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 15 
Abstract. Natural and human-ignited fires affect all major biomes, altering ecosystem structure, 
biogeochemical cycles, and atmospheric composition. Satellite observations provide global data on 
spatiotemporal patterns of biomass burning and evidence for rapid changes in global fire activity in response 
to land management and climate. Satellite imagery also provides detailed information on the daily or sub-
daily position of fires that can be used to understand the dynamics of individual fires. The Global Fire Atlas 20 
is a new global dataset that tracks the dynamics of individual fires to determine the timing and location of 
ignitions and fire size, duration, daily expansion, fire line length, speed, and direction of spread. Here we 
present the underlying methodology and Global Fire Atlas results for 2003-2016 derived from daily 
moderate resolution (500 m) Collection 6 MCD64A1 burned area data. The algorithm identified 13.3 
million individual fires over the study period, and estimated fire perimeters were in good agreement with 25 
independent data for the continental United States. A small number of large fires dominated sparsely 
populated arid and boreal ecosystems, while burned area in agricultural and other human-dominated 
landscapes was driven by high ignition densities that resulted in numerous smaller fires. Long-duration fires 
in the boreal regions and natural landscapes in the humid tropics suggest that fire-season length exerts a 
strong control on fire size and total burned area in these areas. In arid ecosystems with low fuel densities, 30 
high fire spread rates resulted in large, short-duration fires that quickly consumed available fuels. 
Importantly, multi-day fires contributed the majority of burned area in all biomass burning regions. A first 
analysis of the largest, longest, and fastest fires that occurred around the world revealed coherent regional 
patterns of extreme fires driven by large-scale climate forcing. Global Fire Atlas data are publicly available 
through www.globalfiredata.org, and individual fire information and summary data products provide new 35 
information for benchmarking fire models within ecosystem and Earth system models, understanding 
vegetation-fire feedbacks, improving global emissions estimates, and characterizing the changing role of 
fire in the Earth system. 
 
  40 
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1 Introduction  
 
Worldwide, fires burn an area about the size of the European Union every year (423 Mha yr-1; Giglio et al., 
2018). The majority of burned area occurs in grasslands and savannas where fires maintain open landscapes 
by reducing shrub and tree cover (Scholes and Archer, 1997; Abreu et al., 2017). However, all major biomes 45 
burn. Climate controls global patterns of fire activity by driving vegetation productivity and fuel build up 
as well as fuel moisture (Bowman et al., 2009). Humans are the dominant source of ignitions in most 
flammable ecosystems, but human activities also reduce fire sizes through landscape fragmentation and fire 
suppression (Archibald et al., 2012; Taylor et al., 2016; Balch et al., 2017).  
 50 
Over the past 18 years, socio-economic development and corresponding changes in human land use have 
considerably reduced fire activity in fire-dependent grasslands and savannas worldwide (Andela et al., 
2017). At the same time warming climate has dried fuels and has increased the length of fire seasons across 
the globe (Jolly et al., 2015), which is particularly important in forested ecosystems with abundant fuels 
(e.g., Kasischke and Turetsky, 2006; Aragão et al., 2018). Fire activity increases non-linearly in response 55 
to drought conditions in populated areas of the humid tropics (Alencar et al., 2011; Field et al., 2016), 
resulting in large scale degradation of tropical ecosystems (van der Werf et al., 2008; Morton et al., 2013b; 
Brando et al., 2014), and extensive periods of poor air quality (Johnston et al., 2012; Lelieveld et al., 2015; 
Koplitz et al., 2016). Moreover, increasing population densities in highly flammable biomes also amplify 
the socio-economic impacts of wildfires related to air quality or damage to houses and infrastructure (Moritz 60 
et al., 2014; Knorr et al., 2016). Despite the importance of understanding changing global fire regimes for 
ecosystem services, human well-being, climate, and conservation, our current understanding of changing 
global fire regimes is limited because existing satellite data products detect actively burning pixels or 
burned area, but not individual fires and their behavior.   
 65 
Frequent observations from moderate-resolution, polar-orbiting satellites may provide information on 
individual fire behavior in addition to estimates of total burned area. Several recent studies have shown that 
fire-affected pixels can be separated into clusters based on spatial and temporal proximity. This information 
can be used to study the number and size distributions of individual fires (Archibald and Roy, 2009; Hantson 
et al., 2015; Oom et al., 2016), fire shapes (Nogueira et al., 2017; Laurent et al., 2018), and the location of 70 
ignition points (Benali et al., 2016; Fusco et al., 2016). One limitation of fire clustering algorithms that rely 
on spatial and temporal proximity of fire pixels is the inability to separate individual fires within large burn 
patches that contain multiple ignition points, a frequent phenomenon in grassland biomes. To address the 
possibility of multiple ignition points, other algorithms have specifically tracked the spread of individual 
fires in time and space, with demonstrated improvements for isolating ignition points and constraining final 75 
fire perimeters (Frantz et al., 2016; Andela et al., 2017). In addition to the size and ignition points of 
individual fires, other studies used daily or sub-daily detections of fire activity to track growth dynamics of 
fires (Loboda and Csiszar, 2007; Coen and Schroeder, 2013; Veraverbeke et al., 2014; Sá et al., 2017). 
Together, these studies highlight the strengths and limitations of using daily or sub-daily satellite imagery 
to derive information about individual fires and their behavior over time. 80 
 
Here we present the Global Fire Atlas of individual fires based on a new methodology to identify the 
location and timing of fire ignitions and estimate fire size, duration, daily expansion, fire line, speed, and 
direction of spread. The Global Fire Atlas is derived from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) collection 6 burned area dataset (Giglio et al., 2018), which includes an 85 
estimated day of burn data layer at 500 m resolution. Individual fire data were generated starting in 2003, 
when combined data from the Terra and Aqua satellites provide greater burn date certainty. The algorithm 
for the Global Fire Atlas tracks the daily progression of individual fires at 500 m resolution to produce a 
set of metrics on individual fire behavior in standard raster and vector data formats. Together, these Global 
Fire Atlas data layers provide an unprecedented look at global fire behavior and changes in fire dynamics 90 
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during 2003-2016. The data are freely available at http://www.globalfiredata.org, and new years will be 
added to the dataset following the availability of global burned area data.  
 

2 Data and Methods 
 95 
Here we developed a method to isolate individual fires from daily moderate resolution burned area data. 
The approach used two filters to account for uncertainties in the day of burn in order to map the location 
and timing of fire ignitions and the extent and duration of individual fires (Fig. 1). Subsequently, we tracked 
the growth dynamics of each individual fire to estimate the daily expansion, daily fire line, speed and 
direction of spread. Based on the Global Fire Atlas algorithm, burned area was broken down into seven fire 100 
characteristics in three steps (Fig. 1b). First, burned area was described as the product of ignitions and 
individual fire sizes. Second, fire size was further separated into fire duration and a daily expansion 
component. Third, the daily fire expansion was subdivided into fire speed, the length of the fire line, and 
the direction of spread. The Global Fire Atlas algorithm can be applied to any moderate resolution daily 
global burned area product, and the quality of the resulting dataset depends both on the Fire Atlas algorithm 105 
as well as the underlying burned area product. Here we applied the algorithm to the MCD64A1 collection 
6 burned area dataset (Giglio et al., 2018) and the minimum detected fire size is therefore one MODIS pixel 
(approximately 21 ha). Several studies have shown that the MCD64A1 collection 6 burned area product 
provides a considerable improvement compared to previous generation of moderate resolution global 
burned area products (Giglio et al., 2018; Humber et al., 2018; Rodrigues et al., 2019). We also present a 110 
preliminary accuracy assessment of the higher order Global Fire Atlas products using independent fire 
perimeter data for the continental US and active fire detections to assess estimated fire duration and the 
temporal accuracy of individual fire dynamics. 
 

