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Reviewer # 1 suggestions and author response 
 

General comment 

 

Andela et al., present a novel and very important dataset of several important fire characteristics globally 

on a daily basis. This dataset will serve earth system and social scientists on topics ranging from (but not 

limited to) fire emission estimates in earth system modelling, feedback between fires and ecosystem, fire 

management and studies of socio-economic feedback of fires. The manuscript is well written and the 

underlying methodologies have been explained precisely. Being the first dataset of such kind, a complete 

validation was challenging. However the authors have used the available resources, e.g. VIIRS (globally 

for four different ecosystems) for burn date, MTBS in the US for the fire perimeter and a combination of 

both for the fire duration. 

 

The dataset, however, has a large uncertainty for short fires (persisting for less than a day, for example, 

crop residue fires), which is acknowledged in the discussion. I have only minor comments regarding this 

manuscript and recommend publication of this manuscript in ESSD after the authors have addressed 

them: 

 

We thank the reviewer for his/her constructive comments and thoughtful review. Please find our detailed 

response along with the suggested changes to our manuscript below. Note that we will upload the updated 

manuscript using track change (in response to both reviews) in a separate post.   

 

Specific comments: 

 

The methodology considers clusters of fires in a given fire season (12 months) as a starting point. What if 

the fires season is less than 12 months? For example, the same area is burnt twice after a gap of six 

months? As per my understanding, the local minima filter will only assign it to the later burnt date of the 

fire season. This will also have consequences on the estimation of fire duration and perimeter. 

 

This is correct, we try to minimize the amount of pixels that burned twice during a single burning season 

by defining the burning season as “5 months before until 6 months after the month of maximum mean 

burned area” for each individual 10° x 10° MODIS tile. In most of the world (particularly areas that burn 

frequently) the fire season is quite clearly defined, e.g. wet and dry seasons in the tropics or cold winters 

and warm summers at higher latitudes; however, in regions without clear seasonality (e.g. always dry or 

wet), or some areas with both natural and cropland fires, our methodology is not ideal. In case there was 

overlap between two burning events we only retain the earliest burn dates. Therefore, a small fraction 

(<1%) of global burned area is effectively removed from our dataset, indeed affecting fire perimeters by 

reducing overall burned area. The advantage of our methodology is that we can produce user friendly 

global “annual” layers of fire behavior, both gridded at 500-m resolution, as well as in the form of 

shapefiles.  

 

In response to this suggestion will more clearly explain these tradeoffs. In particular, we will rephrase 

lines 134-135 to: “This approach results in a small reduction of total burned area, but allows us to produce 

user friendly global annual layers in both gridded and shapefile format.” 

 

The authors conclude that this dataset is useful for emission modelling. In my opinion, the authors should 

also acknowledge the limitation of this dataset for use in atmospheric models for emission estimates from 

fires. The Global Fire Atlas does not take into account the smoldering stage of fires, which significantly 

contribute to gas and particle emissions. In this context, the work of Kaiser et al., 2011 should be 

mentioned, which uses the fire radiative power for emission estimates. Kaiser, J. W., et al. (2012), 
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Biomass burning emissions estimated with a global fire assimilation system based on observed fire 

radiative power, Biogeosciences, 9(1), 527-554, doi:10.5194/bg-9-527-2012. 

 

We fully agree with this suggestion, although our estimates of fire behavior may provide some first 

guidance on where smoldering may occur (e.g. slow multi-day fires), or where fires may burn more 

intensely (e.g. high speed), this is further modified by e.g. fuel loads and conditions. Moreover, it often 

remains unclear how the combination of fire behavior and fuels modify emissions factors (i.e. 

composition of emissions), and thus eventual emissions of different trace gasses and aerosols. 

 

In the updated manuscript, we will discuss this in more detail. In particular, we will change lines 546-547 

to “Large differences in fire behavior across ecosystems and management strategies may improve fire 

emissions estimates and emissions forecasting, particularly when combined with active fire detections to 

better characterize different fire stages including the smoldering phase (Kaiser et al., 2012).” 

 

Page 4, line 155: What fraction of local minima is discarded after each iteration step? This information is 

important for optimization of the number of iteration (which was taken to be 3 in the present work). 

 

During our development phase we had looked into this for a number of individual MODIS tiles, and 

found that 3 iterations may provide an optimal threshold across different ecosystems. We also found that 

forest fires may generally require more iterations than fast-moving grassland fires. In the updated 

manuscript we will include a new supplementary figure visualizing these tradeoffs, to support our 

decision of 3 iterations (Fig. 1 here).     

 

 
Figure 1 (new Fig. A2 in manuscript): Tradeoffs between reducing local minima not associated with 

ignition locations and adjustments made to the global burned area product. (a) Local minima 

(ignitions) detected within the daily 500 m global burned area data for 2015 after different number of 

iterations of the ignition point filter, (b) corresponding fraction of burned area pixels with adjusted burn 

date, and (c) corresponding number of burned area pixels adjusted divided by the reduction in ignition 

count. In this study, we used three iterations of the ignition point filter (indicated with the intermittent 

lines in figures a, b and c), and “0 iterations” refers to the original MCD64A1 col. 6 burned area data.       

 

Figure 4: The horizontal axis legend ( burn date (burned area minus active fires)) is not clear to me. 

 

The horizontal axis indicates the difference in burn date between VIIRS active fire detections and the 

burned area datasets (MCD64A1 c6 and the adjusted burned area data by the Global Fire Atlas). This is 

calculated as the burn date of the burned area data minus the associated burn date of the (first) 

corresponding active fire detection. Thus, a negative number indicates that the burned area was detected 
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before the active fire detection, zero indicates a perfect match, and a positive number indicates that the 

burned area was detected later than the first active fire detection.  

 

We will change the x-axis label to “Difference in day of burn compared to VIIRS (days)” and change the 

y-axis label to “Pixel fraction”.  

Then, we will change the figure caption to: “Per pixel global comparison of burn dates derived from 

the MCD64A1 burned area product, adjusted burn dates of the Global Fire Atlas, and VIIRS active 

fire detections (2012 – 2016). (a) Forests, (b) shrublands, (c) woody savannas, and (d) savannas and 

grasslands. Negative values indicate pixels with a burned area day of burn earlier than the first 

corresponding VIIRS active fire detection, zero indicates no difference in day of burn between both 

datasets, and positive numbers indicate a delayed detection of burned area compared to active fire 

detections.”  

 

Figure 7: Please check the units in the middle panel (for ignitions). 

 

Although we believe the units are correct, we appreciate that the units on this figure may be somewhat 

confusing. In particular because we state that burned area is the product of ignitions and size. We think 

the confusion arises because the exact surface area of a 0.25° grid cell varies with latitude, therefore we 

feel that for ignitions it makes most sense to report the “ignition density” per unit of area per year. In a 

similar fashion we report burned area as a fraction per year rather than in square kilometers per year.  

 

For clarity, we will change the figure label “(b) Ignitions (km
-2

 yr
-1
)” to “(b) Ignition density (km

-2
 yr

-1
)”. 

Also, we will further clarify this in the figure caption: “Figure 8: Average global burned area 

(MCD64A1), ignition density, and fire size over the study period 2003 – 2016. For any given area (a) 

burned area in km
2
 per year would be the product of (b) ignitions per year and (c) fire size in km

2
. 

However, because the size of a 0.25° grid cell varies with latitude we have converted the units of burned 

area to fraction (%) per year and of ignitions to number per km
2
 per year for spatial consistency.” 

 

The discussion regarding fire direction on page 14 is relatively weak. The fire directions are highly 

variable depending on topographical features, prevalent wind field and fuel availability. What can one 

conclude from such variable fire direction and how this information is useful? 

 

We had also anticipated a stronger effect of the dominant wind direction. Therefore, we think that 

variability in fire direction is an interesting finding on its own. As we show, landscape features and other 

factors play an important role in fire spread direction, leading to heterogeneous patterns of fire spread in 

all biomes. This finding may help improve global fire models, for example, since models often assume 

that fire growth can be described by relatively simple growth equations with homogenous fuel beds. Our 

work adds to an increasing body of evidence that landscape heterogeneity and associated variability in 

fuel conditions have a strong influence on global fire behavior across scales. 

 

We will add an additional sentence to the discussion section to highlight to potential new insights for fire 

modeling (line 546): 

“In a similar fashion, many models assume relatively homogeneous fuel beds, while our results suggest 

that landscape features and vegetation patterns result in highly heterogeneous fuel beds that form a strong 

control on fire spread (speed and direction).” 

 

The Global Fire Atlas dataset is available for the year 2003-2016. Will this dataset be continuously 

updated? Given that the dataset is so important, the authors should provide information of update 

frequency and policy. 
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We aim to update the dataset annually, with a delay of about 1 year. Because of the “per fire year” 

processing the algorithm requires burned area data up to 6 months after the calendar year ends to process 

a given year while the burned area product (MCD64A1 col. 6) is also released with a few months delay.  

 

We will also mention this in the “Data availability” section: “The data are freely available at 

http://www.globalfiredata.org in standard data product formats and updates for subsequent years will be 

distributed pending availability of MCD64A1 burned area data and associated research funding.” 

 

Reference: 

 

Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., Morcrette, J. J., 

Razinger, M., Schultz, M. G., Suttie, M. and van der Werf, G. R.: Biomass burning emissions estimated 

with a global fire assimilation system based on observed fire radiative power, Biogeosciences, 9(1), 527–

554, doi:10.5194/bg-9-527-2012, 2012. 
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Reviewer # 2 suggestions and author response 
 

The paper is relevant as it tries to provide a new approach to the analysis of fire regimes, by analyzing 

different parameters of individual fires extracted from global burned area products. This effort is relevant 

to better parameterize fire models, as well as to understand fire trends affected by changing climate and 

socio-economic conditions.  

 

We thank the reviewer for his/her review and thoughtful suggestions. Please find a detailed response to 

the individual suggestion along with proposed changes below. Note that we will upload the updated 

manuscript using track change (in response to both reviews) in a separate post.   

 

The main problem I found in this paper is their ambition to qualify single fire activity from a product that 

was not derived from this purpose. Recent papers (Padilla et al., 2015; Padilla et al., 2014) have found 

that global burned area products have important omission and commission errors, particularly for small 

fires Chuvieco et al., 2018; Roteta et al., 2018. They provide a good image of fire activity at global scale, 

meanwhile the analysis is done at global or at much continental scale. However, establishing 

characteristics of single fires from these products may be quite misleading. If the authors do not provide 

better validation datasets, the parameters they analyze at global scale may be in fact confusing. In my 

view, this is the main weakness of the paper. The authors are assuming estimations from a dataset that is 

not really validated. Until the MCD64A1 is fully validated, and we better understand their strengths and 

weaknesses, deriving such detailed analysis as presented in this paper may create more confusion than 

knowledge.  

 

We appreciate this suggestion, and are aware of the shortcomings of moderate resolution (500-m) satellite 

imagery (e.g. omission of small fires). Unfortunately, the high resolution satellite data (e.g. Landsat or 

Sentinel-2) and derived products do not provide the temporal accuracy required to track individual fires 

and their behavior. In response to this comment, we would like to make the following clarifications. First, 

the use of moderate resolution satellite imagery to track individual wildfire behavior is an already widely 

used concept (e.g. Loboda and Csiszar, 2007; Archibald and Roy, 2009; Veraverbeke et al., 2014; 

Hantson et al., 2015; Benali et al., 2016; Frantz et al., 2016; Fusco et al., 2016; Nogueira et al., 2016; 

Oom et al., 2016; Laurent et al., 2018). Building on these previous studies, our manuscript provides an 

improved global approach to identify individual fires and characterize their behavior based on an 

algorithm that identifies ignition locations and then tracks how the fire expands through time. Second, our 

aim was to develop a flexible algorithm that leverages availability of daily satellite observations at 

moderate resolution but can be applied easily to other (global) daily burned area data sets. The MCD64A1 

col. 6 burned area product (succeeding MCD45 and MCD64A1 col. 5) is currently among the most 

widely used and best performing global burned area products (e.g. Padilla et al., 2015; Giglio et al., 2018; 

Humber et al., 2018), hence our choice for this data set. The MCD64A1 col. 6 data has now been 

officially released by NASA and was Stage-2 validated against 108 Landsat scenes (Giglio et al., 2018), 

and although we are looking forward to see additional validation, we see no reason why the data should 

not be used in the interim. Given the aim of our work (i.e. to develop a flexible algorithm to track 

individual fire behavior in daily global burned area products), we focus on the quality of the derived 

products (e.g. burn date accuracy), rather than on absolute burned area (e.g. omission of small fires), 

although clearly many of these aspects are not entirely independent. During the coming years, we are 

looking forward continue to develop our algorithm and apply it to the latest generation of improved daily 

burned area products, e.g. from VIIRS. Moreover, there would be no reason why our algorithm could not 

be applied to high resolution (20/30m) satellite data, if (close to) a near daily revisiting time would be 

achieved within the next decade or so. 
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In response to this suggestion we will include additional validation data (see detailed response below) and 

we will make several textual clarifications to more extensively discuss previous work, highlight the 

objectives of our paper, and the dependency of our “derived” product on the underlying burned area data. 

