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Abstract. Crop phenology provides essential information for land surface phenology dynamics monitoring and modelling, and 10 

crop management and production. Most previous studies mainly investigated crop phenology at site scale, however, land 

surface phenology dynamics monitoring and modelling at a large-scale need a high-resolution spatially explicit information 

on crop phenology dynamics. In this study, we proposed a method to retrieve 1km-grid crop phenological dataset for three 

main crops from 2000 to 2015 based on GLASS LAI products. First, we compared three common smoothing methods and 

chose the most suitable methods for different crops and regions. Then, we developed an optimal filter-based phenology 15 

detection (OFP) approach which combined both inflexion- and threshold-based method and detected the key phenological 

stages of three staple crops at 1km spatial resolution across China. Finally, we established a high resolution gridded-phenology 

product for three staple crops in China during 2000-2015, named as ChinaCropPhen1km. Compared with the intensive 

phenological observations from the Agricultural Meteorological Stations of China Meteorological Administration, the dataset 

had a high accuracy with errors of retrieved phenological date less than 10 days, and represented the spatiotemporal patterns 20 

of the observed phenological dynamics at site scale fairly well. The well-validated dataset can be applied for many purposes 

including improving agricultural system or earth system modelling over a large area. 

DOI of the referenced dataset: https://doi.org/10.6084/m9.figshare.8313530 (Luo et al., 2019). 

1 Introduction 

Phenology is a key indicator of vegetation growth and development and plays an important role in vegetation monitoring (Qiu 25 

et al., 2015;Tao et al., 2017;Zhong et al., 2016). Accurate information on the timing of key crop phenological stages is critical 

for determining the optimal timing of agronomic management options, reliable simulations of crop growth and yield, and 

analyzing the plant response to climate change (Bolton and Friedl, 2013;Brown et al., 2012;Chen et al., 2018a;Sakamoto et al., 

2013;Sakamoto et al., 2010;Wang et al., 2015;Zhang and Tao, 2013). 
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Field phenological observations are time- and money-consuming. And the observational stations are limited and distributed 30 

sparsely. Therefore, the field phenological observations can’t meet the requirements of many purposes such as vegetation 

monitoring for remote areas with sparse observations and the grid-based earth system simulations. The satellite-based 

observations with a wide spatial coverage and short revisit times have become a powerful method to monitor vegetation growth 

and obtain vegetation information at regional and global scales. Previous studies have mainly used a vegetation index (VI) to 

extract crop phenology. For examples, Pan et al. (2015) presented a method to construct Normalized Difference Vegetation 35 

Index (NDVI) time-series dataset derived from HJ-1 A/B CCD and extract phenology parameters. Zeng et al. (2016) detected 

corn and soybeans phenology with Moderate Resolution Imaging Spectroradiometer (MODIS) 250-m Wide Dynamic Range 

Vegetation Index (WDRVI) time-series data. Cao et al. (2015) developed an adaptive local iterative logistic fitting method to 

fit time-series of Enhanced Vegetation Index (EVI) derived from MODIS and estimated green-up date of spring vegetation. 

Sakamoto (2018) refined the Shape Model Fitting method to estimate the timing of 36 crop-development stages of major U.S. 40 

crops from MODIS WDRVI time-series data. Crop phenology detected by these studies is relatively accurate. Nevertheless, it 

cannot be ignored that the VI are overly dependent on the band characteristics of sensors (Atzberger et al., 2014). By contrast, 

the Leaf Area Index (LAI) is more robust across diverse sensors and more sensitive than VI to large amounts of vegetation 

(Verger et al., 2016). In addition, previous studies focused on only very limited areas or very few crops due to the high diversity 

and complexity of agricultural planting structures (Liao et al., 2019;Liu et al., 2017;Xu et al., 2017;Wang et al., 2012). 45 

It is urgently required to acquire the gridded phenological datasets over a long-term period at a national scale as it is the basis 

for a large-scale agricultural system or earth system simulation. For example, crop model can simulate crop growth, 

development and predict crop yields. However, its applications to a large area are limited by the lack of accurate and spatially 

heterogeneous crop growth information (Curnel et al., 2011;Dorigo et al., 2007;Tao et al., 2009;Jin et al., 2018). According to 

some previous studies, it could improve the accuracy of model estimation at large scale by assimilating reliable remote sensing 50 

data into crop growth models (Bolten et al., 2010;Nearing et al., 2012;Ines et al., 2013;Chen et al., 2018a;Huang et al., 

2015;Zhou et al., 2019;de Wit and van Diepen, 2007). Among the state variables used in the assimilation, phenology is one of  

the essential variables because of its critical roles in affecting dry matter accumulation and distribution during the growing 

stages and reflecting crop periodic biological changes influenced by various environmental conditions (e.g., climate) (Jin et 

al., 2018;Zheng et al., 2016). 55 

In this study, using a remotely sensed Global Land Surface Satellite (GLASS) LAI product (2000-2015) (Xiao et al., 2014), 

we aim to 1) choose the most suitable smoothing method to reduce the noise of the LAI time-series for different crops and 

regions; 2) detect the phenological information of three staple crops (i.e., maize, rice and wheat) at 1-km spatial resolution 

across China, and evaluate its accuracy by comparing with the observed data at Agricultural Meteorological Stations (AMS) 

of China Meteorological Administration (CMA); 3) explore the spatial patterns of different phenological stages. The resultant 60 

remote sensing LAI-based crop phenology dataset with 1-km spatial resolution across China (ChinaCropPhen1km) will benefit 

to understand crop phenological dynamics, climate change impacts and adaptations, and agricultural system modelling over a 

large area, temporally and spatially (Luo et al., 2019).  
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2 Data and methods 