 115 
Figure 1: Flow chart showing the data-processing steps and resulting products. (a) The Global Fire 
Atlas algorithm tracks individual fires and their day-to-day behavior based on the MCD64A1 collection 6 
500 m daily burned area product starting in 2003. (b) Decomposition of burned area into seven different 
components of the fire regime in the Global Fire Atlas. The output includes two annual shapefile layers 
(.shp) of ignition location and individual fire perimeters with corresponding database files (.dbf) providing 120 
summary information for each individual fire, including the seven key characteristics. In addition, four per 
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fire year global raster maps on the 500 m sinusoidal MODIS grid (.tif) provide details on the day-to-day 
fire behavior. Finally, data are summarized in a monthly 0.25° gridded product based on average values of 
individual fires. Global Fire Atlas data-layers are described in more detail in Table A1.  
 125 

2.1 Individual fires: ignitions, size, perimeter and duration 
 
Large burn patches are often made up of multiple individual fires that may burn simultaneously or at 
different points in time during the fire season, particularly in frequently burning grasslands and savannas 
with a high density of ignitions from human activity. Separating large clusters of burned area into individual 130 
fires is therefore critical to understand the fire regime in human-dominated landscapes. To isolate individual 
fires, clusters of adjacent burned area for a given fire season (12 months centered on the month of maximum 
burned area) were subdivided into individual fires based on the spatial structure of estimated burn dates in 
the MCD64A1 burned area product. Although we allow individual fires to burn from one fire season into 
the next, we processed the data on a per-fire-season basis in each 10° x 10° MODIS tile. In the rare case a 135 
pixel burned twice during a single fire season (<1%), we retained only the earliest burn date. This approach 
results in a small reduction of total burned area in order to create standardized annual data layers in both 
gridded raster and shapefile formats. To locate candidate ignition points within each burned area cluster, 
we mapped the “local minima,” defined as a single grid cell or group of adjacent grid cells with the same 
burn date surrounded by grid cells with later burn dates. However, because of variability in orbital coverage 140 
and cloud cover, burn date estimates are somewhat uncertain (Giglio et al., 2013), which results in many 
local minima that may not correspond to actual ignition points. We applied a three-step procedure to address 
burn date uncertainty and distinguish individual fires. First, we developed a filter to adjust the burn date of 
local minima that do not correspond to ignition points. Second, we set a “fire persistence” threshold that 
determines how long a fire may take to spread from one 500 m grid cell into the next, to distinguish 145 
individual fires that are adjacent but occurred at different times in the same fire season. Third, we developed 
a second filter to correct for outliers in the burn date that occurred along the edges of large fires. Each of 
these steps is described in detail below. 
 
The ignition point filter is based on the assumption that the fires progress continuously through time and 150 
space. First, all local minima were mapped within the original field of burn dates (Fig. 2a and b). Next, 
each local minimum was replaced by the nearest later burn date in time of the surrounding grid cells, and a 
new map of local minima was created. If the original local minimum remained as a part of a new, larger 
local minimum with a later burn date, the fire followed a logical progression in time and space and the 
original local minimum was retained. If the local minimum disappeared, the original local minimum was 155 
likely the product of an inconsistency within the field of burn dates rather than a true ignition point and the 
burn date was adjusted forward in time to remove the original local minimum. This step can be repeated 
several times, with each new iteration further reducing the number of local minima and increasing the 
confidence in ignition points, yet each iteration also results in a greater adjustment of the original burn date 
information (Fig. A1). Here we implemented three iterations of the ignition point filter to remove most 160 
local minima that did not spread forward in time while limiting the scope of burn date adjustments (Figs. 
2c and d, A1 and A2). For short duration fires, the ignition points were retained associated with the largest 
possible number of iterations. In all cases, if several local minima were connected through a single cluster 
of grid cells with the same burn date, only the local minimum with the earliest burn date or largest number 
of grid cells was retained, unless the required adjustment of the burn date was larger than the specified burn 165 
date uncertainty in the MCD64A1 product. If the final ignition location existed of multiple 500 m grid cells, 
we used the center coordinates to produce the ignition point shapefile. By design, the ignition point filter 
cannot adjust the earliest burn date of a fire, and thus has no influence on estimated fire duration.  
 
To establish the location and date of ignition points, as well as to track the daily growth and extent of 170 
individual fires, we used a “fire persistence” threshold that determined how long a fire may take to spread 
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from one 500 m grid cell into the next, taking both fire spread rate and satellite coverage into account (Fig. 
A3). For example, if an ignition point was adjacent to a fire that burned earlier in the season, this threshold 
allowed the ignition point to be mapped as separate local minima despite the presence of adjacent burned 
grid cells with earlier burn dates. On the other hand, if an active fire is covered by dense clouds or smoke, 175 
multiple days can pass before a new observation can be made, resulting in a break in fire continuity and 
increasing the risk of artificially splitting single fires into multiple parts. Using such a threshold is 
particularly important to distinguish individual fires in frequently burning savannas and highly fragmented 
agricultural landscapes, where many individual small fires may occur within a relatively short time span. 
Because there are no reference datasets on global fire persistence, we used a spatially-varying fire 180 
persistence threshold that depends on fire frequency (Andela et al., 2017). We assumed that frequently-
burning landscapes are generally characterized by faster fires and higher ignition densities, increasing the 
likelihood of having multiple ignition points within large burn patches, while infrequently burning 
landscapes will generally be characterized by slower fire spread rates and/or fewer ignitions. In addition, 
frequently burning landscapes often have a pronounced dry season characterized by low cloud cover, while 185 
infrequently burning landscapes may experience a shorter dry season with greater obscuration by clouds. 
Therefore, we used a 4-day fire persistence threshold for 500 m grid cells that burned more than 3 times 
during the study period (2003 - 2016), and a 6, 8 and 10-day fire persistence period for grid cells that burned 
3 times, 2 times, or 1 time, respectively. These threshold values broadly correspond to biomes, with shorter 
persistence values for tropical regions and human-dominated landscapes, and longer threshold values for 190 
temperate and boreal ecosystems with high fuel loads (Fig. A3). 
 
Based on the location and date of the established ignition points and the fire persistence thresholds, we 
tracked the growth of each individual fire through time to determine its size, perimeter, and duration (Fig 
2f). For each day of year, we allowed individual fires to grow into the areas that burned on that specific 195 
day, as long as the difference in burn dates between two pixels was equal to or smaller than the fire 
persistence threshold of the pixel of origin. When two actively burning fires meet, as on day 255 for the 
example fires shown in Fig. 2, grid cells that burned on the day of the merger were divided based on nearest 
distance to the fire perimeter on the previous day.  
 200 
Burn date uncertainty may also lead to multiple “extinction points,” outliers in the estimated day of burn 
along the edges of a fire. Environmental conditions such as cloud cover complicate the precise estimation 
of the date of fire extinction, as rainfall events extinguish many fires, and pixels at the edge of the fire may 
be partially burned and therefore harder to detect. In addition, the contextual relabeling phase of the 
MCD64A1 algorithm increases burn date uncertainty for extinction points based on a longer consistency 205 
threshold (Giglio et al., 2009). We used a second filtering step to adjust the burn date for extinction points, 
if required. Outliers were adjusted to the nearest burn date back in time, if (1) they represented a cluster no 
more than 1 to 4 grid cells (0.21 – 0.9 km2) along the edge of a fire that was as least 10 times larger and (2) 
the difference in burn dates was larger than the fire persistence threshold of the adjacent grid cells and thus 
mapped as a new fire along the edge of the larger fire. If these criteria were met, the outliers were adjusted 210 
to the nearest burn date back in time, and incorporated within the larger neighboring fire. However, if these 
criteria were not met (e.g., for burned areas larger than 4 grid cells), the original burn dates and ignition 
points were left unadjusted, resulting in separate fires. For the example fires shown in Fig. 2, the adjustment 
of these outliers affected four grid cells (Fig. 2e) and effectively reduced the number of ignition points (and 
resulting individual fires) from five (Fig. 2d) to two (Fig. 2f). After adjusting these outliers (extinction 215 
points), and including them within the larger fires, we estimated the size (km2), duration (days) and 
perimeter (km) of each individual fire based on the adjusted burn dates.   
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Figure 2: Algorithm example accounting for uncertainty in the “day of burn” and identifying 220 
individual fires within large clusters of adjacent burned pixels. (a) The original MCD64A1 collection 
6 day of burn for one burned patch in the Brazilian Cerrado (in the year 2015), and (b) local minima or 
“ignition points” identified within the original day of burn data layer. (c) Burn date adjustment based on 
the filter that removes local minima that do not progress continuously through time and space (positive 
adjustment), and (d) the corresponding estimate of ignition points based on the adjusted day of burn field. 225 
(e) Further burn date adjustment based on the removal of outliers along the edge of the fire (negative 
adjustment of extinction points), and (f) the final estimate of ignition locations and date by the Global Fire 
Atlas based on the combined adjustments shown in (e). In (f), the red and blue lines indicate the final fire 
perimeters.   
 230 

