the basin scale (i.e. Suru sub basin). Moreover, existing inventories of the Suru sub-basin as mentioned in the manuscript (Page 4; lines:132-136 of the original manuscript) have disparate estimates which need updation. Besides, the Suru sub-basin covers part of two major ranges, i.e., the Greater Himalayan (GHR) and the
Ladakh (LR) range, which helps in understanding the existing intra-regional heterogeneity in glacier response and compare it with other basins as well.

The datasets in the manuscript have been processed using a hybrid methodology: Normalized Differential Snow Index (NDSI) for delineation of ice and snow covered boundaries and manual editing for debris cover (Page 10; lines: 231-232 of the original manuscript). The debris cover boundary is manually delineated as no apt technique has been developed till date, which could extract it automatically using optical satellite images. Moreover, we have also taken assistance of thermal and slope maps for manual digitization of the debris cover boundaries. Similar mapping methodology has been followed by several researchers (Bolch et al., 2010; Chand and Sharma, 2015; Mir et al., 2017; Molg et al., 2018).

Specific comments:

Comment 1: Unlike Karakoram, the Ladakh Range is not a well known nomenclature. Chudley et al., (2017) have used the Karakoram and Ladakh range, not differentiated about Karakoram and GHR. Mir et al. (2018) have represented it as a part of the GHR. It is therefore, important to define/clarify the same.

Response 1: We agree that the Ladakh range was not a well known nomenclature in the field of glaciology, however, is well recognized in studies pertinent to Himalayan geology (Raz and Honegger, 1989; Weinberg and Dunlap, 2000; Kirstein et al., 2006; St-Onge et al., 2010; Borneman et al., 2015). Nevertheless, such studies have now become prevalent in glaciology as well, with increase in the number of studies in this region (Schmidt and Nusser, 2012; 2017; Chudley et al., 2017).

Chudley et al., (2017) have considered the central and eastern Ladakh range as their research area and have shown that the response of glaciers in these regions is consistent with that in the western Himalaya (to the south), however in contrast to the Karakoram (to the north) Himalaya (Figure R3). In this scenario, our study area covers part of southern Ladakh range (33°54´ to 34°21´ N and 76°00´ to 76°36´ E) and part of Greater Himalayan range (33°43´ to 34°19´ N and 76°37´ to 76°18´ E), lying at the northernmost end of Zanskar range.
Mir and Mazeed, \textit{(2016)}, on the other hand, have conducted their study on the Parkachik glacier located in the Suru sub-basin. Similar to our study, they have also included the Parkachik/Kangriz glacier in the GHR (Figure 1 of the original manuscript).

\textbf{Comment 2:} The accuracy of CRU-TS data is not analysed independently. It is critical as the Fig. 3 data looks bit unrealistic. The temperature data indicate dramatic changes after 1990, which needs to be confirmed. Since India Met Department has long term station data in this region as well as gridded data (http://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html), it is critical to check the data consistency and conduct error statistics.

\textbf{Response 2:} Thanks for pointing out. In Fig.3 of the original manuscript, the monthly mean precipitation values during the period 1901-2017 had been overestimated due to computational error. This error was introduced due to the variance in formats available for the CRU-TS derived precipitation data and hence was mistaken with the other format (mm/day). The error has now been rectified in the revised manuscript (Page 8; Figure 3d, 3e & 3f). The revised figures (3d, 3e,
3f) show monthly mean precipitation (Jan-Dec) variations of 33 ±14 mm/month in the entire Suru sub-basin, while 37 ±15 mm/month and 30 ±12 mm/month in the GHR and LR, respectively during the period 1901-2017.

As rightly indicated by the reviewer, a drastic increase in the mean annual temperature is noticed post 1990, especially from 1995/96 till 2005/06. The mean annual temperature as depicted in figure 3(a), 3(b) and 3(c) shows an overall increase of 0.69°C, 0.66°C, 0.71°C in the Suru sub-basin, GHR and LR, respectively, during period 1990-2017. In fact, the globally averaged combined land and ocean surface temperature data of 1983-2012 period is considered as the warmest 30-year period in the last 1400 years (IPCC, 2013). This unprecedented rate of warming has been primarily attributed to the rapid scale of industrialization, increase in regional population and anthropogenic activities prevalent during this time period (Bajracharya et al., 2008; IPCC, 2013). Thus, one of the probable reason for this sudden increment in temperature pattern is possibly due to the greenhouse effect from enhanced emission of black carbon in this region (by 61%) from 1991-2001. Evidences of incessant increase in temperature during 1990s have also been observed (through chronology of Himalayan Pine) from the contemporaneous surge in tree growth rate (Singh and Yadav 2000). In fact, 50% of the years since 1970 have experienced considerably high solar irradiance and warm phases of ENSO, which is possibly one of the reasons for the considerable rise in temperature throughout the Himalaya (Shekhar et al., 2017).

In order to check data consistency, we have taken up instrument data from nearest stations of Kargil and Leh (due to the unavailability of meteorological stations in the Suru sub-basin) and compared with the CRU-TS derived data for the entire Suru sub-basin during 1901-2002 period (Figure R1).

The mean annual temperature pattern of Suru sub-basin shows a near decreasing trend till 1936, with an increase thereafter. Similar trends have been observed for Kargil and Leh, despite their distant location from the Suru sub-basin (areal distance of Kargil and Leh is ~63 and 126 km, respectively from the centre of Suru sub-basin). However, it is noteworthy to mention that all the locations had attained maximum mean annual temperature in 1999 (Suru: 2.02°C; Kargil: 6.84°C; Leh: -0.5°C).
The results are interesting and we observe an almost similar trend in all the cases (Figure R1), with an accelerated warming post 1995/96. However, the magnitude varies, with long-term mean annual temperature of 0.9, 5.5 and -2.04°C observed in Suru sub-basin, Kargil and Leh, respectively (Figure R1). The possible reason for this difference in their magnitudes could possibly be attributed to their distinct geographical locations and difference in their nature, with former being point, while latter being the interpolated gridded data.

Also, we have used the station data, obtained from nearest available IMD sites, i.e., Kargil and Leh and compared with their respective CRU-TS data (mean annual temperature and precipitation).

Though varying in magnitude, the climate data obtained from IMD as well as CRU-TS suggest almost similar trends of temperature and precipitation during the period 1901-2002 for both Kargil and Leh (Figure R2). The annual mean temperature/precipitation have amounted to 5.5°C/589 mm (IMD) and 2.4°C/315 mm (CRU-TS) in Kargil, while -2.04/279 mm (IMD) and -0.09/216 mm (CRU-TS) in Leh during the period 1901-2002 (Figure R2). We observed that climatic variables show lower magnitude in case of CRU-TS as compared to the station data from IMD (except CRU-TS derived temperature data recorded for Leh). The possible reason for this difference between CRU-TS and station data can primarily be attributed to the difference in their nature, with former being point, while latter being a gridded data (0.5° latitude and longitude grid cells). This analysis aptly brings out the bias in the CRU TS gridded data. Majorly the comparison shows that though the gridded data correctly bring out the temporal trends in meteorological data but differ with station data in magnitude (being on lower side than the station estimates). This helps us better appreciate the climate variations in the Suru sub-basin as well, since we learn that the reported temperature and precipitation changes are probably on the lower side of the actual variations.

Comment 3: Considering the large uncertainty involved in Landsat MSS data, it is important to mention the inherent uncertainties while interpreting the temporal variability. Table 1: include the Scene ID for clarity.

Response 3: We agree with the reviewer. Despite large uncertainties involved in Landsat MSS dataset, we have utilized it to compensate for the data gap in the Corona imageries (covering 40% of the GHR and 58% of the LR glaciers). Previous studies have frequently utilized the
Landsat MSS imagery for glacier mapping and analysis for the 1970s period (Pandey and Venkatraman, 2013; Rai et al., 2013; Shangguan et al., 2014; Thakuri et al., 2014; Brahmbhatt et al., 2015; Shukla and Qadir, 2016; Mir et al., 2017). Moreover, we have also accounted for uncertainties using prevalent methods [area and length change uncertainty by Hall et al., (2003) and mapping uncertainty using buffer method by Granshaw and Fountain, (2006)] associated with glacier changes (area and length) using Landsat MSS data and also incorporated the same in the original manuscript (Table 2).

In addition to this, we have now taken 2 glaciers, GL-157 (small, 5.5 km²) and Kangriz glacier (largest, 53 km²) and digitized their boundaries using both the Corona and Landsat MSS imageries. On comparing the glacier boundaries using the two datasets, we noticed that higher uncertainty is associated with the GL-157 (22%) as compared to the Kangriz glacier (0.1%). Considering this, we could say that, though larger in magnitude the uncertainty estimates using Landsat would not affect GHR glaciers much (comparatively larger in size) as compared to the LR (smaller in size) glaciers.

As suggested, the Scene IDs have now been incorporated with the Table 1.

Table 1 (revised manuscript): Detailed specifications of the satellite data utilized in the present study. GB= glacier boundaries, DC=debris cover

<table>
<thead>
<tr>
<th>S. no</th>
<th>Satellite sensors(Date of acquisition)</th>
<th>Remarks on quality</th>
<th>Scene Id</th>
<th>RMSE error</th>
<th>Registration accuracy (m)</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Corona KH-4B (28 Sep 1971)</td>
<td>Cloud free</td>
<td>DS1115-2282DA056/ DS1115-2282DA055/ DS1115-2282DA054</td>
<td>0.1</td>
<td>0.3</td>
<td>Delineation of GB</td>
</tr>
<tr>
<td>2.</td>
<td>LandsatMSS (19 Aug 1977/1 Aug 1977)</td>
<td>Cloud free/peak ablation (17 Aug)</td>
<td>LM02_LITP_159036_197 70819_20180422_01_T2/ LM02_LITP_159036_197 70801_20180422_01_T2</td>
<td>0.12</td>
<td>10</td>
<td>Delineation of GB, SLA&DC</td>
</tr>
<tr>
<td>3.</td>
<td>LandsatTM (27 Aug)</td>
<td>Partially cloud covered/ peak</td>
<td>LT05_LITP_148036_1994 0827_20170113_01_T1/</td>
<td>0.22</td>
<td>6</td>
<td>Delineation of GB,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 4. | LandsatTM
(26 July 1994) | Seasonal snow cover | LT05_L1GS_148037_19940827_20170113_01_T2 | SLA&DC |
| 5. | LandsatETM+
(4 Sep 2000) | Cloud free/ peak ablation | LE71480362000248_SGS00 | Delineation of GB, SLA&DC |
| 6. | LandsatOLI
(25 July 2017) | Partially cloud covered/ peak ablation | LC08_L1TP_148036_20170810_01_T1 | Delineation of GB & DC, estimation of SLA |
| 7. | Sentinel MSI
(20 Sep 2017) | Cloud free | S2A_MSIL1C_20170920T053641_N0205_R005_T43 SET_20170920T053854 | Delineation of GB & DC |
| 8. | LISS IV
(27 Aug 2017) | Cloud free | 183599611 | Accuracy assessment |

Comment 4: Lines 236-240: The procedures used for determining the glacier boundaries are apparently manual digitization. While this is reasonable to undertake manual processing in such complicated areas, it also necessitates a study of uncertainty estimations in such manual work. Authors may also undertake repeatability tests with different analysts to determine repeatability.

Response 4: We have followed a 'hybrid approach', involving normalized difference snow index (NDSI) for delineation of snow-ice boundaries and manual digitization for mapping the debris cover (Page: 10; lines: 231-232 of the original manuscript). Similar mapping methodology has been followed by several researchers (Chand and Sharma, 2015; Mir et al., 2017; Molg et al., 2018).

As aptly pointed out by the reviewer, we also agree that manual processing of the database necessitates uncertainty estimation. However, the essence of this work lies in the mapping of the glaciers for multiple (four) time periods by a single analyst, which minimizes the errors to a great extent. While, the repeatability tests are more relevant for studies concerning global scale inventory such as Randolph glacier inventory (RGI), Global land ice measurements from space (GLIMS) and recently Chinese glacier inventory (CGI), where multiple analysts are involved.

