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Abstract 28 

Cold regions hydrology is very sensitive to the impacts of climate warming. Impacts of warming over 29 

recent decades in western Canada include glacier retreat, permafrost thaw and changing patterns of 30 

precipitation, with an increased proportion of winter precipitation falling as rainfall and shorter durations 31 

of snowcover, and consequent changes in flow regimes. Future warming is expected to continue along 32 

these lines. Physically realistic and sophisticated hydrological models driven by reliable climate forcing can 33 

provide the capability to assess hydrological responses to climate change. However, the provision of 34 

reliable forcing data remains problematic, particularly in data sparse regions. Hydrological processes in 35 

cold regions involve complex phase changes and so are very sensitive to small biases in the driving 36 

meteorology, particularly in temperature and precipitation, including precipitation phase. Cold regions 37 

often have sparse surface observations, particularly at high elevations that generate a large amount of 38 

runoff. This paper aims to provide an improved set of forcing data for large scale hydrological models for 39 

climate change impact assessment. The best available gridded data in Canada is from the high-resolution 40 

forecasts of the Global Environmental Multiscale (GEM) atmospheric model and outputs of the Canadian 41 

Precipitation Analysis (CaPA) but these datasets have a short historical record. The EU WATCH ERA-Interim 42 

reanalysis (WFDEI) has a longer historical record but has often been found to be biased relative to 43 

observations over Canada. The aim of this study, therefore, is to blend the strengths of both datasets 44 

(GEM-CaPA and WFDEI) to produce a less-biased long record product (WFDEI-GEM-CaPA) for hydrological 45 

modelling and climate change impacts assessment over the Mackenzie River Basin. First, a multivariate 46 

generalization of the quantile mapping technique was implemented to bias-correct WFDEI against GEM-47 

CaPA at 3h × 0.125o resolution during the 2005-2016 overlap period, followed by a hindcast of WFDEI-48 

GEM-CaPA from 1979. The derived WFDEI-GEM-CaPA data are validated against station observations as a 49 

preliminary step to assess their added value. This product is then used to bias-correct climate projections 50 

from the Canadian Centre for Climate Modelling and Analysis Canadian Regional Climate Model 51 
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(CanRCM4) between 1950 – 2100 under RCP8.5, and an analysis of the datasets shows that the biases in 52 

the original WFDEI product have been removed and the climate change signals in CanRCM4 are preserved. 53 

The resulting bias-corrected datasets are a consistent set of historical and climate projection data suitable 54 

for large-scale modelling and future climate scenario analysis. The final historical product (WFDEI-GEM-55 

CaPA, 1979-2016) is freely available at the Federated Research Data Repository at 56 

http://dx.doi.org/10.20383/101.0111 (Asong et al., 2018) while the original and corrected CanRCM4 data 57 

are available at https://doi.org/10.20383/101.0162 (Asong et al., 2019). 58 

Subject Keywords: cold regions processes, observations, bias correction, Mackenzie River Basin 59 
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1 Introduction 74 

Accurate and reliable weather and climate information at the basin scale is in increasingly high 75 

demand by policy-makers, scientists, and other stakeholders for many purposes including water resources 76 

management (Barnett et al., 2005), infrastructure planning  (Brody et al., 2007), and ecosystem modelling 77 

(IPCC, 2013). Specifically, the potential impacts of a warming climate on water availability in snow-78 

dominated high latitude regions continue to be a serious concern given that over the past several decades, 79 

these regions have experienced some of the most rapid warming on earth (Demaria et al., 2016; 80 

Diffenbaugh et al., 2012; Islam et al., 2017; Martin and Etchevers, 2005; Stocker et al., 2013). The on-going 81 

science suggests that these warming trends are resulting in the intensification of the hydrologic cycle, 82 

leading to significant recent observed changes in the hydro-climatic regimes of major river basins in 83 

Canada and globally (Coopersmith et al., 2014; DeBeer et al., 2016; Dumanski et al., 2015). Changes in the 84 

timing and magnitude of river discharge (Dibike et al., 2016), shifts in extreme temperature and 85 

precipitation regimes (Asong et al., 2016b; Vincent et al., 2015) and changes in snow, ice, and permafrost 86 

regimes are anticipated (IPCC, 2013). Substantial evidence also indicates that the long-held notion of 87 

stationarity of hydrological processes is becoming invalid in a changing climate.  As pointed out by Milly 88 

et al. (2008), this loss of stationarity means that there will be an increase in the likelihood and frequency 89 

of extreme weather and climate events, including floods and droughts.   What is particularly troubling is 90 

that these impacted regions typically have extremely low density of weather and climate observations, 91 

making any attribution and climate impact analysis on water resources difficult. 92 

