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Abstract. Many maps of open water and wetlands have been developed based on three main methods: (i) compiling 

national/regional wetland surveys; (ii) identifying inundated areas via satellite imagery; and (iii) delineating wetlands as 

shallow water table areas based on groundwater modelling. However, the resulting global wetland extents vary from 3% to 10 

21% of the land surface area because of inconsistencies in wetland definitions and limitations in observation or modelling 

systems. To reconcile these differences, we propose composite wetland (CW) maps, combining two classes of wetlands: (1) 

regularly flooded wetlands (RFW) obtained by overlapping selected open-water and inundation datasets; and (2) groundwater-

driven wetlands (GDW) derived from groundwater modelling (either direct or simplified using several variants of the 

topographic index). Wetlands are statically defined as areas with persistent near-saturated soil surfaces because of regular 15 

flooding or shallow groundwater, disregarding most human alterations (potential wetlands). Seven CW maps were generated 

at the 15 arc-sec resolution (ca 500 m at the Equator) using geographic information system (GIS) tools and by combining one 

RFW and different GDW maps. To validate this approach, these CW maps were compared with existing wetland datasets at 

the global and regional scales. The spatial patterns were decently captured, but the wetland extents were difficult to assess 

against the dispersion of the validation datasets. Compared with the only regional dataset encompassing both GDWs and 20 

RFWs, over France, the CW maps performed well and better than all other considered global wetland datasets. Two CW maps, 

showing the best overall match with the available evaluation datasets, were eventually selected. These maps provided global 

wetland extents of 27.5 and 29 million km², i.e., 21.1% and 21.6% of global land area, which are among the highest values in 

the literature and in line with recent estimates also recognizing the contribution of GDWs. This wetland class covers 15% of 

the global land area compared with 9.7% for RFW (with an overlap of ca. 3.4%), including wetlands under canopy/cloud 25 

cover, leading to high wetland densities in the tropics and small scattered wetlands that cover less than 5% of land but are 

highly important for hydrological and ecological functioning in temperate to arid areas. By distinguishing the RFWs and 

GDWs based globally on uniform principles, the proposed dataset might be useful for large-scale land surface modelling 

(hydrological, ecological and biogeochemical modelling) and environmental planning. The dataset consisting of the two 

selected CW maps and the contributing GDW and RFW maps is available from PANGAEA at 30 

https://doi.pangaea.de/10.1594/PANGAEA.892657 
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1 Introduction 

Wetlands are valuable ecosystems with a key role in the carbon, water and energy cycles (Matthews and Fung, 1987; 

Richey et al., 2002; Repo et al., 2007; Ringeval et al., 2012). Water retention in wetlands leads to lower and delayed runoff 

peaks, higher base flows and evapotranspiration, which directly influence climate (Bierkens and van den Hurk, 2007; Lin et 

al., 2016). Wetlands also serve to purify pollutions from natural and human sources, thus maintaining clean and sustainable 5 

water for ecosystems (Billen and Garnier, 1999; Dhote and Dixit, 2009; Curie et al., 2011; Passy et al., 2012). Despite their 

widely recognized importance, no consensus exists on wetland definitions and their respective areal extents among the 

reviewed literature (Table 1). Based on tens of definitions, the extents range from regions with relatively shallow water tables 

(National Research Council, 1995; Kutcher, 2008; Ramsar, 2009) to areas with permanent inundation such as lakes (lacustrine 

wetlands) with depths of several metres. The reasons for this ambiguity are a diversity of scientific points of views as well as 10 

the complexity of classification in transitional land features and temporally varying land features under human influences 

(Mialon et al., 2005; Papa et al., 2010; Ringeval et al., 2011; Sterling et al., 2013; Hu et al., 2017; Mizuochi et al., 2017).  