Nevertheless, we have performed the repeatability tests on the Pensilungpa glacier by delineating...
its boundary for the year 2017 by 4 different analysts. The test result shows variation in glacier size by all four analysts (17.003 km2, 16.22 km2, 16.59 km2 and 14.67 km2). These values have varied significantly and slightly overestimated from the size estimated using the semi-automatic approach (15.57 km2). The fluctuations in glacier size have varied within the range of 5-10%, i.e., by 9, 4, 6.5 and 6%, respectively, which is acceptable for glacier mapping (Paul et al., 2013).

Comment 5: Lines 272 – 300: The uncertainty assessment is biased with the very limited field validation on only one glacier for a very limited time frame. One issue that needs to be addressed is the reliability of ground truth data when different types of data were used through the nearly 50 years’ time period.

Response 5: We agree that very limited field validation has been incorporated for a limited time frame, however, ground based monitoring of the glaciers is difficult and often constrained by extreme conditions prevailing in the Himalayan glaciated terrain. This is very well discerned from the limited field studies (11 in western, 4 in central, 1 in eastern) being conducted in the Himalayan region till date (Pratap et al., 2015; Raina and Srivastava, 2008).

In this study, the aim of comparing our results with field data (initially for 2017) was basically validating the mapping method as data related errors are being already accounted for in the other methods of uncertainty estimation. However, to enhance the reliability of ground data, we have now incorporated field data of the Kangriz glacier as well for year 2018 (obtained from DGPS). On comparing the snout position of the Kangriz glacier derived from DGPS and OLI image, an accuracy of ±1.4 m is obtained. Also, the frontal retreat estimated using DGPS and OLI image is found to be 38.63 ±47.8 and 39.98 ±56.6 m, respectively during the period 2017-18. This result has now been incorporated in the revised manuscript (Page: 13; lines: 320-324).

Comment 6: Please discuss why the projective transformation was required for the satellite data sets other than Corona?

Response 6: We have used projective transformation for co-registration of all the images, i.e., Landsat as well as Corona (Page: 10; lines: 227-231 of the original manuscript) in order to maintain uniformity in data processing method.

Projective transformation is a novel technique of image registration which projects the 2-dimensional image on the radius and angular coordinates, respectively. Moreover, this method
has been used because in contrast to the other methods of image registration, i.e., polynomial and rubber sheeting, projective transformation involves the input reference of DEM which allows the analyst to capture the dynamics of the image and enhances the quality of the two-dimensional data.

Comment 7: Line 328- 330: Categorization of glaciers - is there a scientific standard for categorizing the glaciers in the different categories or was more based on the author’s selectivity? Check DeBeer and Sharp (2009, Journal of Glaciology). Since the data descriptions needs to be internationally consistent, may revise.

Response 7: It is a welcome suggestion. However, glacier size is a variable parameter which fluctuates from basin to basin and hence, cannot be standardized globally or for a particular region. Moreover, to the best of our knowledge, there is no scientific standard for categorizing the glaciers and for this study, it is entirely based on investigators selectivity. DeBeer and Sharp, (2009) have categorized small glaciers in the British Columbia as per the size distribution of the glacier in the region, i.e., <0.4 km2 as very small and 0.4-5 km2 as large glaciers. However, in the Himalayan region different studies have used different size class for the glaciers (Table RT2). Owing to this heterogeneity in glacier size classification, we have not followed any particular study, but, have given a separate categorization (Page:12; lines:328-330 of the original manuscript).

Table RT2: Size distribution of glaciers in different basins of the Himalaya.

<table>
<thead>
<tr>
<th>Serial no.</th>
<th>Basin/ Himalayan region</th>
<th>Glacier size class (km2)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5-10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>10</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Bhagirathi and Saraswati, central Himalaya</td>
<td><1</td>
<td>Bhambri et al., (2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5-10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>10</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Tista basin</td>
<td><5</td>
<td>Basnett et al., (2013)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5-20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>20</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Koshi river basin, central Himalaya</td>
<td><0.2</td>
<td>Shangguan et al., (2014)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2-0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Location</td>
<td>Flow Duration (Years)</td>
<td>References</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>5</td>
<td>Ravi basin</td>
<td><1 1-2 2-5 5-11</td>
<td>Chand and Sharma, (2015)</td>
</tr>
<tr>
<td>6</td>
<td>Drass valley, Ladakh</td>
<td><1 1-3 >10</td>
<td>Koul et al., (2016)</td>
</tr>
<tr>
<td>7</td>
<td>Chenab basin, western Himalaya</td>
<td><5 5-10 10-20 >20</td>
<td>Brahmbhatt et al., (2017)</td>
</tr>
<tr>
<td>8</td>
<td>Central Himalaya</td>
<td><5 5-10 >10</td>
<td>Garg et al., (2017)</td>
</tr>
<tr>
<td>9</td>
<td>Baspa basin</td>
<td><0.5 0.5-1 1-5 5-9 >9</td>
<td>Mir et al., (2017)</td>
</tr>
<tr>
<td>10</td>
<td>Lidder valley, Kashmir</td>
<td><1 1-5 5-15</td>
<td>Murtaza and Romshoo, (2015)</td>
</tr>
<tr>
<td>11</td>
<td>Central and eastern Ladakh Himalaya</td>
<td><0.25 0.25-0.5 0.5-0.75 0.75-1 1-2 >2</td>
<td>Schmidt and Nusser, (2017)</td>
</tr>
<tr>
<td>12</td>
<td>Jankar Chhu watershed, Lahaul Himalaya</td>
<td><0.5 0.5-1 1-5 5-10 >10</td>
<td>Das and Sharma, (2018)</td>
</tr>
<tr>
<td>13</td>
<td>Karakoram, Pamir</td>
<td>0.02-0.5 0.5-1 1-5 5-10 10-20 20-50 50-100 >100</td>
<td>Molg et al., (2018)</td>
</tr>
<tr>
<td>14</td>
<td>Miyar basin, western Himalaya</td>
<td><5 >5</td>
<td>Patel et al., (2018)</td>
</tr>
</tbody>
</table>
Comment 8: Statistical significance could be included to explain the effect of spatial characteristics (size, aspect, debris cover) or any difference spatial control over LR and GHR.

Response 8: Thanks for the suggestion. We understand the reviewer's point that GHR and LR comprises of different glaciers having distinct morphology. However, in our analysis, we have taken into account the change in glacier parameters in terms of percentage, which is normalized. Hence, the data is not susceptible to any biases. Moreover, we have followed a sequential method of data analysis: in which all the glaciers are first investigated for parametric changes and we observe regional heterogeneity in glacier response. Thereafter, we went for understanding the possible controls on the reported changes, in which we noted that the glacier response is primarily influenced by climate variability (statistical significance taken into account). The study also confirms the possible controls of non-climatic factors (in terms of percentage) on heterogeneous glacier response.

However, we have now incorporated the statistical significance to explain the effect of spatial characteristics (size, slope, debris cover and elevation) over LR and GHR [Supplementary material (Text S1) of the revised manuscript]. For this, the non-climatic factors were subsequently correlated with the change in glacier dimensional parameters, i.e., area change and retreat using some statistical tests (Figure R4a,b; Table RT3). In the statistical analysis, the variables were initially tested for normality and visual inspection of the histogram. The test showed normal distribution for nearly all the variables and the correlations were found to be significant at $\alpha < 0.05$ (except for mean elevation). These correlations also showed the presence of few outliers (not removed in this study), which indicate the possible role of any other factor due to which these glaciers have deviated from the general trend of area loss and retreat (Figure R4a;b).

Table RT3: Correlation (r) and Pearson's correlation (p) coefficient computed between non-climatic factors (size, slope, debris cover and elevation) and glacier changes (% deglaciation & retreat rate). These relationships were found to be significant at $\alpha < 0.05$ (Except for mean elevation: Italicized).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>% deglaciation</th>
<th>Retreat rate (m$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GHR</td>
<td>LR</td>
</tr>
<tr>
<td>Size</td>
<td>r= -0.385</td>
<td>r= -0.5</td>
</tr>
<tr>
<td></td>
<td>p<0.00001</td>
<td>p<0.00001</td>
</tr>
<tr>
<td></td>
<td>r= 0.27</td>
<td>r= 0.339</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>Slope</td>
<td>p<0.0022</td>
<td>p<0.0002</td>
</tr>
<tr>
<td>Mean elevation</td>
<td>r= -0.048</td>
<td>r= 0.002</td>
</tr>
<tr>
<td></td>
<td>p= 0.593</td>
<td>p= 0.98</td>
</tr>
<tr>
<td>Debris cover</td>
<td>r= -0.334</td>
<td>r= -0.249</td>
</tr>
<tr>
<td></td>
<td>p<0.00013</td>
<td>p<0.0075</td>
</tr>
</tbody>
</table>
Figure R4a. Scatter plots displaying the relation between topographic factors with percent deglaciation during the period 1971-2017. All the relationships were found to be significant at confidence level, i.e., α<0.05 (Except mean elevation).
Figure R4b. Scatter plots displaying the relation between topographic factors with retreat rate during the period 1971-2017. All the relationships were found to be significant at confidence level, i.e., $\alpha<0.05$ (Except mean elevation).
REFERENCES

AUTHOR’S CHANGES IN THE MANUSCRIPT

1. On Page 8; Figure 3 has been updated as suggested.
Figure 3: Annual and seasonal variability in the climate data for the period 1901-2017. (a), (b) and (c) 5 year moving average of the mean annual precipitation (mm) and temperature (°C) recorded for 5 grids covering the glaciers in the entire SSB, GHR and LR (sub-regions), respectively during the period 1901-2017. The light and dark grey colored dashed lines depict the respective trend lines for precipitation and temperature conditions during the period 1901-2017. (d), (e) and (f) Monthly mean precipitation and temperature data for the entire SSB, GHR and LR (sub-regions), respectively for the time period 1901-2017.

2. Table 1 on Page 9 has been updated by incorporating the scene Id in it.

<table>
<thead>
<tr>
<th>S. no</th>
<th>Satellite sensors(Date of acquisition)</th>
<th>Remarks on quality</th>
<th>Scene Id</th>
<th>RMSE error</th>
<th>Registration accuracy (m)</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Corona KH-4B (28 Sep 1971)</td>
<td>Cloud free</td>
<td>DS1115-2282DA056/DS1115-2282DA055/DS1115-2282DA054</td>
<td>0.1</td>
<td>0.3</td>
<td>Delineation of GB</td>
</tr>
<tr>
<td>2.</td>
<td>LandsatMSS (19 Aug 1977/1 Aug 1977)</td>
<td>Cloud free/peak ablation (17 Aug)</td>
<td>LM02_L1TP_159036_197</td>
<td>0.12</td>
<td>10</td>
<td>Delineation of GB, SLA&DC</td>
</tr>
<tr>
<td>3.</td>
<td>LandsatTM</td>
<td>Partially cloud</td>
<td>LT05_L1TP_148036_1994</td>
<td>0.22</td>
<td>6</td>
<td>Delineation</td>
</tr>
</tbody>
</table>

Table 1 on Page 9 has been updated by incorporating the scene Id in it.
3. Line stating “The glacierets/ tributary glaciers contributing to the main trunk are considered as single glacier entity” has been added on Page 10; lines: 239-240.

4. On page 11; lines: 268-270 have been updated for calculation of "change in climate variables" instead of percentage change.

5. On pages: 11-13; lines: 276-308 have been incorporated Further, in order to check data consistency, we have taken up instrument data from nearest stations of Kargil and Leh (due to the unavailability of meteorological stations in the Suru sub-basin) and compared with the CRU-TS derived data for the entire Suru sub-basin during 1901-2002 period (Figure 4).