It is well understood that water resources in most watersheds north of 30° N are heavily 93 

dependent on natural water storage provided by snowpacks and glaciers, with water accumulated in the 94 

solid phase during the cold season and released in the liquid phase during warm events and the warm 95 

season. Particularly, the Canadian Rocky Mountains, the hydrological apex of North America with 96 

headwater streams flowing to the Arctic, Atlantic and Pacific oceans, constitutes an integral part of the 97 
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global hydrological cycle (Fang et al., 2013). Flows in these high elevation headwaters depend heavily on 98 

meltwater from snowpacks and glaciers. However, given that it is characterized by a highly varying cold 99 

region hydroclimate, studies indicate that it is in these high elevation regions where climate variability 100 

and change is expected to be most pronounced in terms of its impacts on water supply (Beniston, 2003; 101 

Kane et al., 1991; Prowse and Beltaos, 2002; Woo and Pomeroy, 2011). More physically realistic and 102 

sophisticated hydrological models driven by reliable climate forcing information can enhance our ability 103 

to assess short- and long-term regional hydrologic responses to increasing variability and uncertainty in 104 

hydro-climatic conditions in a changing climate. Nonetheless, hydrological processes in cold regions 105 

involve complex phase changes and so are very sensitive to small biases in the driving meteorology, 106 

particularly in temperature and precipitation.   107 

As described earlier, cold regions often have sparse surface observations, particularly at the high 108 

elevations and high latitudes regions that could potentially generate a major amount of runoff. The effects 109 

of mountain topography and high latitudes are currently not well reflected in the observational record. 110 

Ground-based measurements (e.g. gauges) are limited especially over the Canadian Rocky Mountains, 111 

and suffer from inaccuracies associated with cold climate processes (Asong et al., 2017a; Wang and Lin, 112 

2015; Wong et al., 2017). The advent and use of weather radar systems have addressed some of the 113 

shortcomings of gauge coverage, at least where radar exists. Unfortunately, in Canada, for example, the 114 

spatial coverage of weather radar is limited to the southern (south of 55° N) part of the country (Fortin et 115 

al., 2015b). Recently, improved satellite products have emerged such as the Global Precipitation 116 

Measurement (GPM) mission that provides meteorological information at fine spatiotemporal resolutions 117 

and regular intervals. But, the GPM is still at an early stage of development and only covers the region 118 

south of 60° N (Asong et al., 2017a; Hou et al., 2014).  119 

The capability of the current generation of Earth System Models (ESMs) to represent 120 

meteorological forcing variables is therefore of major interest for hydrological climate change impact 121 
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studies in cold regions watersheds. Despite commendable progress being made, raw outputs from 122 

regional and global ESMs still have large differences between models and from the limited observational 123 

reference meteorology, due partly to spatial scale mismatches and systematic biases (Taylor et al., 2012). 124 

Therefore, ESM outputs are often downscaled and biases are adjusted statistically before being used in 125 

hydrological simulations (Asong et al., 2016b; Chen et al., 2013; Chen et al., 2018; Gudmundsson et al., 126 

2012). Recent research has demonstrated that bias correction, including adjustment of the dependence 127 

between driving variables, can lead to more realistic hydrological simulations in cold regions watersheds 128 

where the response of the system is sensitive to accumulation and melt of snow and ice (Meyer et al., 129 

2019).  130 

Apart from the uncertainty due to the many empirical statistical techniques which have been 131 

developed to post-process ESM outputs (Maraun, 2016), the quality and length of the reference 132 

observational dataset for bias correction remains a major issue (Reiter et al., 2016; Schoetter et al., 2012; 133 

Sippel et al., 2016). In Canada and other regions of North America, regional gridded datasets such as the 134 

combined Global Environmental Multiscale (GEM) atmospheric model forecasts (Yeh et al., 2002) and the 135 

Canadian Precipitation Analysis―CaPA (Mahfouf et al., 2007)  have been found to perform comparably to 136 

ground observations, both statistically and hydrologically (Alavi et al., 2016; Boluwade et al., 2018; Eum 137 

et al., 2014; Fortin et al., 2015a; Gbambie et al., 2017; Wong et al., 2017). However, the duration of GEM-138 

CaPA is too short to be used to directly correct ESM climate due to unsynchronized internal 139 

variability―the recommended minimum record length for bias correction is 30 years (Maraun, 2016; 140 

Maraun et al., 2017). Other gridded products such as the EU WATCH ERA-Interim reanalysis―WFDEI 141 

(Weedon et al., 2014) and Princeton (Sheffield et al., 2006) have a longer historical record, but have been 142 

found to be biased relative to observations over Canada (Wong et al., 2017) and the United States (Behnke 143 

et al., 2016; Sapiano and Arkin, 2009). However, the WFDEI reanalysis has been found to outperform other 144 

long-record gridded products (Chadburn et al., 2015; Park et al., 2016; Wong et al., 2017).  145 
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Because of the sparse observational network, few gridded climate datasets exist that contain the 146 

necessary meteorological variables to drive physically-based land surface models at sub-daily temporal 147 

resolution north of 55° N in North America. Because the combination of the GEM and CaPA datasets has 148 

been shown to perform relatively well in these regions, the intent here is to use these datasets to bias-149 

correct the WFDEI dataset, which contains a sufficient length of record for bias-correcting climate 150 

projection datasets. Aside from its short record length, a limitation of the GEM-CaPA dataset for wider 151 

use for hydrological models is that the wind, temperature, and humidity variables are available only at 152 

the 0.995 sigma(σ) level (approximately 40 m, varying in time and space; herein referred to as the “40 m” 153 

level) across the full length of record. The WFDEI dataset contains these variables at the surface level, 154 

which is more typically used by hydrological models. Therefore, the bias correction effectively modifies 155 

the source surface level data to reproduce the climate found at the 40 m level of the reference dataset 156 

