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Abstract. Ground-based observations of land–atmosphere fluxes are necessary to progressively improve global climate models.

Observed data can be used for model evaluation and to develop or tune process models. In arctic permafrost regions, climate–

carbon feedbacks are amplified. Therefore, increased efforts to better represent these regions in global climate models have

been made in recent years. We present a multiannual time series of land–atmosphere carbon dioxide fluxes measured in situ

with the eddy covariance technique in the Siberian Arctic (72◦ 22’ N, 126◦ 30’ E). The site is part of the international network5

of eddy covariance flux observation stations (FLUXNET, Site ID: Ru-Sam). The data set includes consistently processed fluxes

based on concentration measurements of closed-path and open-path gas analyzers. With parallel records from both sensor types,

we were able to apply a site-specific correction to open-path fluxes. This correction is necessary due to a deterioration of data,

caused by heat generated by the electronics of open-path gas analyzers. Parameterizing this correction for subperiods of distinct

sensor setups yielded good agreement between open and closed-path fluxes. We compiled a long-term (2002 to 2017) carbon10

dioxide flux time series that we additionally gap-filled with a standardized approach. The data set was uploaded to the Pangaea

data base and can be accessed through https://doi.org/10.1594/PANGAEA.892751.
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1 Introduction

The release of the Arctic’s belowground carbon (C) pools to the atmosphere can potentially act as a positive feedback on

climate change. Organic material that is now stored in the permanently frozen soil and largely inaccessible for microbial

decomposition might become available under a warming climate resulting in an increased release of greenhouse gases from

Arctic regions (Schuur et al., 2015). At the same time, the Arctic vegetation responds to ongoing warming with a greening trend5

(Park et al., 2016), probably enhancing summer carbon assimilation. Although the importance of permafrost carbon pools for

a potential amplification of climate change has been widely recognized (e.g. Zimov et al., 2006; Davidson and Janssens, 2006;

Schuur et al., 2008; Khvorostyanov et al., 2008; Tarnocai et al., 2009; Koven et al., 2011; Schneider von Deimling et al., 2012;

MacDougall et al., 2012; Schuur et al., 2013; McGuire et al., 2018), the earth system models analyzed for the Fifth Assessment

Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) did not include permafrost carbon emissions.10

While efforts to include permafrost dynamics into global climate models have been made recently (e.g. Wania et al., 2009a,

b, 2010; Ekici et al., 2014; Kaiser et al., 2017; McGuire et al., 2018), models can be improved by using ground-based flux

measurements for calibration and validation. McGuire et al. (2012) assessed the carbon balance of the Arctic tundra combining

ground-based observations, process and atmospheric inversion models. The authors found that the uncertainty with which a

carbon balance can be quantified is still very large, with upper and lower uncertainty bounds indicating the Arctic tundra as15

a sink for carbon at one and as a C-source at the other bound. McGuire et al. (2012) conclude that reducing uncertainties

of regional estimates based on observational data relies on high quality ground-based measurements that should be placed

strategically, e.g. along hydrological or vegetation gradients. In situ gas flux measurements from the Arctic are, however, still

scarce. Moreover, the available data is biased towards Alaska, observations from the Eurasian Arctic are even more scarce

(Oechel et al., 2014). To be able to distinguish climate change-related flux responses from interannual variability, long-term20

data sets are essential as recently argued by Baldocchi et al. (2018).

Within the scope of this publication, we aimed at creating a high quality, long-term CO2 flux data set from a polygonal tundra

site in the Russian Arctic. We had the opportunity to analyze a 16 year record of eddy covariance data that includes periods

with simultaneous measurements from two different (closed-path and open-path) CO2 gas analyzer types. Our objective was

to consistently process the data while following standardized quality control methods to allow for comparability between the25

different years of our record and with other data sets. We additionally aimed at cross-calibrating open-path and closed-path CO2

fluxes and at gap-filling the data set by employing the method of Reichstein et al. (2005) that is widely used in the FLUXNET

community.

2 Site description

The investigation site is located on Samoylov Island in the southern central part of the Lena River Delta at 72◦ 22’ N, 126◦ 30’ E30

(see Fig. 1). The fan-shaped delta covers an area of roughly 30000 km2 (Grigoriev, 1993; Schneider et al., 2009) and is

characterized by a network of channels and more than 1500 islands (Antonov, 1967). Being the largest delta in the Arctic and

one of the largest worldwide (Walker, 1998), it lies in the continuous permafrost zone with permafrost depths of about 500
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Figure 1. Location of Samoylov Island (center of panel b) in the Lena River Delta (panel a). Map data from: OpenStreetMap contributors,

under Open Database License

to 600 m (Romanovskii et al., 2004; Yershov, 2004; Brown et al., 1997). Mean annual permafrost temperatures range around

-9 ◦C at 10 m depth (Romanovsky et al., 2010), making the Lena River Delta one of the coldest permafrost regions on earth.

Boike et al. (2013) inferred an annual mean soil temperature of -8.6◦C at 10.7 m depth from a 2006 to 2011 time series of

temperature measurements in a borehole on Samoylov Island. Based on long-term hydrological observations in the delta area,

Fedorova et al. (2015) found an increase in discharge as well as in sediment flux indicating recently intensified thawing of ice5

complex sediments in the region.

Grigoriev (1993) divides the delta area in three main geomorphological units. The oldest, ice-rich river terrace consists

of fine-grained sediments with high organic content. It developed as an eroded Pleistocene plane characterized by polygonal

ground and thermokarst processes. The second largest unit consists of Late Pleistocene to Early Holocene sandy sediments with

low ice content and covers 23 % of the north-western part (Schneider et al., 2009). Samoylov Island is part of the third unit,10

the Mid to Late Holocene river terrace (Bolshiyanov et al., 2015), which makes up about two thirds of the delta (Schwamborn

et al., 2002).

The island itself consists of two morphological units, an annually flooded, modern floodplain (1.49 km2) in the west and a

Late Holecene river terrace (2.85 km2) in the east, which lies 10 to 16 m a.s.l. and is not flooded regularly (Kutzbach et al., 2007;

Boike et al., 2013). The data presented here was collected with eddy covariance systems installed on the elevated river terrace. In15

contrast to the modern floodplain, the river terrace’s surface is patterned due to frost-action that formed a wet polygonal tundra

landscape consisting of mostly low-centered and some high-centered ice-wedge polygons as well as thermokarst lakes and
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channels. Due to the underlying permafrost and thereby hampered drainage, water-saturated soils or ponds form in the polygon

centers, whereas on the rims, which can be elevated up to 50 cm above the centers, a drier, moderately moist water regime

prevails (Kutzbach et al., 2007; Helbig et al., 2013). Accordingly, the vegetation community in the wetter centers is dominated

by hydrophytic sedges (Carex aquatilis, Carex chordorrhiza, Carex rariflora) and mosses (e.g. Limprichtia revolvens, Meesia

longiseta, Aulacomnium turgidum). Mesophytic dwarf shrubs (e.g. Dryas octopetala, Salix glauca), forbs (e.g. Astragalus5

frigidus) and mosses (e.g. Hylocomium splendens, Timmia austriaca) dominate on the rims (Kutzbach et al., 2004; Pfeiffer and

Grigoriev, 2002). Maximium summer leaf coverage was estimated by Kutzbach et al. (2004) to be 0.3 for vascular plants and

0.95 for mosses and lichens at both polygon centers and rims. The river terrace as a whole is composed of polygon rims with

a coverage of 60 to 65 % and of depressed surfaces (including vegetated and water filled polygon centers as well as lakes and

channels) that cover the remaining 35 to 40 % of area (Kutzbach et al., 2007; Sachs et al., 2010; Muster et al., 2012; Boike10

et al., 2013).

