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Abstract. Most scenarios from Integrated Assessment Models (IAMs) that project greenhouse gas emissions include the use 

of bioenergy as a means to reduce CO2 emissions or even to achieving negative emissions (together with CCS). The 

potential amount of CO2 that can be removed from the atmosphere depends, among others, on the yields of bioenergy crops, 

the land available to grow these crops and the efficiency with which CO2 produced by combustion is captured. While 30 

bioenergy crop yields can be simulated by models, estimates of the spatial distribution of bioenergy yields under current 

technology based on a large number of observations are currently lacking. In this study, a random forest algorithm is used to 

upscale a bioenergy yield dataset of 3,963 observations covering Miscanthus, switchgrass, eucalypt, poplar and willow using 

climatic and soil conditions as explanatory variables. The results are global yield maps of five important lignocellulosic 

bioenergy crops under current technology, climate and atmospheric CO2 conditions at a 0.5° × 0.5° spatial resolution. We 35 

also provide a combined “best bioenergy crop” yield map by selecting the one of the five crop types with the highest yield in 

each of the grid cell, eucalypt and Miscanthus in most cases. The global median yield of the best crop is 16.3 t DM ha-1 yr-1. 

High yields mainly occur in the Amazon region and Southeast Asia. We further compare our empirically derived maps with 

yield maps used in three IAMs and find that the median yields in our maps are >50% higher than those in the IAM maps. 

Our estimates of gridded bioenergy crop yields can be used to provide bioenergy yields for IAMs, to evaluate land surface 40 

models, or to identify the most suitable lands for future bioenergy crop plantations. The 0.5° × 0.5° global maps for yields of 

different bioenergy crops and the best crop and for the best crop composition generated from this study can be download 

from https://doi.org/10.5281/zenodo.3274254 (Li, 2019). 
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1.  Introduction 

Bioenergy crops have for a number of years been promoted as a source of renewable energy under policies from the 45 

European Union and the U.S. (WBGU, 2009). They have also gained increasing attention as a global climate mitigation 

option (Berndes et al., 2003; Rose et al., 2014; van Vuuren et al., 2009). Bioenergy with carbon capture and storage 

(BECCS) is an important negative emissions technology being used by integrated assessment models (IAMs) to develop 

different climate mitigation scenarios (Fuss et al., 2018; Popp et al., 2017; Rogelj et al., 2018). BECCS contributes a 

cumulative carbon-dioxide removal (CDR) between 150 and 1200 Gt CO2 in different future scenarios that limit global 50 

warming at 1.5 °C in 2100 compared to the preindustrial period (Rogelj et al., 2018). This wide range of CDR is mainly 

caused by the different Shared Socio-economic Pathways (SSPs) used in IAMs as well as by different model settings (Popp 

et al., 2014; Rogelj et al., 2018).  

Grain or high-sugar crops like maize and sugarcane based on first-generation conversion technologies are not frequently 

considered by IAMs because of their lower energy yields, high fertilizer requirements and the increasing food demand 55 

pressure in future scenarios (Karp and Shield, 2008). Bioenergy production systems in IAMs thus often refer to 

lignocellulosic bioenergy and correspond to perennial grasses (e.g. switchgrass and Miscanthus) and/or fast-growing trees 

(e.g. poplar, willow and eucalypt) coupled with technologies for converting lignocellulosic biomass to bioenergy (second-

generation) (Karp and Shield, 2008). They can grow under a wider range of climatic conditions and soil types and have a 

lower demand for fertilizer (Cadoux et al., 2012; Miguez et al., 2008) and a larger greenhouse gas (GHG) abatement 60 

potential than first generation biofuels (El Akkari et al., 2018). However, the competition for land used to grow bioenergy 

crops and other land uses (e.g. food, timber, wild species protection) seems inevitable, causing direct and indirect land-use 

change (LUC) and carbon emissions (Robertson et al., 2017; Smith et al., 2016). One option for minimizing the land 

competition and the consequent LUC emissions is to plant lignocellulosic bioenergy crops on “marginal lands” (Robertson et 

al., 2017). So-called marginal lands are mainly assumed to be abandoned lands that were formerly used for agriculture. 65 

Reasons for the agricultural land abandonment may include degraded soil quality, low crop price or environmental and 

ecological protection (Kang et al., 2013; Tang et al., 2010).  

The biomass yields of bioenergy crops on marginal lands or in future land use scenarios simulated by IAMs are often 

estimated from small crop yield datasets (e.g. Cai et al., 2011; Havlík et al., 2011; Kyle et al., 2011; Tang et al., 2010) or 

using a meta-analysis of experimental data extracted from scientific papers (Laurent et al., 2015). These approaches largely 70 

oversimplify the spatial variability of climatic conditions and soil properties. Alternatively, yields of bioenergy crops can be 

simulated by specific bioenergy crop models (e.g. Hastings et al., 2009; Miguez et al., 2009) or by dynamic global 

vegetation models (DGVMs) (Beringer et al., 2011; Li et al., 2018b). Specific bioenergy crop models represent physiological 

processes related to plant production and show a good performance of reproducing the biomass yields observations, but they 

are semi-mechanistic models based on empirical relationships, and processes other than productivity (e.g. soil carbon 75 

dynamic) are largely not represented (Hastings et al., 2009; Miguez et al., 2008). In addition, they are often designed for 

only one or two bioenergy crop types. By contrast, the DGVMs use generic plant functional types (PFTs) to represent a 

group of plants with similar physiological and phenological characteristics and have complex processes representations 

related to the carbon cycle, i.e. photosynthesis, carbon allocation, respiration, phenology and soil carbon dynamics 