<table>
<thead>
<tr>
<th>Date</th>
<th>Process</th>
<th>Data Used</th>
<th>Accuracy</th>
<th>Change in</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(27 Aug 1994)</td>
<td>covered/ peak ablation</td>
<td>0827_20170113_01_T1/ LT05_L1GS_148037_199/ 40827_20170113_01_T2</td>
<td></td>
<td></td>
<td>of GB, SLA&DC</td>
</tr>
<tr>
<td>(26 July 1994)</td>
<td>Seasonal snow cover</td>
<td>LT05_L1TP_148036_1994/ 0726_20170113_01_T1</td>
<td>0.2</td>
<td>6</td>
<td>Delineation of GB</td>
</tr>
<tr>
<td>(4 Sep 2000)</td>
<td>Cloud free/ peak ablation</td>
<td>LE71480362000248SGS00</td>
<td></td>
<td></td>
<td>Delineation of GB, SLA& DC</td>
</tr>
<tr>
<td>(25 July 2017)</td>
<td>Partially cloud covered/ peak ablation</td>
<td>LC08_L1TP_148036_2017/ 0810_01_T1</td>
<td>0.15</td>
<td>4.5</td>
<td>Delineation of GB & DC, estimation of SLA</td>
</tr>
<tr>
<td>(20 Sep 2017)</td>
<td>Cloud free</td>
<td>S2A_MSIL1C_20170920T053641_N0205_R005_T43 SET_20170920T053854</td>
<td>0.12</td>
<td>1.2</td>
<td>Delineation of GB & DC</td>
</tr>
<tr>
<td>(27 Aug 2017)</td>
<td>Cloud free</td>
<td>183599611</td>
<td>0.2</td>
<td>1.16</td>
<td>Accuracy assessment</td>
</tr>
</tbody>
</table>

![Graphs showing temperature and precipitation changes](image-url)
Figure 4: Mean annual temperature and precipitation patterns of CRU-TS derived gridded data in (a) Suru sub-basin and IMD recorded station at (b) Kargil and (c) Leh.

The mean annual temperature pattern of Suru sub-basin shows a near negative trend till 1937, with an increase thereafter. Similar trends have been observed for Kargil and Leh, despite their distant location from the Suru sub-basin (areal distance of Kargil and Leh is ~63 and 126 km, respectively from the centre of Suru sub-basin). However, it is noteworthy to mention that all the locations had attained maximum mean annual temperature in 1999 (Suru: 2.02°C; Kargil: 6.84°C; Leh: -0.5°C). We observe an almost similar trend in all the cases (Figure 4), with an accelerated warming post 1995/96. However, the magnitude varies, with longterm mean annual temperature of 0.9, 5.5 and -2.04°C observed in Suru sub-basin, Kargil and Leh, respectively (Figure 4). The possible reason for this difference in their magnitudes could possibly be attributed to their distinct geographical locations and difference in their nature, with former being point, while latter being the interpolated gridded data.

Also, we have used the station data, obtained from nearest available IMD sites, i.e., Kargil and Leh and compared with their respective CRU-TS data (mean annual temperature and precipitation).
Figure 5: Analysis of meteorological (mean annual temperature and precipitation) datasets derived from Indian Meteorological Department (IMD) stations at (a) Kargil & (b) Leh and the respective [(c) Kargil and (d) Leh] gridded data obtained from climate research unit (CRU)-time series (TS).

Though varying in magnitude, the climate data obtained from IMD as well as CRU-TS suggest almost similar trends of temperature and precipitation during the period 1901-2002 for both Kargil and Leh (Figure 5). The annual mean temperature/precipitation have amounted to 5.5°C/589 mm (IMD) and 2.4°C/315 mm (CRU-TS) in Kargil, while 2.04/279 mm (IMD) and 0.09/216 mm (CRU-TS) in Leh during the period 1901-2002 (Figure 5). We observed that climatic variables show lower magnitude in case of CRU-TS as compared to the station data from IMD (except CRU-TS derived temperature data recorded for Leh). The possible reason for this difference between CRU-TS and station data can primarily be attributed to the difference in their nature, with former being point, while latter being a gridded data (0.5° latitude and longitude grid cells). This analysis aptly brings out the bias in the CRU TS gridded data. Majorly the comparison shows that though the gridded data correctly bring out the temporal trends in meteorological data but differ with station data in
magnitude (being on lower side than the station estimates). This helps us better appreciate the climate variations in the Suru sub-basin as well, since we learn that the reported temperature and precipitation changes are probably on the lower side of the actual variations.

6. On page 13, lines: 320-324 have been updated to: "In this study, DGPS survey was conducted on the Pensilungpa and Kangriz glaciers at an error of less than 1cm. Therefore, by comparing the snout position of Pensilungpa (2017) and Kangriz (2018) glaciers derived from DGPS and OLI image, an accuracy of ±23 and ±1.4 m, respectively was obtained. Also, the frontal retreat estimated for the Kangriz glacier using DGPS and OLI image is found to be 38.63 ±47.8 and 39.98 ±56.6 m, respectively during the period 2017-18".

7. On page 15, line: 380 has been edited to “Mean slope of the glaciers is 24.8 ±5.8° and varies from 24 ±6° to 25 ±6° in the GHR and LR, respectively”.

8. Page: 15, lines: 387-388 and figure 4 have been edited as suggested. Percentage area loss of the individual glaciers ranges between 0.8 (G-50; Parkachik glacier) - 45 (G-81) %, with majority of the glaciers undergoing an area loss in the range 6-12% during the period 1971-2017 (Fig.6a).
Figure 6 (revised manuscript): (a) Percent area loss of the glaciers in the SSB during the period 1971-2017. Frequency distribution histogram depicting that majority of the glaciers have undergone an area loss in the range 6-12%. (b) Hypsometric distribution of glacier area in the GHR and LR regions during the period (I) 1971-2000 and (II) 2000-2017. (A), (B), (C) and (D) insets in (II) shows the significant change in area at different elevation range of the GHR and LR glaciers.

9. Page 16, lines: 406-407 and figure 5 has been edited as suggested.

Percentage length change of the glaciers ranges between 0.9 to 47%, with majority of the glaciers retreating in the range 6-14% during the period 1971-2017 (Fig. 7).
Figure 7: Percent length change of the glaciers in the SSB during the period 1971-2017. Frequency distribution histogram showing that majority of the glaciers have undergone length change of the range 6-14%.

Mean annual temperature shows an almost uniform trend till 1996, with a pronounced rise thereafter till 2005/06 period (Fig. 3a; b;c). The globally averaged combined land and ocean surface temperature data of 1983-2012 period is considered as the warmest 30-year period in the last 1400 years (IPCC, 2013). This unprecedented rate of warming has been primarily attributed to the rapid scale of industrialization, increase in regional population and anthropogenic activities prevalent during this time period (Bajracharya et al., 2008; IPCC, 2013). Thus, one of the probable reason for this sudden increment in temperature pattern is possibly due to the greenhouse effect from enhanced emission of black carbon in this region (by 61%) from 1991-2001. Evidences of incessant increase in temperature during 1990s have also been observed (through chronology of Himalayan Pine) from the contemporaneous surge in tree growth rate (Singh and Yadav 2000). In fact, 50% of the years since 1970 have experienced considerably high solar irradiance and warm phases of ENSO, which is possibly one of the reasons for the considerable rise in temperature throughout the Himalaya (Shekhar et al., 2017) have been added as suggested.
Maximum mean annual precipitation is noted during 2015 (615 mm) and minimum during 1946 (244 mm). However, the mean annual precipitation followed a similar trend till 1946 with an increasing thereafter (Fig. 3a;b;c) have been edited as suggested.

We have now reported the temperature and precipitation changes in absolute terms rather than percentage on Pages: 19,20 & 25 in track change mode.

Greater Himalayan Range (GHR) and Ladakh Range (LR) comprises of different glaciers having distinct morphology. Therefore, statistical significance becomes necessary to explain the effect of spatial characteristics (size, slope, debris cover and elevation) over LR and GHR. For this, the non-climatic factors were subsequently correlated with the change in glacier dimensional parameters, i.e., area change and retreat using some statistical tests (Figure R4a,b; Table RT2). In the statistical analysis, the variables were initially tested for normality and visual inspection of the histogram. The test showed normal distribution for nearly all the variables and the correlations were found to be significant at \(\alpha < 0.05 \) (except for mean elevation). These correlations also showed the presence of few outliers (not removed in this study), which indicate the possible role of any other factor due to which these glaciers have deviated from the general trend of area loss and retreat (Figure R4a;b).

Table RT2: Correlation (r) and Pearson's correlation (p) coefficient computed between non-climatic factors (size, slope, debris cover and elevation) and glacier changes (% deglaciation & retreat rate). These relationships were found to be significant at \(\alpha < 0.05 \) (Except for mean elevation: Italicized).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>% deglaciation</th>
<th>Retreat rate (ma⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GHR</td>
<td>LR</td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(r = -0.385)</td>
<td>(r = -0.5)</td>
</tr>
<tr>
<td></td>
<td>(p < 0.0001)</td>
<td>(p < 0.0001)</td>
</tr>
<tr>
<td>Slope</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(r = 0.27)</td>
<td>(r = 0.339)</td>
</tr>
<tr>
<td></td>
<td>(p < 0.0022)</td>
<td>(p < 0.0002)</td>
</tr>
<tr>
<td>Mean elevation</td>
<td>(r = -0.048)</td>
<td>(r = 0.002)</td>
</tr>
<tr>
<td></td>
<td>(p = 0.593)</td>
<td>(p = 0.98)</td>
</tr>
<tr>
<td>Debris cover</td>
<td>(r = -0.334)</td>
<td>(r = -0.249)</td>
</tr>
<tr>
<td></td>
<td>(p < 0.00013)</td>
<td>(p < 0.0075)</td>
</tr>
</tbody>
</table>
(a) **GHR**

\[y = -0.505x + 17.68 \]

\[r = -0.385 \]

\[p < 0.00001 \]

Glacier size (km²)

% deglaciation

(b) **LR**

\[y = -3.015x + 15.57 \]

\[r = -0.5 \]

\[p < 0.00001 \]

Glacier size (km²)

% deglaciation

(c) **GHR**

\[y = 0.500x + 3.819 \]

\[r = 0.27 \]

\[p < 0.002 \]

Slope (degree)

% deglaciation

(d) **LR**

\[y = 0.463x + 0.825 \]

\[r = 0.339 \]

\[p < 0.0002 \]

Slope (degree)

% deglaciation

(e) **GHR**

\[y = -4.606x + 17.4 \]

\[r = -0.334 \]

\[p < 0.0001 \]

Debris cover (km²)

% deglaciation

(f) **LR**

\[y = -15.31x + 13.42 \]

\[r = -0.249 \]

\[p = 0.0075 \]

Debris cover (km²)

% deglaciation

(g) **GHR**

\[y = -0.002x + 28.35 \]

\[r = -0.048 \]

\[p = 0.593 \text{ (not significant)} \]

Mean elevation (msl)

% deglaciation

(h) **LR**

\[y = 0.960x + 11.98 \]

\[r = 0.98 \]

\[p = 0.002 \text{ (not significant)} \]

Mean elevation (msl)

% deglaciation
Figure R4a. Scatter plots displaying the relation between topographic factors with percent deglaciation during the period 1971-2017. All the relationships were found to be significant at confidence level, i.e., $\alpha<0.05$ (Except mean elevation).
Figure R4b. Scatter plots displaying the relation between topographic factors with retreat rate during the period 1971-2017. All the relationships were found to be significant at confidence level, i.e., $\alpha<0.05$ (Except mean elevation).