An arctic-continental climate with low mean annual temperatures prevails in the Lena River Delta. Although precipitation

is low as well, the climate can be considered humid as evaporation rates are low due to low ambient temperatures and relative

humidity is high (Kutzbach, 2006; Boike et al., 2008; Langer et al., 2011a, b). Based on long-term (1998 to 2017) in situ

measurements on Samoylov Island, Boike et al. (2018) inferred an annual mean air temperature of -12.3 ◦C; the coldest and15

warmest months being February and July with mean temperatures of -32.7 ◦C and 9.5 ◦C respectively. For the period from

1998 to 2011, Boike et al. (2013) estimated total annual precipitation to be composed of 124 ± 57 mm summer rainfall

and 65 ± 35 mm snowfall. Interannual variability in rainfall was, however, very high, with a maximum of 199 mm and a

minimum of 48 mm. Snow melt usually starts in mid-May and lasts until early June. Snow accumulation typically commences

between late September and early October. Between 1998 and 2011, the snow season lasted on average 224 ± 18 days,20

the snow-free period 138 ± 18 days. Snow depth was reported by Boike et al. (2018) averaging 0.3 m between 2002 and

2017 with a maximum of 0.8 m in 2017. Beginning in early to mid-June, the soil starts to thaw from the top, forming the

so called active layer. Boike et al. (2013) report a mean active layer depth in August of 49 cm with a maximum of 79 cm

between 1998 and 2011. The closest WMO (World Meteorological Organisation) weather station is located on the continent,

around 110 km southeast from Samoylov Island in the city of Tiksi (WMO ID 21824). Between 1936 and 2017 the mean air25

temperature reported from Tiksi is - 12.74 ◦C, mean annual precipitation amounts to 304.5 mm (AARI, 2018). While the mean

air temperature in Tiksi is very similar to the 20-year mean from Samoylov Island, average annual precipitation appears to be

much higher in Tiksi than in the delta region. Boike et al. (2013) explain this divergence with the fact that Tiksi is located at

the coast of the Laptev sea and surrounded by mountains.

The soils of Samoylov Island were classified as Gelisols by Zubrzycki et al. (2013) based on work by Pfeiffer and Grigoriev30

(2002) according to the US Soil Taxonomy (Soil Survey Staff, 2014). On subgroup level, typical soils of the river terrace

are Glacic Aquiturbels, which developed on the polygon rims and are characterized by the translocation of soil material due

to freeze-thaw processes (cryoturbation). In the wetter polygon centers Typic Historthels formed. On the more sand-rich ac-

tive floodplain, Typic Aquorthels and Typic Psammorthels dominate. According to the FAO World Reference Base for Soil

Ressources (IUSS Working Group WRB, 2015), the diverse soils of Samoylov Island belong to the reference soil group of35
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Figure 2. Eddy covariance (EC) tower positions on the river terrace of Samoylov Island and surface class distribution according to Muster

et al. (2012). Photographic image of the entire island (top right corner) from Boike et al. (2012).

Cryosols. Zubrzycki et al. (2013) estimated the soil organic carbon (SOC) stocks for the upper meter of the island’s two major

landscape units to be 29 ± 10 kgm−2 for the river terrace and 14 ± 7 kgm−2 for the active floodplain.

3 Methods

3.1 Instrumentation

We used the eddy covariance (EC) technique to determine half-hourly gas and energy fluxes. The EC method requires high5

frequency (typically > 10 Hz) raw gas concentration and three-dimensional wind velocity measurements. A comprehensive de-

scription of the EC approach is given for example by Aubinet et al. (2012). We recorded carbon dioxide (CO2) and water vapor

concentrations as well as three-dimensional wind velocity with changing instrumentation on three different tower structures,

all located on the central river terrace of Samoylov Island between 2002 and 2017 (see Fig. 2). We deployed open-path (OP) as

well as closed-path (CP) gas analyzers, at times simultaneously. Models, manufacturers and years of deployment are given in10

Table 1. Between the different setups, CP intake tube lengths varied from 5 to 8 m. OP analyzers were always installed inclined

by about 10 degrees from the vertical, as suggested in the analyzer manuals. Raw data was recorded at 20 Hz except for the

periods 22 August 2009 to 19 July 2010 (10 Hz) and 31 August 2012 to 17 May 2013 (5 Hz). Until 29 April 2014, all raw
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data were recorded on a CR3000 data logger (Campbell Scientific, UK). From then on, CP analyzer and anemometer data were

logged on a CR3000 whereas OP analyzer and anemometer data were recorded on a LI-7550 data logger (Licor Biosciences,

USA). Although data coverage is biased towards the growing season, the data set contains considerably more shoulder season

and winter fluxes in its second half from 2010 to 2017(see Table 1). The also increasing availability of year-round ancillary

meteorological data resulted in gap-filled flux time series covering each half hour of the two years 2010 and 2016 (see Fig. 4).5

3.2 Flux processing

3.2.1 Prior considerations

Due to the contrasting designs of OP and CP analyzers, these sensor types have distinct signal response characteristics that

we considered during data processing. The most apparent constructional difference between OP and CP gas analyzers is the

presence or absence of a housing for the measurement cell that contains the optical path. In a CP instrument, the measurement10

cell is housed whereas the optical path of an OP analyzer is exposed to the atmosphere. CP systems are typically more bulky

and installed at the base of an EC tower, from where tubing leads to an intake close to the anemometer. Sample air is drawn into

the cell with a pump. OP sensors are commonly installed in close proximity to the anemometer and do not require a pump that

greatly reduces the power consumption of OP instruments compared to CP setups. Due to the tubing acting as a low-pass filter,

the response to high-frequency concentration variations is systematically attenuated in CP setups, as opposed to OP systems15

(Ibrom et al., 2007a). Moreover, the severity of frequency dampening can vary non-linearly with environmental conditions,

especially with relative humidity (Runkle et al., 2012).

Infrared gas analyzers typically measure gas densities and report the number of molecules per volume of air. To be able to

refer the mass of a gas to the mass of air, gas densities are transformed to mixing ratios using air density. However, as the

optical path of an OP gas analyzer is exposed to the varying temperature, pressure and humidity conditions of the atmosphere,20

air density in the measurement cell fluctuates mainly due to thermal expansion/contraction and water dilution/concentration.

This effect, that leads to faulty concentration readings of OP instruments and thereby to incorrect flux estimates, has first been

described by Webb et al. (1980). The authors proposed two flux correction terms to compensate for these density fluctuation ef-

fects that are referred to as Webb-Pearman-Leuning (WPL) terms and have since been verified experimentally and theoretically

and are routinely applied in OP EC studies. Especially at times of low gas fluxes, WPL terms can become orders of magnitude25

larger than raw gas fluxes (Munger et al., 2012). CP analyzers have the advantage of controlled temperature and pressure con-

ditions in the measurement cell, allowing for the sample-wise calculation of mixing ratios rather than molar densities (Ibrom

et al., 2007b) and thereby avoiding the need to apply air density fluctuation correction terms after raw flux calculation.

Major drawbacks of OP instruments, especially in harsh environments, are (1) their downtime during adverse weather con-

ditions (e.g. precipitation) and (2) flux biases due to sensor self-heating (Burba et al., 2006, 2008). The OP self-heating effect30

was first recognized (Burba et al., 2006) due to apparent off-season CO2 uptake in flux time series obtained with LI-7500

(LI-COR Biosciences, USA) OP gas analyzers. However, Kittler et al. (2017) recently found that this effect is not limited to
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cold conditions but extends throughout all seasons. The necessary corrections can be substantial but decrease largely when the

sensor is not mounted vertically but inclined instead as shown by Rogiers et al. (2008) and Järvi et al. (2009).

