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Abstract: The recent release of the International Satellite Cloud Climatology Project 19 

(ISCCP) HXG cloud products and new ERA5 reanalysis data enabled us to produce a 20 

global surface solar radiation (SSR) dataset: a 16-year (2000-2015) high-resolution (3 21 

h, 10 km) global SSR dataset using an improved physical parameterization scheme. 22 

The main inputs were cloud optical depth from ISCCP-HXG cloud products, the 23 

water vapor, surface pressure and ozone from ERA5 reanalysis data, and albedo and 24 

aerosol from Moderate Resolution Imaging Spectroradiometer (MODIS) products. 25 

The estimated SSR data was evaluated against surface observations measured at 42 26 

stations of the Baseline Surface Radiation Network (BSRN) and 90 radiation stations 27 

of the China Meteorological Administration (CMA). Validation against the BSRN 28 

data indicated that the mean bias error (MBE), root mean square error (RMSE) and 29 

correlation coefficient (R) for the instantaneous SSR estimates at 10 km scale were 30 

-11.5 W m-2, 113.5 W m-2, and 0.92, respectively. When the estimated instantaneous 31 

SSR data were upscaled to 90 km, its error was clearly reduced with RMSE 32 

decreasing to 93.4 W m-2 and R increasing to 0.95. For daily SSR estimates at 90 km 33 

scale, the MBE, RMSE and R at the BSRN were -5.8 W m-2, 33.1 W m-2 and 0.95, 34 

respectively. These error metrics at the CMA radiation stations were 2.1 W m-2, 26.9 35 

W m-2 and 0.95, respectively. Comparisons with other global satellite radiation 36 

products indicated that our SSR estimates were generally better than those of the 37 

ISCCP flux dataset (ISCCP-FD), the global energy and water cycle experiment 38 

surface radiation budget (GEWEX-SRB), and the Earth's Radiant Energy System 39 

(CERES). Our SSR dataset will contribute to the land-surface process simulations and 40 

the photovoltaic applications in the future. The data set is available 41 

at https://doi.org/10.11888/Meteoro.tpdc.270112 (Tang, 2019). 42 
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1. Introduction 45 

Surface solar radiation (SSR), which drives the energy, water and carbon cycles 46 

of Earth’s system, is the driving input for simulations of hydrology, ecology, 47 

agriculture and land-surface processes (Wild, 2009; Wang et al., 2012). The accuracy 48 

of SSR data influences simulations of runoff, gross primary productivity, 49 

growth and yield of crops, and land data assimilation (Wild, 2012; Jia et al., 2013). 50 

SSR is also an important variable that affects the speed of glacier melting (Yang et al. 51 

2011). Variations of SSR also affect the rate of global warming and the change of pan 52 

evaporation (Wild, et al., 2007; Qian et al., 2006).  53 

Information on the spatiotemporal distribution of SSR is fundamental for 54 

selection of sites for solar power plants, decisions on energy policy, optimization of 55 

solar power systems, and operations managment (Mondol et al., 2008; Sengupta et al., 56 

2018). To address issues such as these, historical SSR data has been obtained mainly 57 

through ground-based observations, station-based estimates, and satellite-based 58 

retrievals (Pinker & Laszlo, 1992; Li and Leighton, 1993; Liang et al., 2006; Zhang et 59 

al., 2004; Wang et al. 2011; Huang et al., 2011; Kato et al., 2013; Ma & Pinker, 2012; 60 

Zhang et al., 2014; Wang et al., 2015; Niu and Pinker, 2015). 61 

Measurement by accurately calibrated and well-maintained radiometer of 62 

pyranometer is the most effective method to obtain reliable long-term SSR data. 63 

Although these data are valuable for simulations of land surface processes, solar 64 

power applications and evaluation of satellite retrievals (Sengupta et al., 2018), the 65 

high cost of maintaining radiation radiometers means that networks of radiation 66 

stations are too sparsely distributed. However, networks of routine meteorological 67 

stations are denser than those of radiation stations, and the variables observed at 68 

routine meteorological stations can be used to estimate SSR. For example, based on 69 
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sunshine duration data, Tang et al. (2013, 2018) constructed long-term datasets of 70 

both daily global radiation and direct radiation over China at more than 2400 routine 71 

meteorological stations of the China Meteorological Administration (CMA). These 72 

datasets are generally more accurate than those derived from satellite retrievals (Yang 73 