14. Reference list has been updated.
Temporal inventory of glaciers in the Suru sub-basin, western Himalaya: Impacts of the regional climate variability

Aparna Shukla1,2*, Siddhi Garg1, Manish Mehta1, Vinit Kumar1, Uma Kant Shukla3

1Wadia Institute of Himalayan Geology, 33, GMS Road, Dehradun-248001, India
2Ministry of Earth Sciences, New Delhi–110003, India
3Department of Geology, Banaras Hindu University, Varanasi – 221005, India

*Correspondence to: Aparna Shukla (aparna.shukla22@gmail.com)
Abstract

Updated knowledge about the glacier extent and characteristics in the Himalaya cannot be overemphasised. Availability of precise glacier inventories in the latitudinally diverse western Himalayan region is particularly crucial. In this study we have created an inventory of the Suru sub-basin, western Himalaya for year 2017 using Landsat OLI data. Changes in glacier parameters have also been monitored from 1971 to 2017 using temporal satellite remote sensing data and limited field observations. Inventory data shows that the sub-basin has 252 glaciers covering 11% of the basin, having an average slope of 25 ±6° and dominantly north orientation. The average snow line altitude (SLA) of the basin is 5011 ±54 m asl with smaller (47%) and cleaner (43%) glaciers occupying the bulk area. Longterm climate data (1901-2017) shows an increase in the mean annual temperature (Tmax & Tmin) by 0.77 °C (0.25 & 1.3 °C) in the sub-basin, driving the overall glacier variability in the region. Temporal analysis reveals a glacier shrinkage of -6 ±0.02%, an average retreat rate of 4.3 ±1.02 ma-1, debris increase of 62% and 22 ±60 m SLA rise in past 46 years. This confirms their transitional response between the Karakoram and the Greater Himalayan Range (GHR) glaciers. Besides, glaciers in the sub-basin occupy two major ranges, i.e., GHR and Ladakh range (LR) and experience local climate variability, with the GHR glaciers exhibiting a warmer and wetter climate as compared to the LR glaciers. This variability manifests itself in the varied response of GHR and LR glaciers. While the GHR glaciers exhibit an overall rise in SLA (GHR: 49 ±69 m; LR: decrease by 18 ±50 m), the LR glaciers have deglaciated more (LR: 7%; GHR: 6%) with an enhanced accumulation of debris cover (LR: 73%; GHR: 59%). Inferences from this study reveal prevalence of glacier disintegration and overall degeneration, transition of clean ice to partially debris covered glaciers, local climate variability and non-climatic (topographic and morphometric) factor induced heterogeneity in glacier response as the major processes operative in this region. The dataset Shukla et al., (2019) is accessible at https://doi.pangaea.de/10.1594/PANGAEA.904131

Key words: Suru sub basin, western Himalaya, glacier inventory, climate change

Location of the dataset: https://doi.pangaea.de/10.1594/PANGAEA.904131

1 Introduction

State of the Himalayan cryosphere has a bearing on multiple aspects of hydrology, climatology, environment and sustenance of living organisms at large (Immerzeel et al., 2010; Miller et al., 2012). Being sensitive to the ongoing climate fluctuations, glaciers keep adjusting themselves and these adaptations record the changing patterns in the global climate (Bolch et al., 2012). Any alteration in the glacier parameters would ultimately affect the hydrology of the region, thereby influencing the downstream communities (Kaser et al., 2010; Pritchard, 2017). Owing to these reasons, quantifying the mass loss over different Himalayan regions in the past years, ascertaining present status of the cryosphere and how these changes are likely to affect the freshwater accessibility in the region are at the forefront of contemporary cryospheric research (Brun et al. 2017; Sakai and Fujita, 2017). This aptly triggered several regional (Kaab et al., 2012; Gardelle et al., 2013; Brun et al. 2017; Zhou et al., 2018; Maurer et al., 2019), local (Bhushan et al., 2018; Vijay and Braun, 2018) and glacier specific studies (Dobhal et al., 2013; Bhattacharya et al., 2016; Azam et al., 2018) in the region. These studies at varying
scales contribute towards solving the jigsaw puzzle of the Himalayan cryosphere. The regional scale studies
operate on small scale for bringing out more comprehensive, holistic and synoptic spatio-temporal patterns of
 glacier response, the local scale studies monitor glaciers at basin level or groups and offer more details on
heterogeneous behaviour and plausible reasons thereof. However, the glacier specific studies whether based on
field or satellite or integrative information are magnified versions of the local scale studies and hold the
potential to provide valuable insights into various morphological, topographic and local-climate induced
controls on glacier evolution. Despite these efforts, data on the glacier variability and response remains
incomplete, knowledge of the governing processes still preliminary and the future viability pathways of the
Himalayan cryospheric components are uncertain.

Though the literature suggests a generalised mass loss scenario (except for the Karakoram region) over the
Himalayan glaciers, disparities in rates and pace of shrinkage remain. Maurer et al. (2019) report the average
mass wastage of -0.32 m w.e. a⁻¹ for the Himalayan glaciers during 1975-2016. They suggest that the glaciers in
the eastern Himalaya (-0.46 m w.e. a⁻¹) have experienced slightly higher mass loss as compared to the western (-
0.45 m w.e. a⁻¹), followed by the central (-0.38 m w.e. a⁻¹). However, considerable variability in the glacier
behaviour exists within the western Himalayas (Scherler et al., 2011; Kaab et al., 2012; Vijay and Braun, 2017;
Bhushan et al., 2018; Mölg et al., 2018). Studies suggest that largely the glaciers in the Karakoram Himalayas
have either remained stable or gained mass in the last few decades (Kääb et al., 2015; Cogley, 2016), while a
contrasting behaviour is observed for the GHR glaciers experiencing large scale degeneration, with more than
65% glaciers retreating during 2000-2008 (Scherler et al., 2011). However, there are two views pertaining to the
glaciers in the Trans Himalayan range, with one suggesting their intermediate response between the Karakoram
Himalaya and GHR (Chudley et al., 2017) and the other emphasizing upon their affinity either towards the GHR
or the Karakoram Himalayan glaciers (Schmidt and Nusser, 2017). Therefore, in order to add more data and
build a complete understanding of the glacier response, particularly in the western Himalaya, more local scale
studies are necessary.

Complete and precise glacier inventories form the basic prerequisites not only for comprehensive glacier
assessment but also for various hydrological and climate modelling related applications (Vaughan et al., 2013).
Information on spatial coverage of glaciers in any region is a much valued dataset and holds paramount
importance in the future assessment of glaciers. Errors in the glacier outlines may propagate and introduce
higher uncertainties in the modelled outputs (Paul et al., 2017). Besides, results from modelling studies
carried over same region but using different sources of glacier boundaries are rendered uncomparable,
constraining the evaluation of models and thus their future development. On the other hand, quality, accuracy
and precision associated with glacier mapping and outline delineation requires dedicated efforts. Several past
studies discuss the methods for, challenges in achieving an accurate glacier inventory and resolutions for the
same (Paul et al., 2013; 2015; 2017). Thorough knowledge of glaciology and committed manual endeavour are
two vital requirements in this regard. Realisation of above facts did result in several devoted attempts to prepare
detailed glacier inventories at global scale, such as Randolph glacier inventory (RGI), Global land ice
measurements from space (GLIMS) and recently Chinese glacier inventory (CGI) and Glacier area mapping for
discharge from the Asian mountains (GAMDAM) (Raup et al., 2007; Pfeffer et al., 2014; Shiyin et al., 2014;
Nuimura et al., 2015). However, several issues related to gap areas, differences in mapping methods and skills
of the analysts involved act as limitations and need further attention.
Considering the above, present work studies the glaciers in the Suru Sub-basin (SSB), western Himalaya, Jammu and Kashmir. Prime objectives of this study include: 1) presenting the inventory of recent glacier data [area, length, debris cover, SLA, elevation (min & max), slope and aspect] in the SSB, 2) assessing the temporal changes for four epochs in past 46 years and 3) analysing the observed glacier response in relation to the regional climate trends, local climate variability and other factors (regional hypsometry, topographic characteristics, debris cover and geomorphic features). Several remote sensing and field based studies of regional (Vijay and Braun, 2018), local (Blushan et al., 2018, Kamp et al., 2011; Pandey et al., 2011; Shukla and Qadir, 2016, Rashid et al 2017, Murtaza and Romshoo, 2015) and glacier-specific nature (Garg et al., 2018; Shukla et al., 2018) have been conducted for monitoring the response of the glaciers to the climate change. Glaciological studies carried out in or adjacent to the SSB suggest increased shrinkage, slowdown and downwasting of the studied glaciers at variable rates (Kamp et al., 2011; Pandey et al., 2011; Shukla and Qadir, 2016; Bhushan et al., 2018). These studies also hint towards the possible role of topographic & morphometric factors as well as debris cover in glacier evolution, though confined to their own specific regions. Previous studies have also estimated the glacier statistics of SSB and reported the total number of glaciers and the glacierized area to be 284 and 718.86 km² (Sangewar and Shukla, 2009) and 110 and 156.61 km² (SAC report, 2016), respectively. While the RGI reports varying results by two groups of analysts (number of glaciers: 514 & 304 covering an area of 550 & 606 km², respectively) for 2000 itself. Previous findings suggesting progressive degeneration of glaciers, apparent variation and discrepancies in inventory estimates and also the fact that the currently available glacier details for the sub-basin are nearly 20 years old, mandate the recent and accurate assessment of the glaciers in the SSB and drive the present study.

2 Study area

The present study focuses on the glaciers of the SSB situated in the state of Jammu and Kashmir, western Himalaya (Fig. 1). The geographic extent of the study area lies within latitude and longitude of 33° 50' to 34° 40' N to 75° 40' to 76° 30' E.

Geographically, the sub-basin covers part of two major ranges, i.e., GHR and LR and shows the presence of the highest peaks of Nun (7135 masl) and Kun (7077 masl) in the GHR (Vittoz, 1954). The glaciers in these ranges have distinct morphology, with the larger ones located in the GHR and comparatively smaller towards the LR (Fig. 1).
Figure 1: Location map of the study area. The glaciers in the Suru Sub-basin (black outline) are studied for their response towards the climatic conditions during the period 1971-2017. Blue rectangles with dashed outlines (GRID-1, 2, 3, 4 and 5) are the Climate Research Unit (CRU)-Time Series (TS) 4.02 grids of dimension 0.5° x 0.5°. (a) Pie-chart inset showing orientation-wise percentage distribution of glaciers in the sub-basin. North (N), north-east (NE), north-west (NW), south (S), south-east (SE), south-west (SW), east (E) and west (W).
represents the direction of the glaciers. (b) Pie chart inset showing size-distribution of glaciers in the SSB. The glacier boundaries [GHR (orange) and LR (yellow)] are overlain on the Advanced Land Observing Satellite (ALOS) Digital Surface Model (DSM).

The meltwater from these glaciers feeds the Suru River (tributary of Indus River), which emerges from the Pensilungpa glacier (Fig. 2a) at an altitude of ~4675 m asl. The river further flows north for a distance of ~24 kms and takes a westward turn from Rangdum (~4200 m asl). While flowing through this path, the Suru River is fed by some of the major glaciers of the GHR namely Lalung, Dulung (Fig. 1), Chilung (Fig. 2b), Shafat (Fig. 2c; d), Kangriz/ Parkachik (Fig. 2e), Sentik, Rantac (Fig.2f), Tongul (Fig. 2g) and Glacier no.47 (Fig. 2h). Amongst these major glaciers, Kangriz forms the largest glacier in the SSB, covering an area of ~53 km² and descends down from the peaks of Nun and Kun (Garg et al., 2018). The Suru River continues to flow for a distance of nearly 54 kms and after crossing a mountain spur and the townships of Tongul, Panikhar and Sankoo, the river further flows north until it finally merges with River Indus at Nurla (~3028 m asl).
The westerlies are an important source of moisture in this region (Dimri, 2013) with wide range of fluctuations in snowfall during winters. In the Padum valley, annual mean precipitation (Snowfall) and temperature amounts to nearly 2050 to 6840 mm and 4.3 °C, respectively (Raina and Kaul, 2011; http://en.climate-data.org). The longterm average annual temperature and precipitation has varied from 5.5 °C/ 588.77 mm (Kargil) to -2.04 °C/
278.65 mm in Leh during the period 1901-2002 (IMD, 2015). However, in order to understand the long term variability of climatic conditions in the SSB, we have utilized the Climate Research Unit (CRU)-Time Series (TS) 4.02 data during the period 1901-2017 (Fig. 3; Harris and Jones, 2018). Derived from this data, the annual mean temperature and precipitation of the SSB for the period 1901-2017 has been 0.99 ±0.45 °C and 393 ±76 mm, respectively. (Standard deviations associated with the mean temperature and precipitation have been italicized throughout the text).

Figure 3: Annual and seasonal variability in the climate data for the period 1901-2017. (a), (b) and (c) 5 year moving average of the mean annual precipitation (mm) and temperature (°C) recorded for 5 grids covering the glaciers in the entire SSB, GHR and LR (sub-regions), respectively during the period 1901-2017. The light and dark grey colored dashed lines depict the respective trend lines for precipitation and temperature conditions during the period 1901-2017. (d), (e) and (f) Monthly mean precipitation and temperature data for the entire SSB, GHR and LR (sub-regions), respectively for the time period 1901-2017.