3.2.2 Processing steps

We performed separate flux processing steps on OP and CP data sets and computed half-hourly fluxes using the software Ed-

dyPro (Licor Biosciences, USA). An overview of the processing steps is given in Table 2. We detected and removed raw data5

spikes according to Vickers and Mahrt (1997), with a maximum of 1 % accepted spikes and a maximum of three samples as

consecutive outliers. We applied an angle of attack correction, i.e. compensation for flow distortion induced by the anemometer

frame (Nakai et al., 2006), on wind velocity data collected with the R3 (Gill Instruments Ltd., UK) anemometer. The majority

of the wind velocity records come, however, from a CSAT3 (Campbell Scientific, UK) instrument for which this correction is

not necessary. Coordinate rotation to align the anemometer x-axis to the current mean streamlines was calculated as double10

rotation according to Kaimal and Finnigan (1994). For OP fluxes, we compensated for air density fluctuations due to thermal

expansion/contraction and water dilution/concentration following Webb et al. (1980). Because simultaneous water vapor con-

centration, cell temperature and cell pressure measurements from inside the CP analyzer were available, CO2 concentrations

from this sensor could be converted directly into mixing ratios, i.e. concentrations referring to dry air of constant temperature

(Ibrom et al., 2007b; Burba et al., 2012), making further corrections for density fluctuations unnecessary. We compensated CP15

time lags by using the automatic timelag optimization option in EddyPro. For this procedure, prior to processing the complete

data set, time lags were determined for a subperiod of raw data by covariance maximization (Fan et al., 1990). A searching

window around the median of the found time lags (nominal timelag, Tnom) is defined by Tnom ± 3.5 ×MAD, whereMAD is

the median absolute deviation of the found time lags. When processing the complete data set, EddyPro performed a covariance

maximization of vertical wind velocity and the scalar of interest for each half hour and then checked, whether the found time20

lag fell within the searching window defined before. If not, Tnom was used as time lag. Water vapor concentration time series

were binned in ten RH-classes, and the procedure was applied to each class, resulting in ten different nominal time lags. CO2

concentrations were not binned in humidity-classes. We computed CP time lag statistics annually and within a year if pump

speeds or instrumental setups varied. OP time lags were determined by covariance maximization within a searching window

of -10 to 10 seconds. We evaluated OP time lags statistics, binned in classes of wind direction sectors, later on in the course of25

quality filtering.

Spectral attenuation in the high- and the low-frequency spectral range was compensated according to the following methods.

Low-frequency signal loss due to the finite averaging time used for flux calculations (30 minutes) and due to linear raw data

detrending was corrected for following the method of Moncrieff et al. (2004) for both OP and CP fluxes. High-frequency signal

loss of OP fluxes due to path and volume averaging of the sonic anemometer and the gas analyzers as well as due to the sepa-30

ration between the two instruments were corrected for with the analytical approach of Moncrieff et al. (1997). High-frequency

signal loss of CP fluxes due to spectral attenuation by the intake tube and volume averaging in the measurement cell were cor-

rected for using the in situ method of Ibrom et al. (2007a). For each measurement period with a unique instrumental setup and

CP pump speed, we determined the cut-off frequency of a first-order low-pass filter from ensemble means of 30-minute power

7



spectra of CO2 concentration and sonic temperature time series data. The spectral correction factor was then parametrized as a

function of the cut-off frequency found and the mean wind speed for stable and unstable atmospheric conditions as described

by Ibrom et al. (2007a). Before using them for ensemble spectra estimations, the 30-minute power spectra were quality-filtered

by applying the scheme of Vickers and Mahrt (1997), and by omitting half-hours that were assigned quality class 2 accord-

ing to Mauder and Foken (2004). High frequency noise was removed from the ensemble means of CO2 concentration power5

spectra before the determination of the cut-off frequency where it was deemed necessary. High-frequency signal losses due to

crosswind and vertical separation of the sample air tube intake and the anemometer were corrected for according to Horst and

Lenschow (2009).

3.3 Quality filtering

We set EddyPro to calculate quality flags according to Mauder and Foken (2004) that represent flux quality in three classes10

(0, 1 and 2) with 0 denoting the highest and 2 denoting the lowest quality class. This quality evaluation is based on tests for

stationarity and developed turbulence and thereby indicates whether general EC assumptions about atmospheric conditions

were met during a flux calculation period. Flux quality assessment was largely based on the scheme of Mauder and Foken

(2004). In the data set available for download, we included one column for each analyzer type containing this quality flag.

Additionally, we applied six further screening steps and flagged fluxes of low quality. If a flagged flux was not already assigned15

to class 2 according to Mauder and Foken (2004), we set the quality flag to 2. In our opinion, fluxes of quality class 2 should

be omitted from further analysis. They are included in the reported data set for the sake of completeness. We performed the

six additional flagging steps in the following sequence. An overview of these filtering steps including the number of flagged

values is given in Tabele 3.

In step 1, skewness and kurtosis were computed with EddyPro for the half-hourly high frequency raw data time series of20

CO2 concentration, vertical wind speed and sonic temperature. If any of these statistics was outside certain intervals (skewness:

[−2,2], kurtosis: [1,8], equivalent to the hard flag defined by Vickers and Mahrt (1997)), CO2 flux values were flagged.

In step 2, OP fluxes were additionally filtered for an instrument signal strength indication (AGC) recorded from the LI-7500

sensor. Along with a software upgrade, this diagnostic value was renamed to RSSI , and its definition was changed. We there-

fore recalculated the AGC values for sensors not running on firmware version 6.6 and above (before July 2013). According to25

the old AGC definition in the LI-7500 manual, typical clean window values range between 55 to 65 %. As dirt accumulates on

the windows (or anywhere in the optical path), the AGC value will increase up to 100 %. The new RSSI value takes 100 %

for clean windows and decreases as windows get dirtier. In order to obtain one consistent diagnostic variable for the cleanness

of the optical path, AGC was converted to the RSSI range. AGC values smaller than 44 were set to 44, then AGC values

were mapped to the RSSI range as follows.30

RSSI(AGC) = 188− 2 ·AGC (1)

We flagged OP CO2 flux values when RSSI ≤ 60.
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As quality control of the half-hourly time lag detection results was not applied during OP flux processing in EddyPro, we

additionally screened OP time lags to identify low quality flux values in step 3. We divided the time lag data set into subsets

of different instrumental setup, and binned the time lags of these subsets in 36 ten degree wind direction sectors. We used

the 25th and 75th percentiles per class as filter thresholds. We flagged OP flux values with associated time lags outside the

range spanned by these thresholds. Because we computed CP fluxes in EddyPro considering and compensating for low time5

lag detection quality, we did not perform this type of filtering step on CP fluxes.

In step 4, we flagged CP as well as OP fluxes when 30 minute average concentration measurements were larger than 450 ppm

or smaller than 300 ppm. CO2 concentrations outside this range indicate dirty OP gas analyzer optics or technical problems of

the CP air sampling system (sudden pump speed changes due to brownouts, blocked filters, etc.).

To filter dubious, large OP fluxes that coincided with reasonable CP fluxes, we seleced all OP fluxes when simultaneously10

measured CP values ranged between -2 µmolm−2 s−1 and 2 µmolm−2 s−1. Step 5 only affected OP data from this subset. We

calculated the 99th and 1st percentile of this group and flagged fluxes from it when they lay outside this percentile range.