(Guimberteau et al., 2018; Sitch et al., 2003). DGVMs with specific representation of bioenergy crops and calibrated using 80 

site-level data can provide global bioenergy crop yield maps, but it is difficult to perfectly match observed yields site-by-site, 

partly due to lack of explicit management information (e.g. genotypes, fertilization, plant density) in the DGVMs (Heck et 

al., 2016; Li et al., 2018b). Nevertheless, at least two IAMs (IMAGE and MAgPIE) use simulated bioenergy crop yield maps 

from the DGVM — LPJmL (Bonsch et al., 2016; Stehfest et al., 2014). Technological progress may be further considered in 

IAMs for the future increase of bioenergy (and food) crop yields. 85 
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A detailed global map of bioenergy crop yields based on a large number of field observations that could be used to validate 

the model-based scenarios is currently lacking, to the best of our knowledge. Recently, global large datasets of second-

generation bioenergy crop yields were compiled (LeBauer et al., 2018; Li et al., 2018a). These datasets provide observation-

based crop yields as well as coordinates, climate conditions (e.g. temperature, precipitation), soil properties (e.g. clay 

fraction) and management information, which can potentially be scaled to the globe using Machine Learning algorithms. The 90 

derived global yield maps not only are valuable to estimate the global bioenergy production potentials but also can be used 

as input data to IAMs or to evaluate the performances of specific bioenergy crop models and DGVMs. Global yield maps 

could also help governments or companies identifying the most promising areas for growing bioenergy crops.   

The objective of this study is thus to generate spatially explicit bioenergy yields with a machine learning algorithm (Random 

Forest, Breiman, 2001) trained from a global yield dataset (Li et al., 2018a) with climate, soil condition and remote sensing 95 

variables as explanatory variables. The bioenergy crop yield maps produced by the machine learning algorithm at a 0.5° × 

0.5° spatial resolution are then compared with the yield maps previously used in three IAMs, i.e. IMAGE (Stehfest et al., 

2014), MAgPIE (Popp et al., 2014) and GLOBIOM (Havlík et al., 2011). 

2. Materials and methods 

2.1 Data 100 

The global yield dataset used here was compiled from 3,963 published field measurements of five main lignocellulosic 

bioenergy crops: eucalypt, Miscanthus, switchgrass, poplar and willow (Li et al., 2018a). All yield records have coordinates 

(latitude and longitude) and crop types. Other information was also documented if it was reported in the original publications, 

including mean annual temperature (MAT), mean annual precipitation (MAP), soil clay fraction (CF), planting information 

(e.g. density, rotation length, harvest time, age) and management practices (irrigation and fertilization). Most yield data in 105 

this dataset correspond to the mean annual harvested biomass (Li et al., 2018a), and only about one-third of yield data were 

reported with age (Li et al., 2018a), so age is not specifically used in this study since we aimed to produce a spatial yield 

map for present day without temporal variability. Only 36%, 51% and 14% of the yield observations were reported together 

with MAT, MAP and CF, respectively (Li et al., 2018a). For those sites without such information, we used climate data from 

the CRUNCEP gridded dataset (Viovy, 2011) and CF data from Harmonized World Soil Database (HWSD v1.2, 110 

Nachtergaele et al., 2012) (Table 1). For the sites with reported MAT and MAP in the yield dataset, we compared the 

reported values with MAT and MAP from CRUNCEP at the corresponding grid cell and they are in a good agreement (Fig. 

S1). But the consistency is low between CF from HWSD and those reported in the site-level yield dataset (Fig. S1), probably 

due to the limited number of observations and strong heterogeneity of soil properties. 

In addition to MAT, MAP and CF, we also used other explanatory variables (Table 1): 1) shortwave radiation (SR) derived 115 

from the MODIS products (Ryu et al., 2018), 2) growing season length (GSL) calculated using daily temperature from 

CRUNCEP (Viovy, 2011), 3) a soil water availability index (WAI) calculated from a soil water balance model using ERA-

interim reanalysis data as inputs (see details in Tramontana et al., 2016), and 4) growing season summed normalized 

difference vegetation index (NDVI) from the MODIS NDVI dataset (Park et al., 2016). GSL is defined as number of days 

between the first five successive days with daily average temperature greater than 5 °C and the first five days with daily 120 

temperature smaller than 5 °C in a year (Frich et al., 2002; Mueller et al., 2015). For this calculation the years was set to start 

on January 1 in the northern hemisphere and on July 1 in the southern hemisphere.  

Because the spatial resolution of CRUNCEP and the WAI data is 0.5° × 0.5° (Table 1), we performed all analyses at this 

spatial resolution. Thus, for CF and SR datasets with higher resolutions (Table 1), the median values in each 0.5° × 0.5° grid 

cell were used as explanatory variables. Although NDVI covers non-bioenergy vegetation type, we used the maximum value 125 

in each 0.5° × 0.5° grid cell from the original 0.05° × 0.05° resolution as a spatial proxy of the maximum yield potential that 
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bioenergy crops can reach in the machine-learning upscaling model. The multi-year median values of MAT and MAP from 

CRUNCEP, SR, WAI and NDVI between 2001 and 2010 for each grid cell were used to eliminate temporal variability. 

2.2 Random Forest modelling 

2.2.1 Random Forest 130 

Random Forest (RF) has been used to analyze the relationships between independent variables and explanatory variables (e.g. 

the relation between crop yields and climate by Hoffman et al., 2018) and for up-scaling local data (e.g. global soil carbon 

loss due to human land use by Sanderman et al., 2017). RF is a machine learning algorithm that combines a set of regression 

trees constructed from a random subset of the observations (Breiman, 2001). Because each tree fitting in the forest uses a 

bootstrap sample of the training observations, the part of the data set not used is called out-of-bag (OOB) and can be used to 135 

test the tree prediction. This helps RF to be fit and validated when being trained, and thus no extra independent validation 

dataset is needed. 