3 Datasets and Methods

3.1 Datasets used

The study uses multi-sensor and multi-temporal satellite remote sensing data for extracting the glacier parameters for four time periods, i.e., 1971/1977, 1994, 2000 and 2017, details of which are mentioned in Table 1. It involves 6 Landsat level 1 terrain corrected (LIT), 3 strips of declassified Corona KH-4B and 1 Sentinel multispectral scenes, downloaded from USGS Earth Explorer (https://earthexplorer.usgs.gov/). Besides, a global digital surface model (DSM) dataset utilizing the data acquired by the Panchromatic remote-sensing Instrument for Stereo Mapping (PRISM) onboard the Advanced Land Observing Satellite (ALOS) has also been incorporated (https://www.eorc.jaxa.jp/ALOS/en/aw3d30/). ALOS World 3D comprises of a fine resolution DSM (approx 5m vertical accuracy). It is primarily used for delineating the basin boundary, extraction of SLA, elevation range, regional hypsometry and slope.

Table 1: Detailed specifications of the satellite data utilised in the present study. GB= glacier boundaries, DC=debris cover
<table>
<thead>
<tr>
<th>S. no</th>
<th>Satellite sensors(Date of acquisition)</th>
<th>Remarks on quality</th>
<th>Scene Id</th>
<th>RMSE error</th>
<th>Registration accuracy (m)</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Corona KH-4B (28 Sep 1971)</td>
<td>Cloud free</td>
<td>DS1115-2282DA056/DS1115-2282DA055/DS1115-2282DA054</td>
<td>0.1</td>
<td>0.3</td>
<td>Delineation of GB</td>
</tr>
<tr>
<td>2.</td>
<td>LandsatMSS (19 Aug 1977/ 1 Aug 1977)</td>
<td>Cloud free/ peak ablation (17 Aug)</td>
<td>LM02_L1TP_159036_19770819_20180422_01_T2/LM02_L1TP_159036_19770801_20180422_01_T2</td>
<td>0.12</td>
<td>10</td>
<td>Delineation of GB, SLA&DC</td>
</tr>
<tr>
<td>3.</td>
<td>LandsatTM (27 Aug 1994)</td>
<td>Partially cloud covered/ peak ablation</td>
<td>LT05_L1TP_148036_19940827_20170113_01_T1/LT05_L1GS_148037_19940827_20170113_01_T2</td>
<td>0.22</td>
<td>6</td>
<td>Delineation of GB, SLA&DC</td>
</tr>
<tr>
<td>4.</td>
<td>LandsatTM (26 July 1994)</td>
<td>Seasonal snow cover</td>
<td>LT05_L1TP_148036_19940726_20170113_01_T1</td>
<td>0.2</td>
<td>6</td>
<td>Delineation of GB</td>
</tr>
<tr>
<td>5.</td>
<td>LandsatET M* (4 Sep 2000)</td>
<td>Cloud free/ peak ablation</td>
<td>LE71480362000248S GS00</td>
<td>Base image</td>
<td>Delineation of GB, SLA&DC</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>LandsatOLI (25July 2017)</td>
<td>Partially cloud covered/ peak ablation</td>
<td>LC08_L1TP_148036_20170810_01_T1</td>
<td>0.15</td>
<td>4.5</td>
<td>Delineation of GB & DC, estimation of SLA</td>
</tr>
<tr>
<td>7.</td>
<td>Sentinel MSI (20 Sep 2017)</td>
<td>Cloud free</td>
<td>S2A_MSIL1C_20170920T053641_N0205_R005_T43SET_20170920T053854</td>
<td>0.12</td>
<td>1.2</td>
<td>Delineation of GB & DC</td>
</tr>
<tr>
<td>8.</td>
<td>LISS IV (27Aug2017)</td>
<td>Cloud free</td>
<td>183599611</td>
<td>0.2</td>
<td>1.16</td>
<td>Accuracy assessment</td>
</tr>
</tbody>
</table>
The aforementioned satellite images were acquired keeping in consideration certain necessary pre-requisites, such as, peak ablation months (July/ August/ September), regional coverage, minimal snow and cloud cover for the accurate identification and demarcation of the glaciers. Only three Corona KH-4B strips were available for period 1971, which covered the SSB partially, i.e., 40% of the GHR and 57% of the LR glaciers. Therefore, rest of the glaciers were delineated using the Landsat MSS image of the year 1977 (Table 1). Similarly, some of the glaciers could not be mapped using the Landsat TM image of 27 Aug 1994 as the image was partially covered with clouds. Therefore, 26 July 1994 image of the same sensor was used in order to delineate the boundaries of the cloud covered glaciers.

Besides, long term climate data has been obtained from CRU-TS 4.02, which is a high resolution gridded climate dataset obtained from the monthly meteorological observations collected at different weather stations of the World. In order to generate this long term data, station anomalies from 1961-1990 are interpolated into 0.5° latitude and longitude grid cells (Harris and Jones, 2018). This dataset includes six independent climate variables (mean temperature, diurnal temperature range, precipitation, wet-day frequency, vapour pressure and cloud cover). However, in this study monthly mean, minimum and maximum temperature and precipitation data are taken into consideration.

3.2 Methodology adopted

The following section mentions the methods adopted for data extraction, analysis and uncertainty estimation.

3.2.1 Glacier mapping and estimation of glacier parameters

Initially, the satellite images were co-registered by projective transformation at sub-pixel accuracy with the Root Mean Square Error (RMSE) of less than 1m (Table 1), taking the Landsat ETM+ image and ALOS DSM as reference. However, the Corona image was co-registered following a two step approach: (1) projective transformation was performed using nearly 160-250 GCPs (2) spline adjustment of the image strips (Bhambri et al., 2012). The glaciers were mapped using a hybrid approach, i.e., normalized difference snow index (NDSI) for delineating snow-ice boundaries and manual digitization of the debris cover. Considering that not many changes would have occurred in the accumulation region, major modifications have been done in the boundaries below the equilibrium line altitude (ELA) (Paul et al., 2017). The glacierets/ tributary glaciers contributing to the main trunk are considered as single glacier entity. NDSI was applied on a reference image of Landsat ETM+ using an area threshold range of 0.55-0.6. A median filter of kernel size 3*3 was used to remove the noise and very small pixels. In this manner, glaciers covering a minimum area of 0.01 km² have been mapped. However, some pixels of frozen water, shadowed regions were manually corrected. Thereafter, the debris covered part of the glaciers was mapped manually by taking help from slope and thermal characteristics of the glaciers. Besides, high resolution imageries from the Google Earth™ were also referred for the accurate demarcation of the glaciers. Identification of the glacier terminus was done based on the presence of certain characteristic features at the snout such as ice wall, proglacial lakes and emergence of streams. Length of the glacier was measured along the central flow line (CFL) drawn from the bergschurnd to the snout. Fluctuations in the snout position (i.e., retreat) of an individual glacier was estimated using the parallel line method, in which parallel strips of 50 m spacing are taken on both sides of the CFL. Thereafter, the average values of these strips intersecting the glacier boundaries were used to determine the frontal retreat of the glaciers (Shukla and Qadir, 2016; Garg et al.,
11

253 Mean SLA estimated at the end of the ablation season can be effectively used as a reliable proxy for
254 mass balance estimation for a hydrological year (Guo et al., 2014). The maximum spectral contrast between
255 snow and ice in the SWIR and NIR bands helps in delineation of the snow line separating the two facies. The
256 same principle was used in this study to yield the snow line. Further, a 15 m sized buffer was created on both
257 sides of the snow line to obtain the mean SLA. Other factors such as elevation (max & min), regional
258 hypsometry and slope were extracted utilising the ALOS DSM.

259 3.2.2 Analysis of climate variables

260 To ascertain the long term climate trends in the sub-basin, mean annual temperature (min & max) and
261 precipitation have been derived by averaging the mean monthly data of the respective years. Besides, seasonal
262 trends have also been analysed for winter (November-March) and summer (April-October) months. Moreover,
263 the climate variables have also been assessed separately for the ~46 year period (1971-2017), which is the study
264 period of present research.

265 Further, the climate dataset was statistically analysed for five grids using Mann-Kendall test to obtain the
266 magnitude and significance of the trends (Supplementary table S2). The magnitude of trends in time series data
267 was determined using Sen’s slope estimator (Sen, 1968). Quantitatively, the temperature and precipitation trends
268 have been assessed here in absolute terms (determined from Sen’s slope). The change in climate parameters
269 (temperature and precipitation) was determined using following formula:

\[
\text{Change} = \left(\frac{\beta \times L}{M} \right)
\]

270

271 where \(\beta\) is Sen’s slope estimator, \(L\) is length of period and \(M\) is the long term mean.

272 These tests were performed at confidence level, \(S= 0.1(90\%), 0.05(95\%)\) and \(0.01(99\%)\), which differed for
273 both the variables (Supplementary table S2). Spatial interpolation of climate data was achieved using the Inverse
274 Distance Weighted (IDW) algorithm. For this purpose, a total number of 15 CRU TS grids (in vicinity of our
275 study area) were taken so as to have an ample number of data points in order to achieve the accurate results.

276 Further, in order to check data consistency, we have taken up instrument data from nearest stations of Kargil and
277 Leh (due to the unavailability of meteorological stations in the Suru sub-basin) and compared with the CRU-TS
278 derived data for the entire Suru sub-basin during 1901-2002 period (Fig. 4).

Figure 4: Mean annual temperature and precipitation patterns of CRU-TS derived gridded data in (a) Suru sub-
280 basin and IMD recorded station at (b) Kargil and (c) Leh.
The mean annual temperature pattern of Suru sub-basin shows a near negative trend till 1937, with an increase thereafter. Similar trends have been observed for Kargil and Leh, despite their distant location from the Suru sub-basin (areal distance of Kargil and Leh is ~63 and 126 km, respectively from the centre of Suru sub-basin). However, it is noteworthy to mention that all the locations had attained maximum mean annual temperature in 1999 (Suru: 2.02°C; Kargil: 6.84°C; Leh: -0.5°C). We observe an almost similar trend in all the cases (Fig. 4), with an accelerated warming post 1995/96. However, the magnitude varies, with longterm mean annual temperature of 0.9, 5.5 and -2.04°C observed in Suru sub-basin, Kargil and Leh, respectively (Fig. 4). The possible reason for this difference in their magnitudes could possibly be attributed to their distinct geographical locations and difference in their nature, with former being point, while latter being the interpolated gridded data.

Also, we have used the station data, obtained from nearest available IMD sites, i.e., Kargil and Leh and compared with their respective CRU-TS data (mean annual temperature and precipitation).

![Figure 5: Analysis of meteorological (mean annual temperature and precipitation) datasets derived from Indian Meteorological Department (IMD) stations at (a) Kargil & (b) Leh and the respective (c) Kargil and (d) Leh gridded data obtained from climate research unit (CRU)-time series (TS).]

Though varying in magnitude, the climate data obtained from IMD as well as CRU-TS suggest almost similar trends of temperature and precipitation during the period 1901–2002 for both Kargil and Leh (Fig. 5). The annual mean temperature/precipitation have amounted to 5.5°C/589 mm (IMD) and 2.4°C/315 mm (CRU-TS) in Kargil, while -2.04/279 mm (IMD) and -0.09/216 mm (CRU-TS) in Leh during the period 1901-2002 (Fig. 5). We observed that climatic variables show lower magnitude in case of CRU-TS as compared to the station data from IMD (except CRU-TS derived temperature data recorded for Leh). The possible reason for this difference between CRU-TS and station data can primarily be attributed to the difference in their nature, with former being point, while latter being a gridded data (0.5° latitude and longitude grid cells). This analysis aptly
brings out the bias in the CRU TS gridded data. Majorly the comparison shows that though the gridded data correctly bring out the temporal trends in meteorological data but differ with station data in magnitude (being on lower side than the station estimates). This helps us better appreciate the climate variations in the Suru sub-basin as well, since we learn that the reported temperature and precipitation changes are probably on the lower side of the actual variations.