et al., 2010). However, station-based estimates of SSR can be conducted only at 74 

routine weather stations, many of which are sparsely distributed, often in remote 75 

regions and harsh environment. 76 

Alternatively, remote sensing retrievals based on satellites can provide reliable 77 

spatiotemporally continuous SSR data, either globally or regionally. The many 78 

methods that have been developed to retrieve SSR from satellite data can be roughly 79 

divided into two categories: statistical methods and methods based on radiative 80 

transfer processes (Huang et al., 2019). According to Sengupta et al. (2018), these 81 

methods can also be subdivided into three types: empirical, semi-empirical and 82 

physical.  83 

Empirical methods build function relationships between SSR measured at limited 84 

numbers of stations and satellite data by applying regression or artificial intelligence 85 

technology (Lu et al., 2011; Wei et al., 2019). Empirical methods may work well at 86 

some locations, but the ability to expand their coverage to broader regions is limited.  87 

Semi-empirical methods generally combine a physical model for clear-sky 88 

conditions with an empirical scheme for cloudy conditions. A well-known 89 

semi-empirical method is the Heliosat method of Cano et al. (1986), from which 90 

several improved versions have since been developed (Hammer et al., 2003; Mueller 91 

et al., 2009; Posselt et al., 2012; and Wang et al., 2014).  92 

Physical methods are generally well-suited to generalization because they take 93 

into account the physics processes of transfer of solar radiation from the top of the 94 
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atmosphere to the Earth's surface. The look-up table (LUT) and physical 95 

parameterization methods (Pinker & Laszlo, 1992; Liang et al., 2006; Lu et al, 2010; 96 

Qin et al., 2015; Xie et al., 2016; Huang et al., 2018) are two typical physical methods 97 

that were widely used to estimate SSR from satellite data.  98 

Several well-known global SSR datasets have been produced by physical 99 

methods. These include the global energy and water cycle experiment surface 100 

radiation budget (GEWEX-SRB, Pinker and Laszlo, 1992), the International Satellite 101 

Cloud Climatology Project flux dataset (ISCCP-FD, Zhang et al., 2004) and the 102 

Earth's Radiant Energy System (CERES) radiation products (Kato et al., 2013). 103 

Although each of these have been widely used in various fields, the spatial resolutions 104 

(>=100 km) of these SSR products is too coarse to meet the requirements of 105 

high-resolution SSR data. A high-resolution (5 km, 3 hours) global SSR product of 106 

the Global Land Surface Satellite (GLASS) were recently released, but it contains 107 

data spanning only three years (Zhang et al., 2014). The GLASS SSR products were 108 

retrieved by a look-up table method with the visible band top-of-atmosphere (TOA) 109 

radiance from multi-source geostationary and polar-orbiting satellite data. Tang et al. 110 

(2016) also produced a high-resolution SSR product (5 km, 1 hour) by combining data 111 

from polar-orbit and geostationary satellites, but the product covers only China and 112 

the dataset spans only eight years.  113 

The greatest uncertainty in satellite retrievals of SSR is the lack of a high-quality 114 

cloud product, which severely limits the development of high-resolution, long-term 115 

global satellite SSR products. However, the release in 2017 of new, global, long-term 116 

ISCCP H-series cloud products at a spatial resolution of about 10 km has provided an 117 

opportunity to develop a long-term high-resolution global-scale climate dataset of 118 

SSR.  119 
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We developed a global-scale 16-year dataset (2000-2015) of SSR data from the 120 

new ISCCP H-series cloud products and ERA5 reanalysis data, validated the accuracy 121 

of this dataset with surface observations, and compared its performance with other 122 

global satellite products. Section 2 introduces the method we used to estimate SSR. 123 

Section 3 describes the input data we used for SSR estimation and the observations 124 

data used for SSR validation. In Section 4, we presented our evaluation of the SSR 125 

product and compared it with other satellites products. Data availability is given in 126 

Section 5, and Section 6 presents some conclusions and explores future work to 127 

further improve SSR products.  128 

 129 

2 Estimation of SSR 130 

The method we used to estimate SSR with ISCCP H-series cloud data is mainly 131 

based on the SUNFLUX scheme, which was developed by Sun et al. (2012; 2014) and 132 

first used by Tang et al. (2017) to retrieve SSR data from Moderate Resolution 133 