2.2 Daily fire expansion: fire line, speed, and direction of spread 
 
The revised day of burn estimates were used to track the daily expansion (km2 day-1) and length of the fire 
line (km) for each individual fire. The daily estimates of fire line length were based on the daily perimeter 
of the fire, where we assumed that once the fire reached the edge of the burn scar, this part of the perimeter 235 
stops burning after one day (Fig. 3a). The expansion of the fire (km2 day-1) is the area burned by a fire each 
day. The average speed of the fire line (km day-1) can now be calculated as the expansion (km2 day-1) 
divided by the length of the fire line (km) on the same day. However, this estimate of fire line includes the 
head, flank and backfire, while it is typically the head-fire that moves fastest and may be responsible for 
most of the burned area. Moreover, fire dynamics tend to be highly variable in space and time. To 240 
understand the spatial variability and distribution of fire speeds, we therefore used an alternative method to 
estimate the speed and direction of fire spread for each individual 500 m grid cell. 
 
To estimate the speed and direction of spread (Fig. 3), we calculated the most likely path of the fire to reach 
each individual 500 m grid cell based on shortest distance. More specifically, for each grid cell we estimated 245 
the shortest route to connect the grid cell between two points: 1) the nearest point on the fire line with the 
same day of burn and 2) the nearest point on the previous day’s fire line. This route was forced to follow 
areas burned on the specific day. For each point on this route, or “fire path,” the speed of the fire (km day-

1) was estimated as the length of the path (km) divided by one day (day-1) and the direction as the direction 
of the next grid cell on the fire path. Since each grid cell is surrounded by 8 other grid cells, this resulted in 250 
eight possible spread directions: north, northeast, east, southeast, south, southwest, west, and northwest. 
For ignition points that represented a cluster of 500 m grid cells with the same burn date, we assumed that 
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the fire originated in the center point of the cluster (pixel with largest distance to the final fire perimeter by 
the end of day 1) and spreads towards the perimeter of the fire by the end of day 1 over the course of one 
day. For single pixel fires, we assumed the fire burned across 463 m (1 pixel) during a single day and we 255 
did not assign a direction of spread. Similarly, fires of all sizes that burned on a single day were not assigned 
a direction of spread. We corrected estimates of both speed and direction for the orientation between 500 
m grid cells on the MODIS sinusoidal projection that varies with location. When a particular grid cell 
formed part of multiple “fire paths,” the earliest time of arrival or the highest fire speed and corresponding 
direction of spread were retained. This assures a logical progression of the fire in time and space and 260 
corresponds to fires typically moving fastest in a principal direction and then spreading more slowly along 
the flank.  
 

 
Figure 3: Sub-daily estimates of fire progression can be used to estimate spatiotemporal variation in 265 
fire speed and direction of spread. (a) daily progression of the fire line, (b) interpolated estimates of sub-
daily time of arrival, (c) fire speed (km day-1), and (d) direction of spread. The light gray areas in (a) are 
burned areas between fire lines and correspond to areas of relatively high fire speed. White areas were not 
burned.   
 270 

2.3 Preliminary accuracy assessment 
 
Few large-scale datasets are available on daily or sub-daily fire dynamics, highlighting the novelty of the 
Global Fire Atlas dataset but also posing challenges for validation. Here we used four alternative datasets 
to carry out an initial accuracy assessment. First, we used active fire detections to assess the temporal 275 
accuracy of the Global Fire Atlas burn date. Second, we compared fire perimeters to independent fire 
perimeter data for the continental US. Third, we combined the independent data on fire perimeters with 
active fire detections to evaluate the Global Fire Atlas fire duration estimates. Finally, we compared Global 
Fire Atlas data to a small (manually compiled) dataset of daily fire perimeters from the US Forest Service.  
 280 
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To evaluate burn dates in the Global Fire Atlas, we used the 375 m resolution active fire detections 
(VNP14IMGML C1) derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument 
aboard the Suomi National Polar-orbiting Partnership (Suomi-NPP) satellite (Schroeder et al., 2014). 
Active fire detections provide accurate information on the burn date, particularly in ecosystems with low 
fuel loads where fires will typically be active during only a single day in each particular grid cell. We 285 
compared the date of active fire detections from VIIRS within each larger 500 m MODIS grid cell (based 
on VIIRS center point) to the adjusted MCD64A1 day of burn to understand the temporal precision of the 
derived Global Fire Atlas products. If several active fire detections were available for a single 500 m 
MODIS grid cell, we reported the day closest to the temporal mean. We compared all 500 m MODIS grid 
cells with corresponding active fire detection during the overlapping data period (2012 – 2016) for four 290 
different ecosystems globally: (1) forests (including all forests), (2) shrublands (including open and closed 
shrublands), (3) woody savannas, and (4) savannas and grasslands, with land cover type derived from 
MODIS MCD12Q1 collection 5.1 data for 2012 using the University of Maryland (UMD) classification 
(Friedl et al., 2002). 
 295 
We compared fire perimeters from the Global Fire Atlas to fire perimeter estimates from the Monitoring 
Trends in Burn Severity (MTBS) project during their overlapping period (2003 – 2015). The MTBS project 
provides semi-automated estimates of fire perimeters based on 30 m Landsat data for fires with a minimum 
size of 1000 acres (405 ha) in the western US and 500 acres (202 ha) in the eastern US (Eidenshink et al., 
2007; Sparks et al., 2015). To determine overlap between MTBS and Fire Atlas perimeter estimates, we 300 
rasterized the MTBS perimeters onto the 500 m MODIS sinusoidal grid, including all 500 m grid cells with 
their center point within the higher resolution (30 m) MTBS fire perimeter. For all overlapping fire 
perimeters, we compared the original MTBS fire perimeter information with the Fire Atlas estimates of fire 
perimeters. In cases with multiple overlapping perimeters, fires with the largest overlapping surface area 
were compared.  305 
 
We also combined MTBS fire perimeters with VIIRS active fire detections to derive an alternative estimate 
of fire duration (2012 – 2015). To estimate fire duration from these products, we first determined the median 
burn date of each fire according to the MCD64A1 burned area data. Subsequently, we included all VIIRS 
active fire detections before and after the median or ‘center’ burn date until a period of three fire-free days 310 
was reached. Any active fire detections that occurred outside this timeframe were excluded to avoid 
overestimation of the fire duration due to smoldering or possible false detections before or after the fire. 
Two thresholds were used to select a subset of MTBS and Fire Atlas perimeters to assess the accuracy of 
estimated fire duration. Fires were first matched based on perimeters, with a maximum tolerance of a 
threefold difference in length between perimeters. Second, we further selected MTBS perimeters with 315 
VIIRS active fire detections for at least 25% of the 500 m Fire Atlas grid cells. These thresholds excluded 
51% of the overlapping fire perimeters, but reduced errors originating from cloud cover or differences in 
the underlying burned area estimates (e.g., resolution, methodology) to evaluate estimated fire duration. 
Similar to the assessment of burn date accuracy, comparisons of fire perimeters and fire duration with 
MTBS data over the continental US were grouped into four land cover types: (1) forests, (2) shrublands, 320 
(3) woody savannas, and (4) savannas and grasslands.    
 