3.2.3 Uncertainty assessment

This study involves extraction of various glacial parameters utilizing satellite data with variable characteristics, hence, susceptible to uncertainties, which may arise from various sources. These sources may be locational (LE), interpretational (IE), classification (CE) or processing (PE) errors (Racoviteanu et al., 2009; Shukla and Qadir, 2016). In our study, the LE and PE may have resulted on account of mis-registration of the satellite images and inaccurate mapping, respectively. While IE and CE would have been introduced due to the misinterpretation of glacier features during mapping. The former can be rectified by co-registration of the images and estimation of sub-pixel co-registration RMSE (Table 1) and using standard statistical measures. However, the latter can be visually identified and corrected but difficult for exact quantification owing to lack of reliable reference data (field data) in most cases. As a standard procedure for uncertainty estimation, glacier outlines are compared directly with the ground truth data as acquired using a Differential Global Positioning System (DGPS) (Racoviteanu et al., 2008a). In this study, DGPS survey was conducted on the Pensilungpa and Kangriz glaciers at an error of less than 1cm. Therefore, by comparing the snout position of Pensilungpa (2017) and Kangriz (2018) glaciers derived from DGPS and OLI image, an accuracy of ±23 and ±1.4 m respectively was obtained.

Also, the frontal retreat estimated for the Kangriz glacier using DGPS and OLI image is found to be 38.63 ±47.8 and 39.98 ±56.6 m, respectively during the period 2017-18. In this study, high resolution Linear imaging self-scanning system (LISS)-IV imagery (spatial resolution of 5.8 m) is also used for validating the glacier mapping results for the year 2017 (Table 1). Glaciers of varying dimensions and distribution of debris cover were selected for this purpose. The area and length mapping accuracy for these selected glacier boundaries (G-1, G-2, G-3, G-13, G-41, G-209, G-215, G-216, G-220, G-233) was found to be 3% and 0.5%, respectively. The multi-temporal datasets were assessed for glacier length and area change uncertainty as per the methods given by Hall et al. (2003) and Granshaw and Fountain (2006). Following formulations (Hall et al., 2003) were used for estimation of the said parameters:

Terminus uncertainty \((U_T) = \sqrt{a^2 + b^2 + c} \) (2)

where, ‘a’ and ‘b’ are the pixel resolution of image 1 and 2, respectively and ‘c’ is the registration error. The terminus and areal uncertainty estimated are given in Table 2.

Area change uncertainty \((U_A) = 2 * UT * x \) (3)

where, ‘x’ is the spatial resolution of the sensor.

Table 2. Terminus and Area change uncertainty associated with satellite dataset as defined by Hall et al. (2003).

<table>
<thead>
<tr>
<th>Serial no.</th>
<th>Satellite sensor</th>
<th>Terminus uncertainty (U_T = \sqrt{a^2 + b^2 + c})</th>
<th>Area change uncertainty (U_A = 2 UT * x)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Area mapping uncertainty has also been estimated using the buffer method, in which, a buffer size equal to the registration error of the satellite image is taken into consideration (Bolch et al., 2012; Garg et al., 2017a,b).

Error estimated using this method is found to be 0.48, 27.2, 9.6 and 3.41 km² for the 1971 (Corona), 1977 (MSS), 1994 (TM) and 2017 (OLI) image, respectively. Since the debris extents were delineated within the respective glacier boundaries, the proportionate errors are likely to have propagated in debris cover estimations which were estimated accordingly (Garg et al., 2017b).

Uncertainty in SLA estimation needs to be reported in the X, Y and Z directions. In this context, error in X and Y directions should be equal to the distance taken for creating the buffer on either side of the snow line demarcating the snow and ice facies. Since, the buffer size taken in this study was 15 m, therefore, error in X and Y direction was considered as ±15 m. However, uncertainty in Z direction would be similar to the ALOS DSM, i.e., ±5 m.

4 Results

The present study involved creation of glacier inventory for the year 2017 and estimation of glacier (area, length, debris cover and SLA) parameters for four different time periods. For detailed insight, the variability of the glacier parameters have also been evaluated on decadal scale, in which the total time period has been subdivided into three time frames, i.e., 1971-1994 (23 years), 1994-2000 (6 years) and 2000-2017 (17 years).

4.1 Basin statistics

The SSB covers an area of ~4429 km². In 1971, the sub-basin had around 240 glaciers, with 126 glaciers located in the GHR and 114 in the LR, which remained the same till 2000. However, a major disintegration of glaciers took place during the period 2000-2017, which resulted into the breakdown of about 12 glaciers into smaller glacierets. The recent (2017) distribution of the glaciers in the GHR and LR is 130 and 122, respectively (Supplementary table S1). The overall glacierized area is ~11%, with the size and length of the glaciers varying from 0.01 to 53.1 km² and 0.15 to 16.34 km, respectively.

Within the sub-basin, the size range of glaciers in the GHR and LR vary from 0.01 (G-115) to 53.1 km² (G-50) and 0.03 (G-155/165) to 6.73 km² (G-209), respectively. Considering this, glaciers have been categorized into small (0-7 km²/0-2 km), medium (7-15 km²/2-7 km) and large (>15 km²/>7 km). Based on size distribution, small (comprising all the LR and some GHR glaciers), medium and large glaciers occupy 47%, 15% and 38% of the glacierized sub-basin. Depending upon the percentage area occupied by the supraglacial debris out of the total glacier area, the glaciers have been categorized into clean (CG: 0-25%), partially debris-covered (PDG: 25-50%) and heavily debris-covered (HDG: >50%). Categorization of the glaciers based on this criteria shows their proportion in the glacierized basin as: CG (43%), PDG (40%) and HDG (17%). Majority of the glaciers in the

<table>
<thead>
<tr>
<th>No.</th>
<th>Satellite</th>
<th>Area (km²)</th>
<th>Error (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Corona KH-4B</td>
<td>3.12</td>
<td>0.00007</td>
</tr>
<tr>
<td>2.</td>
<td>Landsat MSS</td>
<td>123.13</td>
<td>0.03</td>
</tr>
<tr>
<td>3.</td>
<td>Landsat TM</td>
<td>41.42</td>
<td>0.003</td>
</tr>
<tr>
<td>4.</td>
<td>Landsat ETM</td>
<td>48.42</td>
<td>0.003</td>
</tr>
<tr>
<td>5.</td>
<td>Landsat OLI</td>
<td>46.92</td>
<td>0.003</td>
</tr>
</tbody>
</table>
sub-basin are north facing (N/ NW/NE: 71%), followed by south (S/ SW/ SE: 20%), with very few oriented in other (E/ W: 9%) directions (Fig. 1a). The mean elevation of the glaciers in the SSB is 5134.8 ±225 masl, with an average elevation of 5020 ±46 and 5260 ±117 masl in the GHR and LR, respectively. Mean slope of the glaciers is 24.8 ±5.8° and varies from 24 ±6° to 25 ±6° in the GHR and LR, respectively. While, percentage distribution of glaciers shows that nearly 80% of the LR glaciers have steeper slope (20-40°) as compared to the GHR glaciers (57%).

4.2 Area changes

The glaciated area reduced from 513 ±14 km² (1971) to 481 ±3.4 km² (2017), exhibiting an overall deglaciation of 32 ±9 km² (6 ±0.02%) during the period 1971-2017. Percentage area loss of the individual glaciers ranges between 0.8 (G-50; Parkachik glacier) - 45 (G-81) %, with majority of the glaciers undergoing an area loss in the range 6-12% during the period 1971-2017 (Fig. 6a).
Results show that the highest pace of deglaciation is observed during 1994-2000 (0.95 ±0.005 km²a⁻¹) and 2000-2017 (0.86 ±0.0082 km²a⁻¹) followed by 1971-1994 (0.5 ±0.001 km²a⁻¹) (Supplementary figure S1a). Within the SSB, glaciers in the LR exhibit higher deglaciation (7 ±7.2%) as compared to GHR (6 ±2%) during the period 1971-2017. Apart from deglaciation, G-50 also showed increment in glacier area during the period 1994-2000, however, insignificantly.

4.3 Length changes

Fluctuations in the glacier snout have been estimated during the period 1971-2017 and it is observed that nearly all the glaciers have retreated during the said period, however the retreat rates vary considerably. The overall average retreat rate of the glaciers is observed to be 4.3 ±1.02 ma⁻¹ during the period 1971-2017. Percentage length change of the glaciers ranges between 0.9 to 47%, with majority of the glaciers retreating in the range 6-14% during the period 1971-2017 (Fig. 7).

![Figure 7: Percent length change of the glaciers in the SSB during the period 1971-2017. Frequency distribution histogram showing that majority of the glaciers have undergone length change of in the range 6-14%.](image)

Decadal observations reveal the highest rate of retreat during 1994-2000 (7.37 ±8.6 ma⁻¹) followed by 2000-2017 (4.66 ±1.04 ma⁻¹) and lowest during 1971-1994 (3.22 ±2.3 ma⁻¹) (Supplementary figure S 1b). Also, the average retreat rate in the GHR and LR glaciers was observed to be 5.4 ±1.04 ma⁻¹ and 3.3 ±1.04 ma⁻¹, respectively, during the period 1971-2017. The retreat rate of individual glaciers varied from 0.72 ±1.02 ma⁻¹.
(G-114) to 28.92 ±1.02 ma$^{-1}$ (G-7, i.e., Dulung glacier) during the period 1971-2017. Besides, the Kangriz glacier (G-50) also showed advancement during the period 1994-2000 by 5.23 ±8.6 ma$^{-1}$.

4.4 Debris-cover changes

Results show an overall increase in debris-cover extent by 62% (~37 ±0.002 km2) in the SSB glaciers during the period 1971-2017. Decadal variations exhibit the maximum increase in the debris-cover by approximately 19 ±0.00004 km2 (24%) during 2000-2017 followed by an increase of 13 ±0.0001 km2 (20%) and 5 ±0.0001 km2 (9%) during 1994-2000 and 1971-1994, respectively (Supplementary figure S1c). However, GHR and LR glaciers show an overall increase of debris cover extent by 59% and 73%, respectively during the entire study period, i.e., 1971-2017.

4.5 SLA variations

The mean SLA shows an average increase of 22 ±60 m during the period 1971-2017. On the decadal scale, SLA variations showed the highest increase (161 ±59 m) during 1994-2000 with a considerably lower increase (8 ±59 m) during 1977-1994 and decrease (150 ±60 m) during 2000-2017. Amongst the four time periods (1977, 1994, 2000 & 2017) used for mean SLA estimation, the highest SLA is noted during 2000 (5158 ±65 masl) and minimum during 1977 (4988 ±65 masl) (Supplementary figure S1d).

During the period 1977-2017, the average SLA of the LR glaciers is observed to be relatively higher (5155 ±7 masl) as compared to the GHR glaciers (4962 ±9 masl). In contrast, an overall rise in mean SLA was noted in GHR (49 ±69 m), while a decrease in LR glaciers (18 ±45 m) during the time frame of 1977-2017.

5 Discussion

The present study reports detailed temporal inventory data of the glaciers in the SSB considering multiple glacier parameters, evaluates the ensuing changes for ascertaining the status of glaciers and relates them to climate variability and other inherent terrain characteristics. The results suggest an overall degeneration of the glaciers with pronounced spatial and temporal heterogeneity in response.

5.1 Glacier variability in Suru sub-basin: A comparative evaluation

Basin statistics reveal that in the year 2000, the SSB comprised of 240 glaciers covering an area of approximately 496 km2. However, these figures differ considerably from the previously reported studies in this particular sub-basin, with the total number of glaciers and the glacierized area varying from 284/ 718.86 km2 (Sangewar and Shukla, 2009) to 110/ 156.61 km2 (SAC report, 2016), respectively. In contrast, the glacierized area is found to be less, however comparable with the RGI boundaries (550.88 km2). Besides, debris cover distribution of the glaciers during 2000 is observed to be ~16% in the present study, which is almost half of that reported in RGI (30%). Variability in these figures is possibly due to the differences in the mapping techniques, thereby increasing the risk of systematic error. Moreover, due to the involvement of different analysts in the latter, the results may more likely suffer with random errors.