Imaging Spectroradiometer (MODIS) atmospheric and land products. Their validation 134 

of their results against measurements at BSRN stations indicated a mean root mean 135 

square error (RMSE) of ~90 W m−2 for instantaneous SSR. Although Tang et al. 136 

(2017) achieved higher accuracy than we did in this study (because the MODIS cloud 137 

products they used are generally of better quality than the ISCCP H-series cloud data), 138 

the instantaneous SSR they retrieved is slightly overestimated at most stations because 139 

the original method they used only considers the effect of aerosol scattering on SSR, 140 

but ignores the effect of aerosol absorption. To overcome this issue, we replaced the 141 

aerosol parameterization scheme used by Tang et al. (2017) with that used by Qin et 142 

al. (2015) and Tang et al. (2016). The resultant method is a pure physical 143 

parameterization scheme with an efficient calculation speed. The inputs to the method 144 
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include cloud optical depth (COD) in the visible band, cloud cover, aerosol optical 145 

depth (AOD), surface pressure, precipitable water, total ozone, surface albedo, and 146 

carbon dioxide concentration (fixed at 375 ppm by volume). Detailed information 147 

about the method is provided by Tang et al. (2017) and Tang et al. (2016). 148 

 149 

3 Data 150 

3.1 Input data 151 

To produce the 16-years SSR products at global scale, we used three types of 152 

input data. 153 

The first of these was the level 2 ISCCP H-series cloud product HXG (H-series 154 

pixel-level global, here called ISCCP-HXG), which is a globally merged product 155 

generated based on the HGS (H-series gridded by satellite) product. The resolutions of 156 

HXG are 3 h and 10 km, and the HXG cloud products are available for the period 157 

from July 1983 to December 2015. Note that the ISCCP-HXG data are 0.1o gridded 158 

snapshots (or instantaneous) available every 3 h not the average value over 3 h. More 159 

information about the ISCCP-HXG cloud product is provided by Young et al. (2018). 160 

Four variables were used in the ISCCP- HXG cloud product: cloud mask, VIS 161 

retrieved liquid cloud optical depth, VIS retrieved ice cloud optical depth and cloud 162 

top temperature. The cloud mask was used to distinguish clear-sky pixels from cloudy 163 

pixels and the cloud top temperature was used to distinguish liquid cloud and ice 164 

cloud. In the ISCCP H-series cloud product, cloud types are roughly defined by two 165 

phases (liquid and ice), which are determined by cloud top temperature (TC) with 166 

liquid for TC ≥ 253.1 K, and ice for TC < 253.1 K.  167 

The second data type we used was the new ERA5 reanalysis data. Three 168 

variables of the ERA5 reanalysis data were used: surface pressure, total column water 169 
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vapor and total column ozone. The resolutions of the ERA5 reanalysis data are 1 h 170 

and 25 km. To derive the same spatial resolution as the ISCCP- HXG cloud product, 171 

we re-sampled the three variables of ERA5 reanalysis data to a spatial resolution of 10 172 

km.  173 

The third data type comprised aerosol and albedo data. The MODIS aerosol 174 

(MOD08_D3 or MYD08_D3) and albdeo (MCD43A3, Schaaf et al., 2002) daily 175 

products were used. The MODIS AOD product of the combined dark target and deep 176 

blue AOD at 0.55 micron for land and ocean was used. MOD and MYD denote 177 

product obtained from Terra and Aqua platforms, respectively, and MCD indicates a 178 

combined product processed from both platforms (King et al., 2003). The spatial 179 

resolution of MODIS aerosols and albedo data are about 100 km and 5 km, 180 

respectively, so we re-sampled them both to 10 km. To match the temporal of ISCCP 181 

HXG products, we re-sampled MODIS aerosols and albedo to 3 hour by assuming 182 

that their values are constant within a day. Missing values in the MODIS aerosol and 183 

albedo products (included the period of 1 Jan 2000 to 23 Feb 2000) were replaced 184 

with the corresponding values of monthly mean climatological data. Note that the use 185 

of climatological data to replace the real information of aerosol and albedo would 186 

have introduced some uncertainty. Thus, care should be taken when using the SSR 187 

dataset we derived for trend analysis.   188 

 189 

3.2 Validated data 190 

In this study, we used radiation observations made in 2009 to validate the 191 

accuracy of the global-scale SSR estimate. These radiation observations were 192 

collected at two networks. The first set was the radiation observations (with temporal 193 

resolution of 1 minute) measured at 42 stations of Baseline Surface Radiation 194 
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Network (BSRN, Ohmura et al, 1998), which were marked as red crosses in Figure 1. 195 