The first global wetland maps were developed based on compilation of regional archives and estimates. Matthews and 

Fung (1987) developed a 1° resolution wetland map based on vegetation, soil properties and inundation fractions that covered 

ca. 4% of the land. Finlayson et al. (1999) based their estimates on surveys and the Ramsar global inventory in which wetlands 15 

cover 9.7% of the land area. Later, the global lakes and wetlands database (GLWD) was developed at 30 arc-sec resolution 

(~1 km at the Equator) by compiling several national and regional wetland maps with a global cover of 6.9% of land area, 

excluding Antarctica and glaciated lands (Lehner and Döll 2004). Because satellite imagery permits homogeneous observation 

of land characteristics, this method has been favoured for mapping of water-related features in recent decades. Satellite imagery 

at visible wavelengths reports that 1.6 to 2.3% of Earth’s land is permanently under water (Verpoorter et al., 2014; Feng et al., 20 

2015; Yamazaki, et al., 2015; Pekel et al., 2016) but with large disagreements (Nakaegawa, 2012), and inundations under 

densely vegetated and clouded areas are often missed (Lang and McCarty 2009). Longer wavelengths in the microwave band 

(e.g., L and C bands) penetrate better through the cloud and vegetation layer and supply dynamic observations of inundated 

zones, usually with a trade-off between high resolution with a low revisit rate or domain extent (Li and Chen, 2005; Hess et 

al., 2015) and coarse resolution with a high revisit rate up to global coverage (Prigent et al., 2007; Papa et al., 2010; Schroeder 25 

et al., 2015; Parrens et al., 2017). Recent progress has been achieved by downscaling or correcting the latter products using 

higher-resolution information. Fluet-Chouinard et al. (2015) developed the global inundation product GIEMS-D15 by 

downscaling the 0.25° multi-satellite wetland fractions of Prigent et al. (2007) using 15 arc-sec topography, with a global long-

term maximum inundation fraction of 13%. Poulter et al. (2017) corrected the wetland fractions of the surface water microwave 

product series (SWAMPS: Schroeder et al., 2015) by merging them with those obtained at 30 arc-sec from GLWD.  30 

However, regardless of the wavelengths, wetlands derived from satellite imagery almost always represent inundated areas 

and overlook other types of wetlands where soil moisture is high but the surface is not inundated (Maxwell and Kollet, 2008; 

Lo and Famiglietti, 2011; Wang et al., 2018). The method most frequently used to delineate these wetlands is water table depth 

(WTD) modelling. Direct groundwater (GW) modelling (e.g., Miguez-Macho and Fan 2012) requires in-depth knowledge of 

the physics of water movement, topography at a sufficiently high resolution, climate variables, subsurface characteristics and 35 

observational constraints (Fan et al., 2013; de Graaf et al., 2015). Simplified GW models based on the topographic index (TI) 

of TOPMODEL (Beven and Kirkby 1979) require less extensive input, and they have also been used to map wetlands (e.g., 

Gedney and Cox, 2003). Using the topography, TI can be calculated as follows: 

𝑇𝐼   = 𝑙𝑛 (
𝑎

𝑡𝑎𝑛 (𝛽)
),          (1) 

where 𝑎 (𝑚) is the drainage area per unit contour length, and 𝑡𝑎𝑛 (𝛽) is the local slope at the desired pixel. The TI index 40 

is often presented as a wetness index (Wolock and McCabe, 1995; Sørensen et al., 2006) because high values are found over 

flat regions with large drainage areas corresponding to a high propensity for saturation. Other environmental characteristics 



3 

 

such as climate and soil or underground properties can also be used in the TI formulation to detect wetlands in areas where 

topography is not the primary driver of the water budget, such as wetlands in uplands and over clayey soils or thin active layers 

in the permafrost region (e.g., Saulnier et al., 1997; Mérot et al., 2003; Hu et al., 2017).  

A major challenge in identification of wetlands through GW modelling is the definition of thresholds on TI or WTD for 

separation of wetland from non-wetland areas. The thresholds are often calibrated to reproduce the extent of documented 5 

wetlands in a certain region and are subsequently extrapolated for larger domains. This strategy was proven successful at the 

basin scale (e.g., Curie et al., 2007), but it has been shown to be ineffective at larger scales because it is not possible to uniquely 

link TI values to soil saturation levels across different landforms and climates (Marthews et al., 2015). Hu et al. (2017) 

produced a global wetland map by calibrating TI thresholds for every large basin of the world based on land cover maps, as 

pioneered over France due to independent TI threshold calibration in 22 hydro-ecoregions using soil type datasets (Berthier et 10 

al., 2014). Uniform WTD thresholds (0 cm for inundated areas and 25 cm for wetlands) are applied in the only example (to 

our knowledge) of direct global GW modelling for wetland delineation (Fan and Miguez-Macho, 2011 and Fan et al., 2013). 