Here we used Python scikit-learn module (Pedregosa and Varoquaux, 2011) to perform the RF regressions. We set the 

number of trees in forest to be 1000, and the maximum depth of each tree (branch levels) to be 10. We verified that the 

coefficient of determination (R2) between predictions and observations in the training data, and R2 of OOB validation remain 140 

constant with number of trees larger than 1000 or maximum depth larger than 10 (Fig. S2). The importance of a variable can 

also be calculated in the scikit-learn module based on how much each variable decreases the weighted impurity, i.e. the sum 

over the number of splits across all trees that include this variable, weighted by the number of samples it splits (Louppe et al., 

2013). Although the RF model is robust to correlated explanatory variables, the importance calculation could be biased if 

there are a strong collinearity between different variables. We thus calculated the correlations between all continuous 145 

explanatory variables (Table 1) in the training dataset (see Section 3.1). 

2.2.2 Model training 

The median yield, MAT, MAP and CF of all site observations for each crop type in each 0.5° × 0.5° grid cell from the global 

yield dataset were calculated to build the training set. That is, for example, several yield observations were reported in the 

same 0.5° × 0.5° grid cell, the median value of these observations was used for this grid cell. This gives a total of 273 0.5° × 150 

0.5° grid cells with yield observations. The SR, GSL, WAI and NDVI in these grid cells that are not recorded in the yield 

observation dataset were derived from each corresponding dataset (Table 1) and added in the training set. Crop type (CT, 

Table 1) was taken as a categorical variable in the RF training and was thus converted to five dummy variables, i.e. 

CT_eucalypt, CT_Miscanthus, CT_poplar, CT_switchgrass and CT_willow. Taking one yield observation of eucalypt for 

example, CT_eucalypt was set to 1 and the other four CTs were set to 0. Alternatively, we also tried one RF regression for 155 

each individual crop type as a sensitivity test for this categorical variable (see Section 4.2). 

We first trained the RF model using data from all the 273 grid cells. However, the OOB R2 (0.29) is low, indicating the poor 

performance of the trained model. The low OOB R2 is probably because part of observed yields cannot be explained by the 

spatially explicit climate and soil conditions used as the explanatory variables in the model training. For example, some 

strong genotypes may produce high yields under poor climate conditions while low yields may be observed at some sites 160 

with poor soil conditions that are not representative for the whole 0.5° × 0.5° grid cell. In order to derive the best RF model 

for prediction, therefore, we further adopted a leave-one-out method (Siewert, 2018; Tramontana et al., 2015). Specifically, 

RF models were trained each time by excluding one grid cell in the training set. The RF model was then used to predict the 

yield for this excluded grid cell. The comparison between observations and predictions is shown in Fig. S3. There are 112 

grid cells with predicted yields that are biased more than 1-σ of the observed yields (gray dots in Fig. S3a). These strongly 165 

biased grid cells were masked, and the remaining 161 grid cells retained to train the RF model again to obtain the best RF 

model. The predicted yields from the best RF model agrees well with the observations (Fig. S3b), and R2 of the OOB 
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validation is 0.63. Note that the OOB R2 (0.63) serves as an evaluation of the RF model performance rather than the R2 

between predictions and observations in the training set (0.95, Fig. S3b). In the RF model training, one can always get a very 

high R2 for the training set by expanding the tree depth, but in that case, the RF model will be overfitted and thus have a poor 170 

ability to predict, suggested by a low OOB R2. 

The spatial distribution of the selected grid cells for model training is shown in Fig. 1. There is a good observation coverage 

in the US, Europe, China, Southeast Brazil and South Australia but sites are sparse in other regions (Fig. 1). Eucalypt, 

Miscanthus, switchgrass, poplar and willow take 16.8%, 24.2%, 16.8%, 26.1 and 16.1% of the total number of selected sites 

in the training data (Fig. 1). 175 

2.2.3 Model prediction 

After training by data from the selected 161 grid cells, the derived RF model was used to predict the global distribution of 

bioenergy crops yields. Specifically, the gridded values of continuous explanatory variables on each 0.5° × 0.5° land grid 

cell were derived from data sources listed in Table 1. Five predictions were made, each with one individual prescribed 

bioenergy crop type (e.g. CT_eucalypt = 1 and the other four CTs = 0 for eucalypt).   180 

Although there are some drought and/or cold tolerant Eucalyptus species, most species have a limited cold tolerance and 

relative high demands for water and are thus usually cultivated in tropical and warm temperate regions (Jacobs, 1981). Also, 

because the RF model has a poor ability in extrapolation when the values of explanatory variables are outside the ranges of 

training data, we only limited each crop predictions in the areas that are adequate for growth. Specifically, the minimum 

MAT and MAP over all grid cells in the training dataset were derived for each crop. The regions adequate for growth of each 185 

bioenergy crop were then defined as grid cells with MAT and MAP higher than the minimums in the training data. In 

another word, if either MAT or MAP in a grid cell is lower than the minimums where a crop type is grown in the training 

data, this grid cell is excluded for upscaling the yield of this crop. The grid cells with adequate growth conditions for each 

bioenergy crop type are shown in Fig. S4a-e. We also provided an integrated map (Fig. S4f) where at least one bioenergy 

crop type can grow to represent the grid cells that can have yield predictions. 190 

Beyond the five predictions made for each bioenergy crop, we derived a prediction of the “best crop” by selecting the 

bioenergy crop with highest yield in each grid cell to indicate the maximum achievable yields (see Section 3.2). 

2.3 Bioenergy crop yield maps in IAMs 

We compared our derived yield maps from RF with the bio-energy yields from three IAMs: IMAGE (Stehfest et al., 2014), 

MAgPIE (Popp et al., 2014) and GLOBIOM (Havlík et al., 2011). The yields used in IMAGE and MAgPIE are simulated by 195 

a DGVM — LPJmL (Beringer et al., 2011) and have separate yield data for woody (representing poplar, willow and 

eucalypt) and herbaceous (representing switchgrass and Miscanthus) bioenergy crops. For comparison, we used the present-

day (2010) actual yield maps without future climate change impacts from IMAGE and MAgPIE. 