For specific large wildfires across the western USA, the US Forest Service National Infrared Operations 
(NIROPS; https://fsapps.nwcg.gov/nirops/) estimates daily fire perimeters for fire management purposes 
by collecting aircraft high resolution infrared imagery. This imagery is manually analyzed by trained 325 
specialists to extract the active fire front. Although these data provide a wealth of information, only a small 
number of fires are completely and precisely documented. We were able to extract 15 large fires from the 
NIROPS database for which daily perimeter information was available. Although insufficient for full scale 
validation, the comparison with NIROPS data provides valuable insights into the strengths and 
shortcomings of the Global Fire Atlas estimates of individual fire size, duration and expansion rates. In 330 
addition to per fire averages, we compared day-to-day expansion rates (km2 day-1) of individual large fires 
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across both datasets. If multiple Global Fire Atlas perimeters overlapped with a single US Forest Service 
fire perimeter, we compared the fires with the largest overlapping surface area.     
 
3 Results 335 
 

3.1 Preliminary accuracy assessment 
 

 
Figure 4: Global comparison of burn dates derived from the MCD64A1 burned area product, 340 
adjusted burn dates of the Global Fire Atlas, and VIIRS active fire detections (2012 – 2016). (a) 
Forests, (b) shrublands, (c) woody savannas, and (d) savannas and grasslands. Negative values indicate 
pixels with a burned area day of burn earlier than the corresponding VIIRS active fire detection, zero 
indicates no difference in day of burn between both datasets, and positive numbers indicate a delayed 
detection of burned area compared to active fire detections.  345 
 
At the pixel scale, estimated burn dates from burned area and active fire products were comparable (Fig. 
4), with greater variability across biomes than from minor burn date adjustments in the Global Fire Atlas 
algorithm. Burn dates estimated from MODIS burned area and VIIRS active fire detections were least 
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comparable in high-biomass ecosystems with lower fire spread rates. In forests and woody savannas 24% 350 
and 35% of burned pixels were detected on the same day and 54% and 67% within ± 1 day, respectively 
(Fig. 4a and c). With decreasing biomass, the direct correspondence between burn dates from burned area 
and active fire detections increased to 41% (same day) and 80% (± 1 day) in shrublands (Fig. 4b) and 40% 
(same day) and 75% (± 1 day) in savannas and grasslands (Fig. 4d). These differences likely stem from the 
combined increase in uncertainty of burn date in higher-biomass ecosystems and influence of fire 355 
persistence (multiple active fire days in a single 500 m grid cell) on the ability to reconcile the timing of 
burned area and active fire detections in these ecosystems. Several factors may account for the positive bias 
in the 500 m day of burn from burned area compared to active fire detections, including orbital coverage, 
cloud and smoke obscuration, and different thresholds between burned area and active fire algorithms 
regarding the burned fraction of a 500 m grid cell. The adjustments we made to the burn date in the Global 360 
Fire Atlas required to effectively determine the extent and duration of individual fires, had a relatively small 
effect on the overall accuracy assessment but tended to reduce the negative bias in burn dates and increase 
the positive bias compared to the underlying MCD64A1 c6 product (see red and black lines in Fig 4). In 
line with these findings, we found good agreement between a 3-day running average of Global Fire Atlas 
and US Forest service estimates of daily fire expansion, but reduced correspondence for daily estimates of 365 
fire growth rates due to uncertainty in the day-of-burn of the burned area product (Fig. B1).    
 

 
Figure 5: Comparison of fire perimeter estimates based on the Global Fire Atlas and MTBS for the 
continental US (2003 – 2015). (a) Forests, (b) shrublands, (c) woody savannas, and (d) savannas and 370 
grasslands. Red lines indicate the slope between both datasets based on ordinary least squares (OLS) with 
corresponding r2 values, while blue lines are based on orthogonal distance regression (ODR). For the scatter 
plots, darker gray or black indicates a greater density of points.  
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For fire perimeters, the best agreement between the Global Fire Atlas and MTBS was found in forests and 375 
shrublands, where the Global Fire Atlas reproduced 65% and 61% of the observed variance in MTBS fire 
perimeters, respectively (Fig. 5). Less agreement was found for woody savannas (38%) and savannas and 
grasslands (41%). Overall, the Global Fire Atlas underestimated fire perimeter length in all of the vegetation 
classes. However, uncertainty exists in both datasets. Orthogonal distance regression (ODR) accommodates 
uncertainties in both datasets and generally resulted in slopes closer to the 1:1 line, indicating closer 380 
correspondence, on average, in absolute perimeter estimates for the two datasets. An in-depth comparison 
of the performance of the Global Fire Atlas and the MTBS datasets for several grassland fires in Kansas 
(USA) suggested that differences originated both from the underlying burned area datasets and the 
methodologies (Fig. B2). For this particular grassland in Kansas, the MCD64A1 product estimated less 
burned area compared to the Landsat-based MTBS dataset, resulting in fragmentation of larger burn scars 385 
into disconnected patches. However, the daily temporal resolution of the MCD64A1 burned area product 
allowed for recognition of individual ignition points within larger burn patches of fast-moving grassland 
fires that cannot be separated using infrequent Landsat imagery (Fig. B2). In addition, the 30 m spatial 
resolution of the MTBS perimeters may result in more irregularity and therefore in longer fire perimeter 
estimates compared to the 500 m resolution Fire Atlas perimeters. Combined, these tradeoffs in spatial and 390 
temporal resolution resulted in less agreement between fire perimeters in woody savannas (Fig. 5c) and 
savannas and grasslands (Fig. 5d).  
 

 
Figure 6: Comparison of fire duration estimates from the Global Fire Atlas and the combination of 395 
VIIRS active fire detections within MTBS fire perimeters for the continental US (2012 – 2015). (a) 
Forests, (b) shrublands, (c) woody savannas, and (d) savannas and grasslands. Red lines indicate the slope 
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between both datasets based on ordinary least squares (OLS) with corresponding r2 values, while blue lines 
are based on orthogonal distance regression (ODR). For the scatter plots, darker gray or black indicates a 
greater density of points. This comparison was made for a subset of MTBS and Global Fire Atlas perimeters 400 
using selection criteria for perimeter overlap and VIIRS active fire detections described in Section 2.3.    
 
Initial assessment of the accuracy of fire duration estimates from the Global Fire Atlas highlighted 
differences in the sensitivity of satellite-based burned area and active fire products to fire lifetime (Fig. 6). 
Similar to fire perimeters, the best agreement in fire duration estimates was found for forests, where the 405 
Global Fire Atlas reproduced 51% of the observed variance of the fire duration estimates based on 
combining MTBS fire perimeters with active fire detections. Shrublands, woody savannas, and savannas 
and grasslands had lower correlations, with 27%, 30% and 33% of the variance explained, respectively. 
The orthogonal distance regression resulted in slopes close to the one-to-one line for shrublands and 
savannas and grasslands, indicating reasonable agreement. Fire duration was clearly underestimated for 410 
forested ecosystems with high fuel loads, as fires may continue to smolder for days (resulting in active fire 
detections) after the fire has stopped expanding.  
 