All these datasets based on GW modelling estimate the wetland fraction as much higher than those based on inventories and 

satellite imagery (Hu et al., 2017: 22.6%, Fan et al., 2013: 15% of the land surface area). It must be emphasized that adjustment 

of wetland thresholds, both for directly modelled WTD and TI, always implies subjective choices and can result in 15 

over/underestimation of wetland extents or unrealistic wetland distribution patterns.  

The scientific objective of the current work is to develop a comprehensive global wetland dataset based on a unique and 

applicable wetland definition for use in hydrological and land surface modelling. Based on the above analysis, our rationale is 

that inundated and groundwater-driven wetlands must both be considered to realistically capture the wetland patterns and 

extents. This approach leads to a definition of wetlands as areas that are persistently saturated or near saturated because they 20 

are regularly subject to inundation or shallow water tables. This definition is focused on hydrological functioning, and is not 

restricted to areas with typical wetland vegetation. In this context, although inundated areas and zones with shallow 

groundwater partially overlap and share similar environmental properties, they cannot be detected using a single method. Thus, 

we rely on data fusion methods, which have proven advantageous in developing high-quality products by merging properties 

from various datasets (Fritz and See, 2005; Jung et al., 2006; Schepaschenko et al., 2011; Pérez-Hoyos et al., 2012; Tuanmu 25 

and Jetz, 2014), including wetland mapping (Ozesmi & Bauer, 2002; Friedl et al., 2010; Poulter et al., 2017). In this framework, 

we tested several composite wetland (CW) maps, all constructed at 15 arc-sec resolution, by merging two complementary 

classes of wetlands: (1) regularly flooded wetlands (RFWs), where surface water can be detected at least once a year through 

satellite imagery; and (2) groundwater-driven wetlands (GDWs) based on groundwater modelling.  

The main assumptions underlying the composite wetland maps are detailed in Sect. 2, together with the involved datasets. 30 

Subsequently, Sect. 3 sequentially presents the construction of the RFW, GDW, and CW maps, with preliminary analyses of 

their features and uncertainties. In Sect. 4, we compare the CW maps with several validation wetland datasets, globally and in 

several areas with contrasting climates and wetland fractions, to show that the combination of RFWs and GDWs provides a 

consistent wetland description throughout the globe. This comparison allows us to select two CW maps with better overall 

performances, used to discuss the role of GDW in Sect. 5. Finally, the availability and potential applications of the composite 35 

maps are presented in Sect. 6, while Sect. 7 summarizes the advantages and limitations of the approach and gives perspectives 

on future developments. 
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2 Datasets 

2.1 Mapping strategy and requirements 

Based on the inclusive assumptions for wetland mapping in this study, we use GIS tools to construct several composite 

wetland maps as the overlap (union) of the following: 

 One RFW map developed by overlapping three surface water and inundation datasets derived from satellite imagery in an 5 

attempt to fill the observation gaps (Sect. 3.1);  

 One GDW map out of seven, all derived from GW modelling (either direct or simplified based on several TI versions) 

and meant to sample the uncertainty of the GDW contribution (Sect. 3.2).  

In this process, many layers were developed and are summarized in Table 2 and detailed in Sect. 3. The map and methods 

to exclude lakes from all layers is explained in Sect. 2.2. Input datasets to RFWs and GDWs are presented in Sect. 2.3 and 2.4 10 

respectively, and several independent validation datasets, global and regional, are presented in Sect. 2.5. It should be noted 

that in the remainder of this paper, the wetland percentages of the land surface area always exclude lakes (Sect. 2.2), the 

Caspian Sea, the Greenland ice sheet and Antarctica (unless otherwise mentioned). For this reason, these percentages and areas 

might be different from those shown in Table 1, which are indicated in each original paper or data description.  