2.1 Study area 65 

The study areas are across the mainland of China, possessing of complex environments and crop planting structures, diverse 

cropping intensity and cultivation habits (Fig. 1) (Piao et al., 2010;Zhang et al., 2014a). Rice, wheat and maize are the three 

staple crops in China, together accounting for 59% of the total planting area and 92% of the grain yield in 2017. Roughly half 

of the cropland in China is multi-cropped, such as the double cropping system of wheat-maize in the North China Plain, and 

the rotation system between early-rice and late rice in Southern China (Frolking et al., 2002). 70 

2.2 Data 

2.2.1 The GLASS LAI data 

An improved MODIS-based LAI dataset (GLASS LAI) from 2000 to 2015 was from Liang et al. (2013) (http://glass-

product.bnu.edu.cn/?pid=3&c=1). The GLASS LAI product was generated with general regression neural networks (GRNNs) 

trained by the fused LAI from MODIS and CYCLOPES LAI products and the reprocessed MODIS reflectance of the 75 

BELMANIP sites during the period 2001-2003 (Liang et al., 2013). By computing the RMSE and R2 between several global 

LAI products and the high-resolution LAI reference map, it could be shown that the accuracy of the GLASS LAI (RMSE=0.78, 

R2=0.81) was fairly better than that of the MOD15 and GEOV1 (Xiao et al., 2016). Moreover, the intercomparison have 

indicated that GLASS LAI (8-day composites of 1-km spatial resolution) was more temporally continuous and spatially 

complete than the other LAI products (Xiao et al., 2014;Xiao et al., 2016). It has been applied to vegetation monitoring and 80 

crop model assimilation (Xiao et al., 2014;Chen et al., 2018a). 

2.2.2 Phenology observation 

The crop phenology observation records from 2000 to 2013 of maize, rice, and wheat crops were obtained from AMS, which 

were governed by CMA (https://data.cma.cn/). Such phenology information was observed and recorded by well-trained 

agricultural technicians in the experimental field, and then checked and managed by the Chinese Agricultural Meteorological 85 

Monitoring System (CAMMS). In this study, we selected the agrometeorological stations with more than 10 years of records 

of key phenological dates, including green-up date, emergence date, transplanting date, V3 stage (i.e., early vegetative stage 

of maize when the third leaf is fully expanded), heading date, and maturity date, for the three crops. Totally, there were 436 

stations across main crop-cultivated areas in China (Fig. 1). 
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2.2.3 Other data 90 

The 1-km National Land Cover Dataset (NLCD) of China was provided by Data Centre for Resources and Environmental 

Sciences, Chinese Academy of Sciences (http://www.resdc.cn/Default.aspx), which also included several epochs of land use 

datasets, i.e., 2000, 2005, 2010 and 2015 (Liu et al., 2005;Liu et al., 2014).  

2.3 Methods 

The method to retrieve the phenological information of three staple crops at national scale is presented schematically in Fig. 95 

2. The data processes are as follows: 1) data preprocessing, 2) selecting the cropland sample grid to determine the suitable 

smoothing method, 3) determining the optimal filter-based phenology detection (OFP) approach, 4) retrieving the phenological 

information of three crops at 1-km pixel across China. 

2.3.1 Data preprocessing 

Due to the differences among these datasets on projected coordinate system, firstly, we projected or re-projected all raster data 100 

to “Asia North Albers Equal Area Conic” by using the Projection Raster tool in ArcGIS. Then, we combined 46 annual GLASS 

LAI images together and used a China provincial administrative vector map to mask images by province. Finally, a LAI time-

series was created for each pixel for further applications. 

2.3.2 Methods chosen to smooth LAI products 

Previous studies have proposed different smoothing methods to reduce the noise of GLASS LAI time series, and found the 105 

OFP method varied by studied times, areas, and objectives (Zhao et al., 2016;Wang et al., 2018). Three popular methods were 

chosen in the study to smooth the LAI time-series curves, including the Double Logistic (DL) method, Savitzky-Golay (S-G) 

filter method, and Wavelet-based filter (WF) method. 

2.3.2.1 Double logistic (DL) method 

Double logistic is a method of merging local fitting parts to obtain the overall fitting result (Jonsson and Eklundh, 2004). In 110 

the local fitting process, the Double logistic function can be expressed as: 
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െ
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where, 𝑥ଵ determines the position of the left inflection point while 𝑥ଶ gives the rate of change. Similarly, 𝑥ଷ determines the 

position of the right inflection point while 𝑥ସ gives the rate of change at this point. 
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2.3.2.2 Savitzky-Golay (S-G) filter method 115 

Based on locally adaptive moving window, Savitzky-Golay (S-G) filtering method can be used to smooth data and suppress 

disturbances with a local polynomial regression model (Savitzky and Golay, 1964). Algorithm can be summarized as follows: 

𝐿𝐴𝐼
∗ ൌ

∑ 𝐶𝐿𝐴𝐼ା
ୀ
ୀି

𝑁
                                                                                                                                                                                  ሺ2ሻ 

where, 𝐿𝐴𝐼ାrepresents the original LAI value, LAI
∗ is the smoothed LAI value, j is running index of the LAI time series, 𝐶 

is the coefficient of the i-th LAI value, n is the half-width of the smoothing window, and N is the width of the moving window 120 

to perform filtering (2n+1). The width of the moving window—N, not only determines the degree of smoothing, but also 

affects the ability to follow a rapid change. We selected three windows width (3, 4, 5) to identify a better width for different 

crops and regions. 