In step 6, we flagged remaining outliers in both the CP and OP data sets by using the 0.1st and 99.9th percentile (-3.5423

µmolm−2 s−1 and 3.3473 µmolm−2 s−1) of the CP time series after the concentration limits filter as absolute limits, to define

an acceptable range of OP and CP flux values.15

3.4 Open-path self-heating correction

To account for self-heating errors induced by the LI-7500 sensor electronics, we corrected OP fluxes as described by Kittler

et al. (2017). The authors use WPL-corrected fluxes and add a correction term (Burba et al., 2006) that accounts for self-

heating effects of vertically installed instruments. In their approach, Kittler et al. (2017) use a scaling factor ξ, taking values

between 0 and 1, to trim the correction for inclined analyzer setups. With simultaneously available CP fluxes, we were able20

to estimate this scaling factor specifically for our site and periods of unique instrumental setups. As suggested by Kittler et al.

(2017), we optimized this parameter with a nonlinear least squares method in Matlab (v. 9.2). We determined ξ for periods

of different instrumental setups and separately for night (incoming shortwave radiation < 20 Wm−2) and day (incoming

shortwave radiation ≥ 20 Wm−2) conditions using the following equation

Fc = Fc,WPL + ξ
(Ts−Ta)ρc

raTa
(2)25

where Fc (kgm−2 s−1) is the true CO2 flux, Fc,WPL (kgm−2 s−1) is the WPL-corrected OP CO2 flux, Ts (K) is the instrument

surface temperature, Ta (K) the ambient air temperature, ra (sm−1) the aerodynamic resistance and ρc (kgm−3) the ambient

CO2 density. Prior to ξ optimization, we estimated the instrument surface temperature Ts following the parameterization of

Järvi et al. (2009) also separately for nighttime and daytime

Ts,day = 0.93(Ta−T0)+ 3.17+T0 and Ts,night = 1.05(Ta−T0)+ 1.52+T0 (3)30

with Ts,day (K) and Ts,night (K) as instrument surface temperature estimates and T0 set to 273.15 K. We determined the

scaling factor as a parameter of equation (2) being the modified Burba et al. (2006) approach from Kittler et al. (2017). For

9



Figure 3. Effect of the self-heating correction on the correlation between open-path (OP) and closed-path (CP) fluxes (left panel). Correlations

were quantified using Spearman’s rank correlation coefficient rs and Pearson’s correlation coefficient r. Only quality class 0 is shown.

Negative fluxes are affected more strongly by the correction than positive fluxes (right panel).

function fitting, we assumed CP fluxes of quality classes 0 and 1 as true fluxes. We used WPL-corrected OP quality class

0 fluxes and the above described surface temperature estimates as independent variables. Before parameter optimization, we

quality-screened the Burba et al. (2006) correction term (expression to the right hand side of ξ in equation (2)) and removed

spikes ranging within the uppermost or lowest percent of its distribution. Throughout all years, ξ is larger at daytime than at

nighttime but generally small, adding mostly below 1 % of the full correction term to the uncorrected flux (see Table 4). In5

four of the seven available years with simultaneous CP and OP fluxes, nighttime ξ optimization converged to values below

zero. Before applying the correction models to these periods, we set nighttime ξ estimates to the median of the years yielding

parameter values that, including their 95 % confidence bounds, ranged above zero. We used this value and the median of all

daytime model optimizations to calculate corrected OP fluxes at times without parallel CP measurements. We did not correct

OP fluxes when radiation measurements or correction term estimates were not available. Correlation between CP and OP fluxes10

improved throughout all quality classes by applying the self-heating correction (see Table 5), while fluxes indicating net CO2

uptake were affected more strongly than fluxes above zero (see Fig. 3).

3.5 Carbon dioxide flux gap filling

We used the CP and the corrected OP fluxes (see Fig. 4) to compile a CO2 flux time series. We aimed at keeping as many

measured data points as possible, while omitting records with large uncertainty. We accepted all CP values of quality classes15

0 and 1. At time steps where no CP fluxes were available, we selected OP values of the same quality classes. The resulting

time series contains 75,921 datapoints. Additionally, we filled the remaining gaps in the time series using the marginal dis-

tribution sampling (MDS) method as first presented by Reichstein et al. (2005). This method employs two types of model

value calculations. The environmental variables global radiation, air temperature and water vapour pressure deficit are binned
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Figure 4. Multiannual carbon dioxide flux time series compiled from fluxes measured with closed-path and open-path sensors on Samoylov

Island’s river terrace. Fluxes of quality class 2 are not shown. Self-heating errors in the OP dataset have been corrected for. Additionally,

the result from gap filling this time series with the MDS method is shown. The given number of values for the gap-filled time series include

measured fluxes.

in classes and combined in a look-up table (LUT). In case of a gap, flux values related to similar environmental conditions can

be looked up and used for averaging and gap filling. The setup of different LUTs for fixed time periods has been first described

by Falge et al. (2001). This process can be refined by the use of moving time windows (Moffat et al., 2007) around gaps, as

applied by Reichstein et al. (2005). The second model type implemented in the MDS algorithm exploits the commonly high

autocorrelation of gas flux time series. The mean diurnal variation (MDV) technique has as well been first described by Falge5

et al. (2001) and uses the average of available gas flux measurements from adjacent days at the same hour of day to fill a

flux gap. The MDS method found wide application, as it has for example been the standard technique within the processing

pipeline of the FLUXNET2015 data set, which includes over 1500 site-years of data. The algorithm of Reichstein et al. (2005)

combines a screening procedure of the available data for similar environmental conditions (look-up table steps) and the use of

a MDV method (diurnal cycle steps) if a gap could not be filled within the look-up table steps. Both techniques include moving10

windows with variable sizes that are increased until a solution can be found. Large gaps are skipped. To run the gap filling

algorithm, we used the REddyProc routine that is accessible through a web-based service hosted by the Department of Bio-

geochemical Integration at Max Planck Institute Jena. The R-routine that is executed on this server is a further-developed and

extended version of the Reichstein et al. (2005) approach and is described by Wutzler et al. (2017). We did not use the friction

velocity filter or the flux partitioning capabilities of the REddy Proc online tool. Gap filling resulted in 131,908 data points.15

The provided data set includes quality flags for each gap-filled value that depend on the used method and time window size, as

defined by Reichstein et al. (2005). These flags take values between 0 and 3, with 0 denoting measurement data, 1 indicating
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most reliable and 3 least reliable gap-filled fluxes. To assess the overall quality of the gap filling result, the MDS algorithm, in a

stepwise manner, treats single available values as gaps and fills them according to the described scheme. Pearson’s correlation

coefficient between our compiled CO2 flux time series and the MDS quality assessment run, where these values were treated

as artificial gaps, is 0.92, with a root mean squared error of 0.31 µmolm−2 s−1.

3.6 Flux uncertainty estimation5

Flux uncertainty can be regarded as a combination of a systematic and a random part. While the attempt should be made to

remove systematic biases, random errors cannot be corrected for (Richardson et al., 2012). However, statistical methods exist

to estimate the uncertainty of a flux measurement due to random errors. We used three different approaches from literature

to quantify random uncertainty and addressed fluxes with a suspected large bias by correcting for it during processing or by

filtering in the course of quality assessment.10

Most importantly, systematic errors are introduced when underlying EC assumptions are not met. Using the method of

Mauder and Foken (2004) that combines an assessment of well developed turbulence and steady state conditions, we identified

biased fluxes and flagged them. Other sources of systematic errors that we addressed include for example the angle of attack

correction of faulty sonic anemometer readings, filtering for low instrument signal strength, the OP self-heating correction

and compensations for high frequency loss and air density fluctuations (see sections 3.2.2, 3.3 and 3.4). Although we are15

confident that we applied corrections for systematic errors both rigorously and carefully enough, biases were certainly not

always removed efficiently. The quality flags included in the data set, reflect a level of confidence based on the assessment of

general EC assumptions and our six additional quality filtering steps (see section 3.3).