In the IMAGE integrated assessment model framework (Stehfest et al., 2014), the LPJmL model is an integral component 

for crop and grass yields, hydrology, dynamic vegetation and carbon dynamics (Müller et al., 2016). Bioenergy crop yields 200 

for sugarcane, maize, and herbaceous and woody crops are represented on the grid-level in LPJmL and represent potential 

yields under current technology. In the IMAGE-Land model, these potential yields are calibrated on the regional level to 

currently observed yields based on Gerssen-Gondelach et al. (2015) for the present day. Future projections of bioenergy crop 

yield depend on scenario-specific assumptions of technological progress (Daioglou et al., 2019), but the yield map used in 

this study is for year 2010 and without future yield improvements 205 

The yield map for year 2010 from MAgPIE used for comparison in this study includes the yield improvements due to 

technological development from 1995 to 2010. In the yield maps used as an input to MAgPIE, the potential bioenergy crop 

yields simulated by LPJmL (Beringer et al., 2011) were reduced using information about observed land-use intensity 
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(Dietrich et al., 2012) and agricultural area (FAO, 2013) because MAgPIE aims to represent actual yields (Bonsch et al., 

2016; Humpenöder et al., 2014). It is assumed that LPJmL bioenergy yields represent yields achieved under highest 210 

currently observed land use intensity, which is observed in Europe. Therefore, LPJmL bioenergy yields for all other regions 

than Europe are reduced proportional to the land use intensity in the given region. In addition, yields are calibrated at the 

regional level to meet FAO agricultural area in 1995, resulting in a further reduction of yields in all regions. MAgPIE 

bioenergy yields can exceed LPJmL bioenergy yields over time as endogenous investments in R&D (Research and 

Development) pushing the technology frontier.  215 

The bioenergy crop yield map used in GLOBIOM represents the yields from short-rotation tree plantations (i.e. Eucalyptus, 

Acacia, Gmelina, Betula, Populus, Salix) and thus only woody bioenergy crops. To generate this map, field measured yields 

(i.e. as mean annual increments of stem wood) for different short-rotation tree species with proper managements were first 

collected from various databases (dated between 1984 and 2006 and sourced from different global regions) and then scaled 

up to a global yield map based on the spatial patterns of potential net primary productivity from Cramer et al. (1999). The 220 

estimation of area potentials for tree plantations in the GLOBIOM maps followed an approach similar to the one proposed 

by Zomer et al. (2008), including thresholds of tree growth based on aridity, temperature, elevation, population density, and 

existing land cover (Havlík et al., 2011). 

3 Results 

3.1 Explanatory variables importance 225 

The importance of explanatory variables to the RF model is shown in Fig. 2a, indicating their contributions to the overall 

tree splits in the forest. We verified that spatial R2 is generally low between any pair of variables (median R2=0.06, 

Interquartile range, IQR=0.14) with a maximum R2 of 0.6 between MAT and GSL (Fig. 2b). 

MAP is the most important variable in the RF regression with a contribution of 18.7% to the overall tree splits. Another 

water related variable, WAI derived from a simple bucket model with rainfall and evapotranspiration (ET) datasets, also has 230 

a significant contribution (12.0%) but we note here that ET from observations over natural and cultivated systems may be 

different from ET in a world with large areas covered by bioenergy crops. The second important variable is GSL, 

contributing 16.8% to the tree splits. However, it should be noted that the correlation between GSL and MAT is relatively 

high (R2 = 0.6, Fig. 2b) because GSL was calculated using daily temperature. The contributions of GSL and MAT (4.5%) 

may thus be not well separated because of the collinearity, but it did not influence the prediction because RF prediction is 235 

not sensitive to the collinearity of explanatory variables. Nevertheless, it implies that temperature related variables are also 

very important for predicting the bioenergy crop yields in addition to MAP and WAI. Overall, water-related and 

temperature-related variables (MAP, WAI, GSL and MAT) are the most important variables cumulating an importance level 

of 52%. 

Among bioenergy crop type dummy variables used in the RF model, CT_eucalypt and CT_Miscanthus have marked 240 

contributions (14.5% and 10.6%) while the contributions from other crop types (CT_poplar, CT_switchgrass and 

CT_willow) are low (<3%, Fig. 2a). This reflects the fact that eucalypt and Miscanthus are generally more productive than 

others (Li et al., 2018a). The total importance of all bioenergy crop types indices is 28.8%. 

NDVI, as a proxy of maximum plant productivity in each grid cell (Section 2.1), and shortwave radiation (SR) contribute 

8.6% and 7.0% to the trained RF model. CF, as the only soil property used in the regression, has a minor contribution of 245 

3.7% (Fig. 1), indicating that soil conditions may have little impact on the bioenergy crop yields. However, this should be 

interpreted cautiously considering the mismatch between CF from HWSD dataset and from the yield observation dataset 

based on field measurements (Fig. S1c). 

https://doi.org/10.5194/essd-2019-118

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 5 August 2019
c© Author(s) 2019. CC BY 4.0 License.



7 
 

3.2 Predicted climate-limited yields 

The spatially explicit yield maps of different bioenergy crops were predicted based on the climatic and soil conditions in 250 

each grid cell (Fig. 3). In general, eucalypt and Miscanthus have higher yields than the other three bioenergy crops (poplar, 

willow and switchgrass). The global median yields of eucalypt and Miscanthus in the considered regions are 16.0 (4.1, IQR 

of grid cells adequate for growth, same below) and 15.3 (2.0) t DM (ton dry matter) ha-1 yr-1 (Fig. 3a,b). The spatial 

distributions of predicted yields for poplar, willow and switchgrass show a similar pattern (Fig. 3c-e) because of the low 

importance of these three crop types in the RF regression (Fig. 2a). Still, the global median yields are slightly different, i.e. 255 

10.1 (1.7), 10.6 (1.7) and 10.3 (1.6) t DM ha-1 yr-1 for poplar, willow and switchgrass respectively, mainly due to the 

difference in areas that are adequate for growth. For example, the regions adequate for willow growth include some areas 

with lower MAP like western US, eastern Europe and Central Asia (Fig. S4) than for poplar and switchgrass.  