2.3.2.3 Wavelet-based filter (WF) method 

Wavelet-based filter method can reduce noise with reflecting the periodicity of seasonal vegetation change (Sakamoto et al., 125 

2005). The input signals 𝑓ሺ𝑥ሻ is transformed in the wavelet transform as follows: 

𝑊𝑓ሺ𝑎, 𝑏ሻ ൌ
1

√𝑎
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𝑥 െ 𝑏
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ሻ𝑓ሺ𝑥ሻ𝑑𝑥                                                                                                                                                         ሺ3ሻ 

where a is a scaling parameter, b is a shifting parameter, and 𝜑 implies a mother wavelet.  

The advantage of the WF method is that it can maintain the time components of time-series data and hardly distort signals. 

The input signals 𝑓ሺ𝑥ሻ is decomposed to linear combinations of wavelet functions in the multi-resolution approximation: 130 

𝑓ሺ𝑥ሻ ൌ ሾ𝑓ሺ𝑥ሻ  𝑔ሺ𝑥ሻሿ



ୀଵ

                                                                                                                                                                          ሺ4ሻ 

where 𝑓ሺ𝑥ሻ implies the approximate expression in level i, and 𝑔ሺ𝑥ሻ implies the high-frequency components in level i. We 

used three types of mother wavelets: Daubechies (1988) (order=3–24), Coiflet (order=1–5), and Symlet (order=4–15) in the 

study. 

2.3.3 Methods to detect the phenological information 135 

The methods to detect remote-sensing-based phenology can generally be classified into three groups: inflexion-based method 

(Chen et al., 2016), threshold-based method (Manfron et al., 2017), and methods based on the mathematical or geometrical 

model fitting approach (Sakamoto et al., 2010). In this study, we used both inflexion- and threshold-based methods together 

to detect phenology. Firstly, we defined the inflection and maximum points of LAI time-series as the specific timing of key 

phenological stages for different crops (Fig. 3). 140 
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2.3.3.1 Green-up date, emergence date, transplanting date and V3 stage 

We defined the date of inflection point (the first derivative increases continuously after this point or the second derivative 

equals 0) of the LAI time-series curves as the green-up date of winter wheat, emergence date of spring wheat, transplanting 

date of rice and V3 stage (early vegetative stage of maize when the third leaf is fully expanded) of maize (Sakamoto, 

2018;Sakamoto et al., 2005;Sakamoto et al., 2010). Before the inflection point, the LAI values are kept low for a long time, 145 

and then they start to increase continuously after this point. 

2.3.3.2 Heading date 

Heading date in the study was defined as the day when LAI reaching the maximum, as similar as some previous studies 

(Sakamoto et al., 2005;Chen et al., 2018b). That is to say, the maximum LAI points in the time-series curve are regarded as 

the heading dates. 150 

2.3.3.3 Maturity date 

When crops reach maturity, the physiological activity will change largely, leading to an abrupt decrease in LAI (Sakamoto et 

al., 2005;Chen et al., 2018b). Therefore, we regarded an inflection point in the LAI time-series curve, where the first derivative 

is negative with the largest absolute value, as the maturity date. 

2.3.4 Determining the optimal filter-based phenology detection approach (OFP) 155 

Based on the observations around the nearest AMS, we needed firstly to determine the restricted time windows responding to 

each key phenological stage for different crops. Then we sampled randomly 1000 grids every year in each province from the 

grids where the land use data was identified as cropland and retrieved the key phenological stages in the sampling grids 

according to the three smoothing methods and the above definitions of key stages. To determine the OFP approach in each 

province, we identified the inflection points and maximum value point of each LAI time-series curve at each grid within the 160 

restricted time windows. After detecting phenological information of the cropland sample grids, we calculated the RMSE 

values between the estimated phenological dates and observed dates, and averaged these RMSE values for each crop at a 

provincial scale. Finally, we chose the most suitable smoothing method for different crops in each province with minimum 

RMSE. 

2.3.5 Retrieving the phenological information at 1-km pixel across China 165 

After removing the grids from where the land use data was identified as non-cropland, we then obtained cropland grids where 

the phenological information will be detected. Then, the most suitable smoothing method for different crops in each province 

were applied to reconstruct the LAI time series at 1-km grid scale. Finally, we detected the key phenological dates based on 

OFP approach and regarded the grids that the three key phenological stages (mentioned in 2.3.3) could be simultaneously 
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identified as the crop- cultivated grid for each crop. Additionally, to evaluate the accuracy of the estimated phenological dates 170 

at a national scale, we calculated the mean of phenological dates detected from each crop pixel around corresponding AMS 

and compared them with the corresponding observations by using RMSE. 

3 Results and Discussion 

3.1 Comparisons of different smoothing methods 

The smoothed time profiles of LAI generated by different smoothing methods are shown in Fig. 4. Both S-G filter and WF 175 

method can smooth LAI time-series well. That is to say, the generated time profiles of LAI match well with the seasonal 

tendency of the observed LAI time-series in the field. In addition, both methods can clearly characterize the local changes in 

the time component and maintain the time components of LAI time-series data. Although DL method performs poorly for 

smoothing LAI time series of the double-season crops, it’s still reliable for single-season crops. These findings were consistent 

with those in some previous studies (Zhu et al., 2012;Sakamoto et al., 2005;Qiu et al., 2016). 180 

We further compared mean RMSE of different smoothing methods and selected the most suitable smoothing method with 

minimal mean RMSE for different provinces and crops (Table 1). If the RMSE values were same, we also compared the 

number of crop grids according to different smoothing methods, and selected the suitable method which had identified a larger 

number of crop girds. It is noted that the number of identified grids differ considerably even with same RMSE values. Totally, 