To be able to include a random uncertainty estimate for each individual OP and CP flux in the provided data set, we set

EddyPro to calculate random uncertainty estimates following Finkelstein and Sims (2001). The authors developed a method20

that aims at quantifying flux uncertainty associated with turbulence sampling errors. These errors can contribute largely to the

total random error as they refer to the insufficient sampling of large eddies with high spectral energy. Due to the stochastic

nature of turbulence, this type of error is random. To estimate its magnitude, the so-called integral turbulence time scale (ITS)

is first determined by expressing the covariance of vertical wind velocity and gas concentration as a function of a lag time

between these two time series. The ITS is then given by integrating the cross-correlation function theoretically from 0 to25

infinity, in practice, however, until an upper lag time limit is reached. The upper limit can be defined in three different ways

in EddyPro. We used the definition of the normalized cross-correlation function reaching a value of 1/e= 0.369 to determine

an upper lag time limit used for integration. While the normalized cross-correlation should reach zero with increasing lag time

in theory, in practice it sometimes does not. The setting we used on the one hand provides the least conservative estimate of

the ITS but on the other hand offers computational efficiency and makes sure that an upper limit for integration can reliably be30

found. With the ITS, a flux uncertainty can be determined by calculating the variance of an EC flux or, as Finkelstein and Sims

(2001) put it, by calculating the variance of the covariance. This ensemble variance would approach zero with the averaging

time approaching infinity. In the data set available for download, a random uncertainty estimate calculated with the method of

Finkelstein and Sims (2001) is given for each OP and CP flux (see Table 7). Random uncertainties based on ITS estimation
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Figure 5. Random uncertainty estimates for all closed path (CP) and open-path (OP) CO2 fluxes calculated using (1) estimates of the integral

turbulence time scale (ITS), (2) the successive observations approach and results from gap filling (GF) and (3) the paired observations

approach during periods with simultaneous OP and CP records.

observations increase with absolute fluxes with mean values of 0.16 and 0.05 µmolm−2 s−1 for OP and CP fluxes (see Fig. 5).

OP random uncertainty estimates are generally larger and more scattered with respect to the corresponding flux values.

As the above described random uncertainty estimate specifically addresses the turbulence sampling error, other sources of

random flux errors such as the noise introduced by the different components of the measurement system are neglected. With

simultaneous measurements from two sensors, we could additionally estimate random errors for the measurement system as5

a whole during times when the data sets from both sensors overlapped. We followed the paired observations approach as

presented by Dragoni et al. (2007) and calculated a random error estimate ε as

ε=
1√
2
· (FCP −FOP ) (4)

with the closed-path and open-path CO2 fluxes FCP and FOP of quality classes 0 and 1 in µmolm−2 s−1. The distribution of ε

estimates is shown in Fig. 6. The ε values calculated with OP fluxes corrected for the self-heating error have a mean close to zero10

and are distributed more symmetrically than the ε values calculated with uncorrected OP fluxes. The mean of this distribution

is shifted from its mode as well as from zero, indicating a much stronger systematic component whithin the measurement error.

This result increases our confidence that the OP self-heating correction we applied was successful in removing a systematic

bias from the data. Further following Dragoni et al. (2007), we used the ε system error data set from the overlap period to

generate flux uncertainty estimates for bins of increasing OP flux ranges. We sorted the ε values in 20 corresponding flux bins15

between -2 and 2 µmolm−2 s−1 and calculated an uncertainty estimate for each bin σ(ε)i as

σ(ε)i =
√
2
1

Nj

Nj∑
j=0

|εi,j − εi| (5)
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Figure 6. Distributions of the measurement system errors ε estimated using the paired observations approch for differences between closed

path and corrected (left panel) as well as uncorrected (right panel) open-path (OP) fluxes.

Results show (see Fig. 5) a similar data range and pattern of uncertainty estimates in relation to associated fluxes like the

half-hourly values calculated after Finkelstein and Sims (2001).

As a third method of random uncertainty estimation we simplified the successive observations approach from Richardson

et al. (2006) by using results of the quality run performed during MDS gap filling (see section 3.5). We selected the time steps

when an flux observation and a MDS value that was estimated using a one day window and the MDV technique were available.5

We used the standard deviation of the fluxes measured at the same hour of day within a one day window, as an uncertainty

estimate of the observed flux. Results are shown in Fig. 5 and also increase with rising absolute fluxes in the same ranges as

random uncertainties due to turbulence sampling error or measurement system error do.

We included the results obtained with ITS estimation into the uploaded data set considering the similarity between the

uncertainty–flux relations calculated with independent methods as well as due to the advantage of a distinct uncertainty estimate10

for each sensor and time step.

3.7 Footprint modeling

In order to quantify the cumulative contribution of distinct surface classes to the EC source area, we evaluated the two-

dimensional analytical footprint formulation described by Kormann and Meixner (2001) in combination with a 0.14 m× 0.14 m

resolution surface classification of Samoylov Island’s central river terrace provided by Muster et al. (2012). The authors divide15

the surface into four classes based on hydrology and vegetation communities, as illustrated in Fig. 2. Kormann and Meixner

(2001) presented an analytical solution to the crosswind-distributed advection-diffusion equation described by Van Ulden

(1978) and Horst and Weil (1992). Using the analytical model of Huang (1979), the authors solved the power-law profiles of

horizontal wind speed and eddy diffusivity by relating them to the Monin-Obukhov similarity theory, including the stability

dependence of the exponents in the power laws at a certain height. We implemented the equations given in Kormann and20

Meixner (2001) as a Matlab (v. 9.2) function and added a quality filter, omitting calculations when friction velocity was larger
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than 0.9 ms−1 or smaller than 0 ms−1, wind speed was below zero or above 20 ms−1, the crosswind standard deviation was

below zero or above 3 ms−1 or Monin-Obukhov length was smaller than 10−3 m or larger than 104 m. Prior to half-hourly

footprint calculations, we additionally determined roughness length statistics for annual subsets of data and binned them in 2 ◦

wind direction classes. The medians of these classes were used in the subsequent half-hourly footprint estimation, depending

on the mean wind direction during these 30 minutes. We evaluated the footprint model at the same resolution that was used by5

(Muster et al., 2012) to classify the surface (i.e. 0.14 m × 0.14 m). We could thereafter assign a probability of being the EC

source area to each classified pixel and sum up the probabilities of all pixels belonging to the same surface class to estimate the

contribution of each class. This proceeding to combine an EC source area estimation with a land cover classification is similar

to what has been applied and described in more detail by Forbrich et al. (2011).