Radiation observations measured at BSRN stations are regarded as the most reliable 196 

radiation data due to the instruments of highest available accuracy and careful 197 

maintenance (see website: https://bsrn.awi.de/). To reduce uncertainty caused by 198 

cosine response error of the pyranometers, we did not use the measured global 199 

radiation data; instead we used the total of the measured direct and diffuse radiation to 200 

evaluate the accuracy of the retrieved SSR. 201 

The second set was the daily radiation observations measured at 90 CMA 202 

radiation stations, which were denoted by black circles in Figure 1. Though the 203 

pyranometers used to measure global radiation at CMA radiation stations were 204 

calibrated by a series of standard procedures (Yang et al., 2008), the observed 205 

radiation data collected at CMA radiation stations frequently include questionable 206 

values, which may have been a result of improper operation of instruments and/or 207 

instrument defects (Shi et al., 2008). To reduce the uncertainty caused by the 208 

questionable radiation data, we used a quality-check procedure (Tang et al. 2010) to 209 

exclude the spurious and erroneous measurements. The quality-check procedure 210 

consists of two steps. One is the physical threshold test to eliminate the obvious errors, 211 

and the other is the statistical test using artificial neural network method to eliminate 212 

the more insidious errors. More detailed information about the two-steps procedure 213 

can be found in the article of Tang et al. (2010). 214 

 215 

4 Results and Discussion 216 

4.1 Validation of estimated SSR against observations at BSRN stations 217 

Firstly, the estimated SSR were validated against the observations measured at 218 

the 42 BSRN stations at both instantaneous and daily scales. To reduce the 219 
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uncertainties induced by broken clouds, we validated the estimated instantaneous SSR 220 

against hourly mean observed ones centered on the time of satellite overpass, 221 

according to the suggestion of Wang and Pinker (2009). To examine the effect of 222 

different spatial resolutions on the accuracy of our SSR estimates, in addition to the 223 

10 km spatial resolution, we also evaluated our estimated SSR at spatial resolutions of 224 

30, 50, 70, 90 and 110 km derived by averaging the SSR values observed at the 225 

original scale of 10 km.  226 

Accuracy for instantaneous SSR at 90 km scale (RMSE = 93.4 W m–2, R = 0.95; 227 

Fig. 2, Table 1) was clearly superior to that at 10 km scale (RMSE 113.5 W m–2, R = 228 

0.92), which may indicate that the surface observation points are generally 229 

representative of more than 10 km, especially under cloudy conditions. Another 230 

possible reason for this phenomenon would be caused by the time mismatch between 231 

satellite observation and surface observation because the satellites do not take 232 

instantaneous snapshots of the entire Earth. Generally, the last generation 233 

geostationary satellites, such as the Geostationary Operational Environmental Satellite 234 

(GOES), take about 30 min to scan the entire Earth. The averaging inherent in 235 

upscaling of spatial resolution would tend to decrease these time mismatches. 236 

To further illustrate this issue, the performances of our instantaneous SSR with 237 

different spatial resolutions at the 42 BSRN stations were given in Table 1, which 238 

suggests that the accuracy was clearly improved when the data were upscaled to 30 239 

km, with a further slight improvement at 70 km, but that accuracy started to decrease 240 

at 90 km. The performance of the ISCCP-FD was also presented in Table 1. 241 

Apparently, the accuracy of our estimated instantaneous SSR is significantly higher 242 

than that of the ISCCP-FD. A further advantage of our dataset is that its spatial 243 

resolution is far higher than that of the ISCCP-FD products.  244 
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Figure 3 shows the spatial distribution of RMSE for the estimated instantaneous 245 

SSR (spatial resolution 90 km) at all individual BSRN stations. The RMSE was < 90 246 

W m-2 at 30 of the 42 BSRN stations. RMSE values were between 90 and 105 W m-2 247 

at five stations and > 105 W m-2 at seven stations. The 12 stations where RMSE 248 

values were >= 90 W m-2 are generally in coastal areas, on islands and in the 249 

Antarctic polar region. Part of the reasons for these large error are the same as that 250 

explained by Tang et al. (2017), who estimated instantaneous SSR with MODIS 251 

level-2 land and atmospheric products. For example, the large RMSE value for station 252 

IZA can be attributed to the poor representativeness of the station, which is located on 253 

a mountain top, and this station point can not represent the satellite observations. 254 