2.2 Lakes 15 

To distinguish large permanent lakes and reservoirs from wetlands, we used the HydroLAKES database (Messager et al., 

2016), which was developed by compiling national, regional and global datasets (Fig. 1a). This database consists of more than 

1.4 million individual polygons for lakes with a surface area of at least 10 ha, covering 1.8% of the land surface area. It also 

classifies artificial dam reservoirs which amount to 300 103 km2 (Messager et al., 2016). The lakes extent in HydroLAKES is 

smaller than those in other recent databases that account for smaller water bodies: 2.5% in G3WBM (Yamazaki et al., 2015) 20 

for water bodies above 0.8 ha and 3.5% in GLOWABO (Verpoorter et al., 2014) for those above 0.2 ha. These two datasets 

do not differentiate lakes from other surface water elements and using them as a mask would lead to exclusion of shallow 

inundated portions of wetlands (e.g., Indonesian mangroves or Ganges floodplains). It must also be noted that the small water 

bodies tend to be overlooked after dominant resampling to 15 arc-sec resolution (Sect 2.6), unless they are sufficiently 

numerous in a pixel. Therefore, the lake mask covers 1.7% of the land area compared with 1.8% in the original HydroLAKES 25 

database. This map also shows that most of the lakes are located in the northern boreal zones (more than 60% of lakes area are 

located north of 50°N), in agreement with the other lake databases.  

2.3 Input to RFW map: Inundation datasets 

2.3.1 ESA-CCI land cover 

This dataset succeeds the GlobCover dataset based on the data from the MERIS sensor (onboard ENVISAT) collected at 30 

high resolution for surface water detection, together with the SPOT-VEGETATION time series (Herold et al., 2015) to aid in 

distinguishing wetlands from other vegetation covers. Global land cover maps at approximately 300 m (10 arc-sec) resolution 

deliver data for three 5-year periods (1998-2002, 2003-2007 and 2008-2012). The extents of water bodies slightly changed 

between the first 5-year period and the third one (such as shrinking of the Aral Sea area by more than 55%), but the extent of 

wetland classes (permanent wetlands and flooded vegetation classes) did not change significantly (the variation in wetland 35 

classes throughout these periods is less than 3% of the total wetlands area). We acquired the last epoch data to represent the 

current state of wetlands (Fig. 1b). In ESA-CCI, wetlands are mixed classes of flooded areas with tree covers, shrubs or 

herbaceous covers plus inland water bodies, covering 3% of the Earth land surface overall.  
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2.3.2 GIEMS-D15 (Fluet-Chouinard et al., 2015) 

Prigent et al. (2007) used multi-sensor satellite data, including passive and active microwave measurements, together with 

visible and near-infrared reflectance to map the monthly mean inundated fractions at 0.25° resolution for a 12-year period 

(1993 to 2004). This dataset (GIEMS) gives the minimum and maximum extent of the inundated area (including wetlands, 

rivers, small lakes, and irrigated rice). Fluet-Chouinard et al. (2015) used the GLC2000 land cover map (Bartholomé and 5 

Belward 2005) to train a downscaling model for GIEMS at 15 arc-sec resolution based on the HydroSHEDS digital elevation 

model (Lehner et al., 2008) and developed three static datasets for mean annual minimum, mean annual maximum and long-

term maximum extent of the inundated areas (covering 3.9%, 7.7% and 10.3% of the land surface area, respectively). In this 

study, we assumed that the mean annual maximum extent was the best representative measure for wetlands. In the following, 

GIEMS-D15 always indicates the mean annual maximum of GIEMS-D15 (Fig. 1c). Higher-resolution (3 arc-sec) downscaling 10 

of GIEMS has been recently developed (Aires et al., 2017), but we overlooked this source because we focused our study on 

the 15 arc-sec resolution. 

2.3.3 JRC surface water (Pekel et al., 2016) 

The JRC surface water products are a set of high-resolution maps (1 arc-sec ~ 30 m) for permanent water and also for 

seasonal and ephemeral water bodies. These products are based on analysis of Landsat satellite images (Wulder et al., 2016) 15 

over a period of 32 years (1984-2015). Each pixel was classified as open water, land or non-valid observation. Open water is 

defined as any pixel with standing water, including fresh and saltwater. The study also quantifies the conversions, mostly 

referring to changes in state (lost or gained water extents, conversions from seasonal to permanent, etc.) during the observation 

period. In this study, we used the maximum surface water extent, which consists of all pixels that were under water at least 

once during the entire period, covering almost 1.5% of the Earth land surface area (Fig. 1d).  20 