Specifically, we will make the following textual changes: 

 

Line 107 “The Global Fire Atlas algorithm can be applied to any moderate resolution daily global burned 

area product, and the quality of the resulting dataset depends both on the Fire Atlas algorithm as well as 

the underlying burned area estimates. Here we applied the algorithm to the MCD64A1 collection 6 

burned area dataset (Giglio et al., 2018) and the minimum detected fire size is therefore one MODIS pixel 

(21 ha). Several studies have shown that the MCD64A1 col. 6 burned area product provides a 

considerable improvement compared to previous generation of moderate resolution global burned area 

products (Padilla et al., 2015; Giglio et al., 2018; Humber et al., 2018).” 

 

Line 552: “The Global Fire Atlas methodology builds on a range of previous studies that have used daily 

moderate resolution satellite imagery to estimate individual fire sizes (Archibald and Roy, 2009; Hantson 

et al., 2015; Frantz et al., 2016; Andela et al., 2017), shape (Nogueira et al., 2017; Laurent et al., 2018), 

duration (Frantz et al., 2016) and spread dynamics (Loboda and Csiszar, 2007; Coen and Schroeder, 

2013; Sá et al., 2017).” 

 

Line 568: “In line with previous studies, we found that the coarser resolution (500 m) of the MODIS 

burned area data used to develop the Global Fire Atlas sometimes underestimated overall burned area 

(e.g. Randerson et al., 2012; Roteta et al., 2019), fragmenting individual large fires. However, the 

Landsat-based MTBS data at 30 m resolution were unable to distinguish individual fires within large burn 

patches of fast-moving grassland fires based on infrequent Landsat satellite overpasses (Fig. B2).” 

 

Line 604: “The Global Fire Atlas algorithm provides a flexible framework that can be easily adjusted to 

work at different spatial and/or temporal resolutions.” 

 

In fact the comparison (validation is not an adequate term for what the authors include in the manuscript) 

analysis show a high degree of uncertainty even for the simplest variable (fire perimeter). When 

perimeters are compared with those derived from higher resolution data (MTBS), the correlations are low 

(for the authors, line 578: they are “reasonable correlations (r2 ranging from 0.3 to 0.5)”, but we should 

remember that they imply than 70-50% of the variance is unexplained). Therefore, in my opinion the 

subsequent analyses derived from this dataset are quite likely to be erroneous. The comparison they made 

with active fires and MTBS shows also poor agreements in all biomes. What about fire speed or 

direction?  

 I suggest that they at least compare their results with specific very large fires where fire growth is 

available for different forest services, to check if at least for those large fires their estimations are correct. 

Very large fires could also be assessed using Landsat data, at least for fire perimeter-size and shape. Are 

you sure that Australia had a single fire of 42.000 km2? They could also compare their outputs with 

models of global fire weather conditions (Jolly et al., 2015; Pettinari and Chuvieco, 2017), as well as 

include some comparisons with fire spread and duration published by fire behavior experts. 

 

The numbers (“r
2
 ranging from 0.3 to 0.5”) refer to the fire duration estimates that have higher uncertainty 

than perimeters (read line 578: “Reasonable correlations (r
2
 ranging from 0.3 to 0.5) were found between 

Global Fire Atlas and fire duration estimates ..”), that show an average r
2
 of 0.51 across land cover types. 

We appreciate that much of the variance remains unexplained, but we are encouraged by these results. For 

example, although Landsat-based MTBS provides better estimates of overall burned area, the underlying 

data lack the temporal revisit frequency to identify individual fires in low biomass ecosystems where fires 

are typically short and move fast. As we will show in our new supplementary figure (Fig. 1 here), the 

Global Fire Atlas clearly outperforms MTBS in terms of identifying individual ignition locations, which 
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explains why the r
2
 values of fire perimeters drop from 0.65 in forests to 0.38 for grasslands (a similar 

decline in agreement was found for fire duration, with r
2
=0.51 for forest and r

2
=0.33 for grasslands). This 

is an important finding on its own, since MTBS is a widely used dataset. Because the uncertainty arises 

both from the Global Fire Atlas and the (combined) MTBS and VIIRS datasets, the use of least square 

regression is in fact not representative for estimating data quality, we therefore also use orthogonal 

distance regression that accommodates uncertainties in both datasets and shows better overall agreement.  

 

Although we agree that an extensive comparison to daily fire perimeters would be a great form of 

validation for day-of-burn, fire duration, expansion rates and final perimeter, these data are unfortunately 

not available at the ease and scale that the reviewer suggests. In response to this suggestion we have 

requested available data from the US Forest Service and manually compiled a small dataset consisting of 

15 fires that were reasonably well documented (this is not the case for the majority of fires). In line with 

good agreement between Global Fire Atlas and MTBS estimates of fire perimeters in forested ecosystems 

(Figs. 5 and 6 in manuscript), very good agreement was found between Global Fire Atlas estimates and 

US Forest Service estimates of fire size (km
2
; r

2
=1.00), duration (days; r

2
=0.87), and daily expansion 

(km2 day
-1

; r
2
=0.97; see Fig. 2 here). The comparison also highlights some of the shortcomings of the 

Global Fire Atlas data that we already discuss; for example, we observed that the Global Fire Atlas tended 

to somewhat underestimate fire size and overestimate (small) fire duration, resulting in conservative 

estimates of fire expansion.  

 

These data also allowed us to explore how well the Global Fire Atlas characterizes fire growth dynamics 

(Fig. 3 here). We find very good agreement between Global Fire Atlas and US Forest Service estimates of 

fire size at any specific point in time (r
2
=1.00), good agreement between a 3-day running average of fire 

expansion rates from both sources (r
2
=0.94), and somewhat reduced agreement for daily expansion rates 

from both sources (r
2
=0.79). This reduced performance for daily estimates originates from the 

considerable uncertainty in the exact burn date in the burned area product (see Fig. 4 in manuscript), and 

thus the attribution of fire expansion rates to a specific day. In addition, we find that the Global Fire Atlas 

data compares particularly well for large fires or expansion rates, with lower r
2
 values for smaller fires 

and expansion rates (e.g. compare upper and lower panels of Figs. 2 and 3 here). The combination of very 

precise fire perimeter maps from the US Forest Service and the focus on large fires, likely explains why 

the Global Fire Atlas shows better agreement in Fig. 2 here compared to Fig. 5 in the manuscript. 

Therefore we expect that extremely large fires, like the fire in Australia the reviewer mentions, are among 

the fires that are best captured by the Global Fire Atlas data. Large fires are generally well mapped by 

moderate resolution burned area algorithms (e.g. Fusco et al., 2019) as well as easy to characterize from 

the Global Fire Atlas perspective. 

 

To respond to the specific comment concerning the suggestion of comparing our estimated daily fire 

behavior to fire weather indices, we have great interest in this, and it is something we are currently 

working on in a separate manuscript.  

 

In addition to the new figures (Fig. 1-3 here), we will make a number of textual additions/clarifications: 

 

Line 276: “Finally, we compared Global Fire Atlas data to a small (manually compiled) dataset of daily 

fire perimeters from the US Forest Service.” 

 

Line 318: “For specific large wildfires across the western USA, the US Forest Service National Infrared 

Operations (NIROPS; https://fsapps.nwcg.gov/nirops/) derives estimates of daily fire perimeters for fire 

management purposes by collecting night-time high resolution infrared imagery. This imagery is 

manually analyzed by trained specialists to extract the active fire front. Although these data provide a 

wealth of information, only few fires were completely and precisely documented. From their database we 

were able to extract 15 large fires for which daily perimeter information was available. Although 

https://mail02.ndc.nasa.gov/OWA/redir.aspx?C=ipms6WD7iGYG7CmDZpZg1htEBwi7XAeK_tMge_6B7qiwBjHniYDWCA..&URL=https%3a%2f%2ffsapps.nwcg.gov%2fnirops%2f
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insufficient for full scale validation, results provide valuable insights into the strengths and shortcomings 

of the Global Fire Atlas estimates of individual fire size, duration and expansion rates. In addition, we 

compared day-to-day expansion rates (km
2
 day

-1
) of individual large fires across both datasets. If multiple 

Global Fire Atlas perimeters overlapped with a single US Forest Service fire perimeter, we compared the 

fires with the largest overlapping surface area.” 

 

Line 346: “In line with these findings, we found good agreement between a 3-day running average of 

Global Fire Atlas and US Forest service estimates of daily fire expansion, but reduced correspondence for 

daily estimates of fire growth rates due to uncertainty in the day-of-burn of the burned area product (Fig. 

B1).” 

 

Line 392: “The comparison of Global Fire Atlas data to a small dataset (n = 15) of daily perimeters of 

large wildfires in primarily forested cover types mapped by the US Forest Service yielded good 

correspondence between estimates of fire size, duration, and expansion rates (Fig. 7). The improved 

comparison of fire size (cf. Fig. 5a and 7a) could be related to the US Forest Service data being more 

accurate than MTBS, but likely also represents the good performance of the Global Fire Atlas (e.g. 

compare Figs. 7a, b and c to Figs. 7d, e and f) and underlying burned area products (Fusco et al., 2019) 

for relatively large fires. In contrast to the suggested underestimate of fire duration shown in Fig. 6a, these 

data suggest the Global Fire Atlas may slightly overestimate fire duration. This difference may reflect the 

fact that active fire detections may be triggered by smoldering while the burned area product will only 

register the initial changes in surface reflectance from fire. Based on a small underestimate of overall 

burned area and overestimate of fire duration by the Global Fire Atlas, the average daily fire expansion 

rates based on US Forest Service data were higher than estimates based on Global Fire Atlas data (Fig. 7c 

and f).” 

 

Line 583: “Moreover, the uncertainty in the burn date of the underlying burned area product is typically at 

least one day, resulting in a large uncertainty in the fire duration estimates of shorter fires. Global Fire 

Atlas data therefore performed best for large fires (Figs. 6 and 7).”  
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Figure 1 (Fig. B2 in updated manuscript): Comparison of Global Fire Atlas perimeters and ignition 

locations to estimates based on MTBS and VIIRS for frequently-burning grasslands in Kansas, 

USA. (a) Global Fire Atlas adjusted burn dates from MCD64A1, (b) per-pixel comparison of adjusted 

burn dates used within the Global Fire Atlas (GFA) to the day of the (first) active fire detection from 

VIIRS, (c) ignition points as estimated by the Global Fire Atlas, (d) manually interpreted ignition 

locations (red circles) based on VIIRS active fire detections on top of MTBS fire perimeters, (e) 

individual fires as estimated by the Global Fire Atlas, and (f) the MTBS burned area and individual fires. 