The comparison of Global Fire Atlas data to a small dataset (n = 15) of daily perimeters of large wildfires 
in primarily forested cover types mapped by the US Forest Service yielded good correspondence between 415 
estimates of fire size, duration, and expansion rates (Fig. 7). The improved comparison of fire size (cf. Fig. 
5a and 7a) could be related to the US Forest Service data being more accurate than MTBS, but likely also 
represents the good performance of the Global Fire Atlas (e.g. compare Figs. 7a, b and c to Figs. 7d, e and 
f) and underlying burned area products (Fusco et al., 2019) for relatively large fires. In contrast to the 
suggested underestimate of fire duration shown in Fig. 6a, these data suggest the Global Fire Atlas may 420 
slightly overestimate fire duration. This difference may reflect the fact that active fire detections may be 
triggered by smoldering while the burned area product will only register the initial changes in surface 
reflectance from fire. Both comparisons (Figs. 6, 7b and 7e) suggest the Global Fire Atlas may overestimate 
the duration of smaller fires with relatively short duration, likely based on the uncertainty in underlying 
burn dates. Based on a small underestimate of overall burned area and overestimate of fire duration by the 425 
Global Fire Atlas, the average daily fire expansion rates based on US Forest Service data were higher than 
estimates based on Global Fire Atlas data (Fig. 7c and f).     
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Figure 7: Comparison of Global Fire Atlas (GFA) and US Forest Service (FS) data for a selected 430 
number of large wildfires in the US. Comparison of (a) fire size, (b) duration, and (c) average daily 
expansion rate for all fires (N=15), (d, e and f) are like (a, b and c) but for fires smaller than 250 km2 
(N=12). Correlation coefficients are provided based on linear regression with (yellow) and without (green) 
an intercept, assuming a non-zero intercept could indicate a structural offset between both datasets. Root-
mean-square deviations (RMSD) are reported in blue.  435 
 

3.2 Characterizing global fire regimes 
 
Over the 14-year study period we identified 13,250,145 individual fires with an average size of 4.4 km2 
(Table 1) and minimum size of one MODIS pixel (21 ha or 0.21 km2). On average, largest fires were found 440 
in Australia (17.9 km2), boreal North America (6.0 km2), and northern hemisphere Africa (5.1 km2), while 
central America (1.7 km2), equatorial Asia (1.8 km2), and Europe (2.0 km2) had the smallest average fire 
sizes (Table 1). Spatial patterns of the number of ignitions and fire sizes were markedly different and often 
inversely related (Fig. 8). Burned area in agricultural regions and parts of the humid tropics, particularly in 
Africa, resulted from high densities of fire ignitions and relatively small fires, consistent with widespread 445 
use of fire for land management. Large fires accounted for most of the burned area in arid regions, high 
latitudes, and other natural areas with low population densities and a sufficiently long season of favorable 
fire weather (Fig. 8).  
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 450 
Figure 8: Average global burned area (MCD64A1), ignition density, and fire size over the study 
period 2003 – 2016. For any given location, burned area in panel (a) can be represented as the product of 
ignitions per year shown in (b) and fire size shown in (c).   
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 455 
Figure 9: Average fire duration (a), fire line length (b), and daily expansion (c) over the study period 
2003 – 2016. Fire size (see Fig. 7c) is the product of fire duration (a) and daily fire expansion (c). 
 
Global patterns of fire duration and expansion rates provide new insight about the occurrence of large fires, 
as the size of each fire (km2) is the product of fire duration (days) and daily fire expansion rate (km2 day-1). 460 
Individual fires that burned for a week or more occurred frequently across the productive tropical grasslands 
and in boreal regions (Fig. 9a, Table 2). In these regions, fire duration exerted a strong control on fire size 
and total burned area. On average, human-dominated landscapes such as deforestation frontiers or 
agricultural regions experienced smaller and shorter fires compared to natural landscapes (Table 2). Fire 
duration was also relatively short in semiarid grasslands and shrublands characterized by high daily fire 465 
expansion rates, based on the development of long fire lines (Fig. 9b and c) and high velocity. In these 
semiarid regions, fire duration and size were likely limited by fuel availability and connectivity. In line with 
these findings, largest average daily expansion rates were found in Australia (1.7 km2 day-1), northern 
hemisphere Africa (0.9 km2 day-1) and southern hemisphere Africa (0.9 km2 day-1), and smallest expansion 
rates in central America (0.3 km2 day-1), equatorial Asia (0.3 km2 day-1), and southeast Asia (0.4 km2 day-470 
1; Table 1). 
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Figure 10: Average fire speed (a) and the dominant direction of fire spread (b) over the study period 
2003 – 2016. For each 0.25° grid cell the direction was estimated as the dominant fire spread direction of 475 
fires larger than 10 km2 within the grid cell. We focused on larger fires (≥ 10 km2) to determine the dominant 
spread direction, because large fires will generally express a clearer spatiotemporal structure of fire spread 
at 500 m daily resolution. Pie charts show the fraction of individual larger fires (≥ 10 km2) by dominant 
spread direction for each continent.   
 480 
The fastest fires occurred in arid grasslands and shrublands (Fig. 10a), where fuel structure, climate 
conditions, and emergent properties of large wildfires contribute to high fire spread rates. Relatively high 
fire speeds were also observed in some parts of the boreal zone, particularly in central and western Canada. 
Lowest fire velocities were observed in infrequently burning humid tropical regions where fire spread was 
influenced by higher fuel loads and humidity (Table 1). At all scales, estimated fire direction exhibited 485 
considerable complexity (Fig. 10b). With some regional exceptions, no clear dominant spread direction was 
found in South America or Africa. Based on the underlying 500 m data layers, landscape structure and 
drainage patterns played an important role in controlling individual fire spread direction in the humid 
tropics. Fire spread direction also varied considerably within individual fires, and the dominant direction 
typically represented less than half of the pixels. Fire spread direction was more consistent in the arid 490 
tropics, as demonstrated by the northwest and southeast orientation of fire spread in Australia, consistent 
with the dominant wind directions. At mid-latitudes, we found evidence for more east and westward fire 
progression in Europe and Asia and northwest and southeast spread direction in North America, broadly 
consistent with the orientation of mountain ranges and other topographic features within the key biomass 
burning regions.  495 
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Table 1: Fire attributes for each Global Fire Emissions Database (GFED) region during 2003 – 2016. 
Ignitions are the summed ignitions over the study period (2003 – 2016). For size, duration, expansion, and 
speed we report the mean values for individual fires and also the mean weighted by fire size (the latter 
estimate is provided in parentheses). For ignitions, regions with over one million ignitions are shown in red 500 
and lower values in blue, for other fire aspects values equal to or above the global average are shown in red 
and below the global average in blue. A map of the GFED regions is shown in the annex material (Fig. 
B3a). 