2.4 Input to GDW maps 

2.4.1 Water table depth estimates (Fan et al., 2013) 

Fan et al. (2013) performed global GW modelling to estimate the water table depth at 1 km resolution. This model assumes 

a steady flow, and lateral water fluxes are calculated using the Darcy’s law and the Dupuit-Forchheimer approximation for 2-

D flow. Elevation is described at 30 arc-sec resolution (by HydroSHEDS south of 60° N and otherwise by ASTER/NASA-25 

JPL), and the recharge rates were modelled at the 0.5° resolution using the WaterGAP model (Döll and Fiedler, 2008) based 

on contemporary meteorological forcing (1979-2007). To estimate subsurface transmissivity, the soil hydraulic conductivities 

were derived from the global Food and Agriculture Organization (FAO) digital soil maps (5 arc-min resolution) and US 

Department of Agriculture (USDA) soil maps over the United States (30 arc-sec resolution) and subsequently assumed to 

decay exponentially with depth from the thin soil layer (2 m) down as a function of the local topographic slope. The decay 30 

factor is also adjusted for the permafrost region using an additional thermic factor (smaller transmissivity in permafrost areas). 

The modelled WTD was compared to observations available to the authors (more than one million observations with 80% of 

them located in North America). The resulting dataset suggests vast areas with a shallow water table over the tropics, along 

the coastal zones, and in boreal areas of North America and Asia (almost 15% of the land area for WTD ≤ 20 cm). 

2.4.2 Three maps of topographic wetness indices 35 

Flat downstream areas display a marked propensity to be saturated, which explains the wide use of topographic indices to 

delineate wetlands. Here, we use the global map of TI produced by Marthews et al. (2015) at 15 arc-sec resolution. It relies on 

the original formulation of Beven and Kirkby (1979), as in Eq (1), and on two global high-resolution digital elevation models 
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(DEMs), viz. HydroSHEDS (Lehner et al., 2008) and Hydro1k (U.S. Geological Survey, 2000) at 15 and 30 arc-sec resolution, 

respectively. Hydro1k is used to fill the lack of information in HydroSHEDS north of 60°N, which is outside of the SRTM 

(Shuttle Radar Topography Mission) coverage. Because index values depend on pixel size, which varies with latitude, those 

researchers also applied the dimensionless topographic wetness index correction of Ducharne (2009) to transform the index 

values to equivalents for a 1-meter resolution.  5 

Topography, however, is often not sufficient for wetland identification because climate and subsurface characteristics also 

control water availability and vertical drainage. Using the original TI formulation in Eq (1), high index zones might coincide 

with flat arid areas, or inversely, low index values might occur at wetland zones with small upstream drainage areas over a 

shallow impervious layer. Several studies have focused on improving the topographic wetness index for wetland delineation 

by including other environmental factors or modifying the formulation of the wetness index (Rodhe and Seibert, 1999; Mérot 10 

et al., 2003; Manfreda et al., 2011). Therefore, we used the global TI dataset of Marthews et al. (2015) to supply the original 

TI, and also as a base map to derive two other variants of the index. 

The first variant index is the TCI (topography-climate wetness index, inspired by Mérot et al., 2003): 

𝑇𝐶𝐼     = 𝑙𝑛 (
𝑎 .𝑃𝑒

𝑡𝑎𝑛 (𝛽)
)     =  𝑇𝐼  +  𝑙𝑛 ( 𝑃𝑒),       (2) 

where 𝑃𝑒 is the mean annual effective precipitation (in metres). The effective precipitation is first defined at the monthly 15 

time step as the monthly precipitation 𝑃𝑚,𝑦  (meters) for month 𝑚 and year 𝑦 that is not evaporated or transpired using the 

monthly potential evapotranspiration 𝐸𝑃𝑚,𝑦 (meters) as a proxy for total evapotranspiration: 

𝑃𝑚,𝑦
𝑒 = 𝑚𝑎𝑥(0, 𝑃𝑚,𝑦 − 𝐸𝑃𝑚,𝑦).          (3) 

𝑃𝑒 is subsequently calculated as the sum of the 12 pluri-annual means of monthly effective precipitation. The required 

climatic variables are taken from the CRU monthly meteorological datasets (Sect. 2.2.3) for 1980-2016 to represent the 20 

contemporary period. 