(GEM-CaPA). Many regional and large-scale land surface hydrological models are capable of using climate 157 

data at this atmospheric level. Thus, no effort is made to interpolate the product back to surface level 158 

(although this could be done if needed). In addition, the bias-corrected dataset at an effective 40 m level 159 

can then be used to bias-correct these same fields from the CanRCM4 dataset, which are at the same 160 

0.995 σ level as in the reference dataset (GEM-CaPA). The analysis results in a bias-corrected set of 161 

historical and projected climate data that is consistent in time and considers the regional topography and 162 

climate effects of GEM and CaPA, and is suitable to drive large-scale simulations of distributed hydrological 163 

models for assessing climate change impacts in data sparse regions.  164 

The aim of this study, therefore, is to combine the strengths of both datasets (GEM-CaPA and 165 

WFDEI) to produce a less-biased long record product (WFDEI-GEM-CaPA) using a multi-stage bias 166 

correction framework. First, a multivariate generalization of the quantile mapping technique was 167 

implemented to bias-correct WFDEI against GEM-CaPA at 3h × 0.125o resolution during the 2005-2016 168 

period, followed by a hindcast of WFDEI-GEM-CaPA from 1979. Subsequently, a 15-member initial 169 
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condition ensemble of the CanESM2 ESM (historical followed by RCP8.5 scenario), which has been 170 

dynamically downscaled at 0.44° (50 km) resolution using the fourth generation Canadian Regional 171 

Climate Model (CanRCM4), is sourced from the Canadian Centre for Climate Modelling and Analysis. A 172 

multivariate bias correction algorithm is applied to the CanRCM4 outputs (1950 – 2100) to adjust the data 173 

against WFDEI-GEM-CaPA. The bias-corrected products are important for developing distributed 174 

hydrological models as well as for assessing climate change impacts over the Mackenzie River basin (MRB), 175 

which constitutes a testbed for the Changing Cold regions Network (CCRN) project’s large-scale 176 

hydrological modelling strategy and is the case study for the current analysis.  177 

2 Methodology 178 

2.1 Study area 179 

The study area is the Mackenzie River Basin (MRB), which is the largest river basin in Canada and the 180 
largest river draining from North America to the Arctic Ocean ( 181 

Fig. 1). It drains an area of about 1.8 million km2 and discharges more than 300 km3 of freshwater 182 

to the Beaufort Sea in the Arctic each year. The basin drains parts of British Columbia, Alberta, 183 

Saskatchewan, the Northwest Territories and the Yukon Territory in northwestern Canada.  The western 184 

tributaries are relatively steep as they originate from the Canadian Rocky Mountains while the eastern 185 

tributaries have milder topography with several large lakes, thousands of interconnected small lakes, fens 186 

and bogs. The general vegetation ranges widely between alpine, boreal and tundra landscapes. Climatic 187 

conditions are also quite variable and can be generally classified as cold-temperate, mountain, subarctic 188 

and arctic zones, with about 75% of the basin underlain by continuous and discontinuous permafrost.  189 
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 190 
 191 

Fig. 1: Location of the Mackenzie River Basin in North America 192 

2.2 Data sources 193 

2.2.1 Gridded GEM-CaPA product  194 

Hourly archived forecast data from the GEM model were acquired from Environment and Climate 195 

Change Canada (http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/submenus/rdps_e.html, 196 

last access: 28 September 2018). The fields include downward incoming solar radiation, downward 197 

incoming longwave radiation and pressure at the surface, as well as specific humidity, air temperature, 198 

and wind speed at approximately 40 m above ground surface. The 40 m level was used because surface 199 

level variables at 1.0 σ (approximately at 2 m for temperature and humidity, and 10 m for wind speed) 200 

are only available in the archive from 2010 onward. The GEM data are at approximately 24 km spatial 201 

resolution from October 2001, approximately 15 km from June 2004, and approximately 10 km resolution 202 

from November 2012, and are provided on a rotated latitude/longitude grid in Environment and Climate 203 

http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/submenus/rdps_e.html
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Change Canada (ECCC) ‘standard file’ format. The archived data are of former operational forecasts and 204 

contain model outputs from versions of GEM prior to 2.0.0 through 5.0.0. 205 

6-Hourly total precipitation data from the complementary CaPA product 206 

(http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/submenus/capa_e.html, last access: 28 207 

September 2018) were also acquired. The analysis incorporates observed precipitation from 208 

meteorological weather stations, and more recently from radar, into the precipitation field from GEM. 209 