Here, MCD64A1 data underestimates the total burned area compared to the visual interpretation of 

Landsat data within the MTBS project, resulting in fragmentation of individual large fires. However, the 

daily temporal resolution of MODIS imagery allows the Global Fire Atlas to distinguish individual fires 

and ignition points within larger burn scars that cannot be resolved from infrequent Landsat observations 

used to delineate fire perimeters within the  MTBS project. Broad patterns of ignition locations identified 

by the Global Fire Atlas are confirmed by manual interpretation of patterns inferred from VIIRS active 

fire detections (d).    
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Figure 2 (new Fig. 7): Comparison of Global Fire Atlas (GFA) and US Forest Service (FS) data for a 

selected number of large wildfires in the US. Comparison of (a) fire size, (b) duration, and (c) average 

daily expansion rate for all fires (N=15), (d, e and f) are like (a, b and c) but for fires smaller than 250 km
2
 

(N=12). Correlation coefficients are provided based on linear regression with (yellow) and without 

(green) intercept, assuming a non-zero intercept could indicate a structural offset between both datasets.  
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Figure 3 (new Figure B1): Comparison of daily Global Fire Atlas and US Forest Service data for a 

selected number of well characterized wildfires in the US. (a) The accumulated daily fire size (for all 

fires, N=15) illustrates the ability of the Global Fire Atlas to reproduce individual large fire sizes at any 

specific day over the fire lifetime (each blue dot indicates the size of a specific fire on a specific day). (b) 

A 3-day running average of the daily growth or “expansion” of each fire (km
2
 day

-1
) and (c) the daily 

expansion on each day of each fire. Figures (d), (e), and (f) are like (a), (b), and (c), but for US Forest 

Service fire sizes smaller than 500 km
2
 or expansion rates lower than 250 km

2
 day

-1
 and corresponding 

Global Fire Atlas estimates (see intermittent boxes on top-figures). 

 

On the other hand, I doubt about the utility of providing global averages of different fire parameters, such 

as fire duration or progression by continent. In this regard, some of the comments included in the results 

section may seem quite trivial or difficult to justify empirically. What is the point of concluding that “fire 

duration exerted a strong control on fire size and total burned area”? Is this not the case in the vast 

majority of fires?  

 

Although this may seem trivial, the vast majority of fire models currently do not include multi-day fires 

(e.g. Hantson et al., 2016; Rabin et al., 2017). Our study now for the first time shows that multi-day fires 

are the norm across all ecosystems and in some ecosystems “duration” exerts a strong control on eventual 

fire size and total burned area while fire speed is more important in other ecosystems. Incorporating these 

mechanisms into fire-enabled global ecosystem models is thus critical to capture the (changing) role of 

fire in the Earth system. We think it is exciting that with these new data we are now for the first time able 

to analyze how fire behavior influences fire size distributions and eventual burned area. We believe that 

summarizing these data across continental or ecosystem scales provides a good lookup table for e.g. fire 

modelers to see whether their model results are within the right range.  

 

In summary, the authors should make an additional effort to really validate their product and better 

identify the weaknesses of current analysis. 
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We very much appreciate the suggestion of the reviewer that additional validation data would be helpful, 

but these data are unfortunately not as readily accessible as the reviewer suggests. In response to this 

suggestion we have manually compiled a small dataset of well characterized daily behavior of forest fires 

in the US. Results clearly demonstrate the ability of the Global Fire Atlas to assess individual fire 

behavior but also illustrate some of the specific shortcomings that we now discuss in more detail. During 

the coming years we are very much looking forward to further develop our data product as well as 

provide improved validation and optimization of parameters based on new data availability.  

 

Specific comments  

 

Line 45: Worldwide, fires burn an area larger than the size of the European Union every year (Randerson 

et al.,2012; Giglio et al., 2013). Please include total area in km2, the reader does not need to know the size 

of the European union to understand your sentence.  

 

We believe the reader will understand this sentence without knowing the exact size of the European 

Union as we simply mean “a large area”.  

 

Line 55: you claim that burned area reduction is occurring in the last two decades, but Andela et al., 2017 

paper refers only to the 2001-2017 period (1995-2001 with more uncertainty), so you could only claim 

that the reduction is observed in the last few years, as you do not have date from several decades ago.  

 

The study of Andela et al. (2017) included 18 years of data, we will change “Over the past two decades, 

..” to “Over the past 18 years, ..” 

 

Line 65: Our understanding of global fire activity is also severely constrained by the coarse resolution 

data we are based on our analysis. Recent analysis of burned area estimation comparing coarse and 

medium resolution data shows that in fact we may be losing a significant part of fire activity (Roteta et 

al., 2018, https://geogra.uah.es/fire_cci/sfd.php), particularly in tropical regions.  

 

We appreciate the importance of small fires (e.g. Randerson et al., 2012), and we will more clearly 

discuss the advantages and limitations of the different datasets in our manuscript (see also updated Fig. 

B2 (Fig. 1 here) and corresponding discussion above). However, we would like to keep our introduction 

focused on characterizing global fire behavior instead of other important issues that we do not contribute 

to in this work.  

 

Specifically, we will update line 568: “In line with previous studies, we found that the coarser resolution 

(500 m) of the MODIS burned area data used to develop the Global Fire Atlas sometimes underestimated 

overall burned area (e.g. Randerson et al., 2012; Roteta et al., 2019), fragmenting individual large fires. 

However, the Landsat-based MTBS data at 30 m resolution were unable to distinguish individual fires 

within large burn patches of fast-moving grassland fires based on infrequent Landsat satellite overpasses 

(Fig. B2).” 

 

Line 88: update (Giglio et al., submitted)  

 

Done 

 

Lines 155-164: How did you proceed in the case of small fires (a few pixels)? You claim that local 

minima are deleted when they do not spread forward in time.  
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In case there is no “later burn date”, the ignition point(s) associated with the largest possible number of 

iterations were retained. We will clarify this in the text.  

 

Line 160: “For short duration fires, the ignition points were retained associated with largest possible 

number of iterations.” 

 

Lines 180-187: Fire spread is obviously associated to wind speed and slope, not just to fuel availability. 

Therefore the assumptions made by the authors seem quite arbitrary for a global product. Have they made 

any validation of their persistence algorithm? It is not clear what happened with areas that burned 2 times, 

were they assigned 6 or 8 day persistency? The thresholds are in fact overlapped.  

 

Our “fire persistence threshold” is somewhat similar to the “cut off” value previously used in flood fill 

based approaches (e.g. Archibald and Roy, 2009; Hantson et al., 2015; Nogueira et al., 2016; Oom et al., 

2016; Laurent et al., 2018). However, in contrast to the flood fill based algorithms, we force the fires to 

only move forward in time (i.e. logical progression), which can be done because we first apply the 

ignition point filter that removes small inconsistencies in the burn date estimates. Our threshold values 

(i.e. 4, 6, 8, or 10 days) were mostly based on the idea that if fire frequencies are low, the probability of 

multiple fires occurring in each other’s vicinity is likely low, hence we can use a longer threshold. In 

areas of frequent (human caused) fires on the other hand, it is not unlikely to have a new ignition point in 

the vicinity of a burn scar from a previous fire, in this case we use a short threshold to reduce the 

likelihood of independent fires to be merged artificially. Fire frequency is also closely related to 

vegetation patterns, hence we notice that our thresholds are broadly biome dependent (e.g. typically 10-

day thresholds in high fuel load boreal and temperate zones and low 4-day thresholds in frequently 

burning savannas and grasslands).  

 

Following the reviewer’s suggestion, we propose to make the following textual clarifications:  

 

Line 185: We will change line 185 to “.., and a 6, 8 and 10-day fire persistence period for grid cells that 

burned 3 times, 2 times, or 1 time, respectively.” to be more precise.  

 

Line 560: “Interestingly, we found similar spatial patterns of fire size (cf. Fig. 8 and Archibald et al., 

2013; Hantson et al., 2015), although absolute estimates may show large differences based on the “cut 

off” value used within the flood-fill approach (Oom et al., 2016), and to a lesser extent by the fire 

persistence threshold used here.” 

 

Line 195. It is not clear if two active fires that merged were assigned a single perimeter or two. It seems 

they were divided, but most forest services would probably consider them as single one. 

 

We define a single fire as having one ignition point, so several fires that merge would be considered 

independent fire events in our dataset. This is indeed one of the reasons that our data deviate from the 

MTBS (also see our response to your earlier suggestions). This is explained in more detail in section 2.1.  

 

Lines 240-: : : It is not clear what the authors did when areas were not observed by clouds or cloud 

shadows. What is the impact of unobserved periods in fire progression? Were the geometrical 

deformation effects caused by off-nadir observations taken into account?  

 

We use the MCD64A1 burned area product without any further modification, therefore the uncertainty in 

the day-of-burn would likely increase during periods of cloud cover (we also mention this, e.g. lines 171-

173). Similarly, the scan angle of MODIS instruments (or data-gaps) could potentially affect the correct 

attribution of burned area to a given day. In fact, this is the reason we let our time series start in 2003, 

when the combination of the MODIS instruments aboard both Terra and Aqua provide more frequent 
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observations (see lines 89-90). Nevertheless, the uncertainty in burn date will affect Global Fire Atlas fire 

characterization, in particular of small and short fires. For example, a multi-pixel single day fire could 

easily get a longer fire duration assigned solely based on the uncertainty of the burn date in the burned 

area product. For large multi-day fires, these effects become smaller (e.g. Figs. 4 and 6 of manuscript). 

Based on the additional comparison of the Global Fire Atlas and US Forest Service data we will more 

clearly discuss the consequences of uncertainties in the burn date:  

 

Line 340 “Several factors may account for the positive bias in the 500 m day of burn from burned area 

compared to active fire detections, including orbital coverage, cloud and smoke obscuration, and different 

thresholds between burned area and active fire algorithms regarding the burnt fraction of a 500 m grid 

cell.” 

 

Line 346 “). In line with these findings, we found good agreement between a 3-day running average of 

Global Fire Atlas and US Forest service estimates of daily fire expansion, but reduced correspondence for 

daily estimates of fire growth rates due to uncertainty in the day-of-burn of the burned area product (Fig. 

B1).” 

 

Figure 3 shows direction of spread that are not very realistic, as all sort of directions are included, even 

for neighbor pixels (North and South directions in contiguous areas??)  

 

The reviewer should remember that a single pixel represents 21 ha, and may contain numerous landscape 

features that form natural barriers to fire and could change the fire direction (e.g. vegetation patterns, 

gullies etc.). Nevertheless, it is true that on a per-pixel level the direction estimate may be quite uncertain, 

this figure mostly serves to demonstrate how the algorithm works (i.e., for each pixel between fire lines it 

is estimated how the fire has moved, which results in a speed and direction of spread). Because of the 

uncertainty at the individual pixel level (e.g. see Fig. 4), we report dominant direction including only 

multi-day fires larger than 10 km
2
 in our global map (Fig. 9).  

 

It is not clear why did you include MCD64 in Figure 4, as the date information should be the almost the 

same as the Global Fire Atlas. I would recommend changing it to a single graph showing dating accuracy 

for the four major biomes. 

 

We include the MCD64A1 col. 6 data to demonstrate that despite the filters we apply, the overall 

adjustment of the burn date by the Global Fire Atlas algorithm was small.  

 

Lines 343-346: “The adjustments made to the burn date here, required to effectively determine the extent 

and duration of individual fires, had a relatively small effect on the overall accuracy but tended to reduce 

the negative bias in burn dates and increase the positive bias (i.e. delayed burn date compared to active 

fire detection, see red and black lines in Fig 4).” 

 

The fire dominant direction will probably be more useful for fire modelers expressed in degrees. 

  

Converting the dominant direction to degrees can be achieved by multiplying the numerical dominant 

direction (ranging from 0-8) by 45. We will include this suggestion in the online user guide.  

 

Other authors have done similar analysis, a recent one by Laurent et al., 2018. Line 440. I doubt that any 

fire behavior modeler would agree with: “the dominant direction typically represented less than half of 

the pixels”. I think the approach by Laurent et al (2018) using the dominant direction of the evolving 

ellipsis is more adequate in this regard, as most fires have a dominant wind direction.  
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We appreciate that fire direction may be estimated in various ways, with likely similar outcomes. We 

have chosen for the approach we present in our manuscript because it is “internally consistent”, in other 

words, fire direction and speed are derived at the same time when we calculate the most logical (i.e. 

shortest distance) path the fire may have followed. The exciting thing about the Global Fire Atlas and 

similar datasets is that, based on the characterization of about one million individual fires worldwide each 

year, we can now actually investigate what “most” fires do. Our first results indicate that, although 

dominant wind direction was important, landscape features may be more important than previously 

thought.    

 

I do not understand the meaning of using average NDVI values to show extreme fires. I do not see the 

relation. 