The global median yield of the best bioenergy crop is 16.3 (7.0) t DM ha-1 yr-1 with highest yields in the Amazon area and 

Southeast Asia (Fig. 3f). Consistent with the high yields of Miscanthus and eucalypt, they are the main compositions of the 260 

best crop globally, occupying 41.3% and 35.9% of the total grid cells that are adequate for bioenergy crop growth (Fig. 3g). 

Eucalypt dominates as being the best crop in the wet tropical regions while Miscanthus distributes dominantly in the dry 

tropical regions and the temperate regions. Willow is the best crop in only 21.2% of the total grid cells, mainly in the regions 

with more severe conditions where other crops are excluded for growth based on the MAT and MAP ranges. The fractions of 

poplar and switchgrass are very low (Fig. 3g), indicating that they are not as competitive as the other crops in term of yields. 265 

3.3 Comparison with maps used in IAMs 

The comparison of best bioenergy crop yields in our RF map with the maps used in IMAGE, MAgPIE and GLOBIOM is 

shown in Fig. 4. The best crop yields refer to the higher yields between woody and herbaceous crops in each grid cell for 

IMAGE and MAgPIE and the woody crop yields for GLOBIOM since only short-rotation trees were included in this model. 

Compared to the RF map, yields are generally lower in the maps used in IAMs (Fig. 4c,e,g) with global median differences 270 

of -7.0, -8.1 and -5.2  ton DM ha-1 yr-1 for IMAGE, MAgPIE and GLOBIOM, respectively. But yields from the IAM maps 

are higher than the RF map in some regions, e.g. Southeast US, Southeast Asia for the MAgPIE map (Fig. 4e) and some 

places in Brazil and North China for the GLOBIOM map (Fig. 4g). Much lower yields in the IAM maps than the RF map 

were found in the equatorial winter dry (“Aw” category based on Köppen−Geiger Climate Classification (Kottek et al., 

2006)) regions in southeast Brazil, Africa, India and Australia (Fig. 4c,e,g), especially for IMAGE and MAgPIE. In the 275 

equatorial full humid (“Af”) and monsoonal (“Am”) regions in South America (mainly Amazon region) and Africa (around 

the DRC), the yield difference is small between the RF and IMAGE and GLOBIOM maps (Fig. 4c,g). In the “Af” and “Am” 

regions in Southeast Asia, however, yields are lower from GLOBIOM than from RF but similar between IMAGE and RF 

(Fig. 4c,g). For MAgPIE, yields are systematically lower than those from RF in these tropical regions except Southeast Asia 

(Fig. 4e). On the other hand, yields from MAgPIE are closest to the RF yields in all the three IAMs maps in Europe.  280 

We also showed the best crop yield distribution histograms from different maps (Fig. 5). Most areas in the RF map have a 

yield range from 15 to 20 t DM ha-1 yr-1, and other areas located in another two ranges: 5 to 13 and 20 to 24 t DM ha-1 yr-1. 

By contrast, a large fraction of areas from the IAMs maps are associated with yields lower than 15 t DM ha-1 yr-1 (Fig. 5).  

This is consistent with the generally higher yields in the RF map than the IAM maps in Fig. 4. In fact, the median mean yield 

in the regions where yields are available in the four datasets (the overlapped regions between Fig. 4a,b,d,f) from RF is >50% 285 

higher than the median yields from IAM maps (80%, 83% and 59% for IMAGE, MAgPIE and GLOBIOM, respectively). 

The shapes of yield distributions among IAMs are also different (Fig. 5). There are more areas with yields below 7 and 

above 20 t DM ha-1 yr-1 in the IMAGE and MAgPIE maps than the GLOBIOM map. This is also reflected by the higher IQR 

from IMAGE (IQR=9.1) and MAgPIE (8.7) than GLOBIOM (5.7 t DM ha-1 yr-1). Although both IMAGE and MAgPIE yield 

maps are based on LPJmL, there are slight differences due to the calibration of the original potential yields of LPJmL to 290 
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actual yields. Compared to IMAGE, MAgPIE has more areas with yields below 12 DM ha-1 yr-1 but less areas with yields 

between 17 and 22 DM ha-1 yr-1 (Fig. 5). 

Yields from the IAM maps were also compared directly with yields from field site observations (Fig. 6) that were used to 

train the RF model (Fig. S3b). Consistent with the global results (Fig. 4, 5), yields from the three IAM maps were lower at 

most sites (median difference = -4.5, -4.3 and -2.0 DM ha-1 yr-1 respectively, Fig. 6a-c). Yields from IMAGE are roughly 295 

consistent with the site observations for switchgrass but much lower for Miscanthus and eucalypt (Fig. 6a). In MAgPIE, 

herbaceous crops (Miscanthus and switchgrass) yields lie around the 1:1 line but woody crops (eucalypt, poplar and willow) 

yields are generally lower than the site observations (Fig. 6b). Because the bioenergy crops in the GLOBIOM maps refer to 

short-rotation trees, the yields are similar to the field measurements of willow and poplar (also switchgrass), but much lower 

compared to the observed yields of Miscanthus and eucalypt (Fig. 6c). 300 

In addition to the comparison of the best crop yields, we also showed the yields of woody and herbaceous crops in each 

dataset respectively (Fig. S5). Yields of woody bioenergy crops in the IAM maps are lower than those in the RF map, 

especially for IMAGE and MAgPIE. By contrast, the herbaceous crop yields from IMAGE and MAgPIE are close to the RF 

yields in some regions like Amazon and Southeast Asia. 