The CaPA data are approximately 10-km resolution from January 2002, also on a rotated 210 

latitude/longitude grid in ECCC ‘standard file’ format. The data contain reanalysis outputs from CaPA 211 

2.4b8 from 2002-2012, and of former operational analyses from versions of CaPA 2.3.0 through 4.0.0 from 212 

November 2012 onward. 213 

The variables from GEM and CaPA were spatially interpolated and re-projected to a regular 214 

latitude/longitude grid at 0.125o resolution. For data from GEM, the interpolation was done using a 215 

bilinear algorithm, while data from CaPA were interpolated using nearest neighbor (Schulzweida et al., 216 

2004). Where necessary, the GEM fields were converted to SI units and CaPA was converted to a 217 

precipitation rate in SI units for better compatibility with some hydrological models.  218 

2.2.2 Gridded WFDEI product  219 

The gridded WFDEI meteorological forcing data has a global 0.5o spatial resolution and 3-h time 220 

step covering the period 1979-2016 (http://www.eu-watch.org/data_availability, last access: 25 July 221 

2018). Weedon et al. (2014) used the ERA-Interim surface meteorology data as baseline information to 222 

derive the WFDEI product. Firstly, ERA-Interim data were interpolated at half-degree spatial resolution to 223 

match the land–sea mask defined by the Climatic Research Unit (CRU) of the University of East Anglia, 224 

Norwich, England. Subsequently, corrections for elevation and monthly bias of climate trends in the ERA-225 

Interim fields were applied to the interpolated data. The WFDEI data have two sets of precipitation data: 226 

the Global Precipitation Climatology Centre product (GPCC) and CRU Time Series version 3.1 (CRU TS3.1). 227 

http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/submenus/capa_e.html
http://www.eu-watch.org/data_availability
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Thus, two variants of the WFDEI product are available―WFDEI-GPCC and WFDEI-CRU. The WFDEI-CRU 228 

dataset was used here because it goes up to 2016, whilst the WFDEI-GPCC had only been updated until 229 

2013 at the time of our analysis. 230 

2.2.3 Station observations  231 

To evaluate the added value of bias-correcting WFDEI against GEM-CaPA, in situ hourly 232 

precipitation, temperature, surface pressure, relative humidity, and wind speed at 773 stations located 233 

across the MRB were initially considered (Fig. 2). This station network is maintained by Environment and 234 

Climate Change Canada (ECCC) (http://climate.weather.gc.ca/historical_data/search_historic_ 235 

data_e.html, last access: 17 December 2019) and includes some duplicate stations (stations at the same 236 

location but having different IDs). Total daily precipitation and average daily temperature are found in 237 

daily data files while surface pressure, relative humidity, and wind speed are only found in hourly files. 238 

Unfortunately, radiation data are not available at any of those stations. The data were extracted for the 239 

period from 01 January 2005 to 31 December 2016 and hourly data were averaged to the daily time step. 240 

This reduced the number of stations to 364. Out of these 364 stations, only 10 were found to have less 241 

than 10% missing data (calculated at the daily timescale after aggregating/averaging the data) for all 242 

studied variables concurrently over the 2005-2016 period and were retained for further consideration. 243 

Precipitation and surface pressure are the only two surface variables in all datasets (gridded and stations). 244 

Due to differences in heights between gridded variables of GEM-CaPA and WFDEI-GEM-CaPA datasets for 245 

air temperature, humidity, and wind speed (see Sections 2.2.1 and 3.1) and the ECCC station data, we 246 

expect deviations. Nevertheless, the comparisons are still informative. Relative humidity observations 247 

were converted to specific humidity to be comparable to gridded datasets using concurrent station 248 

temperature and surface pressure data at those stations, which reduced the record completeness further 249 

but was still within 90% for the 10 selected stations. Table 1 provides additional information for the 10 250 

stations retained for further analysis, which are highlighted in Fig. 2. This dataset is hereafter referred to 251 

http://climate.weather.gc.ca/historical_data/search_historic_%20data_e.html
http://climate.weather.gc.ca/historical_data/search_historic_%20data_e.html
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as ECCC-S (S for stations). Table S1 in the Supplementary material provides a similar listing to Table 1 but 252 

for all 364 stations with records during the 2005-2016 period. 253 

 254 
Fig. 2: Spatial distribution of the initial 773 ground-based precipitation gauges (all dots) over the study 255 
area. Only 364 of these have during the period 2005 – 2016 (brown & yellow dots). Data screening for 256 
missing values (10% threshold concurrently applied for all variables) during the 2005-2016 period 257 
resulted in 10 of these stations (yellow dots) being retained for validation of gridded datasets. 258 

 259 

Table 1: List of observation stations used for validating the various gridded historical products 260 