4 Discussion10

Although we did our best to ensure the consistency and appropriateness of the data processing workflow for the presented NEE

time series, due to technical and logistical constraints during 16 years of field work, disparities in the experimental setup exist

which may challenge its integrity. The EC tower was relocated twice, the measurement height was changed three times (see

Fig. 2 and Table 1). These changes of tower location and measurement height affected the source area and hence the surface

types sampled during flux measurements. Most notably, between July 2007 and June 2009, the EC tower was placed about15

650 m south-west of its original position at the center of Samoylov Island, in an area with an increased coverage of the surface

class wet tundra. This is revealed by the footprint analysis (Fig. 7). While the EC footprint is dominated by the surface class dry

tundra throughout the time series, during subperiods 2007, 2008 and 2009 I the contributions of wet tundra to the measured flux

are significantly higher. To check the effect of the shifts in tower location and measurement height on cumulative CO2-C fluxes,

we calculated flux sums for a period when flux time series without gaps were available in most years. The overlapping period20

covers days of year 200 to 234, i.e. part of the growing season in all years except for 2004 (see Fig. 8). Interannual variability of

cumulative C fluxes in years with constant tower location (and measurement height) appears to be large and driven by a more

complex set of variables than shifts in surface class contributions only. Flux sums from the periods when EC tower relocation

led to a significant shift in EC footprint composition are well within the range of the distribution of cumulated fluxes from

years with a more homogeneous EC fetch area. We therefore assume that, at least with respect to budget calculations, the25

presented long-term time series is not disrupted and can be regarded as representative for a polygonal tundra site dominated

by dry tundra. For a more in depth analysis of flux dynamics, footprint information should and can be considered by users

of the data set. Recently, a comparison between surface class level NEE models based on chamber measurements with EC

fluxes, using the half-hourly footprint information provided in this data set for scaling, yielded good agreement between the

results obtained with both methods (Eckhardt et al., 2018). We regard the availability of half-hourly footprint information in30

the presented NEE data set an attribute that sets it apart from other studies and holds chances for comprehensive analyses.

Apart from the changes in anemometer height, other deviations of the general instrument setup occurred due to limitations

in data storage during two winter periods when the acquisition frequency was reduced to 5 Hz and 10 Hz respectively. Rinne
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Figure 7. Mean surface class composition of the eddy covariance footprint during 17 subperiods of four different tower setups at three

locations on Samoylov Island.

et al. (2008) demonstrated in a field experiment that fluxes calculated from raw data recorded at frequencies below 20 Hz

compare well with fluxes derived from high frequency raw data. Differences arise as an increase of random noise and not as

a systematic bias. High frequency noise removal before ensemble spectra estimation in EddyPro is effective in limiting the

effect of increased noise on the quality of transfer function estimation in the process of spectral correction. Overall spectral

correction in EddyPro is expressed as a spectral correction factor (SCF) which comprises the effect of all applied compensations5

for high and low frequency loss. Raw fluxes are multiplied with the respective SCFs during processing. We compared the SCF

distributions of the two above mentioned winter periods with statistics of the remaining parts of the time series when data

was recorded at 20 Hz. SCF deviations between the different acquisition frequencies are minor (see Fig. 9) what implies that
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Figure 8. Comparison of cumulative CO2 flux sums of different years during the same day of year range.

Figure 9. Spectral correction factor statistics for periods with different acquisition frequencies.

systematic differences between fluxes calculated from raw data of different temporal resolutions are in fact small; random

uncertainties increase, however.

5 Scientific overview

While results on methane exchange fluxes and the soils’ methane production and oxidation potential are more prominent in

the publication record (e.g. Wagner et al., 2003; Kutzbach et al., 2004; Liebner and Wagner, 2007; Knoblauch et al., 2008;5
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Sachs et al., 2008; Wille et al., 2008; Schneider et al., 2009; Sachs et al., 2010; Liebner et al., 2011; Knoblauch et al., 2015),

literature on CO2 flux time series recorded with the same measurement system presented in this publication is available for

distinct years. Flux processing has, however, been streamlined only now. The length of the time series, the addition of detailed

footprint information, the site-specific correction of OP fluxes and the coherent processing and quality filtering distinguishes

the data set at hand from past publications like the contribution made to the FLUXNET2015 data set (Kutzbach et al., 2015).5

Ongoing analysis of the long-term data set (Kutzbach, unpublished) inter alia confirms what has been found in the past

(Kutzbach, 2006; Kutzbach et al., 2007; Runkle et al., 2013). The polygonal tundra of Samoylov Island appears to be a robust

growing season CO2-C sink whereas this sink strength can vary so much interannually that prolonged low-level respiratory

CO2-C loss during the cold season can offset CO2-C uptake during the vegetation period. Reduced summer uptake has been

observed for both the coldest and warmest summers. Runkle et al. (2013) found that with frequent early season heat spells,10

the temperature-induced increase in respiratory release can exceed the rise in photosynthetic uptake. Recently, all data from

this publication has been contributed to the Arctic Data Center’s chamber and EC synthesis project Reconciling historical

and contemporary trends in terrestrial carbon exchange of the northern permafrost-zone that aims at identifying seasonal and

interannual C flux dynamics and its drivers based on a newly established pan-arctic data base.

In context with the improvement of earth system models (ESMs), carbon dioxide fluxes from Samylov Island can be espe-15

cially of use due to the site’s comparably high moss cover. Using data from Samoylov, Chadburn et al. (2017) found that current

ESMs miss an observed early season CO2 uptake peak suspected to be connected to the earlier onset of moss photosynthesis

in comparison with vascular plants. Although there have been advances and e.g. Porada et al. (2013) developed a dynamic

moss model for JSBACH (Raddatz et al., 2007), Chadburn et al. (2017) noted that the simulated CO2 uptake and release

terms combining vascular vegetation and moss carbon fluxes did not agree with observational data. The fact that the Samoylov20

Island NEE data set has now been extended and its quality has been greatly improved holds the opportunity to estimate the

performance of updated ESM versions that are set up to represent carbon fluxes in the moss layer better.

6 Data availability

The data set was uploaded to the Pangaea data base (Holl and Kutzbach, 2018) and can be accessed through https://doi.org/

10.1594/PANGAEA.892751. The included columns are given in Table 7. Ancillary long-term time series of meteorological25

and soil variables from Samoylov Island are available from Boike et al. (2018) and can be accessed through https://doi.org/10.

1594/PANGAEA.891142.

7 Conclusions

We are confident that the presented carbon dioxide land–atmosphere flux data set is of high quality and is likely to be of value

to the scientific community. We screened the data carefully and applied filtering rules to identify erroneous data, taking into30

account sensor diagnostics, time lag statistics and the presence of atmospheric conditions that allow for a robust application of
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the EC method. We followed standardized processing and quality control/assurance routines to allow for comparability between

different years from our site as well as with flux time series from other tundra environments. With OP measurements being

paralleled by CP measurements in seven years, we had the opportunity to correct for self-heating errors in our OP measurements

with a site-specifically scaled correction term, rather than using default correction methods (e. g. Burba et al., 2008). We could

therefore address different sensor setups with different correction terms and thereby improve our OP data set, as the self-5

heating effect has distinct impacts on sensors installed at different inclinations. We quantified the contribution of certain soil

and vegetation community types to each half-hourly EC footprint, taking into account varying roughness lengths throughout

different years and wind direction sectors. We estimated the cumulative probability of being the EC source area for the four

main surface classes on Samoylov Islands’ river terrace by using a land cover classification and by computing an analytical

EC footprint model. Multiannual results show (see Table 6) that on average the combination of different surface classes within10

the EC footprint is representative for the surface composition of the whole river terrace that developed as a polygonal tundra

landscape. According to Muster et al. (2012) the river terrace is composed of 65 % dry tundra, 19 % wet tundra and 16 %

ponds (sum of open water and overgrown). On average, the surface class compositions within the EC footprint are very similar

to these values. Deviations arise, however, in the years between 2007 and 2009, when the tower location was shifted from

the center towards the south-western cliff of Samoylov Island. Nevertheless, the contributions of each surface class to the EC15

footprint are not only available on average, as presented in Table 6, but half-hourly in the uploaded data set, ensuring that EC

source area deviations are quantifiable by a potential user. 16 years of consistently processed and quality-controlled carbon

dioxide fluxes from a polygonal tundra landscape typical for Arctic lowlands are a valuable addition to the already existing

data base of CO2 net ecosystem exchange observations from the Arctic, especially because of the site’s location in Northern