Results from this study reveal an overall deglaciation of the glaciers in the SSB at an annual rate of ~0.1 ±0.0004% during the period 1971-2017. This quantum of area loss is comparatively less to the average annual
rate of 0.4% reported in the western Himalaya (Supplementary table S3). However, our results are comparable with Birajdar et al. (2014), Chand and Sharma (2015) and Patel et al. (2018) and differ considerably with other studies in the western Himalayas (Supplementary table S3). Period wise deglaciation varied from 0.1 ±0.0007 to 0.2 ±0.005% a⁻¹ during 1971-2000 and 2000-2017, respectively. This result is in line with the recent findings by Maurer et al. (2019), who suggest a higher average mass loss post 2000 (-0.43 m w.e.a⁻¹), which is almost double the rate reported during 1975-2000 (-0.22 m w.e.a⁻¹) for the entire Himalaya.

Comparing the deglaciation rates of the glaciers within the western Himalayan region reveals considerable heterogeneity therein (Supplementary table S3). It is observed that the Karakoram Himalayan glaciers, in particular, had been losing area till 2000 at an average rate of 0.09% a⁻¹, with an increase in area thereafter by ~0.05% a⁻¹ (Liu et al., 2006; Minora et al., 2013; Bhambri et al., 2013). However, glaciers in the GHR and Trans Himalayan range have been deglaciating with higher average annual rate of 0.4 and 0.6% a⁻¹, respectively during the period 1962-2016 (Kulkarni et al., 2007; Kulkarni et al., 2011; Rai et al., 2013; Chand and Sharma, 2015; Mir et al., 2017; Schmidt and Nusser, 2017; Chudley et al., 2017; Patel et al., 2018; Das and Sharma, 2018). In contrast to these studies, deglaciation rates in SSB, which comprises of glaciers in GHR as well as LR have varied from 0.1% a⁻¹ (GHR) to 0.2% a⁻¹ (LR) (present study). These results evidently depict that the response of the SSB glaciers is transitional between the Karakoram Himalayan and GHR glaciers. Period wise area loss of the glaciers in the Himalayan region suggest maximum average deglaciation of eastern (0.49%/yr), followed by central (0.36%/yr) and western (0.35%/yr) Himalayan glaciers before 2000. Contrarily, after 2000, the central Himalayan glaciers deglaciated at the maximum rate (0.52%/yr) followed by western (0.46%/yr) and eastern (0.44%/yr) Himalayan glaciers (Fig. 8). Though these rates reflect the possible trend of deglaciation in the Himalayan terrain, however, any conclusion drawn would be biased due to insufficient data, particularly in eastern and central Himalaya.

Figure 8: Annual rate of percentage area loss of glaciers in three major sections of Himalaya before and after 2000. Details of the same have been mentioned in Table S3 of Supplementary sheet. Results from the present study have been star marked in the western Himalaya.

In this study, we found an overall average retreat rate of 4.3 ±1.02 ma⁻¹ during the period 1971-2017. However, the average retreat rates of seven glaciers in the SSB, reported by Kamp et al., (2011) is found to be nearly twice (24 ma⁻¹) of that found in this study (10 ma⁻¹). The comparatively higher retreat rates in the former might be due to the consideration of different time frames. The average retreat rates in other basins of the western Himalaya is also found to be higher (7.8 ma⁻¹) in the Doda valley (Shukla and Qadir, 2016), 8.4 ma⁻¹ in Liddar valley (Murtaza and Romshoo, 2015), 15.5 ma⁻¹ in the Chandra-Bhaga basin (Pandey and Venkataraman, 2013) and 19
ma^{-1} in the Baspa basin (Mir et al., 2017). These results show lower average retreat rate of the glaciers in the SSB as compared to the other studies in the western Himalaya. The observed average retreat rates during 2000-2017 (4.6 ±1.02 ma^{-1}) is found to be nearly twice of that, noted during 1971-2000 (2 ±1.7 ma^{-1}). Similar higher retreat rates post 2000 have been reported in the Tista basin (Raina, 2009), Doda valley (Shukla and Qadir, 2016), Chandra Bhaga basin (Pandey and Venkataraman, 2013) and Zanskar basin (Pandey et al., 2011). However, these studies may not sufficiently draw a generalized picture of glacier recession in the Himalayan region.

5.2 Spatio-temporal variability in the climate data
Climatic fluctuations play a crucial role in understanding glacier variability. In this regard, CRU-TS 4.02 dataset helped in delineating the long term fluctuations in the temperature and precipitation records.

5.2.1 Basin-wide climate variability
During an entire duration of 116 years, i.e. from 1901-2017, maximum mean annual temperature is observed in 2016 (3.23 °C) and minimum during 1957 (-0.51 °C). Mean annual temperature shows an almost uniform trend till 1996, with a pronounced rise thereafter till 2005/06 period (Fig. 3a;bc). The globally averaged combined land and ocean surface temperature data of 1983-2012 period is considered as the warmest 30-year period in the last 1400 years (IPCC, 2013). This unprecedented rate of warming has been primarily attributed to the rapid scale of industrialization, increase in regional population and anthropogenic activities prevalent during this time period (Bajracharya et al., 2008; IPCC, 2013). Thus, one of the probable reason for this sudden increment in temperature pattern is possibly due to the greenhouse effect from enhanced emission of black carbon in this region (by 61%) from 1991-2001. Evidences of incessant increase in temperature during 1990s have also been observed (through chronology of Himalayan Pine) from the contemporaneous surge in tree growth rate (Singh and Yadav 2000). In fact, 50% of the years since 1970 have experienced considerably high solar irradiance and warm phases of ENSO, which is possibly one of the reasons for the considerable rise in temperature throughout the Himalaya (Shekhar et al., 2017). Maximum mean annual precipitation is noted during 2015 (615 mm) and minimum during 1946 (244 mm). However, the mean annual precipitation followed a similar trend till 1946 with an increasing thereafter (Fig. 3a;bc). Besides these general trends in temperature and precipitation, an overall absolute increase in the mean annual temperature (T_{max} & T_{min}) and precipitation data have been noted as 0.77 °C (0.25 °C & 1.3 °C) and 158 mm, respectively during the period 1901-2017. These observations suggest an enhanced increase in T_{min} by nearly 5 times as compared to the T_{max} alongwith a simultaneous increase in the precipitation during the period 1901-2017.

Seasonal variations reveal monthly mean temperature and precipitation of 6.7 °C and 1071 mm during summer (Apr-Oct) and -6.9 °C and 890 mm during winter (Nov-Mar) recorded during 1901-2017 period. Maximum monthly mean temperature and precipitation have been observed in July (11.8 °C/ 50.4 mm) and August (11.4 °C/ 52 mm) during the period 1901-2017, suggesting them to be the warmest and wettest months. While, January is noted to be the coldest (-10.4 °C) and November (10.3 mm) to be the driest months in the duration of 116 years (Fig. 3d;ef). Summer/winter mean annual temperature and precipitation have increased significantly by an average 0.74/ 1.28 °C and 85/ 72 mm, respectively during the period 1901-2017. These values reveal a relatively higher rise in winter average temperature in contrast to the summer. However, enhanced increase in T_{max} (1.8 °C) during winter and T_{max} (0.78 °C) during summer have also been observed during the 1901-2017 time
period. The relatively higher rise in the winter temperature (particularly T_{min}) and precipitation possibly suggest that the form of precipitation might have changed from solid to liquid during this particular time span. Similar increase in the winter temperature have also been reported from the NW Himalaya during the 20th century (Bhutiyani et al., 2007).

In contrast to the long-term climate trends, we have also analyzed the climate data for the study period, i.e., 1971-2017. An overall increase in the average temperature (0.3°C), T_{max} (0.45°C) T_{min} (1.02°C) and precipitation by 213 mm is observed. Meanwhile, an enhanced increase in winter T_{min} (1.7°C) and summer T_{max} (0.45°C) are observed. These findings aptly indicate the important role of winter T_{min} and summer T_{max} in the SSB.

5.2.2 Local climate variability

Apart from these generalized climatic variations, grid-wise analysis of the meteorological parameters reveal existence of local climate variability within the sub-basin (Fig. 3: 9).

Observations indicate that the glaciers covered in grid 4 have been experiencing a warmer climatic regimes with the maximum annual mean temperature of 1.69°C as compared to the other glaciers in the region (grid 2 = 1.4°C, grid 5 = 0.74°C, grid 1 = 0.65°C and grid 3 = 0.45°C). Spatial variability in annual mean precipitation data reveals that grid 2 (448 mm) & grid 1 (442 mm) experiences wetter climate as compared to grid 4 (383 mm), grid 3 (373 mm) and minimum in grid 5 (318 mm). These observations suggest that GHR glaciers have been experiencing a warmer and wetter climate (1.03°C/ 445 mm) as compared to the LR glaciers (0.96°C/ 358 mm).
5.3 Glacier changes: Impact of climatic and other plausible factors

The alterations in the climatic conditions, discussed in Sect. 5.2, would in turn, influence the glacier parameters, however varying with time. This section correlates the climatic and other factors (elevation range, regional hypsometry, slope, aspect and proglacial lakes) with the variations in the glacier parameters.

5.3.1 Impact of climatic factors

An overall degenerating pattern of the glaciers in the SSB is observed during the period 1971-2017, with deglaciation of 32 ±9 km² (6 ±0.02%). In the same duration, the glaciers have also retreated by an average 199 ±46.9 m (retreat rate: 4.3 ±1.02 ma⁻¹) along with an increase in the debris cover by ~62%. The observed overall degeneration of the glaciers have possibly resulted due to the warming of climatic conditions during this particular time frame. The conspicuous degeneration of these glaciers might have led to an increased melting of the glacier surface, which in turn would have unveiled the englacial debris cover and increased its coverage in the ablation zone (Shukla et al., 2009; Scherler et al., 2011). An enhanced degeneration of the glaciers have been noted during 2000-2017 (0.85 ±0.005 km²a⁻¹) than 1971-2000 (0.59 ±0.005 km²a⁻¹). Also, nearly 12 glaciers have shown disintegration into glacierets after 2000. These observations may be attributed to the relatively higher annual mean temperature (1.68 °C) during the former as compared to the period 1971-2000 (0.89 °C).

Concomitant to the maximum glacier degeneration during the period 2000-2017, debris cover extent has also increased more (24%) as compared to 1971-2000 (16%). The enhanced degeneration of the glaciers during 2000-2017 might have facilitated an increase in the distribution of supraglacial debris cover. A transition from CGs to PDGs has also been noticed which resulted due to increase in the debris cover percentage over nearly 99 glaciers. The conversion from PDGs to HDGs (39) and from CGs to HDGs (2) has also occurred. Also, most of these transitions have occurred during 2000-2017, which confirms the maximum degeneration of the glaciers during this particular period.

It is observed in our study that smaller glaciers have deglaciated more (4.13%) than the medium (1.08%) and larger (1.03%) sized glaciers during the period 1971-2017 (Supplementary figure S2). This result depicts an enhanced sensitivity of the smaller glaciers towards the climate change (Bhambri et al., 2011; Basnett et al., 2013; Ali et al., 2017). A similar pattern of glacier degeneration is noted during 1971-2000, with smaller glaciers deglaciating more (5%) as compared to the medium sized (3%) and larger (1%) ones. However during 2000-2017, medium glaciers showed slightly greater degeneration (3.9%) as compared to the smaller (3.7%) followed by larger ones (1.5%). We have also observed maximum length change for smaller glaciers (8%) in comparison to medium (5%) and large glaciers (3%). These results indicate that the snout retreats are commonly associated with small and medium sized glaciers (Mayewski et al., 1980).

Temporal and spatial variations in SLAs are an indicator of ELAs, which in turn provide direct evidences related to the change in climatic conditions (Hanshaw and Bookhagen, 2014). SLAs are amongst the dynamic glacier parameters that alters seasonally and annually, indicating their direct dependency towards the climatic factors such as temperature and precipitation. In the present study, the mean SLA has gone up by an average 22 ±60 m during the period 1977-2017. This rise in SLA is synchronous with the increase in mean annual
Moreover, the maximum rise in SLA during 1994-2000 is contemporaneous with the rise of temperature by 0.64 °C during this time period.