  Station Coordinates  Record % Complete 

Name Prov. ID Lat Long Elev. Start End T P RH ps wind 

JASPER WARDEN AB 10223 52.93 -118.03 1020.0 1994 2019 99.0 98.0 96.0 96.9 97.1 

BEAVERLODGE RCS AB 30669 55.20 -119.40 745.0 2001 2019 99.0 93.9 93.8 93.9 93.8 

BARRHEAD CS AB 30641 54.09 -114.45 648.0 2000 2019 98.2 98.1 97.8 97.8 97.0 

LAC LA BICHE CLIMATE AB 30726 54.77 -112.02 567.0 2001 2019 99.0 98.8 97.8 97.9 97.9 

URANIUM CITY (AUT) SK 9831 59.57 -108.48 318.2 1992 2019 95.8 93.0 94.2 94.4 94.8 

NORMAN WELLS CLIMATE NT 43004 65.29 -126.75 93.6 2003 2019 98.5 96.6 96.0 95.4 96.2 

FORT SMITH CLIMATE NT 41884 60.03 -111.93 203.0 2003 2019 97.6 96.8 95.8 96.7 97.3 

HAY RIVER CLIMATE NT 41885 60.84 -115.78 164.0 2003 2019 99.6 99.3 98.4 98.4 98.0 

FORT SIMPSON CLIMATE NT 41944 61.76 -121.24 168.0 2003 2019 97.5 99.5 96.1 96.2 98.2 

INUVIK CLIMATE NT 41883 68.32 -133.52 103.0 2003 2019 99.6 95.1 98.3 98.4 97.0 

 261 
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2.2.4 Climate model outputs  262 

The historical and future climate simulations utilized in this study are part of the CanRCM4 large 263 

ensemble, which consists of 50 members and downscaled at horizontal spatial resolutions of 0.44° (~50 264 

km). These CanRCM4 simulations had been produced initially by the Canadian Sea Ice and Snow Evolution 265 

Network (CanSISE) Climate Change and Atmospheric Research (CCAR) Network project 266 

(https://www.cansise.ca/, last access: 24 April 2019). The input data for the historical period, i.e., 1950 – 267 

2005 as well as the future (2006 – 2100) RCP simulations of CanRCM4 were provided by the parent ESM 268 

(CanESM2) as specified in the Coupled Model Intercomparison Project Phase 5 (CMIP5) guidelines. The 269 

data are sourced from the Canadian Centre for Climate Modelling and Analysis (CCCma) at 270 

www.cccma.ec.gc.ca/data/canrcm/CanRCM4 (last access: 6 March 2019). This study utilized 15 members 271 

of the 0.44° resolution product at 1-h time step and values were aggregated to 3-h resolution prior to bias 272 

correction. The seven forcing variables needed for driving the CCRN MESH model 273 

(https://wiki.usask.ca/display/MESH/About+MESH, last access: 10 May 2019) and which were bias- 274 

corrected in the current study are included in Table 2. 275 

Table 2: List of variables processed in this study with heights and units in each dataset 276 

Variable Unit 

Height 

WFDEI  GEM-CaPA  WFDEI-GEM-CaPA  

Precipitation  kg m-2 s-1 Surface Surface Surface 
Air Temperature K 2 m 40 m 40 m 
Specific Humidity kg kg-1 2 m 40 m 40 m 
Wind Speed m s-1 10 m 40 m 40 m 
Surface Pressure Pa Surface Surface Surface 
Downwelling Shortwave Radiation W m-2 Surface Surface Surface 
Downwelling Longwave Radiation W m-2 Surface Surface Surface 

 277 

2.3 Data processing and bias correction workflow 278 

The workflow for the multi-stage bias correction of WFDEI against GEM-CaPA is shown in Fig. 3. 279 

Bias correction was done after aggregating 1-h GEM-CaPA estimates to 3-h (the values at each time step 280 

represent the mean of the previous 3-h period, to make it consistent with WFDEI) and interpolating both 281 

https://www.cansise.ca/
http://www.cccma.ec.gc.ca/data/canrcm/CanRCM4
https://wiki.usask.ca/display/MESH/About+MESH
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WFDEI and GEM-CaPA to 0.125ᵒ resolution. For bias correction, a multi-stage approach was implemented 282 

as follows. A multivariate generalization of the quantile mapping technique (MBCn, Cannon, 2018) which 283 

combines quantile delta mapping (Cannon et al., 2015) and random orthogonal rotations to match the 284 

multivariate distributions of two datasets was implemented to bias-correct WFDEI against GEM-CaPA at 285 

3-h*0.125ᵒ resolution during the 2005-2016 period. The rationale for selecting the above bias correction 286 

method is based on fitness for purpose, i.e. the method accounts for dependence between variables and 287 

corrects multiple measures of joint dependence ― attributes that can be important for hydrological 288 

simulations (Meyer et al., 2019) ― to preserve the physical realism of the corrected climate as much as 289 

possible. Models were fitted to data for each calendar month while accounting for inter-variable 290 

dependence structure. Using the fitted models (2005-2016), a hindcast was made of WFDEI between 291 

1979-2004. Finally, the corrected WFDEI data derived from the fitted (2005-2016) and hindcast (1979-292 