 

The NDVI map on the background provides the reader an idea of vegetation cover and available fuels, 

closely related to fire occurrence and behavior (e.g. Bowman et al., 2009).  

 

We have now clarified this “The background image depicts mean MODIS normalized difference 

vegetation index (NDVI, 2003 – 2016), an indicator for large scale vegetation patterns and available 

fuels.” 
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Abstract. Natural and human-ignited fires affect all major biomes, altering ecosystem structure, 

biogeochemical cycles, and atmospheric composition. Satellite observations provide global data on 

spatiotemporal patterns of biomass burning and evidence for rapid changes in global fire activity in 

response to land management and climate. Satellite imagery also provides detailed information on the 

daily or sub-daily position of fires that can be used to understand the dynamics of individual fires. The 

Global Fire Atlas is a new global dataset that tracks the dynamics of individual fires to determine the 

timing and location of ignitions and fire size, duration, daily expansion, fire line length, speed, and 

direction of spread. Here we present the underlying methodology and Global Fire Atlas results for 2003-

2016 derived from daily moderate resolution (500 m) Collection 6 MCD64A1 burned area data. The 

algorithm identified 13.3 million individual fires over the study period, and estimated fire perimeters were 

in good agreement with independent data for the continental United States. A small number of large fires 

dominated sparsely populated arid and boreal ecosystems, while burned area in agricultural and other 

human-dominated landscapes was driven by high ignition densities that resulted in numerous smaller 

fires. Long-duration fires in the boreal regions and natural landscapes in the humid tropics suggest that 

fire-season length exerts a strong control on fire size and total burned area in these areas. In arid 

ecosystems with low fuel densities, high fire spread rates resulted in large, short-duration fires that 

quickly consumed available fuels. Importantly, multi-day fires contributed the majority of burned area in 

all biomass burning regions. A first analysis of the largest, longest, and fastest fires that occurred around 

the world revealed coherent regional patterns of extreme fires driven by large-scale climate forcing. 

Global Fire Atlas data are publicly available through www.globalfiredata.org, and individual fire 

information and summary data products provide new information for benchmarking fire models within 

ecosystem and Earth system models, understanding vegetation-fire feedbacks, improving global 

emissions estimates, and characterizing the changing role of fire in the Earth system. 
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1 Introduction  
 

Worldwide, fires burn an area larger than the size of the European Union every year (Randerson et al., 

2012; Giglio et al., 2013). The majority of burned area occurs in grasslands and savannas, fire-adapted 

ecosystems where fires maintain open landscapes by reducing shrub and tree cover (Scholes and Archer, 

1997; Abreu et al., 2017). However, all major biomes burn. Climate controls global patterns of fire 

activity by driving vegetation productivity and fuel build up as well as fuel conditions (Bowman et al., 

2009). Humans are the dominant source of ignitions in most flammable ecosystems, but human activities 

also reduce fire sizes through landscape fragmentation and fire suppression (Archibald et al., 2012; Taylor 

et al., 2016; Balch et al., 2017).  

 

Over the past two decades18 years, socio-economic development and corresponding changes in human 

land use have considerably reduced fire activity in fire-dependent grasslands and savannas worldwide 

(Andela et al., 2017). At the same time, warming climate has dried fuels and has increased the length of 

fire seasons across the globe (Jolly et al., 2015), which is particularly important in forested ecosystems 

with abundant fuels (e.g., Kasischke and Turetsky, 2006; Aragão et al., 2018). Fire activity increases non-

linearly in response to drought conditions in populated areas of the humid tropics (Alencar et al., 2011; 

Field et al., 2016), resulting in large scale degradation of tropical ecosystems (van der Werf et al., 2008; 

Morton et al., 2013b; Brando et al., 2014), and extensive periods of poor air quality (Johnston et al., 2012; 

Lelieveld et al., 2015; Koplitz et al., 2016). Moreover, increasing population densities in highly 

flammable biomes also amplify the socio-economic impacts of wildfires related to air quality or damage 

to houses and infrastructure (Moritz et al., 2014; Knorr et al., 2016). Despite the importance of 

understanding changing global fire regimes for ecosystem services, human well being, climate, and 

conservation, our current understanding of changing global fire regimes is limited because existing 

satellite data products detect actively burning pixels or burned area, but not individual fires and their 

behavior.   

 

Frequent observations from moderate-resolution, polar-orbiting satellites may provide information on 

individual fire behavior in addition to estimates of total burned area. Several recent studies have shown 

that fire-affected pixels can be separated into clusters based on spatial and temporal proximity. This 

information can be used to study the number and size distributions of individual fires (Archibald and Roy, 

2009; Hantson et al., 2015; Oom et al., 2016), fire shapes (Nogueira et al., 2017; Laurent et al., 2018), and 

the location of ignition points (Benali et al., 2016; Fusco et al., 2016). One limitation of fire clustering 

algorithms that rely on spatial and temporal proximity of fire pixels is the inability to separate individual 

fires within large burn patches that contain multiple ignition points, a frequent phenomenon in grassland 

biomes. To address the possibility of multiple ignition points, other algorithms have specifically tracked 

the spread of individual fires in time and space, with demonstrated improvements for isolating ignition 

points and constraining final fire perimeters (Frantz et al., 2016; Andela et al., 2017). In addition to the 

size and ignition points of individual fires, other studies used daily or sub-daily detections of fire activity 

to track growth dynamics of fires (Loboda and Csiszar, 2007; Coen and Schroeder, 2013; Veraverbeke et 

al., 2014; Sá et al., 2017). Together, these studies highlight the strengths and limitations of using daily or 

sub-daily satellite imagery to derive information on individual fires and their behavior over time. 

 

Here we present the Global Fire Atlas of individual fires based on a new methodology to identify the 

location and timing of fire ignitions and estimate fire size, duration, daily expansion, fire line, speed, and 

direction of spread. The Global Fire Atlas is derived from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) collection 6 burned area dataset (Giglio et al., 2018) and estimated day of 

burn information at 500 m resolution. Individual fire data were generated starting in 2003, when 

combined data from the Terra and Aqua satellites provide greater burn date certainty. The algorithm for 

the Global Fire Atlas tracks the daily progression of individual fires at 500 m resolution to produce a set 
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of metrics on individual fire behavior in standard raster and vector data formats. Together, these Global 

Fire Atlas data layers provide an unprecedented look at global fire behavior and changes in fire dynamics 

during 2003-2016. The data are freely available at http://www.globalfiredata.org, and new years will be 

added to the dataset following the availability of global burned area data.  

 

2 Data and Methods 
 

Here we developed a method to isolate individual fires from daily moderate resolution burned area data. 

The approach used two filters to account for uncertainties in the day of burn in order to map the location 

and timing of fire ignitions and the extent and duration of individual fires (Fig. 1). Subsequently, we 

tracked the growth dynamics of each individual fire to estimate the daily expansion, daily fire line, speed 

and direction of spread. Based on the Global Fire Atlas algorithm, burned area was broken down into 

seven fire characteristics in three steps (Fig. 1b). First, burned area was described as the product of 

ignitions and individual fire sizes. Second, fire size was further separated into fire duration and a daily 

expansion component. Third, the daily fire expansion was subdivided into fire speed, the length of the fire 

line, and the direction of spread. The Global Fire Atlas algorithm can be applied to any moderate 

resolution daily global burned area product, and The the quality of the resulting dataset depends both on 

the Fire Atlas algorithm as well as the underlying burned area estimatesMCD64A1 collection 6 burned 

area dataset (Giglio et al., 2018); . for example, Here we applied the algorithm to the MCD64A1 

collection 6 burned area dataset (Giglio et al., 2018) and the minimum detected fire size is therefore one 

MODIS pixel (21 ha). Several studies have shown that the MCD64A1 col. 6 burned area product provides 

a considerable improvement compared to previous generation of moderate resolution global burned area 

products (Padilla et al., 2015; Giglio et al., 2018; Humber et al., 2018). We also present an initial effort to 

validate the higher order Global Fire Atlas products using independent fire perimeter data for the 

continental US and active fire detections to assess estimated fire duration and the temporal accuracy of 

individual fire dynamics. 

 

 
Figure 1: Flow chart showing the data-processing steps and resulting products. (a) The Global Fire 

Atlas algorithm tracks individual fires and their day-to-day behavior based on the MCD64A1 collection 6 

500 m daily burned area product starting in 2003. (b) Decomposition of burned area into seven different 
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components of the fire regime in the Global Fire Atlas. The output includes two annual shape file layers 

(.shp) of ignition location and individual fire perimeters with corresponding database files (.dbf) 

providing summary information for each individual fire, including the seven key characteristics (b). In 

addition, four global raster maps on the 500 m sinusoidal MODIS grid (.tif) provide details on the day-to-

day fire behavior. Finally, data are summarized in a monthly 0.25° gridded product based on average 

values of individual fires. Global Fire Atlas data-layers are described in more detail in Table A1.  

2.1 Individual fires: ignitions, size, perimeter and duration 
 

Large burn patches are often made up of multiple individual fires that may burn simultaneously or at 

different points in time during the burning season, particularly in frequently burning grasslands and 

savannas with a high density of ignitions from human activity. Separating large clusters of burned area 

into individual fires is therefore critical to understand the fire regime in human-dominated landscapes. To 

isolate individual fires, clusters of adjacent burned area for a given fire season (12 months centered on the 

month of maximum burned area) were subdivided into individual fires based on the spatial structure of 

estimated burn dates in the MCD64A1 burned area product. Although we allow individual fires to burn 

from one fire season into the next, we processed the data on a per-fire-season basis in each 10° x 10° 

MODIS tile. In the rare case a pixel burned twice during a single fire season (<1%), we retained only the 

earliest burn date. This approach results in a small reduction of total burned area, but allows us to produce 

user friendly global annual layers in both gridded and shapefile format.This format allowed us to create 

global annual 500 m data layers with minimal loss of information. To locate candidate ignition points 

within each burned area cluster, we mapped the “local minima,” defined as a single grid cell or group of 

adjacent grid cells with the same burn date surrounded by grid cells with later burn dates. However, 

because of orbital coverage and cloud cover, burn date estimates are somewhat uncertain (Giglio et al., 

2013), which results in many local minima that may not correspond to actual ignition points. We applied 

a three-step procedure to address burn date uncertainty and distinguish individual fires. First, we 

developed a filter to adjust the burn date of local minima that do not correspond to ignition points. 

Second, we set a “fire persistence” threshold that determines how long a fire may take to spread from one 

500 m grid cell into the next, to distinguish individual fires that are adjacent but occurred at different 

times in the burning season. Third, we developed a second filter to correct for outliers in the burn date 

that occurred along the edges of large fires. Each of these steps is described in detail below. 

 

The ignition point filter is based on the assumption that the fires progress in a logical manner through 

space and time. First, all local minima were mapped within the original field of burn dates (Fig. 2a and b). 

Next, each local minimum was replaced by the nearest later burn date in time of the surrounding grid 

cells, and a new map of local minima was created. If the original local minimum remained as a part of a 

new, larger local minimum with a later burn date, the fire followed a logical progression in time and space 

and the original local minimum was retained. If the local minimum disappeared, the original local 

minimum was likely the product of an inconsistency within the field of burn dates rather than a true 

ignition point and the burn date was adjusted forward in time to remove the original local minimum. This 

step can be repeated several times, with each new iteration further reducing the number of local minima 

and increasing the confidence in ignition points, but, each iteration may also result in greater adjustment 

of the original burn date (Fig. A1). Here we implemented three iterations of the ignition point filter to 

remove most local minima that did not spread forward in time while limiting the scope of burn date 

adjustments (e.g. Figs. 2c and d and, A1 and A2). For short duration fires, the ignition points were 

retained associated with largest possible number of iterations. In additionIn all cases, if several local 

minima were all connected through a single cluster of grid cells with the same burn date, only the local 

minimum with the earliest burn date or largest number of grid cells was retained, unless the required 

adjustment of the burn date was larger than the specified burn date uncertainty in the MCD64A1 product. 

By design, the ignition point filter cannot adjust the earliest burn date of a fire, and thus has no influence 

on estimated fire duration.  
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To establish the location and date of ignition points, as well as to track the daily growth and extent of 

individual fires, we used a “fire persistence” threshold that determines how long a fire may take to spread 

from one grid cell into the next, taking both fire spread rate and satellite coverage into account (Fig. 