Another reason for the large RMSE values may be the uncertainties contained in the 255 

inputs, especially uncertainties in cloud and aerosol data. The great uncertainties for 256 

the MODIS AOD retrieval over coastal or island stations (Anderson et al, 2013) 257 

would lead to large RMSE values at these stations. The large errors for the two 258 

Antarctic stations (SYO and GVN) may reflect failure of cloud detection, which is 259 

difficult over Antarctica region because the similarity of the properties of cloud and 260 

surfaces snow over the Antarctica Pole, and because the temperature of cloud is 261 

generally not lower than that of surface snow (Zhang et al. 2013).  262 

Figure 4 presents the validation results for our estimated daily SSR at 42 BSRN 263 

stations. The MBE values were -6.1 and 5.8 W m-2 for spatial resolutions of 10 and 90 264 

km, respectively. The RMSE for 10 km was 38.0 W m-2, and its value was decreased 265 

to 33.1 W m-2 for 90 km. The R for 10 km was 0.93 and its value was increased to 266 

0.95 for 90 km. Table 2 also lists the performances of our daily SSR estimate with 267 

different spatial resolutions and the performance of the ISCCP-FD daily SSR product. 268 

Our estimates of daily SSR at all spatial resolutions were clearly more accurate than 269 
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that of ISCCP-FD, and they obviously improved when upscaled to more than 30 km.  270 

The spatial distribution of RMSE for our estimated daily SSR at spatial 271 

resolution of 90 km (Fig. 5) showed that RMSE at most of the 42 BSRN stations were 272 

<35 W m–2, although there were four stations with RMSE between 35 and 40 W m–2 273 

and six with RMSE >40 W m–2. These higher RMSE values may be attributed to lack 274 

of representativeness for some stations, errors in the inputs and uncertainty of the 275 

algorithm, similar to the reasons for the higher errors in our estimates of instantaneous 276 

SSR. 277 

GWEWX-SRB and CERES are two other well-known and widely used global 278 

satellite radiation products. Zhang et al. (2013; fig. 8) evaluated the performance of 279 

GEWEX-SRB SSR products with the mean 3-h observed data from the BSRN and 280 

found that RMSEs for the instantaneous and daily SSR of GEWEX-SRB were 88.3 281 

and 35.5 W m-2, respectively. To compare our results with those derived from 282 

GEWEX-SRB by Zhang et al. (2013), we re-evaluated our estimated SSR with the 283 

mean 3-h observed data from the BSRN. The RMSEs for our estimated instantaneous 284 

and daily SSR at 10 km spatial resolution were 108.1 and 36.5 W m-2, respectively, 285 

both of which are greater than those of GWEX-SRB. However, when we upscaled our 286 

estimated SSR to 90 km scale, RMSEs for our instantaneous and daily SSR were 287 

lower, 82.4 and 30.6 W m-2, respectively, indicating that our estimates of SSR were 288 

more accurate than those of GEWEX-SRB at the same spatial resolution. We also 289 

compared the performance of our estimates of SSR with that of CERES 290 

(SYN1deg_Ed4A, Fig. 6). The accuracies of CERES were generally higher than those 291 

of ISCCP-FD at both instantaneous and daily scales, but obviously lower than those 292 

of our estimates at all spatial resolutions from 10 to 110 km (Fig. 6 and Table 2). 293 

Thus, our estimated SSR based on ISCCP-HXG cloud products provided a more 294 
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accurate, higher spatial resolution dataset than those of ISCCP-FD, GEWEX-SRB and 295 

CERES products.                                                                296 

 297 

4.2 Validation of estimated SSR against observations at 90 CMA radiation 298 

stations 299 

Our estimated SSR were further evaluated against the observations collected at 300 

the 90 CMA radiation stations at both daily and monthly scales. Figure 7 presents the 301 

validation results for the estimated daily SSR at spatial resolutions of 10 and 90 km. 302 

The MBE, RMSE and R for our estimated daily SSR at 10 km spatial resolution were 303 

1.8 W m-2, 32.4 W m-2 and 0.93, respectively. Accuracy clearly improved for spatial 304 

resolutions up to 90 km, for which the corresponding metrics were 2.1 W m–2, 26.9 W 305 

m–2 and 0.95. The RMSE for our estimate of daily SSR at 10 km spatial resolution is 306 

comparable to that of GEWEX-SRB daily SSR, which was also validated against 307 

observations at the CMA radiation stations (RMSE 32. 2 W m–2; see figure 7b of Qin 308 

et al., 2015). However, the RMSE for the GEWEX-SRB daily SSR is clearly higher 309 

than that of our estimate of daily SSR at 90 km spatial resolution, thus indicating that 310 

the accuracy of our daily SSR estimates is superior to that of the GEWEX-SRB daily 311 