2004) periods were concatenated to obtain the bias-corrected WFDEI-GEM-CaPA product (1979-2016). 293 

 294 
Fig. 3: A schematic representation of inputs and bias correction procedure used 295 
to produce the WFDEI-GEM-CaPA meteorological forcing dataset 296 
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For bias-correcting the 15-member CanRCM4 initial condition ensemble against the WFDEI-GEM-297 

CaPA product, CanRCM4 was also spatially interpolated to match the WFDEI-GEM-CaPA specifications 298 

using nearest neighbor interpolation. The multivariate bias correction technique (described above) 299 

transfers all aspects of the WFDEI-GEM-CaPA continuous multivariate distribution to the corresponding 300 

multivariate distribution of variables from CanRCM4 during the 1979 – 2008 calibration period (also used 301 

here as historical period). Subsequently, when applied to future projections, changes in quantiles of each 302 

variable between the historical and future period are also preserved. Models were fitted to data for each 303 

calendar month and for each grid point while preserving the dependence structure among variables. The 304 

historical datasets used in the fitting procedure include WFDEI-GEM-CaPA (1979 – 2008) and CanRCM4 305 

(1979 – 2008). Using the fitted models, quantiles of CanRCM4 output from 1950 – 2100 were changed. To 306 

evaluate the need to bias-correct CanRCM4, performance of the bias correction scheme, as well the 307 

impact of bias correction on the climate change signal, the seasonal cycle of all 7 variables is assessed over 308 

three 30-year periods: 1979–2008 (referred hereafter as 1990s); 2021–2050 (referred to hereafter as 309 

2030s) and 2071–2100 (referred to hereafter as 2080s). 310 

3 Results and discussion 311 

3.1 Bias correction of WFDEI  312 

Table 2 presents an overview of the seven variables processed in this study. Note that three of 313 

the GEM variables (temperature, specific humidity, and wind speed) are at 40 m and are used directly to 314 

correct the corresponding WFDEI surface variables (see Table 2). Therefore, the corrected WFDEI-GEM-315 

CaPA data for those 3 variables reflect 40 m elevations above the surface. The spatial coverage of the 316 

WFDEI-GEM-CaPA data is the same as the areal extent of the MRB (Figs. 1 and 2). The suitability of the 317 

bias correction algorithm to reproduce the observed seasonal cycle and inter-annual variability of the 318 

variables was assessed for the fitting (2005-2016) and hindcast (1979-2004) periods. Data extracted over 319 

the entire Mackenzie River basin is used to demonstrate the quality of the bias correction exercise and 320 
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uniqueness of the resulting output. Fig. 4 shows the seasonal cycle for GEM-CaPA, WFDEI and WFDEI-321 

GEM-CaPA during the fitting period. Overall, the monthly distributions show that the bias was removed 322 

for all variables resulting in the very close distributions between GEM-CaPA and WFDEI-GEM-CaPA. The 323 

bias was particularly large for wind speed, an important variable for both alpine and prairie blowing snow 324 

redistribution calculations (Pomeroy and Li, 2000), but was successfully removed. Fig. 5 shows the mean 325 

annual time series of the seven variables over the 1979-2016 period. It is noticeable that the bias is 326 

corrected while the inter-annual variability is well preserved between WFDEI and WFDEI-GEM-CAPA, 327 

except for shortwave radiation where the inter-annual variability is not fully preserved as shown by the 328 

correlation between the WFDEI and WFDEI-GEM-CaPA annual series. However, this should not be a major 329 

issue when impact models are driven using these data.The foregoing analyses have shown that the bias 330 

in the WFDEI data was removed for both the fitting and hindcast periods. However, some potential 331 

limitations remain―for example, WFDEI was interpolated directly from 0.5o to 0.125o and bias-corrected 332 

against GEM-CaPA at 0.125o. The interpolation does not add any event-scale spatial variability for a 333 

variable like precipitation which is very variable across different scales. These issues have been reviewed 334 

extensively by Cannon (2018), Maraun (2013), Maraun et al. (2010), and Storch (1999). 335 

 336 
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 337 
Fig. 4: Seasonal cycle of GEM-CaPA (dark slate blue), WFDEI (orange) and bias corrected data―WFDEI-338 
GEM-CaPA (green) for air temperature (a), precipitation (b), surface pressure (c), wind speed (d), 339 
shortwave radiation (e), longwave radiation (f), and specific humidity (g) during the fitting period (2005-340 
2016) 341 

 342 
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 343 
Fig. 5: Time series of GEM-CaPA (dark slate blue), WFDEI (orange) and bias corrected data―WFDEI-344 
GEM-CaPA (green) for air temperature (a), precipitation (b), surface pressure (c), wind speed (d), 345 
shortwave radiation (e), longwave radiation (f), and specific humidity (g) during the periods 2005-2016 346 
(GEM-CaPA) and 1979-2016 (WFDEI and WFDEI-GEM-CaPA). The correlation (r) between the WFDEI and 347 
WFDEI-GEM-CaPA annual series is indicated for each variable. 348 