4 Discussion 305 

4.1 Yield comparison with other studies 

Our estimated global median yields (Fig. 3) are generally within the ranges summarized by Searle and Malins (2014) from 

field measurements in the literature for five second-generation bioenergy crops: 0-51, 5-44, 0-35, 0-21 and 1-35 t DM ha-1 

yr-1 respectively for eucalypt, Miscanthus × giganteus, poplar, willow and switchgrass. The yields from RF also agree with 

the yield ranges of several bioenergy crop species (e.g. Miscanthus x giganteus, Panicum virgatum, Salix, Populus) based on 310 

published yield data (Laurent et al., 2015). 

4.2 Uncertainties in the RF model 

We trained RF models using climatic and soil variables and observed yields at a resolution of 0.5° × 0.5°. However, climate 

and soil conditions at the observation sites may not match the mean values in the corresponding half-degree grid cell. In 

addition, the number of observation sites in a grid cell may also influence the derived median yields in this grid cell because 315 

of the possible sampling biases (e.g. all observations concentrating in a very small place that is not representative for the 

whole grid cell). We thus tried to train the model at a resolution of 0.01° × 0.01° using high resolution MAP and MAT from 

WorldClim (Hijmans et al., 2005) but the OOB R2 did not improve. We also tried using shortwave incoming radiation (SR) 

from CRUNCEP (Viovy, 2011) instead of from Ryu et al. (2018) and using growing season integrated climate variables 

instead of annual mean values, and none of these has significant improvements on the model training. Therefore, we focused 320 

our analyses on 0.5° × 0.5° grid cells using mostly mean annual values since the yield dataset only reported MAP and MAT 

(no growing season integrated values) from observations. In addition, the soil properties from HWSD are also highly 

uncertain (Fig. S1c) and the coarse resolution may not be able to represent the local soil conditions, partly explaining the low 

importance of CF in the RF model (Fig. 2). More detailed local soil property maps could help to improve the CF importance 

and thus the corresponding RF model performance. 325 

Management factors like fertilization, irrigation, species and harvest time are important for bioenergy crop growth and 

impact the yields (Karp and Shield, 2008; Miguez et al., 2008). In the RF model training and prediction, however, we only 

used spatially explicit climatic conditions, clay fraction and crop type as explanatory variables, and other factors (e.g. 

management drivers) were not included because these explanatory variables are not available on a gridded basis. This may 

partly be responsible for the moderate OOB R2 (0.63) in the model training. One other reason for the difficulty in taking 330 
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management into account is the incomplete information reported for this variable from field measurements and thus in the 

yield observation dataset (Li et al., 2018a). For example, 75% of the observations did not report irrigation information (Li et 

al., 2018a). Another reason is that different management practices are difficult to harmonize. For example, fertilization may 

be applied annually, only one-time at plantation or irregularly (Li et al., 2018a); There are not enough data samples further 

classifying crop types (e.g. species or genotypes). Specific for the resolution of our analyses, it is difficult to derive a median 335 

or mean management quantification for a half degree grid cell from all observations inside. In addition, Crop age is an 

important factor in predicting the yields because of the growth cycle of perennial crops like Miscanthus (Lesur et al., 2013). 

However, the yield data in the observation datasets mainly refer to mean annual biomass yield which blended the growth 

cycle, especially for the trees (Li et al., 2018a). In the field measurements studies, biomass yield for trees is often calculated 

by the total biomass divided by age although some studies may report the biomass increment at a certain age. Also, because 340 

there are only about one-third observations with age information and we only aimed to produce a spatially explicit map, age 

is not used as an explanatory variable in the RF model. 

We attempted a RF model training by including irrigation flag (yes or no), fertilization flag (yes or no) and/or fertilization 

frequency (annual or one-time). However, these attempts failed to improve the model and the importance of these factors 

was very low (<1%). Nitrogen application rate reported in the yield observation dataset was also taken as a continuous 345 

variable in the exploring RF model training, but it only contributed <4% to the total tree splits. Reasons for the low 

contribution of fertilization (flag, frequency, or application rate) may include unknown basic nutrient availability from soils, 

possible existence of nitrogen-fixing bacteria, and dry and wet nitrogen depositions. In addition, the yield response of 

Miscanthus to fertilizer application may be not significant (Cadoux et al., 2012; Heaton et al., 2004). 

We took the bioenergy crop type (CT in Table 1) as a categorical variable in our RF model to include yield data from all 350 

crops in order to make a full use of the climate gradient information in the upscaling. However, this mixes climate 

information from one crop with the other crops and may induce some uncertainties. We thus trained one RF model for one 

individual bioenergy crop, and the OOB R2 is 0.42, 0.02, 0.43, 0.19 and 0.42 for eucalypt, Miscanthus, poplar, willow and 

switchgrass, respectively. The OOB R2 for individual crops is lower than the OOB R2 of the original RF model using all 

crops (OOB R2=0.63, Section 2.2.2), especially for Miscanthus and willow, probably because of the limited number of 355 

observations. Still, we mapped the yields for each individual crop with an OOB R2 greater than 0.4 (i.e., eucalypt, poplar and 

willow) and compared with our original estimates (Fig. S6). Although there are some small differences for poplar and 

switchgrass, it barely influences our best crop results since poplar and switchgrass are the highest-yielding crops in only 

1.6% of the cells (Fig. 3g). For eucalypt, our original estimates are higher than the yield predictions from the individual crop 

(eucalypt) RF model in Northwest Brazil and Southeast Asia but lower in other regions in Brazil and in the temperate 360 

regions (Fig. S6). The overall relative differences, however, are small for eucalypt with median positive and negative values 

of 4.0 (IQR=11.0) % and -7.2 (5.6) % respectively. 