Siberia, from where only limited data is available up to now. Furthermore, analysis of this NEE time series is not limited to20

the gas flux data only. An extensive data stream of meteorological and soil variables between 2002 and 2017 has recently been

published by Boike et al. (2018). The authors made their records publicly accessible on the two long-term repositories Pangaea

(https://doi.org/10.1594/PANGAEA.891142) and Zenodo (https://zenodo.org/record/2223709). The fact of parallelly available

ancillary ecosystem variables enables a potential user to put the gas flux dynamics reported in this publication into context with

the variability of other ecosystem properties and potential flux drivers. We regard this type of analysis as vital to understand25

inter-annual variability of gas fluxes and are working on it ourselves (Kutzbach, unpublished).
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Runkle, B. R., Wille, C., Gažovič, M., and Kutzbach, L.: Attenuation correction procedures for water vapour fluxes from closed-path eddy-

covariance systems, Boundary-layer meteorology, 142, 401–423, 2012.

Sachs, T., Wille, C., Boike, J., and Kutzbach, L.: Environmental controls on ecosystem-scale CH4 emission from polygonal tundra in the

Lena River Delta, Siberia, Journal of Geophysical Research: Biogeosciences, 113, 2008.25

Sachs, T., Giebels, M., Boike, J., and Kutzbach, L.: Environmental controls on CH4 emission from polygonal tundra on the microsite scale

in the Lena river delta, Siberia, Global Change Biology, 16, 3096–3110, 2010.

Schneider, J., Grosse, G., and Wagner, D.: Land cover classification of tundra environments in the Arctic Lena Delta based on Landsat 7

ETM+ data and its application for upscaling of methane emissions, Remote Sensing of Environment, 113, 380–391, 2009.

Schneider von Deimling, T., Meinshausen, M., Levermann, A., Huber, V., Frieler, K., Lawrence, D., and Brovkin, V.: Estimating the near-30

surface permafrost-carbon feedback on global warming, Biogeosciences, 9, 649, 2012.

Schuur, E., Abbott, B., Bowden, W., Brovkin, V., Camill, P., Canadell, J., Chanton, J., Chapin, F., Christensen, T., Ciais, P., et al.: Expert

assessment of vulnerability of permafrost carbon to climate change, Climatic Change, 119, 359–374, 2013.

Schuur, E., McGuire, A. D., Schädel, C., Grosse, G., Harden, J., Hayes, D., Hugelius, G., Koven, C., Kuhry, P., Lawrence, D., et al.: Climate

change and the permafrost carbon feedback, Nature, 520, 171–179, 2015.35

Schuur, E. A., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C. B., Goryachkin, S. V., Hagemann, S., Kuhry, P., Lafleur, P. M., Lee, H.,

et al.: Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle, AIBS Bulletin, 58, 701–714, 2008.

25



Schwamborn, G., Rachold, V., and Grigoriev, M. N.: Late Quaternary sedimentation history of the Lena Delta, Quaternary international, 89,

119–134, 2002.

Soil Survey Staff: Keys to Soil Taxonomy, Twevfth Edition, 2014.

Tarnocai, C., Canadell, J., Schuur, E., Kuhry, P., Mazhitova, G., and Zimov, S.: Soil organic carbon pools in the northern circumpolar

permafrost region, Global Biogeochemical Cycles, 23, 2009.5

Van Ulden, A.: Simple estimates for vertical diffusion from sources near the ground, Atmospheric Environment (1967), 12, 2125–2129,

1978.

Vickers, D. and Mahrt, L.: Quality control and flux sampling problems for tower and aircraft data, Journal of Atmospheric and Oceanic

Technology, 14, 512 – 526, 1997.

Wagner, D., Kobabe, S., Pfeiffer, E.-M., and Hubberten, H.-W.: Microbial controls on methane fluxes from a polygonal tundra of the Lena10

Delta, Siberia, Permafrost and periglacial processes, 14, 173–185, 2003.

Walker, H. J.: Arctic deltas, Journal of Coastal Research, pp. 719–738, 1998.

Wania, R., Ross, I., and Prentice, I.: Integrating peatlands and permafrost into a dynamic global vegetation model: 2. Evaluation and sensi-

tivity of vegetation and carbon cycle processes, Global Biogeochemical Cycles, 23, 2009a.

Wania, R., Ross, I., and Prentice, I. C.: Integrating peatlands and permafrost into a dynamic global vegetation model: 1. Evaluation and15

sensitivity of physical land surface processes, Global Biogeochemical Cycles, 23, 2009b.

Wania, R., Ross, I., and Prentice, I.: Implementation and evaluation of a new methane model within a dynamic global vegetation model:

LPJ-WHyMe v1. 3.1, Geoscientific Model Development, 3, 565, 2010.

Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of flux measurements for density effects due to heat and water vapour transfer,

Quarterly Journal of the Royal Meteorological Society, 106, 85–100, 1980.20

Wille, C., Kutzbach, L., Sachs, T., Wagner, D., and Pfeiffer, E.-M.: Methane emission from Siberian arctic polygonal tundra: eddy covariance

measurements and modeling, Global Change Biology, 14, 1395–1408, 2008.

Wutzler, T., Moffat, A., Migliavacca, M., Knauer, J., Menzer, O., Sickel, K., and Reichstein, M.: Reddyproc: Enabling researchers to process

eddy-covariance data, in: EGU General Assembly Conference Abstracts, vol. 19, p. 12954, 2017.

Yershov, E. D.: General geocryology, Cambridge University Press, 2004.25

Zimov, S. A., Schuur, E. A., and Chapin, F. S.: Permafrost and the global carbon budget, Science, 312, 1612–1613, 2006.

Zubrzycki, S., Kutzbach, L., Grosse, G., Desyatkin, A., and Pfeiffer, E.-M.: Organic carbon and total nitrogen stocks in soils of the Lena

River Delta, Biogeosciences, 10, 3507, 2013.

26



Table 1. List of deployed instrument types. All infrared gas analyzers were manufactured by LI-COR Biosciences (USA), R3 sonic anemome-

ters were built by Gill Instruments Ltd. (UK), CSAT3 anomemeters by Campbell Scientific Ltd. (UK)

Gas analyzer Anemometer Data coverage

Year Closed path Open path Model Height, m Date range Days

2002 LI-7000 n/a R3 3.65 12-Jul to 03-Sep 53

2003 LI-7000 n/a R3 3.65 19-Jul to 22-Oct 95

2004 LI-7000 n/a R3 3.65 28-May to 20-Jul 53

2005 LI-7000 n/a R3 4 17-Jul to 01-Sep 46

2006 LI-7000 n/a R3 4 05-Jun to 19-Sep 106

2007 n/a LI-7500 CSAT3 2.4 11-Jul to 23-Aug 36

2008 n/a LI-7500 CSAT3 2.4 22-Apr to 26-Sep 157

2009 I n/a LI-7500 CSAT3 2.4 10-Apr to 14-Jun 65

2009 II n/a LI-7500 CSAT3 4.15 15-Jul to 29-Dec 167

2010 LI-7000 LI-7500 CSAT3 4.15 01-Jan to 31-Dec 359

2011 LI-7000 LI-7500 CSAT3 4.15 01-Jan to 22-Aug 233

2012 n/a LI-7500 CSAT3 4.15 13-Jul to 10-Nov 120

2013 LI-7000 LI-7500A CSAT3 4.15 04-May to 05-Nov 185

2014 LI-7000 LI-7500A CSAT3 4.15 21-Feb to 29-Oct 250

2015 LI-7000 LI-7500A CSAT3 4.15 06-May to 31-Dec 239

2016 LI-7000 LI-7500A CSAT3 4.15 01-Jan to 19-Nov 323

2017 LI-7000 LI-7500A CSAT3 4.15 01-Jan to 30-Sep 272
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Table 2. Eddy covariance flux processing steps. Partly differing processing was applied to raw data from closed and open-path analyzers.