GFED 
Region 

Ignitions 
(2003-2016) 

Size 
 (km2) 

Duration 
(days) 

Expansion 
 (km2 day-1) 

Speed 
 (km day-1) 

World 13250145 4.4 (395.9) 4.5 (14.7) 0.6 (14.5) 0.9 (3.2) 
BONA 57613 6.0 (202.8) 5.4 (23.3) 0.5 (6.8) 1.0 (4.3) 
TENA 137900 2.9 (136.7) 4.7 (13.4) 0.5 (8.8) 0.8 (3.7) 
CEAM 229245 1.7 (28.3) 4.3 (12.2) 0.3 (1.5) 0.7 (1.4) 
NHSA 242359 3.1 (50.1) 5.1 (12.4) 0.5 (3.3) 0.8 (2.1) 
SHSA 1320177 3.0 (90.6) 4.7 (13.8) 0.5 (4.8) 0.7 (2.3) 
EURO 71233 2.0 (30.7) 4.6 (10.3) 0.4 (2.7) 0.7 (2.0) 
MIDE 86783 2.3 (22.0) 4.0 (9.8) 0.5 (2.1) 0.8 (1.9) 
NHAF 3517808 5.1 (186.2) 4.4 (14.7) 0.7 (8.6) 0.9 (3.0) 
SHAF 5000436 4.3 (232.5) 4.5 (13.5) 0.7 (9.6) 0.9 (2.6) 
BOAS 363279 3.7 (116.8) 4.5 (15.6) 0.5 (6.8) 1.0 (4.1) 
CEAS 807739 3.2 (339.7) 4.2 (11.5) 0.5 (22.7) 0.8 (5.6) 
SEAS 937810 2.2 (27.8) 4.1 (13.2) 0.4 (1.8) 0.7 (1.8) 
EQAS 117870 1.8 (13.5) 5.5 (16.4) 0.3 (0.8) 0.7 (1.3) 
AUST 358807 17.9 (2030.6) 5.0 (20.5) 1.7 (59.5) 1.2 (6.1) 

 
Table 2: Fire attributes by GFED fire type during 2003 – 2016. Ignitions are the summed ignitions over 505 
the study period (2003 – 2016). For size, duration, expansion, and speed we report the mean values for 
individual fires and also the mean weighted by fire size (the latter estimate is provided in parentheses).  For 
agriculture, we only included fires with greater than 90% of burned area classified as cropland. For 
ignitions, fire types with over one million ignitions are shown in red and lower values in blue, for other fire 
aspects values equal to or above the global average are shown in red and below the global average in blue. 510 
A map of the GFED fire types is shown in the annex material (Fig. B3b). 

GFED fire type 
Ignitions 
(2003-2016) 

Size 
 (km2) 

Duration 
(days) 

Expansion 
 (km2 day-1) 

Speed 
 (km day-1) 

All 13250145 4.4 (395.9) 4.5 (14.7) 0.6 (14.5) 0.9 (3.2) 
Boreal forest 197124 5.2 (149.2) 5.4 (20.1) 0.6 (6.5) 1.0 (4.2) 
Temporal forest 178909 2.5 (84.1) 4.1 (14.0) 0.4 (4.2) 0.8 (2.8) 
Deforestation 909826 1.4 (28.7) 3.8 (13.7) 0.3 (1.4) 0.6 (1.4) 
Savanna 9809719 5.1 (447.5) 4.6 (14.9) 0.7 (16.2) 0.9 (3.4) 
Agriculture  1631918 1.4 (26.4) 3.4 (10.3) 0.3 (2.0) 0.7 (1.9) 

 
3.3 Fire extremes 
 
The world’s largest individual fires were mostly found in sparsely populated arid and semiarid grasslands 515 
and shrublands of interior Australia, Africa, and Central Asia (Fig. 11a). Strikingly, fires of these 
proportions were nearly absent in North and South America, possibly due to higher landscape fragmentation 
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and different management practices, including active fire suppression. In arid regions of Southern Africa 
and Australia, large fires typically followed La Niña periods (e.g., 2011 and 2012), when increased rainfall 
and productivity increase fuel connectivity (Chen et al., 2017). The largest fire in the Global Fire Atlas 520 
occurred in northern Australia, burning across 40,026 km2 (about the size of Switzerland or the Netherlands) 
over a period of 72 days with an average speed of 19 km day-1, following the 2007 La Niña. The longest 
fires burned for over 2 months in seasonal regions of the humid tropics and high-latitude forests (Fig. 11b). 
Drought conditions in 2007 and 2010 caused multiple fires to burn synchronously for over two months 
across tropical forests and savannas in South America. The highest fire velocities typically occurred in areas 525 
of low fuel loads. While fires larger than 2500 km2 were nearly absent from arid grass and shrublands in 
North and South America, patterns of extremely fast-moving fires in arid grass and shrublands were similar 
to other continents. Fast-moving fires also show evidence of synchronization, for example with several 
extremely fast fires burning across the steppe of eastern Kazakhstan during 2003 (Fig. 11c).  
 530 

 
Figure 11: Location and year of the largest, longest, and fastest fires over the study period 2003 – 
2016. (a) fires larger than 2500 km2, (b) fires longer than 60 days, and (c) fires with an average velocity 
higher than 25 km day-1. The background image depicts mean MODIS normalized difference vegetation 
index (NDVI, 2003 – 2016), an indicator for large scale vegetation patterns and available fuels.  535 
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4 Discussion 
 
The Global Fire Atlas is the first freely available global dataset to provide daily information on seven key 
fire characteristics: ignition timing and location, fire size, duration, daily expansion, daily fire line, speed 540 
and direction of spread based on moderate resolution burned area data. Over the 2003 – 2016 study period, 
we identified over 13 million individual fires (≥ 21 ha) (Table 1). Characteristics of these fires varied widely 
across ecosystems and land use types. In arid regions and other fire-prone natural landscapes, most of the 
burned area resulted from a small number of large fires (Fig. 8). Fire sizes declined along gradients of 
increasing rainfall and human activity, with larger numbers of small fires in the humid tropics or other 545 
human-dominated landscapes. Multiday fires were the norm across nearly all landscapes, with some large 
fires in productive tropical grasslands and boreal regions burning for over two months during drought 
periods (Fig. 11). The dominant control on fire size also varied across ecosystems; fire duration was the 
principal control on fire size in boreal forests, whereas fuels limited the size of fast-moving fires in arid 
grasslands and shrublands (Figs. 9 and 10). Characterizing fire behavior across large scales is key for 550 
understanding fire-vegetation feedbacks, emissions estimates, fire prediction, effective fire management, 
and building mechanistic models of fires within ecosystem models. Satellite remote sensing has been widely 
used to characterize global pyrogeography (Archibald et al., 2013) and fire-climate interactions (Westerling 
et al., 2006; Alencar et al., 2011; Morton et al., 2013a; Field et al., 2016; Young et al., 2017). Despite this 
progress, large-scale understanding of individual fire behavior has remained limited by the availability of 555 
consistent global-scale data products. Analysis and future refinement of the Global Fire Atlas may be useful 
in this context, providing new insight about the response of fires to different global change drivers. 
 
Both climate and human activity exert a strong control on global burned area (Bowman et al., 2009) and 
contribute to rapidly changing fire regimes worldwide (Jolly et al., 2015; Andela et al., 2017; Earl and 560 
Simmonds, 2018). Moreover, increasing human presence in fire prone ecosystems requires increased efforts 
to actively manage fires for ecosystem conservation and human wellbeing (Moritz et al., 2014; Knorr et al., 
2016). The ignition location, spread, and duration of individual fires can be used to address new questions 
in the field of fire-climate interactions and the changing influence of human activity on fire behavior, as 
each of these metrics may respond differently to variability or change. For example, recent studies have 565 
suggested that climate warming and drying may increase fire size and burned area in the tropics (Hantson 
et al., 2017) and at higher latitudes (Yang et al., 2015). Our findings suggest that an increase in the length 
of the fire season may be the dominant driver for increases in fire activity in these ecosystems, as fire 
duration was a strong control on eventual fire sizes and burned area (Figs. 8, 9 and 11). Investigating fire-
climate interactions and human controls on burned area using the Fire Atlas data layers will benefit 570 
management efforts and science investigations, as fire alters vegetation structure (Bond et al., 2005; Staver 
et al., 2011), biogeochemical cycles (Bauters et al., 2018; Pellegrini et al., 2018) and climate (Randerson et 
al., 2006; Ward et al., 2012).  
 