A2A3). For example, if an ignition point was adjacent to a fire that burned earlier in the season, this 

threshold allowed the ignition point to be mapped as separate local minima despite the presence of 

adjacent burned grid cells with earlier burn dates. On the other hand, when an active fire is covered by 

dense clouds or smoke, multiple days can pass before a new observation can be made, resulting in a break 

in fire continuity and increasing the risk of artificially splitting single fires into multiple parts. Using such 

a threshold is particularly important to distinguish individual fires in frequently burning savannas and 

highly fragmented agricultural landscapes, where many individual small fires may occur within a 

relatively short time span. Because there are no reference datasets on global fire persistence, we used a 

spatially-varying fire persistence threshold that depends on fire frequency (Andela et al., 2017). We 

assumed that frequently-burning landscapes are generally characterized by faster fires and higher ignition 

densities, increasing the likelihood of having multiple ignition points within large burn patches, while 

infrequently burning landscapes will generally be characterized by slower fire spread rates and/or fewer 

ignitions. In addition, frequently burning landscapes often face a pronounced dry season characterized by 

low cloud cover, while infrequently burning landscapes may experience a shorter dry season with greater 

obscuration by clouds. Therefore, we used a 4-day fire persistence threshold for 500 m grid cells that 

burned more than 3 times during the study period (2003 - 2016), and a 6, 8 and 10-day fire persistence 

period for grid cells that burned 3 times, 2 times2-3, 1-2, or 1 time, respectively. These threshold values 

broadly correspond to biomes, with shorter persistence values for tropical regions and human-dominated 

landscapes, and longer threshold values for temperate and boreal ecosystems with high fuel loads (Fig. 

A2). 

 

Based on the location and date of the established ignition points and the fire persistence thresholds, we 

tracked the growth of each individual fire through time to determine its size, perimeter, and duration (Fig 

2f). For each day of year, we allowed individual fires to grow into the areas that burned on that specific 

day, as long as the difference in burn dates between two pixels was equal to or smaller than the fire 

persistence threshold of the pixel of origin. When two actively burning fires met each other, as on day 255 

for the example fires shown in Fig. 2, grid cells that burned on the day of the merger were divided based 

on nearest distance to the fire perimeter on the previous day.  

 

Burn date uncertainty may also lead to multiple “extinction points,” outliers in the estimated day of burn 

along the edges of a fire. Environmental conditions such as cloud cover complicate the precise estimation 

of the date of fire extinction, as rainfall events extinguish many fires, and pixels at the edge of the fire 

may be partially burned and therefore harder to detect. In addition, the contextual relabeling phase of the 

MCD64A1 algorithm increases burn date uncertainty for extinction points based on a longer consistency 

threshold (Giglio et al., 2009). We used a second filtering step to adjust the burn date for extinction 

points, if required. Outliers were adjusted to the nearest burn date back in time, if (1) they represented a 

cluster no more than 1 to 4 grid cells (0.21 – 0.9 km
2
) along the edge of a fire that was as least 10 times 

larger and (2) the difference in burn dates was larger than the fire persistence threshold of the adjacent 

grid cells and thus mapped as a new fire along the edge of the larger fire. If these criteria were met, the 

outliers were adjusted to the nearest burn date back in time, and incorporated within the larger 

neighboring fire. However, if these criteria were not met (e.g., for burned areas larger than 4 grid cells), 

the original burn dates and ignition points were left unadjusted, resulting in separate fires. For the 

example fires shown in Fig. 2, the adjustment of these outliers affected four grid cells (Fig. 2e) and 

effectively reduced the number of ignition points (and resulting individual fires) from five (Fig. 2d) to 

two (Fig. 2f). After adjusting these outliers (extinction points), and including them within the larger fires, 

we estimated the size (km
2
), duration (days) and perimeter (km) of each individual fire based on the 

adjusted burn dates.   
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Figure 2: Example of the algorithm to account for uncertainty in the “day of burn” and identify 

individual fires within large clusters of adjacent burned pixels. (a) The original MCD64A1 collection 

6 day of burn for one burnt patch in the Brazilian Cerrado (2015), and (b) local minima or “ignition 

points” identified within the original day of burn field. (c) Burn date adjustment based on the filter that 

removes local minima that do not progress continuously through time and space (positive adjustment), 

and (d) the corresponding estimate of ignition points based on the adjusted day of burn field. (e) Further 

burn date adjustment based on the removal of outliers along the edge of the fire (negative adjustment of 

extinction points), and (f) the final estimate of ignition locations and date by the Global Fire Atlas based 

on the combined adjustments shown in (e). In (f), the colored lines indicate the final estimates of fire 

perimeters.   

 

2.2 Daily fire expansion: fire line, speed, and direction of spread 
 

The revised day of burn estimates were used to track the daily expansion (km
2
 day

-1
) and length of the fire 

line (km) for each individual fire. The daily estimates of fire line length were based on the daily perimeter 

of the fire, where we assumed that once the fire reaches the edge of the burn scar, this part of the 

perimeter stops burning after one day (Fig. 3a). The expansion of the fire (km
2
 day

-1
) is the area burned by 

a fire each day. The average speed of the fire line (km day
-1

) can now be calculated as the expansion (km
2
 

day
-1

) divided by the length of the fire line (km) on the same day. However, this estimate of fire line 

includes the head, flank and backfire, while it is typically the head-fire that moves fastest and may be 

responsible for most of the burned area. Moreover, fire dynamics tend to be highly variable in space and 

time. To understand the spatial variability and distribution of fire speeds, we therefore used an alternative 

method to estimate the speed and direction of fire spread for each individual 500 m grid cell. 

 

To estimate the speed and direction of spread (Fig. 3), we calculated the “most likely” path of the fire to 

reach each individual 500 m grid cell based on shortest distance. More specifically, for each grid cell we 

estimated the shortest route to connect the grid cell between two points: 1) the nearest point on the fire 

line with the same day of burn and 2) the nearest point on the previous day’s fire line. This route was 

forced to follow areas burned on the specific day. For each point on this route, or “fire path,” the speed of 

the fire (km day
-1

) was estimated as the length of the path (km) divided by one day (day
-1

) and the 

direction as the direction of the next grid cell on the fire path. Since each grid cell is surrounded by 8 

other grid cells, this resulted in eight possible spread directions: north, northeast, east, southeast, south, 
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southwest, west, and northwest. For ignition points that represented a cluster of 500 m grid cells with the 

same burn date, we assumed that the fire originated in the center point of the cluster (pixel with largest 

distance to the final fire perimeter by the end of day 1) and spreads towards the perimeter of the fire by 

the end of day 1 over the course of one day. For single pixel fires, we assumed the fire burned across 463 

m (1 pixel) during a single day and we did not assign a direction of spread. Similarly, fires of all sizes that 

burned on a single day were not assigned a direction of spread. We corrected estimates of both speed and 

direction for the orientation between 500 m grid cells on the MODIS sinusoidal projection that varies 

with location. When a particular grid cell formed part of multiple “fire paths,” the earliest time of arrival 

or the highest fire speed and corresponding direction of spread were retained. This assures a logical 

progression of the fire in time and space and corresponds to fires typically moving fastest in a principal 

direction and then spreading more slowly along the flank.  

 

 
Figure 3: Sub-daily estimates of fire progression can be used to estimate spatiotemporal variation 

in fire speed and direction of spread. (a) daily progression of the fire line, (b) interpolated estimates of 

sub-daily time of arrival, (c) fire speed (km day
-1

), and (d) direction of spread. The light gray areas in (a) 

are burned areas between fire lines and correspond to areas of relatively high fire speed. White areas were 

not burned.   

 

2.3 Validation  
 

Few large-scale datasets are available on daily or sub-daily fire dynamics, highlighting the novelty of the 

Global Fire Atlas dataset but also posing challenges for validation. Here we used two alternative datasets 

for this purpose. First, we used active fire detections to assess the temporal accuracy of the Global Fire 

Atlas burn date. Second, we compared fire perimeters to independent fire perimeter data for the 

continental US. Finally Third, we combined the independent data on fire perimeters with active fire 

detections to evaluate the Global Fire Atlas fire duration estimates. Finally, we compared Global Fire 

Atlas data to a small (manually compiled) dataset of daily fire perimeters from the US Forest Service.  
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We used the 375 m resolution active fire detections (VNP14IMGML C1) derived from the Visible 

Infrared Imaging Radiometer Suite (VIIRS) instrument aboard the Suomi National Polar-orbiting 

Partnership (Suomi-NPP) satellite (Schroeder et al., 2014). Active fire detections provide accurate 

information on the burn date, particularly in ecosystems with low fuel loads where fires will typically be 

active during only a single day in each particular grid cell. We compared the date of active fire detections 

from VIIRS within each larger 500 m MODIS grid cell (based on VIIRS center point) to the adjusted 

MCD64A1 day of burn to understand the temporal precision of the derived Global Fire Atlas products. If 

several active fire detections were available for a single 500 m MODIS grid cell we used the date closest 

to the mean. We compared all 500 m MODIS grid cells with corresponding active fire detection during 

the overlapping data period (2012 – 2016) for four different ecosystems globally: (1) forests (including all 

forests), (2) shrublands (including open and closed shrublands), (3) woody savannas and (4) savannas and 

grasslands, with land cover type derived from MODIS MCD12Q1 collection 5.1 data for 2012 using the 

University of Maryland (UMD) classification (Friedl et al., 2002). 

 

We compared fire perimeters from the Global Fire Atlas to fire perimeter estimates from the Monitoring 

Trends in Burn Severity (MTBS) project during their overlapping period (2003 – 2015). The MTBS 

project provides semi-automated estimates of fire perimeters based on 30 m Landsat data for  fires with a 

minimum size of 1000 acres (405 ha) in the western US and 500 acres (202 ha) in the eastern US 

(Eidenshink et al., 2007; Sparks et al., 2015). In order to determine overlap between MTBS and Fire Atlas 

perimeter estimates, we rasterized the MTBS perimeters onto the 500 m MODIS sinusoidal grid including 

all 500 m grid cells with their center point within the higher resolution (30 m) MTBS fire perimeter. For 

all overlapping fire perimeters, we compared the original MTBS fire perimeter information with the Fire 

Atlas estimates of fire perimeters. In cases with multiple overlapping perimeters, fires with the largest 

overlapping surface area were compared.  

 

We also combined MTBS fire perimeters with VIIRS active fire detections to derive an alternative 

estimate of fire duration (2012 – 2015). In order to determine the fire duration, we first determined the 

median burn date of each fire according to the MCD64A1 burned area data. Subsequently, we included all 

VIIRS active fire detections before and after the median or ‘center’ burn date until a period of three fire-

free days was reached. Any active fire detections that occurred outside this timeframe were excluded to 

avoid overestimation of the fire duration due to smoldering or possible false detections before or after the 

fire. Two thresholds were used to select a subset of MTBS and Fire Atlas perimeters for validation of 

estimated fire duration. Fires were first matched based on perimeters, with maximum of a threefold 

difference between perimeters. Second, we further selected MTBS perimeters with VIIRS active fire 

detections for at least 25% of the 500 m Fire Atlas grid cells. These thresholds excluded 51% of the 

overlapping fire perimeters, but reduced errors originating from cloud cover or differences in the 

underlying burned area estimates (e.g., resolution, methodology) to evaluate estimated fire duration. 

Similar to the burn date validation, comparisons of fire perimeters and fire duration with MTBS data over 

the continental US were grouped into four land cover types: (1) forests, (2) shrublands, (3) woody 

savannas and (4) savannas and grasslands.    