SSR product at the same spatial resolution. 312 

Table 3 shows that the accuracy of our estimates of daily SSR clearly improved 313 

when upscaled to 30 km spatial resolution and were most accurate at 90 km spatial 314 

resolution. RMSE and R (36.5 W m–2 and 0.91, respectively) for daily SSR of 315 

ISCCP-FD show that our estimates are more accurate at all spatial resolutions. The 316 

spatial distribution of RMSE for our daily SSR estimate at 90 km spatial resolution 317 

was also given in Figure 8. Only nine CMA stations had RMSE >35 W m–2 (Fig. 8); 318 

most of these stations are in southern China where there is generally more cloud and 319 
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its distribution is more complicated than in other parts of China (Yu et al., 2001).  320 

Figure 9 presents the validation results for our estimated monthly SSR. The MBE, 321 

RMSE and R for our estimated monthly SSR at 10 km spatial resolution were 1.9 W 322 

m-2, 16.3 W m-2 and 0.97, and the corresponding values for 90 km were changed to 323 

2.2 W m-2, 14.9 W m-2 and 0.97. It can be clearly seen that the accuracy of the 324 

ISCCP-FD monthly SSR are inferior to our estimated monthly SSR at scales from 10 325 

to 110 km (Table 4). 326 

The performances for CERES daily and monthly SSR were evaluated against 327 

observations at the 90 CMA radiation stations (Fig. 10) and also compared with 328 

those of our estimates from ISCCP-HXG (Table 4). The MBEs for CERES daily and 329 

monthly SSR were greater than those of our estimates at all scales, and the RMSE 330 

for CERES daily SSR was slightly smaller than that of our estimates at 10 km spatial 331 

resolution, but obviously greater that our estimates at spatial resolutions from 30 to 332 

110 km. The RMSE for CERRES monthly SSR was greater than those of our 333 

estimates at all scales. Thus, the accuracy of our estimates is generally higher than 334 

that of CERES. 335 

 336 

4.3 Spatial distribution of the annual SSR 337 

Figure 11 presents the comparison of the global distribution of the annual mean 338 

SSR in 2009 between our retrievals and the ISCCP-FD SSR product. From the figure, 339 

it can be seen that the global distribution for our SSR estimate based on the ISCCP- 340 

HXG cloud products is almost the same as that of the ISCCP-FD SSR product, but the 341 

spatial resolution of our estimate is far higher than that of ISCCP-FD. There 342 

is no doubt that we can get more details that the coarse resolution product ISCCP-FD 343 

can not capture. For example, the region of high SSR clearly identified over the 344 
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Tibetan Plateau by our estimate (Fig. 11a) is barely discernible in the 345 

ISCCP-FD-derived data (Fig. 11b). The high values are mainly from 346 

around the equator and the low latitudes, and the low values mainly over the high 347 

latitudes and the Arctic and Antarctic regions. This phenomenon is primarily 348 

determined by the solar elevation angle. In addition, the relatively high values are also 349 

found over the Bolivian Plateau, the Tibetan Plateau, and other high altitude regions 350 

due to less radiative extinction over high altitudes.  351 

 352 

5 Data availability 353 

The 16-year dataset of global SSR is available at the National Tibetan Plateau 354 

Data Center (https://doi.org/10.11888/Meteoro.tpdc.270112, Tang, 2019), Institute of 355 

Tibetan Plateau Research, Chinese Academy of Sciences. 356 

 357 

6 Conclusions and Future work 358 

This study produced a 16-year (2000-2015) global dataset of SSR (with 359 

resolutions of 3 h and 10 km) based on recently updated ISCCP H-series cloud 360 

products, new ERA5 reanalysis data and MODIS albedo and aerosol products with a 361 

physically based scheme. The retrieved SSR dataset was evaluated globally with 362 

observations collected at BSRN and CMA radiation stations. Validation against 363 

observations collected at BSRN showed that the MBE and RMSE were –11.5 and 364 

113.5 W m–2 for the instantaneous SSR estimates, and -6.1 and 38.0 W m–2 for the 365 

daily SSR estimates, but their accuracies were clearly improved when upscaled to 366 