3.2 Validation of gridded products against station observations  349 

In this section, the WFDEI-GEM-CaPA product is validated against station observations (ECCC-S) 350 

to indicate the benefit of bias-correcting WFDEI against GEM-CaPA. As mentioned in Section 2.2.3, the 351 

validation focusses on variables for which station data could be found. Thus, shortwave and longwave 352 

radiation are not validated as we could not find station data for those in ECCC-S data. The height 353 

differences for temperature, humidity and wind speed between GEM-CAPA and WFDEI-GEM-CaPA (40 m) 354 

on one side and ECCC-S data (surface) on the other introduce some inconsistencies that are discussed 355 
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below. Indirect validation is recommended for other variables through other means such as hydrological 356 

modelling. Validation is performed for the 2005 – 2016 period using daily totals for precipitation and daily 357 

averages for other variables. To compare stations against gridded products, the corresponding time series 358 

of gridded products for each gauge were obtained from the cell that contained the gauge (i.e. nearest 359 

neighbor) and were aggregated to the daily time scale.  360 

Fig. 6 depicts quantile–quantile (Q–Q) plots of daily precipitation from WFDEI-GEM-CaPA, WFDEI 361 

and GEM-CaPA compared against ECCC-S. As expected, although with noticeable differences across the 362 

MRB, CaPA agrees better with ECCC-S than WFDEI since some or all of these meteorological stations are 363 

assimilated by the CaPA system. Large daily amounts are generally underestimated by CaPA but CaPA 364 

sometimes overestimates these as well (e.g. Uranium City (AUT) station). WFDEI tends to underestimate 365 

the observed precipitation amounts at most stations except at Jasper Warden where it slightly 366 

overestimates small and moderate amounts. Bias correction brings WFDEI closer to CaPA for most stations 367 

but some biases remain, especially at the high ends of the distributions. 368 

Fig. 7 shows quantile–quantile (Q–Q) plots of mean daily temperature for the three gridded 369 

datasets versus ECCC-S. WFDEI is performing generally well for temperature except for low temperatures 370 

at Inuvik (the most northerly station). Despite the height difference (see Section 2.2.3), GEM is also close 371 

to observations for most stations with some overestimation of low temperatures. The temperature 372 

differences between the surface and the 40m level are generally small (1-2°C) at the daily scale. Given 373 

that temperature biases in WFDEI were small, WFDEI-GEM-CaPA is almost identical to GEM, i.e. all biases 374 

are removed. 375 

 376 

 377 

 378 
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Fig. 6: Quantile-quantile plots of modelled (GEM-CaPA, WFDEI and WFDEI-GEM-CaPA) and 
observed (ECCC-S) daily total precipitation 
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 Comparisons between gridded datasets and stations for daily mean surface pressure, wind speed, 380 

and humidity are shown in Figs. 8, 9, and 10 respectively. WFDEI is generally performing well for surface 381 

pressure (Fig. 8) such that bias correction seems unnecessary at most locations. Both datasets (WFDEI and 382 

GEM) underestimate surface pressure at Jasper Warden station, which is at a relatively high elevation. 383 

GEM is worse than WFDEI for this station and thus bias correction against GEM-CaPA deteriorates the 384 

results. WFDEI slightly underestimates surface pressure at Uranium City (AUT) and Norman Wells Climate 385 

stations but because GEM is close to observations, bias correction makes WFDEI-GEM-CaPA close to 386 

observations at those two stations. 387 

Mean daily wind speed (Fig. 9) is underestimated by WFDEI for most stations, especially at high 388 

speeds. GEM winds are generally higher (except for Fort Simpson) because of the higher elevation (40 m) 389 

of the dataset and thus the comparison to ECCC-S data is not favorable for this variable. It is generally 390 

expected that wind speed increases with height. Bias correction of WFDEI against GEM-CaPA removes 391 

differences between the two datasets and the resultant wind speed, thus, reflects the higher speeds to 392 

be expected at 40 m.  393 

Both WFDEI and GEM are close in terms of specific humidity at most stations (Fig. 10) despite the 394 

height difference, with few exceptions. For example, humidity at Jasper Warden, Barrhead CS and Inuvik 395 

Climate is underestimated by both WFDEI and GEM, especially at high values. Bias correction brings WFDEI 396 

closer to GEM and thus results in improvements only if GEM is closer to observations than WFDEI. Thus, 397 

results at Fort Smith Climate and Inuvik Climate stations are worse with bias correction. However, the bias 398 

correction does not change the quantiles by much for most stations. 399 

 400 
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Fig. 8: Quantile-quantile plots of modelled (GEM-CaPA, WFDEI and WFDEI-GEM-CaPA) and 
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Fig. 9: Quantile-quantile plots of modelled (GEM-CaPA, WFDEI and WFDEI-GEM-CaPA) and 
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Fig. 10: Quantile-quantile plots of modelled (GEM-CaPA, WFDEI and WFDEI-GEM-CaPA) and 
observed daily specific humidity 
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Overall, GEM-CaPA performs similar to or better than WFDEI for most variables at the studied 401 

stations, especially precipitation. Therefore, correcting WFDEI against GEM-CaPA adds value to the WFDEI 402 

dataset and leads to a closer agreement between WFDEI-GEM-CaPA and ECCC-S. Precipitation is one of 403 

the most important variables and most difficult to correct. Note that extracting data from grid points does 404 

not only have the effect of smoothing the areal averages but comparing grid point estimates to station 405 

values may not provide a clear picture of the quality of a gridded product. However, this diagnostic 406 

analysis provides preliminary insights into the potential performance of a dataset.  407 