 

For specific large wildfires across the western USA, the US Forest Service National Infrared Operations 

(NIROPS; https://fsapps.nwcg.gov/nirops/) derives estimates of daily fire perimeters for fire management 

purposes by collecting night-time high resolution infrared imagery. This imagery is manually analyzed by 

trained specialists to extract the active fire front. Although these data provide a wealth of information, 

only few fires were completely and precisely documented. From their database we were able to extract 15 

large fires for which daily perimeter information was available. Although insufficient for full scale 

validation, results provide valuable insights into the strengths and shortcomings of the Global Fire Atlas 

estimates of individual fire size, duration and expansion rates. In addition, we compared day-to-day 

expansion rates (km
2
 day

-1
) of individual large fires across both datasets. If multiple Global Fire Atlas 

https://mail02.ndc.nasa.gov/OWA/redir.aspx?C=ipms6WD7iGYG7CmDZpZg1htEBwi7XAeK_tMge_6B7qiwBjHniYDWCA..&URL=https%3a%2f%2ffsapps.nwcg.gov%2fnirops%2f
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perimeters overlapped with a single US Forest Service fire perimeter, we compared the fires with the 

largest overlapping surface area.      
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3 Results 
 

3.1 Validation 
 

 
Figure 4: Per pixel global Comparison comparison of burn dates derived from the MCD64A1 

burned area product, adjusted burn dates of the Global Fire Atlas, and VIIRS active fire detections 

(2012 – 2016). (a) Forests, (b) shrublands, (c) woody savannas, and (d) savannas and grasslands. Negative 

values indicate pixels with a burned area day of burn earlier than the first corresponding VIIRS active fire 

detection, zero indicates no difference in day of burn between both datasets, and positive numbers 

indicate a delayed detection of burned area compared to active fire detections.  

 

At the pixel scale, estimated burn dates from burned area and active fire products were comparable (Fig. 

4), with greater variability across biomes than from minor burn date adjustments in the Global Fire Atlas 

algorithm. Burn dates estimated from MODIS burned area and VIIRS active fire detections were least 

comparable in high-biomass ecosystems with lower fire spread rates. In forests and woody savannas 24% 

and 35% of burned pixels were detected on the same day and 54% and 67% within ± 1 day, respectively 
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(Fig. 4a and c). With decreasing biomass, the direct correspondence between burn dates from burned area 

and active fire detections increased to 41% (same day) and 80% (± 1 day) in shrublands (Fig. 4b) and 

40% (same day) and 75% (± 1 day) in savannas and grasslands (Fig. 4d). These differences likely stem 

from the combined increase in uncertainty of burn date in higher-biomass ecosystems and influence of 

fire persistence (multiple active fire days in a single 500 m grid cell) on the ability to reconcile the timing 

of burned area and active fire detections in these ecosystems. Several factors may account for the positive 

bias in the 500 m day of burn from burned area compared to active fire detections, including orbital 

coverage, cloud and smoke obscuration, and different thresholds between burned area and active fire 

algorithms regarding the burnt fraction of a 500 m grid cell. The adjustments made to the burn date here, 

required to effectively determine the extent and duration of individual fires, had a relatively small effect 

on the overall accuracy but tended to reduce the negative bias in burn dates and increase the positive bias 

(i.e. delayed burn date compared to active fire detection, see red and black lines in Fig 4). In line with 

these findings, we found good agreement between a 3-day running average of Global Fire Atlas and US 

Forest service estimates of daily fire expansion, but reduced correspondence for daily estimates of fire 

growth rates due to uncertainty in the day-of-burn of the burned area product (Fig. B1).    

 

 
Figure 5: Comparison of fire perimeter estimates based on the Global Fire Atlas and MTBS for the 

continental US (2003 – 2015). (a) Forests, (b) shrublands, (c) woody savannas, and (d) savannas and 

grasslands. Red lines indicate the slope between both datasets based on ordinary least squares (OLS) with 

corresponding r
2
 values, while blue lines are based on orthogonal distance regression (ODR). For the 

scatter plots, darker gray or black indicates a greater density of points.  
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For fire perimeters, the best agreement between the Global Fire Atlas and MTBS was found in forests and 

shrublands, where the Global Fire Atlas reproduced 65% and 61% of the observed variance in MTBS fire 

perimeters, respectively (Fig. 5). Less agreement was found for woody savannas (38%) and savannas and 

grasslands (41%). However, uncertainty exists in both datasets. Orthogonal distance regression (ODR) 

accommodates uncertainties in both datasets and generally resulted in slopes closer to the 1:1 line, 

indicating closer correspondence, on average, in absolute perimeter estimates for the two datasets. An in-

depth comparison of the performance of the Global Fire Atlas and the MTBS datasets for several 

grassland fires in Kansas (USA) suggested that differences originated both from the underlying burned 

area datasets and the methodologies (Fig. B1B2). For this particular grassland in Kansas, the MCD64A1 

product estimated less burned area compared to the Landsat-based MTBS dataset, resulting in 

fragmentation of larger burn scars into disconnected patches. However, the daily temporal resolution of 

the MCD64A1 burned area product allowed for recognition of individual ignition points within larger 

burn patches of fast moving grassland fires that cannot be separated using infrequent Landsat imagery 

(Fig. B2). In addition, the 30 m spatial resolution of the MTBS perimeters may result in more irregularity 

and therefore in longer fire perimeter estimates compared to the 500 m Fire Atlas perimeters (Fig. B1). 

Combined, these tradeoffs in spatial and temporal resolution resulted in less agreement between fire 

perimeters in woody savannas (Fig. 5c) and savannas and grasslands (Fig. 5d).  

 

 
Figure 6: Comparison of fire duration estimates from the Global Fire Atlas and the combination of 

VIIRS active fire detections within MTBS fire perimeters for the continental US (2012 – 2015). (a) 

Forests, (b) shrublands, (c) woody savannas, and (d) savannas and grasslands. Red lines indicate the slope 

between both datasets based on ordinary least squares (OLS) with corresponding r
2
 values, while blue 



30 

 

lines are based on orthogonal distance regression (ODR). For the scatter plots, darker gray or black 

indicates a greater density of points. This comparison used a subset of MTBS and Fire Atlas perimeters 

based on selection criteria for perimeter overlap and VIIRS active fire detections (see Section 2.3).    

 

Initial validation of fire duration estimates from the Global Fire Atlas highlighted the differences in the 

sensitivity of satellite-based burned area and active fire products to fire lifetime (Fig. 6). Similar to fire 

perimeters, the best agreement in fire duration estimates was found for forests, where the Global Fire 

Atlas reproduced 51% of the observed variance of the fire duration estimates based on combining MTBS 

fire perimeters with active fire detections. Shrublands, woody savannas, and savannas and grasslands had 

lower correlations, with 27%, 30% and 33% of the variance explained, respectively. The orthogonal 

distance regression resulted in slopes close to the one-to-one line for shrublands and savannas and 

grasslands, indicating reasonable agreement. Fire duration was clearly underestimated for forested 

ecosystems with high fuel loads, as fires may continue to smolder for days (resulting in active fire 

detections) after the fire has stopped expanding.  

 

The comparison of Global Fire Atlas data to a small dataset (n = 15) of daily perimeters of large wildfires 

in primarily forested cover types mapped by the US Forest Service yielded good correspondence between 

estimates of fire size, duration, and expansion rates (Fig. 7). The improved comparison of fire size (cf. 

Fig. 5a and 7a) could be related to the US Forest Service data being more accurate than MTBS, but likely 

also represents the good performance of the Global Fire Atlas (e.g. compare Figs. 7a, b and c to Figs. 7d, 

e and f) and underlying burned area products (Fusco et al., 2019) for relatively large fires. In contrast to 

the suggested underestimate of fire duration shown in Fig. 6a, these data suggest the Global Fire Atlas 

may slightly overestimate fire duration. This difference may reflect the fact that active fire detections may 

be triggered by smoldering while the burned area product will only register the initial changes in surface 

reflectance from fire. Based on a small underestimate of overall burned area and overestimate of fire 

duration by the Global Fire Atlas, the average daily fire expansion rates based on US Forest Service data 

were higher than estimates based on Global Fire Atlas data (Fig. 7c and f).     
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Figure 7: Comparison of Global Fire Atlas (GFA) and US Forest Service (FS) data for a selected 

number of large wildfires in the US. Comparison of (a) fire size, (b) duration, and (c) average daily 

expansion rate for all fires (N=15), (d, e and f) are like (a, b and c) but for fires smaller than 250 km
2
 

(N=12). Correlation coefficients are provided based on linear regression with (yellow) and without 

(green) intercept, assuming a non-zero intercept could indicate a structural offset between both datasets.  

 

3.2 Characterizing global fire regimes 
 

Over the 14-year study period we identified 13,250,145 individual fires with an average size of 4.4 km
2
 

(Table 1) and minimum size of one MODIS pixel (21 ha or 0.21 km
2
). On average, largest fires were 

found in Australia (17.9 km
2
), boreal North America (6.0 km

2
), and northern hemisphere Africa (5.1 

km
2
), while central America (1.7 km

2
), equatorial Asia (1.8 km

2
), and Europe (2.0 km

2
) had the smallest 

average fire sizes (Table 1). Spatial patterns of number of ignitions and fire sizes were markedly different 

and often inversely related (Fig. 78). Burned area in agricultural regions and parts of the humid tropics, 

particularly in Africa, resulted from high densities of fire ignitions and relatively small fires, consistent 

with widespread use of fire for land management. Large fires accounted for most of the burned area in 

arid regions, high latitudes, and other natural areas with low population densities and a sufficiently long 

season of favorable fire weather (Fig. 78).  
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Figure 78: Average global burned area (MCD64A1), ignition density, and fire size over the study 

period 2003 – 2016. For any given area (a) Burned burned area in km
2
 per year is would be the product 

of (b) ignitions per year and (c) fire size in km
2
. However, because the size of a 0.25° grid cell varies with 

latitude we have converted the units of burned area to fraction (%) per year and of ignitions to number per 

km
2
 per year for spatial consistency.  
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Figure 89: Average fire duration (a), fire line length (b), and daily expansion (c) over the study 

period 2003 – 2016. Fire size (see Fig. 7c) is the product of fire duration (a) and daily fire expansion (c). 

 

Global patterns of fire duration and expansion rates provide new insights in the occurrence of large fires, 

as the size of each fire (km
2
) is the product of fire duration (days) and daily fire expansion rate (km

2
 day

-

1
). Individual fires that burned for a week or more occurred frequently across the productive tropical 

grasslands and in boreal regions (Fig. 8a9a, Table 2). In these regions, fire duration exerted a strong 

control on fire size and total burned area. On average, human-dominated landscapes such as deforestation 

frontiers or agricultural regions experienced smaller and shorter fires compared to natural landscapes 

(Table 2). Fire duration was also relatively short in semiarid grasslands and shrublands characterized by 

high daily fire expansion rates, based on the development of long fire lines (Fig. 8b 9b and c) and high 

velocity. In these regions, fire duration and size were likely limited by fuel connectivity. In line with these 

findings, largest average daily expansion rates were found in Australia (1.7 km
2
 day

-1
), northern 

hemisphere Africa (0.9 km
2
 day

-1
) and southern hemisphere Africa (0.9 km

2
 day

-1
), and smallest 

expansion rates in central America (0.3 km
2
 day

-1
), equatorial Asia (0.3 km

2
 day

-1
), and southeast Asia 

(0.4 km
2
 day

-1
; Table 1). 
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Figure 910: Average speed of the fire (a) and the dominant direction of fire spread (b) over the 

study period 2003 – 2016. For each 0.25° grid cell the direction was estimated as the dominant fire 

spread direction of fires larger than 10 km
2
 within the grid cell. We focused on larger fires (≥ 10 km

2
) to 

determine the dominant spread direction, because large fires will generally express a clearer 

spatiotemporal structure of fire spread at 500 m daily resolution. Pie charts show the fraction of individual 

larger fires (≥ 10 km
2
) by dominant spread direction for each continent.   