S-G filter was an overwhelming smoothing way for 95% crops and provinces, followed by WF and DL method.  185 

We ascribed the great performance of S-G to two reasons as follows. 1) One is its scientific smoothing principle: S-G filter 

applies an iterative weighted moving average filter to the time series, which can replace the noise data as well as keep the 

fidelity (Geng et al., 2014). By contrast, WF decomposes the time series into scaled and shifted wavelets to acquire time-

localization of a given signal (Qiu et al., 2014). DL uses a series of parameters to fit the time series (Beck et al., 2006). 2) The 

other is that S-G is more suitable for GLASS LAI. S-G can catch the local variations―e.g. the bimodal curve characteristics 190 

from double cropping rice and the rotation of winter wheat and summer maize (Fig. 3-b, f) ― in time series and perform best 

for data without extreme noise such as GLASS LAI (Eklundh and Jönsson, 2015). DL is more useful for data with much noise, 

however, fails to catch local changes due to being unfit for data with double peaks. WF is also a powerful tool for processing 

non-stationary and noisy signals such as VI time-series rather than GLASS LAI (Rouyer et al., 2008; Sakamoto et al., 2006). 

Therefore, S-G is the most suitable for the complex cultivating systems across whole mainland of China. We also attributed 195 

the excellent performance of S-G to the phenological extraction rules established in this paper, and the goal of accurately 

extracting the crop cultivation grids, as well as key phenology stages. For example, WF smoothing method might eliminate 

pseudo inflexion points that may not be pseudo due to the uncertainty of GLASS LAI data sometimes, and misidentify non-

crop grids by inflexion- and threshold-based methods consequently resulting in very few crop grids identified (Qiu et al., 2016). 
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3.2 Validation of the phenological data 200 

The comparison between retrieved phenological dates and phenological observations of each crop from 2000-2015 at national 

scale showed that all retrieved and observed dates were closely and averagely distributed 1:1 line for three crops (Fig. 5). 

Additionally, the RMSE values of retrieved phenological dates were consistently less than 10 days (Table 2). The RMSE 

averages of three key dates for rice were around 5.3 days, followed by wheat (5.5 days) and maize (6.7 days), corresponding 

to the related R2 of 0.98, 0.97 and0.97, respectively.  205 

As for the differences among crops, the retrieved accuracy of maize phenological stages was consistently the worst, with the 

biggest RMSE and errors (≥±10 days), and the lowest errors (≤±10 days) and R2. We ascribed the lower accuracy of maize 

phenology to the wider spatial heterogeneity environment and the complex rotation planting system relative to the other two 

crops (Qiu et al., 2018). The highest accuracy of rice phenology also supported the accuracy impact of complex planting system 

because paddy field is unfit for dryland crops such as maize, wheat, soybean, and other coarse cereals (Dong et al., 2015).   210 

More interestingly, the retrieved accuracy of three crops decreased as crop growing and developing up to maturity periods 

(Table 2), with the average RMSEs ranging from 3.7 to 7.2 days. The highest accuracy (RMSE=2.8, error=0.5%) was found 

for the green up/emergence stages of wheat, while accuracy of maturity stage for each crop were the lowest (average 

RMSE=7.2, error=19%). The reasonable explanation might be relative weaker interfere from other vegetation because the 

green-up/emergence stage occurs most early during plant growing period (some 80 DOY Table 3). With the land surface 215 

greening up, more and more information on plant growing statuses will be shot by satellites, which consequently mix with the 

crops’ information and interfere to retrieve accurately the phenological stages of crops. Of course, the interfering from 

anthropological activities should not be ignored with climate warming.  

Nevertheless, overall the retrieved phenological dates for the three crops are in strong correspondence with the observational 

dates (R2 > 0.95) and their relationships are statistically significant (p < 0.01). Meanwhile, the growing status of other plants 220 

(or rotation crops e.g. wheat-maize, maize-soybean) and the influence of other noises will lead to deviations of the remote-

sensing LAI curve and the actual observed curve in the field. The noises also include other factors, e.g. weather conditions, 

farmers' behaviors, etc... However, the uncertainty does not exclude the applicability of our method to retrieve key phenological 

stages of crops, especially retrieving relative higher resolution phenological information based on mature remote-sensing 

products at a large spatial scale.  225 

3.3 Spatiotemporal patterns of key phenological stages from 2000 to 2015 

We showed the annual averages of each key crop growth stage to indicate their spatiotemporal patterns due to the similarity 

in inter-annual patterns for a certain crop over the 16 years (Figs.6-7, Table 3, and Fig. S1-S4). Besides summarizing the key 

stages by crops and sub-regions, we also calculated three crop growth periods, including VGP (vegetative growth period), 

RGP (reproductive growth period) and GPW (whole growth period) to interpret their patterns (Fig.8, Table 3). Among the five 230 

sub-regions with rice cultivation, the sub-region III was the most complex because three types of rice were cultivated there 
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(Fig.6-a; Fig.7-a). The single-rice in the sub-region III was generally cultivated in the northern parts of four provinces (i.e., 

Anhui, Jiangsu, Zhejiang and Hubei), which was characterized by three key stages occurring latest (DOY 159~265) than other 

three single-rice sub-regions (Ⅰ, Ⅱ, Ⅳ). Moving from the south (Ⅳ) to north (Ⅰ) (excluding the sub-region III because of 

cultivation of double-rice), single-rice wasn’t transplanted in sequence as expected. In the sub-region Ⅱ, it was transplanted 235 

latest (DOY 154) but had relatively early maturity dates (DOY 255), resulting in the shortest growing period (101 days) (Fig.8-

a). On the contrary, in the sub-region Ⅳ, single-rice was transplanted earliest but had the maturity occurring latest, resulting 

in the longest growing period of 130 days (Figs.6-a, 7-a, 8-a). In the sub-region Ⅴ where only double rice was cultivated, early-

rice was transplanted earlier (DOY 99), maturity dates of late rice occurred later (DOY 310), and consequently resulting in 

longer growing periods (97 and 101 days for corresponding early and late-rice) than those in the sub-region III with double-240 

rice cultivation (80 and 84 days) (Table 3).   