The prediction of RF model tends to be not reliable for predictors out of the training data range, and such extrapolation 

should be considered as inaccurate. We thus compared the distributions of variables in the training data and the global data 

used for prediction and provided the ranges for each bioenergy crop type in the training data (Fig. S7). Because we limited 365 

our predictions in the regions that are adequate for bioenergy crop growth using minimum MAT and MAP from 

observations (Section 2.2.3), the distributions of variables used for predictions largely overlapped the distributions from the 

training data (Fig. S7), implying that most of the predictions are reliable without extrapolations out of ranges. Although SR 

from 20 to 25 MJ m-2 d-1 is not presented in the training data (Fig. S7), the importance of SR in the RF model is relatively 

low (7.0%, Fig. 2a), and thus the influence on our predictions is expected to be small. We should note that only minimum 370 

MAT is used to define the adequate regions, but some high temperature stress (e.g. through heat, vapor pressure deficit or 

summer drought) could also limit the growth. Although this is not explicitly considered in this study, the area with MAT 

higher than the maximum MAT in the training data is very small (Fig. S7). 
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Our predictions are based on current climate and CO2 level, and thus the future climate changes and CO2 fertilization effects 

are not included. The photosynthetic pathway for C4 plants (such as Miscanthus and switchgrass) is closer to optimal levels 375 

of CO2 with present-day atmospheric levels. The CO2 effect could result in large increases in productivity especially for the 

C3 plants, but data on bioenergy crop yield responses to CO2 is very sparse, although this is being addressed in current field 

studies (e.g. Norby et al., 2016). We adopted a space-for-time approach and analyzed the spatial relationship between yields 

and temperature (Fig. S8) to account for the possible yield changes in response to future temperature changes due to 

adaptation. Yields are positively correlated to temperature for all bioenergy crops (Fig. S8). Miscanthus has the strongest 380 

response to temperature with an increasing rate of 0.41 t DM ha-1 yr-1 per °C. Eucalypt and willow have a similar increasing 

rate (0.27 and 0.26 t DM ha-1 yr-1 per °C). The temperature sensitivities of yields are lower for poplar and switchgrass (0.14 

and 0.18 t DM ha-1 yr-1 per °C). The overall yield response to temperature for the best crop is 0.42 t DM ha-1 yr-1 per °C (Fig. 

S8). It is higher than each individual crop because it combined the yield gradient from multiple crops, so the yield 

sensitivities to temperature for the best crop also comprise possible transitions of the low-yield crop type to the high-yield 385 

type. Based on an increase of 0.9 °C from the pre-industrial period until now (Millar et al., 2017), the temperature sensitivity 

of the best crop implies a mean increase of 0.46 t DM ha-1 yr-1 in yields from present days to 2100 in the 2 °C temperature 

increase scenario. However, this is just a simple extrapolation based on spatial gradients and should be interpreted cautiously. 

For example, future increase of soil aridity could cause soil degradations and counteract the yield increases due to CO2 

fertilization and temperature increase (Balkovič et al., 2018). 390 

4.3 Yield maps from IAMs 

One potential application of our RF yield maps is to be used as an input to IAMs, so we made detailed comparisons with the 

currently used yields maps in three IAMs in terms of spatial patterns (Fig. 4), yield distributions (Fig. 5) and site-level yields 

(Fig. 6). Yields from the IAM maps are generally lower than those from our derived RF maps (Fig. 4,5) and the site-level 

field observations (Fig. 6). One possible reason is that the IMAGE and MAgPIE models calibrated the simulated potential 395 

yields of LPJmL (highest yield that can be achieved by the best managements currently available) to the actual yields (see 

Section 2.3). The field observations are usually under some degree of management like irrigation or fertilization, and thus 

close to the potential yields, so IAMs reduced the yields using a calibration factor to represent the gap between the potential 

and actual yields, as the potential yields may not be reached in reality, especially in some low-income countries. As another 

consequence of using data from well-managed field trials, the predicted yields from the RF model could be higher than the 400 

practical yields in large-scale plantations. Most of the observations in the training data are from small-scale experimental 

trials with managements rather than real farmers’ fields (Li et al., 2018a). In addition, some yield observations are based on 

harvests at the peak yield time in summer or autumn rather than in winter or early spring after leaf falling and drying in 

practice. In fact, Searle and Malins (2014) reviewed bioenergy crop yields in the literature and concluded significantly lower 

yields in semi-commercial scale trails than small plots because of the biomass drying loss and inefficient mechanical harvest. 405 

Crops in small plots may also benefit from the edge effect by receiving more light (Searle and Malins, 2014). But we should 

note that the median yield in each grid cell with multiple observations is used to the train the RF model, and thus some 

extremely high yield observations due to intensive managements may not contribute strongly to the trained RF model. 

In addition, inclusion of or more dependence on the high-yield bioenergy crop types (i.e. Miscanthus and eucalypt) in the RF 

model would also lead to higher yield predictions. For example, in LPJmL where the IMAGE and MAgPIE yield maps come 410 

from, switchgrass and Miscanthus were treated as one single PFT (Beringer et al., 2011; Heck et al., 2016) although these 

two crop types have very different physiological parameters and thus significant difference in yields (Dohleman et al., 2009; 

Heaton et al., 2008; Li et al., 2018b). The calibration of this one single PFT using both yields data from switchgrass and 

Miscanthus would overestimate yields of the former and underestimate the latter. For eucalypts, LPJmL seemed to 

underestimate the yields in the first place (see the comparison with field measurements in Fig. 1b in Heck et al. (2016)). The 415 
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RF model trained in this study, on the other hand, relies more on the crop types of Miscanthus and eucalypt (see their 

importance in Fig. 2a). Although yield maps from IMAGE and MAgPIE were both based on the LPJmL simulations, they 

showed some differences in spatial patterns, yield distributions and site-level yield comparison, due to different calibration 

processes for the yield data simulated by LPJmL (see Section 2.3).  