 

The fastest fires occurred in arid grasslands and shrublands (Fig. 910a), where fuel structure, climate 

conditions, and emergent properties of large wildfires contribute to high fire spread rates. Relatively high 

fire speeds were also observed in some parts of the boreal zone, particularly in central and western 

Canada. Lowest fire velocities were observed in infrequently burning humid tropical regions where fire 

spread was influenced by higher fuel loads and humidity (Table 1). At all scales, estimated fire direction 

exhibited considerable complexity (Fig. 9b10b). With some regional exceptions, no clear dominant spread 

direction was found in South America or Africa. Based on the underlying 500 m data layers, landscape 

structure and drainage patterns played an important role in controlling individual fire spread direction in 

the humid tropics. Fire spread direction also varied considerably within individual fires, and the dominant 

direction typically represented less than half of the pixels. Fire spread direction was more consistent in the 

arid tropics, as demonstrated by the northwest and southeast orientation of fire spread in Australia, 

consistent with the dominant wind directions. At mid-latitudes, we found evidence for more east and 

westward fire progression in Europe and Asia and northwest and southeast spread direction in North 

America, broadly consistent with the orientation of mountain ranges and other topographic features within 

the key biomass burning regions.  
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Table 1: Fire attributes for each Global Fire Emissions Database (GFED) region during 2003 – 

2016. Ignitions are the summed ignitions over the study period (2003 – 2016). For size, duration, 

expansion, and speed the mean values are shown for individual fires and weighted by fire size (between 

parenthesis). For ignitions, regions with over one million ignitions are shown in red and lower values in 

blue, for other fire aspects values equal to or above the global average are shown in red and below the 

global average in blue. A map of the GFED regions is shown in the annex material (Fig. B2aB3a). 

GFED 

Region 

Ignitions 

(2003-2016) 

Size 

 (km
2
) 

Duration 

(days) 

Expansion 

 (km
2
 day

-1
) 

Speed 

 (km day
-1

) 

World 13250145 4.4 (395.9) 4.5 (14.7) 0.6 (14.5) 0.9 (3.2) 

BONA 57613 6.0 (202.8) 5.4 (23.3) 0.5 (6.8) 1.0 (4.3) 

TENA 137900 2.9 (136.7) 4.7 (13.4) 0.5 (8.8) 0.8 (3.7) 

CEAM 229245 1.7 (28.3) 4.3 (12.2) 0.3 (1.5) 0.7 (1.4) 

NHSA 242359 3.1 (50.1) 5.1 (12.4) 0.5 (3.3) 0.8 (2.1) 

SHSA 1320177 3.0 (90.6) 4.7 (13.8) 0.5 (4.8) 0.7 (2.3) 

EURO 71233 2.0 (30.7) 4.6 (10.3) 0.4 (2.7) 0.7 (2.0) 

MIDE 86783 2.3 (22.0) 4.0 (9.8) 0.5 (2.1) 0.8 (1.9) 

NHAF 3517808 5.1 (186.2) 4.4 (14.7) 0.7 (8.6) 0.9 (3.0) 

SHAF 5000436 4.3 (232.5) 4.5 (13.5) 0.7 (9.6) 0.9 (2.6) 

BOAS 363279 3.7 (116.8) 4.5 (15.6) 0.5 (6.8) 1.0 (4.1) 

CEAS 807739 3.2 (339.7) 4.2 (11.5) 0.5 (22.7) 0.8 (5.6) 

SEAS 937810 2.2 (27.8) 4.1 (13.2) 0.4 (1.8) 0.7 (1.8) 

EQAS 117870 1.8 (13.5) 5.5 (16.4) 0.3 (0.8) 0.7 (1.3) 

AUST 358807 17.9 (2030.6) 5.0 (20.5) 1.7 (59.5) 1.2 (6.1) 

 
Table 2: Fire attributes by GFED fire type during 2003 – 2016. Ignitions are the summed ignitions 

over the study period (2003 – 2016). For size, duration, expansion, and speed, the mean values are shown 

for individual fires and weighted by fire size (between parenthesis). For agriculture, we only included 

fires with >90% of burned area classified as cropland. For ignitions, fire types with over one million 

ignitions are shown in red and lower values in blue, for other fire aspects values equal to or above the 

global average are shown in red and below the global average in blue. A map of the GFED fire types is 

shown in the annex material (Fig. B2bB3b). 

GFED fire type 

Ignitions 

(2003-2016) 

Size 

 (km
2
) 

Duration 

(days) 

Expansion 

 (km
2
 day

-1
) 

Speed 

 (km day
-1

) 

All 13250145 4.4 (395.9) 4.5 (14.7) 0.6 (14.5) 0.9 (3.2) 

Boreal forest 197124 5.2 (149.2) 5.4 (20.1) 0.6 (6.5) 1.0 (4.2) 

Temporal forest 178909 2.5 (84.1) 4.1 (14.0) 0.4 (4.2) 0.8 (2.8) 

Deforestation 909826 1.4 (28.7) 3.8 (13.7) 0.3 (1.4) 0.6 (1.4) 

Savanna 9809719 5.1 (447.5) 4.6 (14.9) 0.7 (16.2) 0.9 (3.4) 

Agriculture  1631918 1.4 (26.4) 3.4 (10.3) 0.3 (2.0) 0.7 (1.9) 

 

3.3 Fire extremes 
 

The world’s largest individual fires were mostly found in sparsely populated arid and semiarid grasslands 

and shrublands of interior Australia, Africa, and central Asia (Fig. 10a11a). Strikingly, fires of these 

proportions were nearly absent in North and South America, possibly due to higher landscape 

fragmentation and different management practices, including active fire suppression. In arid regions of 
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Southern Africa and Australia, large fires typically followed La Niña periods (e.g., 2011 and 2012), when 

increased rainfall and productivity increase fuel connectivity (Chen et al., 2017). The largest fire in the 

Global Fire Atlas occurred in northern Australia, burning across 40,026 km
2
 (about the size of 

Switzerland or the Netherlands) over a period of 72 days with an average speed of 19 km day
-1

, following 

the 2007 La Niña. The longest fires burned for over 2 months in seasonal regions of the humid tropics and 

high-latitude forests (Fig. 10b11b). Drought conditions in 2007 and 2010 caused multiple fires to burn 

synchronously for over two months across tropical forests and savannas in South America. Highest fire 

velocities typically occurred in areas of low fuel loads. While fires larger than 2500 km
2
 were nearly 

absent from arid grass and shrublands in the North and South America, patterns of extremely fast-moving 

fires in arid grass and shrublands were similar to other continents. Fast-moving fires also show evidence 

of synchronization, for example with several extremely fast fires burning across the steppe of eastern 

Kazakhstan during 2003 (Fig. 10c11c).  

 

 
Figure 1011: Location and year of the largest, longest, and fastest fires over the study period 2003 – 

2016. (a) fires larger than 2500 km
2
, (b) fires longer than 60 days, and (c) fires with an average velocity 

larger than 25 km day
-1

. The background image depicts mean MODIS normalized difference vegetation 

index (NDVI, 2003 – 2016), an indicator for large scale vegetation patterns and available fuels.  
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4 Discussion 
 

The Global Fire Atlas is the first freely available global dataset to provide daily information on seven key 

fire characteristics: ignition timing and location, fire size, duration, daily expansion, daily fire line, speed 

and direction of spread based on moderate resolution burned area data. Over the 2003 – 2016 study 

period, we identified nearly one million individual fires (≥ 21 ha) each year (Table 1). Characteristics of 

these fires varied widely across ecosystems and land use types. In arid regions and other fire-prone 

natural landscapes, most of the burned area resulted from a small number of large fires (Fig. 78). Fire 

sizes declined along gradients of increasing rainfall and human activity, with larger numbers of small fires 

in the humid tropics or other human-dominated landscapes. Multiday fires were the norm across nearly all 

landscapes, with some large fires in productive tropical grasslands and boreal regions burning for over 

two months during drought periods (Fig. 1011). The dominant control on fire sizes also varied across 

ecosystems; fire duration was the principal control on fire sizes in boreal forests, whereas fuels limited the 

size of fast-moving fires in arid grasslands and shrublands (Figs. 8 9 and 109). Characterizing fire 

behavior across large scales is key for understanding fire-vegetation feedbacks, emissions estimates, fire 

prediction, effective fire management, and modeling of fires within ecosystem models. Satellite remote 

sensing has been widely used to characterize global pyrogeography (Archibald et al., 2013) and fire-

climate interactions (Westerling et al., 2006; Alencar et al., 2011; Morton et al., 2013a; Field et al., 2016; 

Young et al., 2017). Nonetheless, large-scale understanding of individual fire behavior has remained 

elusive without consistent global data products such as the Global Fire Atlas. 

 

Both climate and human activity exert a strong control on global burned area (Bowman et al., 2009) and 

contribute to rapidly changing fire regimes worldwide (Jolly et al., 2015; Andela et al., 2017; Earl and 

Simmonds, 2018). Moreover, increasing human presence in fire prone ecosystems requires increased 

efforts to actively manage fires for ecosystem conservation and human wellbeing (Moritz et al., 2014; 

Knorr et al., 2016). The ignition location, spread, and duration of individual fires can be used to address 

new questions of fire-climate interactions and changing influence of human activity on fire behavior, as 

each of these aspects may respond differently to variability or change. For example, recent studies have 

suggested that climate warming and drying may increase fire size and burned area in the tropics (Hantson 

et al., 2017) and at higher latitudes (Yang et al., 2015). Our findings suggest that an increase in the length 

of the fire season may be the dominant driver for increases in fire activity in these ecosystems, as fire 

duration was a strong control on eventual fire sizes and burned area (Figs. 87, 98 and 110). Investigating 

fire-climate interactions and human controls on burned area using the Fire Atlas data layers will benefit 

management efforts and science investigations, as fires alter vegetation structure (Bond et al., 2005; 

Staver et al., 2011), biogeochemical cycles (Bauters et al., 2018; Pellegrini et al., 2018) and climate 

(Randerson et al., 2006; Ward et al., 2012).  

 

The Global Fire Atlas provides several new constraints that could improve the representation of fires in 

ecosystem and Earth system models. Fire models embedded in dynamic vegetation models are important 

tools for understanding the changing role of fires in the Earth system and the ecosystem impacts of fires 

(Hantson et al., 2016; Rabin et al., 2017). Most global models of fire activity are calibrated using satellite-

derived estimates of total burned area or active fires (Hantson et al., 2016), rather than individual fire 

characteristics. As a result, these fire models capture the spatial distribution of global fire activity but not 

burned area trends (Andela et al., 2017) or interannual variability that may increase fire spread rates or 

duration. Models range from simple empirical schemes to complex, process-based representations of 

individual fires (Hantson et al., 2016; Rabin et al., 2017). Process-based models estimate burned area as 

the product of fire ignitions and size, while many models include a dynamic rate of spread to determine 

eventual fire sizes (e.g. SPITFIRE; Thonicke et al., 2010) but use arbitrary threshold values for key 

parameters such as fire duration (Hantson et al., 2016). We found that global patterns of fire duration, 

ignitions, size, and rate of spread (i.e. speed) varied widely across ecosystems and human land 
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management types, and thus these Global Fire Atlas data products provide additional pathways to 

benchmark models of various levels of complexity. While only a few models include multiday fires (e.g., 

Pfeiffer et al., 2013; Le Page et al., 2015; Ward et al., 2018), we found that multiday fires were the norm 

across most biomes, and fire duration forms an important control on eventual fire sizes and burned area in 

many natural ecosystems with abundant fuels. In a similar fashion, many models assume relatively 

homogeneous fuel beds, while our results suggest that landscape features and vegetation patterns result in 

highly heterogeneous fuel beds that form a strong control on fire spread (speed and direction). Large 

differences in fire behavior across ecosystems and management strategies may improve fire emissions 

estimates and emissions forecasting, particularly when combined with active fire detections to better 

characterize different fire stages including the smoldering phase (Kaiser et al., 2012). Recent studies have 

shown that fire emissions factors may vary widely depending on fire-behavior (Van Leeuwen and Van 

Der Werf, 2011; Parker et al., 2016; Reisen et al., 2018), while improved knowledge of fire-climate 

interactions are crucial for emissions forecasting (Di Giuseppe et al., 2018).  

 

The Global Fire Atlas methodology builds on a range of previous studies that have used remote 

sensingdaily moderate resolution satellite imagery to estimate individual fire sizes (Archibald and Roy, 

2009; Hantson et al., 2015; Frantz et al., 2016; Andela et al., 2017), shape (Nogueira et al., 2017; Laurent 

et al., 2018), duration (Frantz et al., 2016) and spread dynamics (Loboda and Csiszar, 2007; Coen and 

Schroeder, 2013; Sá et al., 2017). We provide the first fire progression-based algorithm to map individual 

fires across all biomes, including the first global estimates of ignition locations and timing, duration, daily 

expansion, fire line, speed and direction of spread. Several previous studies have estimated fire size 

distributions based on a flood-fill algorithm, where all neighboring pixels within a certain time threshold 

are classified as the same fire (Archibald and Roy, 2009; Hantson et al., 2015). Interestingly, we found 

similar spatial patterns of fire size (cf. Fig. 8 and Archibald et al., 2013; Hantson et al., 2015), although 

absolute estimates may show large differences based on the “cut off” value used within the flood-fill 

approach (Oom et al., 2016), and to a lesser extent by the fire persistence threshold used here. Spatial 

patterns of fire size and duration also compared favorably with estimates of Frantz et al.  (2016) for 

southern Africa (Fig. 8a9a) and estimates of fire speed by Loboda et al. (2007) for central Asia (Fig. 