As for wheat, green-up & emergence dates ranged most widely (DOY 30~128) than other crops. Winter wheat in the sub-

regions Ⅱ and Ⅳ had earlier green-up dates, while spring wheat in the sub-regions of Ⅰ and III had later emergence dates (Table 

3, Figs.6-b, 7-b). Moreover, along with the latitudes from the north to south (excluding the sub-region III because of the 

sparsest wheat cultivation there), the first key dates became earlier but with shorter growth periods (106, 93, 92 days for Ⅰ, Ⅱ 245 

and Ⅳ) due to the sufficient temperature and light in the sub-region Ⅳ (Yu et al., 2012) (Fig.8-b). Interestingly, the heading 

and maturity dates in the three sub-regions showed consistently the same spatial patterns as that of the first stage with latitudes 

decreasing (Figs.6-b, 7-b). 

Both spring and summer maize types were concurrently cultivated in the sub-regions III and Ⅳ, while only one of them was 

cultivated in the sub-regions Ⅰ and Ⅱ, the main planting areas of northern China (Figs. 6-c, Fig.7-c, Table 3). V3 of summer 250 

maize was approximately 43 days later than that of spring maize (DOY 161 vs. 117), but their maturity dates were very close 

(DOY 259 vs. 245), which thus caused a shorter growth period for summer maize, especially for the sub-regions Ⅱ and III 

(some 84 days) (Fig.8-c). Additionally, in three sub-regions (Ⅰ, III, Ⅳ) for spring maize, like wheat, the spatial patterns of the 

three key stages for maize were similar in spatial patterns with latitude increasing. Finally, the key dates and periods were the 

most variable in the sub-region Ⅳ (Figs.7-c, 8-c). 255 

In sum, the spatial patterns of key phenological stages varied by crops and cultivated ways. In addition, early rice and single 

cropping rice in the sub-region Ⅲ, wheat in the sub-region Ⅲ, and maize and rice in the sub-region Ⅳ showed a larger 

variability than others due to the mixed planting of heterogeneous varieties of the same crop. Many factors could have impacts 

on crop phenology, such as climate, environment, farmer’s behaviors, technological development, and human activities (Liu 

et al., 2016;Liu et al., 2018). Different from natural ecosystems such as wild forest or grassland, three main crops cultivated 260 

across the mainland of China didn’t reach greening-up or flowering dates in sequence with latitude, especially for rice (Zhang 

et al., 2015;Tao et al., 2014;Zhang et al., 2014b). Moreover, climate conditions did have impacts on crop phenology. For 

example, increased temperature had advanced heading and maturity date of crops in China (He et al., 2015;Tao et al., 2014). 

At the same time, crop management activities, such as cultivar shift and the adjustment of planting and harvesting date, had 

affected crop phenology largely (Tao et al., 2006;Tao et al., 2013). 265 
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3.4 The changes in three key phenological dates and growth periods from 2000 to 2015 

To interpret the changes of the three key phenological dates and growth periods from 2000 to 2015, we analyzed their trends 

at pixel scale and summarized the grids with a significant trend (p<0.1) according to crops and sub-regions (Figs 9-10, Table 

4). We found more positive trends, with 0.78 days/year for 70% summarized medians, but fewer negative ones, with -0.69 

days/year and 30% medians. This suggests that phenological dates have been delayed. Specifically, the proportion of pixels 270 

that had a positive trend is 92% for wheat (Fig.9-b), 75% for rice (Fig.9-a), and 50% for maize (Fig.9-c).  

For rice, transplanting dates were consistently advanced by -0.64 days/year for early rice and single-rice, and delayed by 0.84 

days/year for late rice in most areas. Maturity dates became later by 1.23 days/year, but heading dates had less changes. In 

addition, double rice in the sub-region III showed less variable than that in the sub-region Ⅴ (Fig.9-a). By contrast, the first 

stages (i.e., green-up & emergence) delayed by 0.88 days/year consistently for almost all the wheat cultivation areas (Fig.9-b). 275 

Maize in the sub-region Ⅱ, and wheat in the sub-region Ⅰ and Ⅱ (Fig.9-b), had an opposite trend to that of rice (Fig.9, Table 4). 

Moreover, the changes in the three stages showed less variable in the sub-region Ⅱ, the main planting areas for both dryland 

crops. Among all the crops and growth stages, maize in the regions III and Ⅳ had consistently negative trends with exception 

of maturity dates in the sub-region Ⅳ. 

Compared with the significant changes in phenological dates, the duration of phenological periods changed in less pixels (< 280 

30%) (Table 4). More pixels with positive trends, with 1.25 days/year for 66.7% medians, were identified than those with 

negative trends, with -0.97 days/year for 32.3% medians, implying a commonly prolonged growth periods during the study 

period. 95.8% of the medians were positive for rice, while 75% of the medians were negative for wheat. The changes of maize 

growth periods were similar to those of its phenological dates. 