OP and CP fluxes were computed consistently for the whole period from 2002 to 2017. Setup-dependent statistics (for time lags and in situ

spectral correction methods) were evaluated annually or if tower position, CP pump speed or any other analyzer metadata changed.

Processing step Method

Closed path data Open path data

Spike detection raw data spike removal (Vickers and Mahrt, 1997)

& removal

Angle of attack from 2002 to 2006 during Gill anemometer n/a, sensor was not deployed

correction deployment (Nakai et al., 2006) between 2002 and 2006

Axis rotation Double rotation (Kaimal and Finnigan, 1994)

Detrending linear, (Gash and Culf, 1996)

Correction for air sample-wise conversion of raw data application of WPL-Terms

density fluctuations to mixing ratios (Ibrom et al., 2007b; Burba et al., 2012) to fluxes (Webb et al., 1980)

Time lag compensation
covariance maximization with covariance maximization

nominal time lag from statistics

Spectral corrections for

High-pass filtering analytic (Moncrieff et al., 2004)

Low-pass filtering in situ/analytic (Ibrom et al., 2007a) analytic (Moncrieff et al., 1997)

Instrument separation Horst and Lenschow (2009) n/a

Eddy Pro version ≥ 6.0.0
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Table 3. Additional quality flagging steps after flux processing. Flagged fluxes were assigned to quality class 2 if not in this class already

according to the Mauder and Foken (2004) quality assessment. As CP time lag detection quality had been addressed earlier during flux

processing in EddyPro, it was not screened at this stage.

Applied to # of flagged fluxes

Step OP fluxes CP fluxes OP CP

1: Raw data skewness/kurtosis yes yes 23769 (23 %) 12043 (18 %)

2: Instrument signal stregth yes no 6951 (7 %) n/a

3: Time lag detection quality yes no 20277 (20 %) n/a

4: Abolute concentration limits yes yes 223 (0.2 %) 2261 (3 %)

5: Exclusion of outliers when simultaneous yes n/a 346 (0.3 %) n/a

CP fluxes close to zero

6: Absolute flux limits yes yes 634 (0.6 %) 102 (0.6 %)
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Table 4. Estimates of scaling factor ξ ± 95 % confidence intervals used for open-path flux correction. ξ describes the portion of the self-

heating correction term, given by Burba et al. (2006) for vertically installed instruments, that is needed to correct OP fluxes determined

with inclined gas analyzers. The scaling factor was optimized as a parameter of a nonlinear function where CP data were regarded as true

fluxes. It was therefore determined for years when parallel CP and OP measurements were available. In case of an optimization converging

to unreasonable values (below zero), we used the median of the remaining ξ estimates.

Year Daytime ξ Nighttime ξ

2010 0.0076 ± 0.0012 0.0071 ± 0.0013

2011 0.0116 ± 0.0009 0.0068 ± 0.0015

2013 0.0150 ± 0.0007 0.0104 ± 0.0009

2014 0.0094 ± 0.0006 0.0071

2015 0.0050 ± 0.0010 0.0071

2016 0.0051 ± 0.0005 0.0071

2017 0.0069 ± 0.0005 0.0071
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Table 5. Spearman’s rank correlation coefficient rs and Pearson’s correlation coefficient r between closed-path (CP) and open-path (OP)

fluxes with and without the applied self-heating correction. The agreement between CP and OP fluxes increases throughout all quality classes

after OP correction.

Quality class 0 Quality classes 0,1 Quality classes 0, 1, 2

rs
OP uncorrected 0.896 0.866 0.508

OP corrected 0.907 0.871 0.512

r
OP uncorrected 0.894 0.871 0.042

OP corrected 0.904 0.877 0.055
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Table 6. Normalized mean contributions of the surface classes defined by Muster et al. (2012) to the eddy covariance footprint. Values were

averaged over each subperiod and normalized to sum up to 1. Additionally, the average non-normalized sum of all surface class contributions

is given as column Image contribution. These values indicate how sufficient the classified area is to describe the EC footprint. Non-normalized

half-hourly contributions of the single classes are given in the provided data set.

Year Tundra Water Median image

dry wet overgrown open contribution

2002 0.71 0.17 0.07 0.05 0.88

2003 0.70 0.17 0.07 0.05 0.87

2004 0.71 0.16 0.07 0.06 0.88

2005 0.71 0.17 0.07 0.05 0.87

2006 0.70 0.17 0.07 0.06 0.86

2007 0.54 0.37 0.06 0.02 0.73

2008 0.53 0.34 0.09 0.04 0.77

2009 I 0.54 0.32 0.08 0.06 0.72

2009 II 0.64 0.19 0.09 0.08 0.71

2010 0.65 0.18 0.09 0.08 0.73

2011 0.67 0.18 0.08 0.07 0.79

2012 0.67 0.18 0.08 0.07 0.80

2013 0.69 0.17 0.08 0.06 0.83

2014 0.66 0.18 0.08 0.07 0.77

2015 0.66 0.18 0.08 0.08 0.78

2016 0.65 0.18 0.09 0.08 0.74

2017 0.67 0.18 0.08 0.07 0.82

32



Table 7. Description of columns included in the data set file.

Column name Unit/Format Description

Date/Time (Local) yyyy-mm-ddTHH:MM Timestamp referring to end of 30 minute flux calculation period in local time (UTC+9h).

Date/Time (UTC) yyyy-mm-ddTHH:MM Timestamp referring to end of 30 minute flux calculation period in UTC.

CP CO2 flux µmolm−2 s−1 Closed path CO2 flux

QC CP CO2 flux dimensionless Closed path CO2 flux quality classes 0, 1 and 2

CP CO2 flux rand unc µmolm−2 s−1 Closed path CO2 flux random uncertainty estimate (Finkelstein and Sims, 2001)

OP CO2 flux µmolm−2 s−1 Open path CO2 flux

OP corr CO2 flux µmolm−2 s−1 Corrected open-path CO2 flux (Kittler et al., 2017)

QC OP CO2 flux dimensionless Open path CO2 flux quality classes 0,1 and 2

OP CO2 flux rand unc µmolm−2 s−1 Open path CO2 flux random uncertainty estimate (Finkelstein and Sims, 2001)

CO2 flux comp µmolm−2 s−1 Time series compiled of open and closed-path quality class 0 and 1 fluxes

CO2 flux gf µmolm−2 s−1 Gap-filled CO2 flux time series

QC CO2 flux gf dimensionless Quality flag of gap-filled fluxes, between 0 and 3 (Reichstein et al., 2005)

CO2 flux gf std µmolm−2 s−1 Standard deviation of gap-filled flux estimates, calculated from the data used for averaging

FP CC dry dimensionless Contribution of surface class dry tundra to the eddy covariance footprint

FP CC wet dimensionless Contribution of surface class wet tundra to the eddy covariance footprint

FP CC ove dimensionless Contribution of surface class overgrown water to the eddy covariance footprint

FP CC wat dimensionless Contribution of surface class open water to the eddy covariance footprint
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