9a10a). Here we compared our results to fire perimeter estimates from the MTBS (Eidenshink et al., 

2007; Sparks et al., 2015) for validation purposes. Good agreement was found for forested ecosystems 

and shrublands, but results differed more in grassland biomes (Fig. 5). Interestingly, we found that the 

poor agreement in grasslands stemmed from differences in the spatial and temporal resolution of the 

burned area estimates (Fig. B2). In line with previous studies, we found that While the coarser resolution 

(500 m) of the MODIS burned area data used to develop the Global Fire Atlas sometimes underestimated 

overall burned area (e.g. Randerson et al., 2012; Roteta et al., 2019), fragmented fragmenting individual 

large fires, . However, the Landsat-based MTBS data at 30 m resolution were unable to distinguish 

individual fires within large burn patches of fast-moving grassland fires based on infrequent Landsat 

satellite overpasses (Fig. B1B2).    

 

Validation of Global Fire Atlas fire perimeter estimates for the continental US revealed several important 

limitations and opportunities for further development of individual fire characterization using satellite 

burned area data. In addition to the validation of fire perimeters, we also investigated the temporal 

accuracy of the Global Fire Atlas (Fig. 4) as well as the fire duration estimates (Fig. 6) based on active 

fire detections. Reasonable correlations (r
2
 ranging from 0.3 to 0.5) were found between Global Fire Atlas 

and fire duration estimates based on a combination of MTBS fire perimeters and VIIRS active fire 

detections. Disagreement partly originated from differences in fire perimeter estimates as well as 

differences between the day-of-burn estimates derived from the MCD64A1 burned area data and VIIRS 

active fire detections. Moreover, the uncertainty in the burn date of the underlying burned area product is 

typically at least one day, resulting in a large uncertainty in the fire duration estimates of shorter fires. 

Global Fire Atlas data therefore performed best for large fires (Figs. 6 and 7). Particular care should be 

taken when using the Global Fire Atlas for cropland regions for two main reasons. First, mapping burned 
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area in croplands is notoriously difficult using moderate resolution satellite data, as typical crop residue 

burning is often too small to detect (Randerson et al., 2012; Giglio et al., 2013). Second, we allow a fire 4 

– 10 days to spread from one grid cell into the next (fire persistence threshold), which may be more 

representative for natural landscapes than croplands with synchronized small fire activity at specific 

points in the crop cycle. The temporal accuracy of the Global Fire Atlas adjusted burned area compared to 

VIIRS active fire detections ranged from 41% on the same day and 80% within ± 1 day in shrublands to 

and 24% (same day) and 54% (± 1 day) in forests. However, in forested ecosystems the use of active fire 

detections for validation purposes is not ideal, as fires may smolder for days resulting in active fire 

detections a long time after the fire front has passed. Understanding the temporal accuracy of the Global 

Fire Atlas products is important for linking individual fire dynamics to fire weather, and we found good 

agreement between Global Fire Atlas and US Forest Service fire expansion using a 3-day running 

average, but less good agreement for individual days based on burn date uncertainty (Fig. B1). Other 

parameters, including fire speed and direction of spread, were not validated during this stage. However, 

our comparison to daily fire perimeter estimates from the US Forest Service show good agreement in 

terms of average expansion rates, suggesting reasonable overall estimates of speed (Fig. 7). Overall, there 

is a need to develop additional validation methodologies and data products to advance our understanding 

of satellite-derived estimates of individual fire behavior, building on the long-standing efforts for burned 

area (Boschetti et al., 2009) and active fires (Schroeder et al., 2008).     

 

The Global Fire Atlas provides the first consistent, global assessment of individual fire behavior. Further 

development of the Fire Atlas product suite is possible based on improvements in the underlying burned 

area data, including new products at higher spatial resolution (e.g., VIIRS), and additional constraints 

from active fire detections. The Global Fire Atlas algorithm provides a flexible framework that can be 

easily adjusted to work at different spatial and/or temporal resolutions.  In particular, daily burned area 

products do not resolve the diurnal cycle of fire activity, that may vary widely across fire regimes 

(Freeborn et al., 2011; Andela et al., 2015). A better understanding of the drivers of fire persistence and 

fuel loads across biomes and ecosystem gradients is also important.  

 

5 Data availability 
 

The data are freely available at http://www.globalfiredata.org in standard data product formats and 

updates for subsequent years will be distributed pending availability of MCD64A1 burned area data and 

associated research funding. Global per-fire-year shapefiles of the ignition locations (point) and 

individual fire perimeters (polygon) contain attribute tables with a unique fire ID, ignition location, start 

and end dates, size, duration, and average values of the daily expansion, daily fire line, speed, and 

direction of spread (Fig. 1, Table A1). In addition, gridded 500 m global maps of the Global Fire Atlas 

adjusted burn dates, daily fire line, speed and direction of spread are available in GeoTIFF format. A 

monthly gridded product is also available at 0.25° resolution. Global Fire Atlas data products can also be 

visualized and evaluated using an online tool at globalfiredata.org to explore individual fire characteristics 

for a selected region of interest.  

 

6 Conclusions 
 

The Global Fire Atlas is a new publicly available global dataset on seven key fire characteristics: ignition 

location and timing, fire size, duration, daily expansion, daily fire line, speed, and direction of spread. 

Over the 2003 – 2016 study period, we identified 13,250,145 individual fires (≥ 21 ha) based on the 

moderate resolution MCD64A1 collection 6 burned area data. Striking differences were observed among 

global fire regimes along gradients of ecosystem productivity and human land use. In general, in 

ecosystems of abundant fuel and low human influence, large fires of long duration dominated total burned 
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area, with large numbers of small fires contributing most to overall burned area in human-dominated 

regions or areas too wet for frequent fires. Fires moved quickly through arid ecosystems with low fuel 

densities but fire sizes were eventually limited by fuels from natural or human landscape fragmentation. 

The dataset enables new lines of investigation for understanding vegetation-fire feedbacks, climatic and 

human controls on global burned area, fire forecasting, emissions modeling, and benchmarking of global 

fire models.      
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Appendix A: Supporting material for the methods 

 

Table A1: Overview of the Global Fire Atlas data-layers. The shapefiles of ignition locations (point) 

and fire perimeters (polygon) contain attribute tables with summary information for each individual fire, 

while the underlying 500 m gridded layers reflect the day-to-day behavior of the individual fires. In 

addition, we provide aggregate monthly layers at 0.25° resolution for regional and global analyses.  

 Shapefile attributes* 500 m daily 

gridded 

0.25° monthly 

gridded 

Ignitions location and timing - sum 

Perimeter (km) per fire  - - 

Size (km
2
) per fire  - average  

Duration (days) per fire  - average  

Daily fire line (km) average per fire  yes average  

Daily fire expansion (km
2
 day

-1
) average per fire  - average  

Speed (km day
-1

) average per fire yes average  

Direction of spread (-) dominant per fire yes dominant 

Day of burn - yes - 

* vector data are derived from the underlying 500 m MODIS data.  
 

 
Figure A1: Burn date adjustment to remove local minima that are not associated with ignition 

points. (a) MCD64A1 burn date estimate for the 2015 example fires in the Cerrado, (b) local minima 

within (a). (c) Burn date adjustment after the first iteration, and (d) resulting local minima. (e) Burn date 

adjustment after the second iteration, and (f) resulting local minima. (g) Burn date adjustment after the 

third iteration, and (h) resulting local minima. Note that for these particular fires there was no difference 

between (e and f) and (g and h), and the final iteration has no added value here. We found that multiple 

iterations were particularly beneficial for slow moving fires in forested ecosystems.  
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Figure A2: Tradeoffs between reducing local minima not associated with ignition locations and 

adjustments made to the global burned area product. (a) Local minima (ignitions) detected within the 

daily 500 m global burned area data for 2015 after different number of iterations of the ignition point 

filter, (b) corresponding fraction of burned area pixels with adjusted burn date, and (c) corresponding 

number of burned area pixels adjusted divided by the reduction in ignition count. In this study, we used 

three iterations of the ignition point filter (indicated with the intermittent lines in figures a, b and c), and 

“0 iterations” refers to the original MCD64A1 col. 6 burned area data.       

 

 
Figure A2A3: Average fire persistence threshold at 0.25 resolution. The fire persistence threshold 

determines how long a fire may take to spread from one 500 m grid cell into the next. We used a 4-day 

fire persistence threshold for 500 m grid cells that burned more than 3 times during the study period (2003 

- 2016), and a 6, 8 and 10-day fire persistence period for grid cells that burned 2-3, 1-2, or 1 time, 

respectively. 
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Appendix B: Supporting material for the results and discussion 

 

 
Figure B1: Comparison of daily Global Fire Atlas and US Forest Service data for a selected 

number of well characterized wildfires in the US. (a) The accumulated daily fire size (for all fires, 

N=15) illustrates the ability of the Global Fire Atlas to reproduce individual large fire sizes at any specific 

day over the fire lifetime (each blue dot indicates the size of a specific fire on a specific day). (b) A 3-day 

running average of the daily growth or “expansion” of each fire (km
2
 day

-1
) and (c) the daily expansion on 

each day of each fire. Figures (d), (e), and (f) are like (a), (b), and (c), but for US Forest Service fire sizes 

smaller than 500 km
2
 or expansion rates lower than 250 km

2
 day

-1
 and corresponding Global Fire Atlas 

estimates (see intermittent boxes on top-figures).  
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Figure B2: Comparison of Global Fire Atlas and MTBS perimeters and ignition locations to  

estimates based on MTBS and VIIRS for frequently-burning grasslands in Kansas, USA. (a) Global 

Fire Atlas adjusted burn dates from MCD64A1, (b) per-pixel comparison of adjusted burn dates used 

within the Global Fire Atlas (GFA) to the day of the (first) active fire detection from VIIRS, (c) ignition 

points as estimated by the Global Fire Atlas, (d) manually interpreted ignition locations (red circles) based 

on VIIRS active fire detections on top of MTBS fire perimeters, (e) individual fires as estimated by the 

Global Fire Atlas, and (cf) the MTBS burned area and individual fires and (d) individual fires as 

estimated by the Global Fire Atlas. Here, MCD64A1 data underestimates the total burned area compared 

to the visual interpretation of Landsat data within the MTBS project, resulting in fragmentation of 

individual large fires. However, the daily temporal resolution of MODIS imagery allows the Global Fire 

Atlas to distinguish individual fires and ignition points within larger burn scars that cannot be resolved 

from infrequent Landsat observations used to delineate fire perimeters within the  MTBS project. Broad 

patterns of ignition locations identified by the Global Fire Atlas are confirmed by manual interpretation of 

patterns inferred from VIIRS active fire detections (d).    
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Figure B2B3: Global Fire Emissions Database (GFED) regions and dominant GFED fire types used 

for Tables 1 and 2.  (a) GFED regions used in Table 1, and (b) GFED dominant fire type as used in 

Table 2. Abbreviations of the GFED regions shown in (a) are: boreal North America (BONA), temperate 

North America (TENA), Central America (CEAM), northern hemisphere South America (NHSA), 

southern hemisphere South America (SHSA), Europe (EURO), Middle East (MIDE), northern 

hemisphere Africa (NHAF), southern hemisphere Africa (SHAF), boreal Asia (BOAS), Central Asia 

(CEAS) southeast Asia (SEAS), equatorial Asia (EQAS), and Australia and New Zealand (AUST). 

Abbreviations of the GFED fire types shown in (b) are: boreal forests (BOAF), Temperate forests 

(TMPF), Tropical forest deforestation (DEFO), savanna (SAVA) and agriculture (AGRI).   
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