The duration of growth periods was prolonged, especially for the whole growth period (GPw), which was consistently observed 285 

for rice cropping systems, except for early rice in the sub-region Ⅴ. In addition, the duration of VGP for single rice in the sub-

region Ⅰ had weaker trends (Fig. 10-a). On the contrary, almost all the wheat growth periods were shortened except for winter 

wheat in the sub-region Ⅴ, especially for spring wheat in the sub-region Ⅰ (Fig.10-b). Additionally, in term of growth period 

duration, maize had the similar changes as wheat in the sub-regions Ⅰ and Ⅱ. Changes in growth period duration were different 

for spring (shortened) and winter (prolonged) wheat, and for both maize types between the sub-region III and Ⅳ (Fig.10-c). 290 

The results are well supported by some previous studies based on the intensive observations at site scale (Tao et al., 2013;Tao 

et al., 2014;Tao et al., 2012;Zhang et al., 2014b). 

3.5 Uncertainties of ChinaCropPhen1km 

Inevitably, there are still some uncertainties in the generated dataset (i.e., ChinaCropPhen1km). First of all, the uncertainties 

of the GLASS LAI products have a relatively greater impact on ChinaCropPhen1km. One is that its quality is closely related 295 

to that of the input MODIS Surface Reflectance product (MOD09A1), which is affected by many factors such as cloud, snow, 

aerosols, and water vapor (Xiao et al., 2014). That is to say, the noise of original LAI time-series due to these factors could 
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introduce uncertainties in the detection of phenological stages. Therefore, a smoothing method is necessary to minimize the 

influence of noise. Nevertheless, the selection of the smoothing method could affect the accuracy of the phenology detected 

from the reconstructed time series (Verger et al., 2016). Thus, we compared several common used smoothing methods and 300 

chose the most suitable method with minimum RMSE for different crops in each province. The other is that the GLASS LAI 

retrieval algorithm can eliminate abrupt spikes and dips, which may result in the loss of neighboring smaller peaks in LAI 

profiles (Xiao et al., 2016). Therefore, the number of detected pixels with double-season rice cultivated may be less than that 

of the actual situation due to the short interval between the two local maximum points (i.e., heading stages of early rice and 

late rice). Secondly, the use of NLCD dataset can be another source of uncertainty. In this study, the spatial distribution of 305 

each crop type was determined based on the dryland crop (i.e., maize and wheat) and paddy rice mask, which was derived 

from the dryland and paddy field layer of NLCD, respectively. Since the inclusion of several crop types for the dryland layer 

and the omission or commission error of the land cover types can lead to uncertainties, the unavailable crop-specific map is 

promising to improve the accuracy of retrieved phenological dates, Finally, the coarse spatial resolution of 1 km could bring 

uncertainty in the results as several land cover or crop types could be contained within a 1-km pixel and then the identified 310 

signal of the specific phenological stages might be weakened, especially in the mountainous regions (e.g., southern China) 

with complex terrain and consequently diverse vegetation types. In future studies, the application of remote sensing products 

with finer spatial resolution could be expected to solve the mixed pixel issues. 

4 Data availability 

The derived crop phenological dataset for three staple crops in China during 2000-2015 is available at 315 

https://doi.org/10.6084/m9.figshare.8313530 (Luo et al., 2019). 

5 Conclusion 

In the present study, we proposed a method to retrieve 1km-grid crop phenological dataset for three main crops from 2000 to 

2015 based on GLASS LAI products. First, we compared three common smoothing methods and chose the most suitable 

methods for different crops and regions. The results showed that S-G was the most frequently chosen method as it not only 320 

could well smooth the time series but also keep the fidelity. Next, we developed an OFP approach which combined both 

inflexion- and threshold-based method to detect the key phenological stages of three staple crops at spatial resolution of 1km 

across China. Finally, we established a high resolution gridded-phenology product for three staple crops in China during 2000-

2015, i.e., ChinaCropPhen1km. 

The ChinaCropPhen1km dataset has been well validated using the intensive phenological observations of AMS. It can reflect 325 

the spatial differences in the local climatic and management factors. Thus, this first high-resolution crop phenological dataset 

can be applied for many purposes, including understanding land surface phenological dynamics, investigating climate change 
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impacts and adaptations, and improving agricultural system or earth system modelling over a large area, temporally and 

spatially. 
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Table 1: Mean RMSE (in parenthesis) of the most suitable smoothing method for different regions and crops. 

 Winter wheat Spring wheat Summer maize Spring maize Single-rice Double rice 

Anhui SG-3 (3.53)  SG-4 (6.81)  SG-5 (5.67) SG-3 (6.69) 

Beijing SG-3 (5.46)  SG-3 (8.06)    

Chongqing SG-3 (7.09)   SG-3 (8.06) SG-3 (3.46)  

Fujian SG-3 (8.90)    SG-3 (6.36) SG-3 (6.02) 

Gansu SG-3 (5.43) SG-3 (7.69) SG-5 (7.63) SG-3 (8.34)   

Guangdong      SG-3 (6.38) 

Guangxi    SG-3 (8.17)  SG-3 (7.25) 

Guizhou SG-3 (6.59)  SG-3 (9.77) SG-3 (9.11) SG-3 (7.62)  

Hainan      db8 (2.33) 

Hebei SG-3 (4.53) SG-3 (6.35) SG-3 (4.58) SG-3 (5.42) SG-3 (6.32)  

Heilongjiang  SG-5 (6.38)  SG-5 (6.72) SG-5 (4.73)  

Henan SG-3 (4.22)  SG-4 (5.01)  SG-5 (3.48)  

Hubei SG-3 (5.65)   SG-3 (7.89) SG-3 (5.87) SG-3 (5.89) 

Hunan    SG-3 (8.10) SG-3 (5.03) SG-3 (7.64) 