more than 30 km. For example, the RMSEs were decreased to 93.4 and 33.1 W m–2 367 

when our estimates were upscaled to 90 km. Validation against observations collected 368 

at CMA indicated that our estimates of daily and monthly SSR produced RMSE 369 
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values of 32.4 and 16.3 W m–2, respectively, but these values were decreased to 26.9 370 

and 14.9 W m–2 when our estimates were upscaled to 90 km. Comparisons with other 371 

global satellite SSR products indicated that the accuracies of our SSR estimates were 372 

clearly higher than those of GEWEX-SRB, ISCCP-FD and CERES products. 373 

The spatial resolution and accuracy of the new dataset are both higher than those 374 

of the global satellite radiation products of GEWEX-SRB, ISCCP-FD, and CERES 375 

and will contribute to photovoltaic applications and research related to simulation of 376 

land surface processes. When reliable global aerosol and albedo datasets become 377 

available, we intend to expand our dataset of SSR estimates back to mid-1983. We 378 

also plan to expand the dataset beyond 2015 by using SSR estimates from 379 

new-generation geostationary satellites. 380 
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 635 



26 
 

Figure captions 636 

Figure 1 Distribution of radiation measurement stations used to evaluate the 637 

performance of the estimated SSR. The blue circles mark the locations of 638 

the 90 CMA radiation stations, and the red crosses mark those of the 42 639 

BSRN stations. Note that two stations (labeled as DAR and DWN) in 640 

Australia and two stations (labeled as BIL and E13) in America are very 641 

close to each other. 642 

Figure 2 Comparisons of our estimated instantaneous SSR at spatial resolutions of (a) 643 

10 km and (b) 90 km with observed SSR for 42 BSRN stations. 644 

Figure 3 Spatial distribution of RMSE (W m-2) for our estimated instantaneous SSR 645 

(spatial resolution 90 km) at 42 BSRN stations. 646 

Figure 4 Comparisons of our estimated daily SSR at spatial resolutions of (a) 10 km 647 

and (b) 90 km with observed SSR for 42 BSRN stations. 648 

Figure 5 Spatial distribution of RMSE (W m-2) for our estimated daily SSR (spatial 649 

resolution 90 km) at 42 BSRN stations. 650 

Figure 6 Comparison of CERES SSR products with observed SSR at 42 BSRN 651 

stations for both (a) instantaneous and (b) daily scales. 652 

Figure 7 Comparisons of our estimated daily SSR at spatial resolutions of (a) 10 km 653 

and (b) 90 km with observed SSR at 90 CMA radiation stations. 654 

Figure 8 Spatial distribution of RMSE (W m–2) for our estimated daily SSR (spatial 655 

resolution 90 km) at 90 CMA radiation stations. 656 

Figure 9 Comparisons of our estimated monthly SSR at spatial resolutions of (a) 10 657 

km and (b) 90 km with observed monthly SSR at 90 CMA radiation 658 

stations. 659 

Figure 10 Comparison of CERES (a) daily and (b) monthly SSR products with those 660 
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observed at 90 CMA stations. 661 

Figure 11 Spatial distribution of global annual mean SSR (W m-2) of (a) ISCCP-HXG 662 

and (b) ISCCP-FD in 2009. 663 

 664 
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 665 

Figure 1 Distribution of radiation measurement stations used to evaluate the 666 

performance of the estimated SSR. The blue circles mark the locations of 667 

the 90 CMA radiation stations, and the red crosses mark those of the 42 668 

BSRN stations. Note that two stations (labeled as DAR and DWN) in 669 

Australia and two stations (labeled as BIL and E13) in America are very 670 

close to each other. 671 

 672 

 673 
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 674 

Figure 2 Comparisons of our estimated instantaneous SSR at spatial resolutions of (a) 675 

10 km and (b) 90 km with observed SSR for 42 BSRN stations. 676 

 677 
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 678 

Figure 3 Spatial distribution of RMSE (W m-2) for our estimated instantaneous SSR 679 