Further, in order to understand the regional heterogeneity in glacier response within the sub-basin, parameters of the GHR and LR glaciers are analyzed separately at four different time periods and correlated with the climatic variables. It is found that the LR glaciers have deglaciated more (7.2%) as compared to the GHR glaciers (5.9%). Similarly, more debris cover is found to have accumulated over the LR (73%) glaciers as compared to the GHR (59%) glaciers during 1971-2017. This result shows that the relatively cleaner (LR) glaciers tend to deglaciate more along with accumulation of more debris as compared to the debris and partially debris covered glaciers (GHR glaciers) (Bolch et al., 2008; Scherler et al., 2011). Moreover, increase in mean annual temperature in the LR (0.3°C) is slightly greater than in GHR (0.25°C) during the period 1971-2017, thus exhibiting a positive correlation with deglaciation and debris cover distribution in these regions. We also observed that the glacier area, length and debris cover extent of the LR glaciers show a good correlation with winter \(T_{\text{min}} \) and average precipitation as compared to the GHR glaciers (Table 3). This shows that both temperature as well as precipitation influence the degeneration of the glaciers and in turn affects the supraglacial debris cover. It is believed that winter precipitation has a prime control on accumulation of snow on the glaciers, hence acts as an essential determinant of glacier health (Mir et al., 2017). Also, the negative correlation of glacier area with precipitation in this study possibly indicate the major role of increased winter temperature and precipitation, which might have decreased the accumulation of snow, thereby decreasing the overall glacier area.

The average SLA for LR glaciers is observed to be higher as compared to the GHR glaciers. However, a relatively higher rise in SLA is observed for GHR in contrast to the LR glaciers. Also, the mean SLA of the GHR glaciers shows a good positive correlation with summer \(T_{\text{max}} \) as compared to the LR glaciers, while a negative correlation with precipitation in the respective year (Table 3). Considering these observations, it appears that a general rise in SLA can be attributed to regional climatic warming while that of individual SLA variation in glaciers may be related to their unique topography (Shukla and Qadir, 2016).

From this analysis, it is quite evident that climatic factors directly influence the glacier response. Also, summer \(T_{\text{max}} \) have a stronger control over SLA, while glacier area, length and debris cover are predominantly controlled by the winter \(T_{\text{min}} \) in the sub-basin.

Table 3: Coefficients of determination (\(r \)) between respective meteorological (temperature and precipitation) data and observed glacier parameters in the Greater Himalayan Range (GHR) and Ladakh Range (LR) at 90% confidence. \(T_{\text{avg}}, T_{\text{min}} \) and \(T_{\text{max}} \) are monthly mean, monthly mean minimum, monthly mean maximum temperatures and \(P_{\text{pt}} \) are monthly mean precipitation during different point in time (1971, 1994, 2000 and 2017)

<table>
<thead>
<tr>
<th>Major Mountain Ranges</th>
<th>Glacier Parameters</th>
<th>Climate Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(T_{\text{avg}})</td>
</tr>
<tr>
<td>GHR</td>
<td>Area</td>
<td>-0.826</td>
</tr>
<tr>
<td></td>
<td>Length</td>
<td>-0.908</td>
</tr>
<tr>
<td></td>
<td>Debris cover</td>
<td>0.842</td>
</tr>
<tr>
<td>LR</td>
<td>Area</td>
<td>0.725</td>
</tr>
<tr>
<td></td>
<td>Length</td>
<td>-0.909</td>
</tr>
<tr>
<td></td>
<td>Debris cover</td>
<td>0.929</td>
</tr>
<tr>
<td></td>
<td>SLA</td>
<td>0.658</td>
</tr>
</tbody>
</table>
5.3.2 Impact of other factors

In addition to the climate variables, other factors such as hypsometry, maximum elevation, altitude range, slope, aspect and proglacial lakes also influence the response of individual glacier.

Glacier hypsometry is a measure of mass distribution over varying altitudes. It is affected by the mean SLA of the glaciers to a greater extent, as it is considered that if a large portion of the glacier has elevation equivalent to SLA, then even a slight alteration in SLA might significantly change the ablation and accumulation zones (Rivera et al., 2011; Garg et al., 2017b).

In this study, we observed that GHR and LR glaciers have nearly 45% and 10% of their area at an elevation similar to SLA. This suggests that GHR glaciers are more susceptible to retreat as compared to the LR glaciers, as a larger portion of the former belongs to the SLA. Moreover, the hypsometric distribution of glacier area in the GHR and LR of the SSB reveals maximum area change post 2000 (Fig. 6b). In this regard, while GHR glaciers have undergone relatively higher area loss (21%) at lower elevation (3800-4200 masl), the LR glaciers lost maximum area (30%) at much higher elevation (5600-5900 masl) ranges (Fig. 6b). Besides, a significant area loss has also been observed for both GHR (6%) and LR (7%) glaciers at their mean elevations post 2000 (Fig. 6b).

Elevation plays an important role in understanding the accumulation pattern at higher and ablation in the lower altitudes. The general perception is that the glaciers situated at relatively higher elevation are subjected to greater amount of precipitation and hence are susceptible to less deglaciation or even mass gain (Pandey and Venkataraman, 2013). Similarly, we have also noticed that the glaciers extending to comparatively higher maximum elevation experience minimum retreat (10%) and exhibit higher percentage deglaciation (33%) as compared to the glaciers having lower maximum elevation (retreat:15% & deglaciation: 20%) (Fig. 10a).
Figure 10: Differential degeneration of the glaciers during the period 1971-2017 with variability in non-climatic factors. (a) Percentage deglaciation and length change of the glaciers at different ranges of maximum elevation, (b) altitude range, (c) mean slope and (d) percentage debris cover.

Moreover, our study shows that the glaciers having lower altitude range have retreated and deglaciated more (13% & 20%, respectively) as compared to the counterparts (Fig. 10b). These observations indicate that glaciers which possess higher maximum elevation and altitudinal range are subjected to less retreat and undergo greater deglaciation.

Slope is another important factor which has a major role in the sustenance of the glacier as accumulation of ice is facilitated by a gentler bedrock topography (DeBeer and Sharp, 2009; Patel et al., 2018). It is observed that glaciers having steep slopes (30-40°) have retreated more (17%), however with minimum deglaciation (7%) during the period 1971-2017 (Fig. 10c). Similar results with steeper glaciers exhibiting minimum deglaciation have been reported in the Parbati, Chandra and Miyar basins (Venkatesh et al., 2012; Patel et al., 2018).

However, it differs with Pandey and Venkataraman (2013) and Garg et al., (2017b), likely due to the differing average size: 25 ±33.78 and 17 ±33.2 km² (present study; 2 ±5.7 km²) and slope: 5-20° and 12-26° (present study: 13-41°), respectively, of glaciers used in these studies.

Presence of supraglacial debris cover influences the glacier processes. Depending on thickness, debris cover may either enhance or retard the ablation process (Scherler et al., 2011). In this study, we observed that clean glaciers have undergone maximum deglaciation (52%) as compared to the partially (46%) and heavily debris covered glaciers (2%). However, they all have retreated almost similarly (12 to 14%), with slightly higher retreat of partially debris covered glaciers (Fig. 10d). Aspect/ orientation of glaciers provide information.
regarding the duration for which they are exposed to the incoming solar radiation. Since, the south facing glaciers are subjected to longer duration of exposure to the solar radiations as compared to the north facing glaciers, therefore, are prone to greater deglaciation and retreat (Deota et al., 2011). Here, it is observed that the glaciers having northerly aspect (north, north-east, north-west) have undergone maximum deglaciation as compared to the counterparts. However, majority (71%) of the glaciers have northerly aspect, so any inferences drawn in this respect would be biased. It is worthwhile to state that most of the south facing slopes in the basin are devoid of glaciers but show presence of relict glacier valleys which would have been glaciated in the past. At present only 48 south facing glaciers (south, south-east, south-west) with an average size of $1 \pm 1.9 \text{ km}^2$ exist in the SSB.

Similarly, the glacier changes are also influenced by the presence of certain features such as glacial (proglacial or supraglacial) lakes or differential distribution of supraglacial debris cover. The presence of a proglacial or supraglacial lakes significantly enhances the rate of glacier degeneration by increasing the melting processes (Sakai, 2012; Basnett et al., 2013). As per our results, highest average retreat rate (~31 m$^{-1}$) is observed for glaciers G-4 (Dulung glacier). Although, it is a debris free glacier, shows the highest retreat rates. Also, a moraine-dammed lake is observed at the snout of this glacier and has continuously increased its size from 0.15 km^2 in 1977 to 0.56 km^2 in 2017. This significant increase in the size of moraine-dammed lake has possibly influenced the enhanced retreat rate of the glacier.

6 Dataset availability

Temporal inventory data for glaciers of Suru sub-basin, western Himalaya is available at https://doi.pangaea.de/10.1594/PANGAEA.904131 (Shukla et al., 2019).

7 Conclusions

The major inferences drawn from the study include:

1. The sub-basin comprised of 252 glaciers, covering an area of $481.32 \pm 3.41 \text{ km}^2$ (11% of the glacierized area) in 2017. Major disintegration of the glaciers occurred after 2000, with breakdown of 12 glaciers into glacierets. Small (47%) and clean (43%) glaciers cover maximum glacierized area of the sub-basin. Topographic parameters reveal that majority of the glaciers are north facing and the mean elevation and slope of the glaciers are 5134.8 ± 225 masl and $24.8 \pm 5.8^\circ$, respectively.

2. Variability in glacier parameters reveal an overall degeneration of the glaciers during the period 1971-2017, with deglaciation of approximately $0.13 \pm 0.0004 \text{ km}^2\text{a}^{-1}$ alongwith an increase in the debris cover by $37 \pm 0.002 \text{ km}^2$ (~62%). Meanwhile, the glaciers have shown an average retreat rate of nearly $4.3 \pm 1.02 \text{ ma}^{-1}$ with SLA exhibiting an overall rise by an average $22 \pm 60 \text{ m}$.

3. Long-term meteorological records during the period 1901-2017 exhibit an overall increase in the temperature ($T_{\text{min}}: 1.3^\circ\text{C}, T_{\text{max}}: 0.25^\circ\text{C}, T_{\text{avg}}: 0.77^\circ\text{C}$) and precipitation (158 mm) trends. Both temperature and precipitation gradients influence the changes in glacier parameters, however, winter T_{max} strongly influencing the glacier area, length and debris cover while summer T_{max} controlling the SLA. Spatial patterns in change of climate
parameters reveal existence of local climate variability in the sub-basin, with progressively warmer (1.03°C) and wetter (445 mm) climatic regime for glaciers hosted in the GHR as compared to the LR (0.96°C/ 358 mm).

4. The inherent local climate variability in the sub-basin has influenced the behavior of the glaciers in the GHR and LR. It has been observed that LR glaciers have been shrinking faster (area loss: 7%) and accumulating more debris cover (debris increase: 73%) as compared to the GHR glaciers (6% and 59%) during the period 1971-2017. The GHR glaciers have, however, experienced greater rise in SLA (220 ±121 m) in comparison to the LR ones (91 ±56 m) during the period 1977-2000, with a decrease thereafter.

Results presented here show the transitional response of the glaciers in the SSB between the Karakoram Himalayan and GHR glaciers. The study also confirm the possible influence of factors other than climate such as glacier size, regional hypsometry, elevation range, slope, aspect and presence of proglacial lakes in the observed heterogenous response of the glaciers. Therefore, these factors need to be accounted for in more details in future for complete understanding of the observed glacier changes and response.

Team list
1. Aparna Shukla
2. Siddhi Garg
3. Manish Mehta
4. Vinit Kumar
5. Uma Kant Shukla

Author contribution
A.S. and S.G. conceived the idea and led the writing of manuscript. A.S. structured the study. S.G. performed the temporal analysis of the data. M.M. and V.M. helped in the field investigation of the glaciers. All the authors helped in interpretation of results and contributed towards the final form of the manuscript.

Competing interests
The authors declare that they have no conflict of interest.

Acknowledgements
Authors are grateful to the Director, Wadia Institute of Himalayan Geology, Dehradun for providing all the research facilities and support for successful completion of this work.

References
ALOS Global Digital Surface Model "ALOS World 3D - 30m" (AW3D30).

Harris, I.C. and Jones, P.D.: CRU TS 4.02: Climatic Research Unit (CRU) year-by-year variation of selected climate variables by country (CY) version 4.02 (Jan. 1901 - Dec. 2017), Centre for Environmental Data Analysis, http://dx.doi.org/10.5285/4de823f0172947c5ae6e6b265656e273, 2018.