Yields from the GLOBIOM map are close to the site-level observations of willow, poplar and switchgrass (Fig. 6c). 420 

Therefore, the lower yields from GLOBIOM than the best crop yields from RF is mainly caused by the inclusion of 

Miscanthus and more eucalypt observation data in the RF model. More contributions from these high-yield crops drive the 

yields higher in the RF predictions. 

Accurate input data of bioenergy crop yields are crucial for IAMs to simulate the future land-use change through the trade-

off between BECCS and other climate mitigation options. The global median yields from our RF map are >50% higher than 425 

those used in IAMs in the overlapped regions (Fig. 5). Therefore, if our RF yield data are used in IAMs and all the other 

conditions being equal, it will make the BECCS option more competitive and require less land for bioenergy crop plantation 

to achieve the same mitigation target, although gaps between predicted yields from RF and actual yields particular in low-

income countries need to be further taken into account. Also, it may need more water and nutrients in order to sustain the 

high yields. Although the yield response to fertilizers may be not obvious (Cadoux et al., 2012; Miguez et al., 2008), the net 430 

nutrient loss from biomass harvest must be replenished to maintain the nutrient balance in the soil and support further growth. 

5 Data availability 

The field observed site-level yield data for major lignocellulosic bioenergy crops can be downloaded through 

https://doi.org/10.6084/m9.figshare.c.3951967 (Li et al., 2018a). The 0.5° × 0.5° gridded global maps for yields of different 

bioenergy crops and the best crop and for the best crop composition generated from the random forest model in this study 435 

can be download through https://doi.org/10.5281/zenodo.3274254 (Li, 2019). 

6 Conclusion 

We mapped bioenergy crop yields at the global scale using a machine learning method trained on field yield data and based 

on several climatic and soil conditions. In addition to evaluating the performances of IAMs and DGVMs, our spatially 

explicit bioenergy crop yields can also be used to determine the suitable lands with proper bioenergy crop yields, conduct 440 

life cycle assessment and estimate the nutrient removal from biomass harvest. Although there are a large number of field 

measurements in the yield observation dataset used to build the RF model, the geographic coverage is poor in some regions. 

Therefore, more field measurements in regions with limited observations (e.g. Africa) and a proper quantification and 

synthesis of management factors will be useful to improve the predictions of global yields in future. 
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Table 1 Variables used in the upscaling of bioenergy crop yields. 630 

 

Variable Description Original resolution Data Source 

CT Crop type: eucalypt, Miscanthus, switchgrass, 

poplar or willow  

- Li et al. (2018a) 

MAT Mean annual temperature (°C) 0.5° × 0.5°  Li et al. (2018a); CRUNCEP (Viovy, 2011) 

MAP Mean annual precipitation (mm yr-1) 0.5° × 0.5° Li et al. (2018a); CRUNCEP (Viovy, 2011) 

CF Clay fraction 30″ × 30″ HWSD (Nachtergaele et al., 2012) 

SR Shortwave radiation (M J m-2 d-1) 0.05° × 0.05° Ryu et al. (2018) 

GSL Growing season length (d) 0.5° × 0.5° based on CRUNCEP (Viovy, 2011) 

WAI Soil water availability index 0.5° × 0.5° Tramontana et al., (2016) 

NDVI Growing season summed normalized difference 

vegetation index 

0.05° × 0.05° Park et al. (2016) 

  

 

 
635 
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Figure 1: Map of grid cells with yield observations in the global yield dataset. The colored and white markers indicate the selected 
(blue dots in Fig. S3a) and masked (gray dots in Fig. S3b) grid cells, respectively, based on a bias threshold of 1-σ for the RF 
modeling of these yields. The inset pie plot shows the percentages of each bioenergy crop types in the selected grid cells (colored 
markers) for model training. 640 

 

 

 

 

 645 

 

 

 
Figure 2: Variable importance in the trained RF model (a) and R2 from the regressions between different explanatory variables 
(Table 1) in the training data (b). The importance of one variable is calculated based on the sum over the number of splits across 650 
all trees that include this variable, weighted by the number of samples it splits. The relative contributions of each explanatory 
variable (summed to 100%) are shown here. 
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 655 
 

Figure 3: Spatial distribution of predicted yields for different bioenergy crops (a-f) and best crop type in each grid cells that are 
adequate for growth (g). The inset pie plot in (g) shows the fractions of grid cells occupied by each bioenergy crop type. The white 
areas indicate regions where no prediction was derived due to inadequate conditions defined by minimum temperature and 
precipitation (see Methods). 660 
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Figure 4: Comparison of bioenergy crop yields between the RF map and maps used in three IAMs (IMAGE, MAgPIE and 
GLOBIOM). The left panel (a, b, d, f) is the best crop yields from each dataset, and the right panel (c, e, g) refers to the yield 665 
differences between RF and each IAM maps (IAM yields minus RF yields where yields are available in both paired maps). The 
best crop yield map from RF (a) is the same as Fig. 3f. The best crop yields in IMAGE and MAgPIE (b, d) are the higher yields 
between woody and herbaceous bioenergy crops in each grid cell. The best crop yields in GLOBIOM (f) are the yields of woody 
crops (short-rotation trees) since there is no herbaceous bioenergy crop in GLOBIOM.  

 670 
 

https://doi.org/10.5194/essd-2019-118

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 5 August 2019
c© Author(s) 2019. CC BY 4.0 License.



21 
 

 

Figure 5: Histograms of best crop yields in our RF yield map and yield maps used in the three IAMs. Only regions where yield 
values are available in all the four maps are used to generate the histogram. 675 

 
 
 
 
 680 
 
 

 
 

 685 

Figure 6: Comparison of yields from random forest (RF) and IAM yield maps with site observations used to train the RF model 
(see the spatial distribution of sites in Fig. 1). Dash lines indicate the 1:1 lines. The median differences and root mean square errors 
(RMSE) between site observations and yields from RF and IAMs are also shown. 
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