The Global Fire Atlas provides several new constraints that could improve the representation of fires in 575 
ecosystem and Earth system models. Fire models embedded in dynamic vegetation models are important 
tools for understanding the changing role of fires in the Earth system and the ecosystem impacts of fires 
(Hantson et al., 2016; Rabin et al., 2017). Most global models of fire activity are calibrated using satellite-
derived estimates of total burned area or active fires (Hantson et al., 2016), rather than individual fire 
characteristics such as fire size. As a result, many of these fire models capture the spatial distribution of 580 
global fire activity but not burned area trends (Andela et al., 2017) or interannual variability that may occur 
as a consequence of changes in fire spread rate or duration. Models range from simple empirical schemes 
to complex, process-based representations of individual fires (Hantson et al., 2016; Rabin et al., 2017). 
Process-based models estimate burned area as the product of fire ignitions and size, while many models 
include a dynamic rate of spread to determine eventual fire sizes (e.g. SPITFIRE; Thonicke et al., 2010) 585 
but use arbitrary threshold values for key parameters such as fire duration (Hantson et al., 2016). We found 



20 
 

that global patterns of fire duration, ignition, size, and rate of spread (i.e. speed) varied widely across 
ecosystems and human land management types, and thus these Global Fire Atlas data products provide 
additional pathways to benchmark models of various levels of complexity. While only a few models include 
multiday fires (e.g., Pfeiffer et al., 2013; Le Page et al., 2015; Ward et al., 2018), we found that multiday 590 
fires were the norm across most biomes, and fire duration forms an important control on eventual fire sizes 
and burned area in many natural ecosystems with abundant fuels. Similarly, many models assume relatively 
homogeneous fuel beds, while our results suggest that landscape features and vegetation patterns result in 
highly heterogeneous fuel beds that form a strong control on fire spread (speed and direction). Large 
differences in fire behavior across ecosystems and management strategies may improve fire emissions 595 
estimates and emissions forecasting, particularly when combined with active fire detections to better 
characterize different fire stages including the smoldering phase (Kaiser et al., 2012). Recent studies have 
shown that fire emissions factors may vary widely depending on fire-behavior (van Leeuwen and van der 
Werf, 2011; Parker et al., 2016; Reisen et al., 2018), while improved knowledge of fire-climate interactions 
are crucial for emissions forecasting (Di Giuseppe et al., 2018).  600 
 
The Global Fire Atlas methodology builds on a range of previous studies that have used daily moderate 
resolution satellite imagery to estimate individual fire sizes (Archibald and Roy, 2009; Hantson et al., 2015; 
Frantz et al., 2016; Andela et al., 2017), shape (Nogueira et al., 2017; Laurent et al., 2018), duration (Frantz 
et al., 2016) and spread dynamics (Loboda and Csiszar, 2007; Coen and Schroeder, 2013; Sá et al., 2017). 605 
We provide the first fire progression-based algorithm to map individual fires across all biomes, including 
the first global estimates of ignition locations and timing, duration, daily expansion, fire line, speed and 
direction of spread. Several previous studies have estimated fire size distributions based on a flood-fill 
algorithm, where all neighboring pixels within a certain time threshold are classified as the same fire 
(Archibald and Roy, 2009; Hantson et al., 2015). Interestingly, we found similar spatial patterns of fire size 610 
(cf. Fig. 8 and Archibald et al., 2013; Hantson et al., 2015), although absolute estimates may show large 
differences based on the “cut off” value used within the flood-fill approach (Oom et al., 2016), and to a 
lesser extent by the fire persistence threshold used here. Spatial patterns of fire size and duration also 
compared favorably with estimates of Frantz et al. (2016) for southern Africa (Fig. 9a) and estimates of fire 
speed by Loboda et al. (2007) for Central Asia (Fig. 10a). Here we compared our results to fire perimeter 615 
estimates from the MTBS (Eidenshink et al., 2007; Sparks et al., 2015). Moderate agreement was found for 
forested ecosystems and shrublands, but results differed more in grassland biomes (Fig. 5). Interestingly, 
we found that the poor agreement in grasslands stemmed from differences in the spatial and temporal 
resolution of the burned area estimates (Fig. B2). In line with previous studies, we found that the coarser 
resolution (500 m) of the MODIS burned area data used to develop the Global Fire Atlas sometimes 620 
underestimated overall burned area (e.g. Randerson et al., 2012; Rodrigues et al., 2019; Roteta et al., 2019), 
fragmenting individual large fires. However, the Landsat-based MTBS data at 30 m resolution were unable 
to distinguish individual fires within large burn patches of fast-moving grassland fires based on infrequent 
Landsat satellite overpasses (Fig. B2).    
 625 
An initial accuracy assessment of Global Fire Atlas fire perimeter estimates for the continental US revealed 
several important limitations and opportunities for further development of individual fire characterization 
using satellite burned area data. In addition to the accuracy assessment of fire perimeters, we also 
investigated the temporal accuracy of the Global Fire Atlas (Fig. 4) as well as the fire duration estimates 
(Fig. 6) based on active fire detections. Low to moderate correlations (r2 ranging from 0.3 to 0.5) were 630 
found between Global Fire Atlas and fire duration estimates based on a combination of MTBS fire 
perimeters and VIIRS active fire detections. Disagreement partly originated from differences in fire 
perimeter estimates as well as differences between the day-of-burn estimates derived from the MCD64A1 
burned area data and VIIRS active fire detections. Moreover, the uncertainty in the burn date of the 
underlying burned area product is typically at least one day, resulting in a large uncertainty in the fire 635 
duration estimates of shorter fires (Fig. 6). The temporal accuracy of the Global Fire Atlas adjusted burned 
area compared to VIIRS active fire detections ranged from 41% on the same day and 80% within ± 1 day 
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in shrublands to and 24% (same day) and 54% (± 1 day) in forests. However, in forested ecosystems the 
use of active fire detections for validation purposes is not ideal, as fires may smolder for days, triggering 
active fire detections after the fire front has passed. Understanding the temporal accuracy of the Global Fire 640 
Atlas products is important for linking individual fire dynamics to fire weather, and we found good 
agreement between Global Fire Atlas and US Forest Service fire expansion using a 3-day running average, 
but less good agreement for individual days based on burn date uncertainty (Fig. B1). Other parameters, 
including fire speed and direction of spread, were not validated during this stage. However, our comparison 
to daily fire perimeter estimates from the US Forest Service showed good agreement in terms of average 645 
expansion rates, suggesting reasonable overall estimates of speed (Fig. 7). Overall, there is a need to develop 
additional validation methodologies and data products to advance our understanding of satellite-derived 
estimates of individual fire behavior, building on the long-standing efforts for burned area (Boschetti et al., 
2009) and active fires (Schroeder et al., 2008).     
 650 
In addition to the Global Fire Atlas algorithm, the data quality also depends on the underlying global burned 
area product (MCD64A1 c6). In particular, several recent studies have shown that moderate resolution 
burned area products are unable to adequately map the occurrence of small fires (~ ≤100 ha) in the United 
States (Fusco et al., 2019) and savanna regions of Brazil (Rodrigues et al., 2019) and Africa (Roteta et al., 
2019), resulting in a considerable underestimate of global burned area (Randerson et al., 2012; Giglio et 655 
al., 2018). Therefore, care should be taken when using the Global Fire Atlas for cropland regions or other 
regions dominated by small fires (see Fig. 8c). The quality of derived parameters in the Global Fire Atlas 
for these same regions also depends on the fire persistence threshold we used to identify when fires spread 
from one grid cell into the next. The thresholds we used may be more appropriate for analysis of fires in 
natural landscapes than in croplands with synchronized small fire activity across multiple adjacent fields. 660 
Finally, daily burned area products do not resolve the diurnal cycle of fire activity; fire lifetime and fire 
behavior may vary widely across fire regimes (Freeborn et al., 2011; Andela et al., 2015), and sub-daily 
fire dynamics cannot be resolved in the Global Fire Atlas. In line with these limitations, we found that 
Global Fire Atlas data performed best for large fires (Figs. 5, 6 and 7). Further development of the Fire 
Atlas product suite is possible based on improvements in the underlying burned area data from multiple 665 
satellite sensors as well as new active fire products at higher spatial resolution (e.g., VIIRS). The Global 
Fire Atlas algorithm provides a flexible framework that can be easily adjusted to work at different spatial 
or temporal resolutions. 
 