(spatial resolution 90 km) at 42 BSRN stations. 680 

 681 
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 682 

Figure 4 Comparisons of our estimated daily SSR at spatial resolutions of (a) 10 km 683 

and (b) 90 km with observed SSR for 42 BSRN stations. 684 

 685 
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 686 

Figure 5 Spatial distribution of RMSE (W m-2) for our estimated daily SSR (spatial 687 

resolution 90 km) at 42 BSRN stations. 688 

 689 
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 690 

Figure 6 Comparison of CERES SSR products with observed SSR at 42 BSRN 691 

stations for both (a) instantaneous and (b) daily scales.  692 

 693 

 694 
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 695 

Figure 7 Comparisons of our estimated daily SSR at spatial resolutions of (a) 10 km 696 

and (b) 90 km with observed SSR at 90 CMA radiation stations. 697 

 698 

 699 

 700 
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 701 

Figure 8 Spatial distribution of RMSE (W m–2) for our estimated daily SSR (spatial 702 

resolution 90 km) at 90 CMA radiation stations. 703 

 704 

 705 
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 706 

Figure 9 Comparisons of our estimated monthly SSR at spatial resolutions of (a) 10 707 

km and (b) 90 km with observed monthly SSR at 90 CMA radiation 708 

stations. 709 

 710 

 711 
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 712 

Figure 10 Comparison of CERES (a) daily and (b) monthly SSR products with those 713 

observed at 90 CMA stations. 714 

 715 

 716 
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 717 

Figure 11 Spatial distribution of global annual mean SSR (W m-2) of (a) ISCCP-HXG 718 

and (b) ISCCP-FD in 2009. 719 

 720 
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Table 1. Effect of spatial resolution on accuracy of our estimated instantaneous SSR 722 

compared to observations at the 42 BSRN stations. A comparisons with 723 

instantaneous SSR of ISCCP-FD is also shown.   724 

 Spatial resolution MBE (W m-2) RMSE (W m-2) R 

ISCCP-HXG  10 km -11.5 113.5 0.92 

ISCCP-HXG 30 km -11.0 96.5 0.94 

ISCCP-HXG 50 km -11.3 93.5 0.95 

ISCCP-HXG 70 km -11.3 93.2 0.95 

ISCCP-HXG 90 km -11.1 93.4 0.95 

ISCCP-HXG 110 km -11.4 94.3 0.95 

ISCCP-FD 280 km -11.2 131.4 0.89 

 725 
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Table 2. Effect of spatial resolution on accuracy of our estimated daily SSR compared 726 

to observations at 42 BSRN stations. A comparisons with daily SSR of 727 

ISCCP-FD is also shown.   728 

 Spatial resolution MBE (W m-2) RMSE (W m-2) R 

ISCCP-HXG  10 km -6.1 38.0 0.93 

ISCCP-HXG 30 km -5.8 33.9 0.94 

ISCCP-HXG 50 km -6.0 33.4 0.95 

ISCCP-HXG 70 km -5.9 33.3 0.95 

ISCCP-HXG 90 km -5.8 33.1 0.95 

ISCCP-HXG 110 km -6.0 33.4 0.95 

ISCCP-FD 280 km -6.7 51.0 0.87 
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Table 3. Effect of spatial resolution on accuracy of our estimated daily SSR compared 730 

to observations at 90 CMA radiation stations. A comparison with daily SSR 731 

of ISCCP-FD is also shown.  732 

 Spatial resolution MBE (W m-2) RMSE (W m-2) R 

ISCCP-HXG  10 km 1.8 32.4 0.93 

ISCCP-HXG 30 km 2.1 28.5 0.95 

ISCCP-HXG 50 km 2.2 27.4 0.95 

ISCCP-HXG 70 km 2.2 27.1 0.95 

ISCCP-HXG 90 km 2.1 26.9 0.95 

ISCCP-HXG 110 km 2.1 26.9 0.95 

ISCCP-FD 280 km -1.2 36.5 0.91 

 733 
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Table 4. Effect of spatial resolution on accuracy of our estimated monthly SSR 734 

compared to observations at 90 CMA radiation stations. A comparison with 735 

monthly SSR of ISCCP-FD data is also shown.  736 

 Spatial resolution MBE (W m-2) RMSE (W m-2) R 

ISCCP-HXG  10 km 1.9 16.3 0.97 

ISCCP-HXG 30 km 2.2 15.3 0.97 

ISCCP-HXG 50 km 2.2 15.0 0.97 

ISCCP-HXG 70 km 2.2 14.9 0.97 

ISCCP-HXG 90 km 2.2 14.9 0.97 

ISCCP-HXG 110 km 2.1 14.8 0.97 

ISCCP-FD 280 km -1.3 20.0 0.95 

 737 