Jiangsu SG-3 (5.12)  SG-4 (6.44) db4 (8.67) SG-5 (6.85)  

Jiangxi    SG-3 (7.95) SG-3 (7.80) SG-3 (8.12) 

Jilin  SG-4 (7.73)  SG-5 (5.84) SG-5 (6.30)  

Liaoning    SG-3 (4.91) SG-3 (6.39)  

Inner Mongolia  SG-3 (7.85)  SG-5 (5.55)   

Ningxia SG-3 (6.18) SG-3 (6.74) SG-3 (7.50) SG-5 (6.33) SG-5 (8.22)  

Qinghai db3 (6.73) DL (7.56)  SG-5 (7.59)   

Shandong SG-3 (4.46)  SG-4 (4.55)  SG-5 (6.36)  

Shanghai SG-3 (5.01)    SG-3 (7.15)  

Shannxi SG-3 (4.04) SG-3 (8.08) SG-3 (4.09) SG-3 (5.05) SG-5 (7.57)  

Shanxi SG-3 (4.61) DL (7.90) SG-3 (5.45) SG-5 (5.57) SG-5 (8.84)  

Sichuan SG-3 (5.43)  SG-3 (7.43) SG-3 (7.84) SG-3 (5.51)  

Tianjin SG-3 (7.36)  SG-3 (8.17)    

Xinjiang SG-3 (6.93) SG-3 (7.99) SG-3 (7.11) SG-3 (6.14)   

Xizang SG-3 (7.02) SG-3 (7.12)     

Yunnan SG-3 (7.53)  SG-3 (8.45) SG-3 (8.19) SG-5 (7.53) SG-3 (4.51) 

Zhejiang SG-3 (6.22)    SG-3 (6.35) SG-4 (7.33) 
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Table 2: Mean RMSE between retrieved phenological dates and phenological observations. 

Crop Stage 
RMSE 

(days) 

Error ≤ 

±10 days (%) 

Error ≥ 

±10 days (%) 
Rଶ 

Rice 

Transplanting 4.05 98.6% 1.4%  

Heading 5.59 93.0% 7.0% 0.98 

Maturity 6.21 88.9% 11.1%  

Wheat 

Green up & Emergence 2.82 99.5% 0.5%  

Heading 6.54 86.4% 13.6% 0.97 

Maturity 7.18 81.7% 18.3%  

Maize 

V3 4.08 96.8% 3.2%  

Heading 7.79 79.8% 20.2% 0.97 

Maturity 8.22 71.8% 28.2%  

 
  520 
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Table 3: Annual mean phenological dates and growth periods of different crops in each sub-region 

Crop Stage (period) 
Sub-region 

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 

E
ar

ly
  

ri
ce

 

Transplanting (VGP)   115.4 (60)  99 (69.3) 

Heading (RGP)   175.2 (20.4)  168.2 (27.6) 

Maturity (GPw)   195.1 (79.7)  195.5 (96.6) 

L
at

e 

ri
ce

 

Transplanting (VGP)   204.2 (48.1)  209.4 (54.1) 

Heading (RGP)   252.2 (35.5)  265.7 (46.5) 

Maturity (GPw)   287.7 (83.5)  310 (100.6) 

S
in

gl
e 

ri
ce

 

Transplanting (VGP) 141.7 (75.5) 154.1 (64.2) 158.5 (62.5) 130.4 (76.6)  

Heading (RGP) 217.2 (37.9) 218.3 (37.1) 221 (43.7) 207 (53.4)  

Maturity (GPw) 255 (113.5) 255.3 (101) 264.6 (106) 260.4 (130)  

W
he

at
 

Green up & Emergence 

(VGP) 
128 (65.1) 51.8 (62.9) 108.7 (57.5) 29.6 (34.7) 

 

Heading (RGP) 187.6 (41.1) 113.9 (29.6) 165.7 (63.7) 72.3 (57.1)  

Maturity (GPw) 224.8 (106) 143.3 (92.5) 228.8 (121) 128.7 (91.7)  

S
pr

in
g 

m
ai

ze
 V3 (VGP) 142.4 (71.9)   130.2 (79.6) 104.3 (74.5)  

Heading (RGP) 214.3 (40.6)   209.9 (42.2) 178.8 (59.7)  

Maturity (GPw) 254.9 (113)   252.1 (122) 238.5 (134)  

S
um

m
er

 

m
ai

ze
 V3 (VGP)  173.1 (46.9) 179.1 (47.1) 129.3 (74.1)  

Heading (RGP)  220.1 (37.5) 226.2 (36.1) 203.3 (53.3)  

Maturity (GPw)   257.5 (84.5) 262.2 (83.1) 256.6 (127)  

Note: VGP means vegetative growth period, the difference between heading and transplanting/Green up & Emergence/V3 

dates; RGP means reproductive growth period, the difference between maturity and heading dates; GPw means whole growth 

period, the difference between maturity and transplanting/Green up & Emergence/V3 dates. The numbers in the parentheses 

mean the annual mean growth periods. 525 
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Table 4: The trend (days year-1) of three key phenological dates and growth periods from 2000 to 2015 

Crop 
Stage 

(period) 

Sub-region 

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 

Trend    Psg Trend Psg Trend Psg Trend   Psg  Trend Psg 

E
ar

ly
 r

ic
e 

Transplanting 

(VGP) 
    

-0.7 

 (0.6) 

27.8 

(19.8) 
  

-0.8 

 (1.5) 

27.3 

(11.8) 

Heading 

(RGP) 
    

-0.8 

 (1.3) 

26.1 

(15.5) 
  