3.2 Bias correction of future climate projections  408 

In this section, the need to bias-correct the CanRCM4 outputs is shown and whether the simulated 409 

climate change signal was preserved after applying MBCn to the CanRCM4 outputs is determined. Fig. 11 410 

shows the climatological seasonal cycle of all 7 variables which are required to drive the MESH model for 411 

the MRB. First, between April and October, CanRCM4 overestimates the observed (i.e. WFDEI-GEM-CaPA) 412 

daily precipitation amounts and specific humidity during the historical period.  This is also true in the case 413 

of daily mean wind speed in the cold months (October to April). However, it underestimates the wind 414 

speed in the warm season (May to September). Surface pressure is underestimated during September to 415 

May and overestimated in the summer (June to August). For the other variables (e.g. air temperature and 416 

radiation), CanRCM4 can simulate the observed seasonal cycle closely although biases still exist. These 417 

biases necessitated the application of the MBCn algorithm on the raw CanRCM4 outputs. The MBCn 418 

algorithm removed the bias in the CanRCM4 simulations during the fitting period (1990s) as can be judged 419 

from the close fit between WFDEI-GEM-CaPA and the unbiased CanRCM4 output (corr_1990s). On the 420 

projected climate change signal, there is a projected change in the amplitude of all variables but not a 421 

shift in the phase of the cycle over the MRB with global warming. Precipitation, specific humidity and 422 

longwave radiation are projected to increase in the future, with larger changes expected in the warm 423 

season (April – October) while air temperature is projected to increase, particularly in the cold months 424 
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(October – March). These climate change signals are very well preserved after applying MBCn to the 425 

CanRCM4 simulations.  426 

 427 
Fig. 11: Seasonal cycle of WFDEI-GEM-CaPA, raw and bias-corrected CanRCM4 data for air temperature 428 
(a), precipitation (b), specific humidity (c), surface pressure (d), wind speed (e), shortwave radiation (f), 429 
and longwave radiation (g) during the periods 1979–2008; 2021–2050 and 2071–2100. 430 

4 Conclusions  431 

Cold regions hydrology is very sensitive to the impacts of climate warming. More physically 432 

realistic hydrological models need to be driven by reliable climate forcing and can provide the capability 433 

to assess hydrological responses to climate variability and change. However, cold regions such as the 434 

Mackenzie River Basin often have sparse surface observations, particularly at high elevations and latitudes 435 

where a large amount of runoff is generated, or important cyrspheric processes are impacting the 436 
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hydrology   A novel approach to developing a long-term data set using the  WFDEI-GEM-CaPA approach 437 

outlined above was necessary to better understand and represent the seasonal/inter-annual variability of 438 

hydrological fluxes and the timing of runoff, and their long-term trends. This dataset is also valuable for 439 

bias correction of climate model projections to assess potential impacts of future climate change on the 440 

hydrology and water resources of the basin.  441 

The raw CanRCM4 outputs were found to have systematic biases, which required bias correction 442 

towards WFDEI-GEM-CaPA. There are clear discrepancies between the seasonal cycle of WFDEI-GEM-443 

CaPA, raw, and bias-corrected CanRCM4 data. For example, the CanRCM4 simulated climatological daily 444 

mean precipitation in June over the MRB between 1979 – 2008 is ~2.5 mm/day while the observed value 445 

is ~1.5 mm/day. This results in a 1.0 mm/day wet bias which can have various implications for quantifying 446 

water resources availability, management and adaptation in a future changed climate. Therefore, it was 447 

crucial to produce the bias-corrected CanRCM4 outputs prior to using the data to drive large scale 448 

hydrological models for climate change impacts analysis in the MRB. Nevertheless, the WFDEI-GEM-CaPA 449 

dataset, used here as the reference, has uncertainties (although it is superior to WFDEI as shown in Figs. 450 

6-11) and should be used with caution especially from the perspective of over-interpreting impact model 451 

outputs. 452 

Data availability 453 

The final product (WFDEI-GEM-CaPA, 1979-2016) is freely available at the Federated Research 454 

Data Repository at http://dx.doi.org/10.20383/101.0111 (Asong et al., 2018) while the original (raw) and 455 

corrected CanRCM4 data are also freely available at https://doi.org/10.20383/101.0162 (Asong et al., 456 

2019).   457 
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