5 Data availability 670 
 
The data are freely available at http://www.globalfiredata.org in standard data product formats and updates 
for subsequent years will be distributed pending availability of MCD64A1 burned area data and associated 
research funding. Global per-fire-year shapefiles of the ignition locations (point) and individual fire 
perimeters (polygon) contain attribute tables with a unique fire ID, ignition location, start and end dates, 675 
size, duration, and average values of the daily expansion, daily fire line, speed, and direction of spread (Fig. 
1, Table A1). In addition, gridded 500 m global maps of the Global Fire Atlas adjusted burn dates, daily 
fire line, speed and direction of spread are available in GeoTIFF format. A monthly gridded GeoTIFF 
product is also available at 0.25° resolution. Global Fire Atlas data products can also be visualized and 
evaluated using an online tool at http://www.globalfiredata.org to explore individual fire characteristics for 680 
a selected region of interest.  
 

6 Conclusions 
 
The Global Fire Atlas is a new publicly available global dataset on seven key fire characteristics: ignition 685 
location and timing, fire size, duration, daily expansion, daily fire line, speed, and direction of spread. Over 
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the 2003 – 2016 study period, we identified 13,250,145 individual fires (≥ 21 ha) based on the moderate 
resolution MCD64A1 collection 6 burned area data. Striking differences were observed among global fire 
regimes along gradients of ecosystem productivity and human land use. In general, in ecosystems of 
abundant fuel and low human influence, large fires of long duration dominated total burned area, with small 690 
fires contributing most to overall burned area in human-dominated regions or areas too wet for frequent 
fires. Fires moved quickly through arid ecosystems with low fuel densities but fire sizes were eventually 
limited by fuels from natural or human landscape fragmentation. The dataset enables new lines of 
investigation for understanding vegetation-fire feedbacks, climatic and human controls on global burned 
area, fire forecasting, emissions modeling, and benchmarking of global fire models.      695 
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Appendix A: Supporting material for the methods 
 
Table A1: Overview of the Global Fire Atlas data-layers. The shapefiles of ignition locations (point) 
and fire perimeters (polygon) contain attribute tables with summary information for each individual fire, 700 
while the underlying 500 m gridded layers reflect the day-to-day behavior of the individual fires. In 
addition, we provide aggregated monthly layers at 0.25° resolution for regional and global analyses.  
 Shapefile attributes* 500 m daily 

gridded 
0.25° monthly 
gridded 

Ignitions location and timing - sum 
Perimeter (km) per fire  - - 
Size (km2) per fire  - average  
Duration (days) per fire  - average  
Daily fire line (km) average per fire  yes average  
Daily fire expansion (km2 day-1) average per fire  - average  
Speed (km day-1) average per fire yes average  
Direction of spread (-) dominant per fire yes dominant 
Day of burn - yes - 
* vector data are derived from the underlying 500 m MODIS data.  
 

 705 
Figure A1: Burn date adjustment to remove local minima that are not associated with ignition points. 
(a) MCD64A1 burn date estimate for the 2015 example fires in the Brazilian Cerrado ecosystem, (b) local 
minima within (a). (c) Burn date adjustment after the first iteration, and (d) resulting local minima. (e) Burn 
date adjustment after the second iteration, and (f) resulting local minima. (g) Burn date adjustment after the 
third iteration, and (h) resulting local minima. Note that for these particular fires there was no difference 710 
between (e and f) and (g and h), and the final iteration has no added value here. We found that multiple 
iterations were particularly beneficial for slow moving fires in forested ecosystems.  
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Figure A2: Tradeoffs between reducing local minima not associated with ignition locations and 715 
adjustments made to the global burned area product. (a) Local minima (ignitions) detected within the 
daily 500 m global burned area data for 2015 after different number of iterations of the ignition point filter, 
(b) corresponding fraction of burned area pixels with adjusted burn date, and (c) corresponding number of 
burned area pixels adjusted divided by the reduction in ignition count. In this study, we used three iterations 
of the ignition point filter (indicated with the intermittent lines in figures a, b and c), and “0 iterations” 720 
refers to the original MCD64A1 col. 6 burned area data. 
 

 
Figure A3: Average fire persistence threshold at 0.25° resolution. The fire persistence threshold 
determines how long a fire may take to spread from one 500 m grid cell into the next. We used a 4-day fire 725 
persistence threshold for 500 m grid cells that burned more than 3 times during the study period (2003 - 
2016), and a 6, 8 and 10-day fire persistence period for grid cells that burned 3 times, 2 times, or 1 time, 
respectively. 
  
  730 
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Appendix B: Supporting material for the results and discussion 
 

 
Figure B1: Comparison of daily Global Fire Atlas (GFA) and US Forest Service (FS) data for a 
selected number of well characterized wildfires in the US. (a) The accumulated daily fire size (for all 735 
fires, N=15) illustrates the ability of the Global Fire Atlas to reproduce individual large fire sizes at any 
specific day over the fire lifetime (each blue dot indicates the size of a specific fire on a specific day). (b) 
A 3-day running average of the daily growth or “expansion” of each fire (km2 day-1) and (c) the daily 
expansion on each day of each fire. Figures (d), (e), and (f) are like (a), (b), and (c), but for US Forest 
Service fire sizes smaller than 500 km2 or expansion rates lower than 250 km2 day-1 and corresponding 740 
Global Fire Atlas estimates (see intermittent boxes on top-figures).  
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Figure B2: Comparison of Global Fire Atlas perimeters and ignition locations to estimates based on 
MTBS and VIIRS for frequently-burning grasslands in Kansas, USA. (a) Global Fire Atlas adjusted 745 
burn dates from MCD64A1, (b) per-pixel comparison of adjusted burn dates used within the Global Fire 
Atlas (GFA) to the day of the active fire detection from VIIRS, (c) ignition points as estimated by the Global 
Fire Atlas, (d) manually interpreted ignition locations (red circles) based on VIIRS active fire detections on 
top of MTBS fire perimeters, (e) individual fires as estimated by the Global Fire Atlas, and (f) the MTBS 
burned area and individual fires. Here, MCD64A1 data underestimated the total burned area compared to 750 
the visual interpretation of Landsat data within the MTBS project, resulting in fragmentation of individual 
large fires. However, the daily temporal resolution of MODIS imagery allowed the Global Fire Atlas to 
distinguish individual fires and ignition points within larger burn scars that cannot be resolved from 
infrequent Landsat observations used to delineate fire perimeters within the MTBS project. Broad patterns 
of ignition locations identified by the Global Fire Atlas were confirmed by manual interpretation of patterns 755 
inferred from VIIRS active fire detections (d).    
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Figure B3: Global Fire Emissions Database (GFED) regions and dominant GFED fire types used for 
Tables 1 and 2. (a) GFED regions used in Table 1, and (b) GFED dominant fire type as used in Table 2. 
Abbreviations of the GFED regions shown in (a) are: boreal North America (BONA), temperate North 760 
America (TENA), Central America (CEAM), northern hemisphere South America (NHSA), southern 
hemisphere South America (SHSA), Europe (EURO), Middle East (MIDE), northern hemisphere Africa 
(NHAF), southern hemisphere Africa (SHAF), boreal Asia (BOAS), Central Asia (CEAS) southeast Asia 
(SEAS), equatorial Asia (EQAS), and Australia and New Zealand (AUST). Abbreviations of the GFED 
fire types shown in (b) are: boreal forest (BOAF), Temperate forest (TMPF), Tropical forest deforestation 765 
(DEFO), savanna (SAVA) and agriculture (AGRI).   
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