1.3  

(1.0) 

29.1 

(14.5) 

Maturity 

(GPw) 
    

0.7 

 (1.3) 

23.3 

(19.4) 
  

1.6  

(1.7) 

29.6 

(14.3) 

L
at

e 
ri

ce
 

Transplanting 

(VGP) 
    

0.7 

(0.01) 

25.4 

(15.6) 
  

1.7 

(0.01) 

28.2 

(44.3) 

Heading 

(RGP) 
    

0.7  

(1.0) 

31.1 

(16.5) 
  

1.7  

(2.2) 

29.1 

(13.7) 

Maturity 

(GPw) 
    

1.1 

 (1.1) 

32.6 

(15.8) 
  

2.4  

(2.3) 

35.4 

(13.4) 

S
in

gl
e 

ri
ce

 

Transplanting 

(VGP) 

0.01 

(-0.01) 

31.6 

(29.3) 

-1.1  

(1.3) 

43.3 

(31.6) 

0.01 

(0.8) 

37.9 

(22.9) 

-1.3  

(1.3) 

22.3 

(13.5) 
  

Heading 

(RGP) 

0.01 

(0.7) 

38.7 

(20.1) 

0.01 

(0.7) 

32.4 

(18.1) 

0.7 

 (0.8) 

31.6 

(16.8) 

-0.01 

(1.8) 

19.1 

(17.6) 
  

Maturity 

(GPw) 

0.7 

(0.6) 

20 

(14.8) 

0.7 

 (1.7) 

28.2 

(29.8) 

1 

 (1.2) 

28.5 

(22.1) 

1.6  

(2.1) 

24.1 

(19.7) 
  

W
he

at
 

Green up & 

Emergence 

(VGP) 

0.01 

(-1.5) 

61.6 

(22.2) 

0.6 

(-0.4) 

16.9 

(12.8) 

1.2 

 (-0.9) 

15 

(14.1) 

1.7 

 (-2.0) 

26.5 

(12.1) 
  

Heading 

(RGP) 

-0.01 

(0.01) 

34.6 

(13.1) 

0.6 

(-0.6) 

21.9 

(14.9) 

0.9  

(-0.8) 

23.4 

(12.7) 

0.8 

 (2.3) 

35 

(14.8) 
  

Maturity 

(GPw) 

0.01 

(-1.9) 

30.3 

(17.4) 

0.01 

(-0.7) 

22.1 

(12.1) 

1.4  

(-1.2) 

17.3 

(12.4) 

1.9 

 (1.7) 

42.8 

(11.2) 
  

S
pr

in
g 

m
ai

ze
 V3 

(VGP) 

0.01 

(-0.9) 

26.2 

(20.9) 
  

-1.1  

(1.2) 

20.4 

(12.6) 

-1.0  

(-1.3) 

33.6 

(15.1) 
  

Heading 

(RGP) 

-0.01 

(0.9) 

54.8 

(20.1) 
  

0.01 

(0.9) 

55.4 

(12.8) 

-1.4  

(2.0) 

28.9 

(16.5) 
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Maturity 

(GPw) 

0.01 

(-0.7) 

26.4 

(13.9) 
  

-0.5 

 (1.4) 

31.4 

(11.8) 

0.7 

 (1.5) 

31.3 

(14.6) 
  

S
um

m
er

 m
ai

ze
 

V3 

(VGP) 
  

0.01  

(-0.7) 

52.6 

(22.1) 

-0.9 

 (-1.0) 

27.6 

(12.1) 

-0.01 

(1.2) 

41.2 

(11.8) 
  

Heading 

(RGP) 
  

0.4  

(-0.8) 

27.3 

(13.4) 

-0.01 

(0.01) 

30.1 

(13.2) 

0.01 

(2.3) 

40.1 

(19.1) 
  

Maturity 

(GPw) 
  

0.4  

(-1.0) 

20.1 

(16.7) 

-1.4  

(-1.1) 

34.7 

(12.9) 

2.4 

 (2.5) 

48.8 

(18.3) 
  

Note: The same meanings for VGP, RGP and GPw as Table 3; Psg (%) means the percent of grids showing significant trend at 

p<0.1 level; The numbers in the parentheses mean the statistic values of grids during three growth periods.   

  530 
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Fig.1: The studied areas and the locations of Agricultural Meteorological Stations (AMS) of China Meteorological Administration. 
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Fig.2: Flow chart of procedures for data analysis and crop phenological dates identification. 535 
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Fig.3: Typical phenological curves for different crop cropping systems in China. 
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  540 

Fig.4: Comparisons of different smoothing methods for different cropping systems. 
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Fig.5: Comparisons between retrieved and observed phenological dates for rice (a), wheat (b), and maize (c). 
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Fig.6: Spatial patterns of annual averages of three key phenological dates during 2000~2015 for rice (a), wheat (b), and maize (c). 545 
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Fig.7: Box plots of three key phenological dates by crop and sub-regions during 2000~2015 for rice (a), wheat (b), and maize (c). 
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Fig.8: Box plots of three key phenological periods by crop and sub-regions during 2000~2015, for vegetative growth period (VGP), 550 
reproductive growth period (VGP), and whole growth period (GPW) of rice (a), wheat (b), and maize (c). 
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Fig.9: The trends of three key phenological dates during 2000~2015 by crop and sub-regions during, VGP for vegetative growth 
period, RGP for reproductive growth period, and GPW for whole growth period. 
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 555 

Fig.10: The trends of three key phenological periods during 2000~2015 by crop and sub-regions during, VGP for vegetative growth 
period, RGP for reproductive growth period, and GPW for whole growth period. 