The second variant index (known as TCTrI for topography-climate-transmissivity index) is constructed by combining the 

effect of heterogeneous transmissivity (Rodhe and Seibert, 1999) with the above TCI: 

𝑇𝐶𝑇𝑟𝐼 = 𝑙𝑛 (
𝑎 .𝑃𝑒

𝑇𝑟.𝑡𝑎𝑛 (𝛽)
) = 𝑇𝐼  +  𝑙𝑛 ( 𝑃𝑒) − 𝑙𝑛 (𝑇𝑟),      (4) 

where 𝑇𝑟  (m2/s) is the transmissivity calculated by vertically integrating a constant 𝐾𝑠 (saturated hydraulic conductivity 25 

in m/s) from GLHYMPS over the first 100 m below the Earth’s surface (Sect. 2.4.4). 

 

2.4.3 CRU climate variables 

To assess the impact of climate on wetlands, we used the Climatic Research Unit (CRU) monthly meteorological datasets. 

These datasets cover all land area from the beginning of the twentieth century (Harris et al., 2014). CRU climate time series 30 

are gridded to 0.5° resolution based on more than 4000 individual weather station records. To include a climate factor in the 

TI formulations, the time series of selected climate variables (i.e., precipitation and potential evapotranspiration based on the 

Penman-Monteith equation) are extracted for the contemporary period (1980-2016).  

2.4.4 GLHYMPS (Gleeson et al., 2014) 

GLHYMPS is a global permeability and porosity map based on high-resolution lithology (Hartmann and Moosdorf, 2012). 35 

The permeability dataset and its derived hydraulic conductivity (𝐾𝑠) estimates are given in vector format with an average 

polygon size of approximately 100 km2. As noted by the developers of GLHYMPS (Gleeson et al., 2011, 2014), “lithology 

maps represent the shallow subsurface (on the order of 100 m)”, and thus hydraulic conductivity estimates are valid for the 

first 100 m of the subsurface layer. Thus, we estimated transmissivity as the integral of this constant 𝐾𝑠  over these 100 m and 
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used it to check whether use of the available transmissivity datasets in TI formulations can improve global wetland 

identification. It should be noted that the hydraulic conductivity dataset has two versions: with and without the permafrost 

effect. To consider the permafrost effect, Gleeson et al. (2014) used maps of the permafrost zonation index (PZI) from Gruber 

(2012) and homogenously assigned a rather low hydraulic conductivity (𝐾𝑠  = 10−13 𝑚/𝑠) for areas with PZI > 0.99, i.e. in 

Siberian taiga forests and tundra, the Canadian Arctic Archipelago and Greenland. This choice leads to a very large contrast 5 

of 𝐾𝑠  and transmissivity between permafrost and non-permafrost zones, which largely overrules the effects of lithology, so 

the high TI values (potential wetlands) become concentrated in permafrost areas. To preserve the influence of lithology, we 

rasterized the vector polygons of 𝐾𝑠 without the permafrost effect to 15 arc-sec resolution. 

2.5 Validation datasets 

Two global and two regional wetland datasets were used to assess the validity of the CW maps, and none of them was 10 

used as inputs to the composite wetland maps to ensure an independent evaluation of the strengths and weaknesses of the CW 

maps.  

2.5.1 GLWD-3 (Lehner and Döll, 2004) 

GLWD is a global lakes and wetlands dataset based on aggregation of regional and global land cover and wetland maps. 

This dataset contains three levels of information, and the most inclusive one is GLWD-3, which is in raster format. This dataset 15 

has an original 30 arc-sec resolution and contains 12 classes for lakes and wetlands (maps and details are given in the 

supplementary information, Sect. S1 and Fig. S1). For large zones prone to water accumulation but without solid information 

on existing wetlands, fractional wetland classes are defined (together they cover 4% of the land surface area). This is 

particularly the case within the Prairie Pothole Region in North America and the Tibetan plateau in Asia. Depending on the 

interpretation of fractional wetlands (by taking either the minimum, mean or maximum fraction of the ranges), wetlands cover 20 

between 5.8 and 7.2% of the land surface area. In this paper, we take the mean fraction in these areas, leading to a total wetland 

extent of 6.3% of the land surface area. 

2.5.2 Global wetland potential distribution (Hu et al., 2017) 

Hu et al. (2017) proposed a potential wetland distribution using a “precipitation topographic wetness index” based on a 

new TI formulation in which the drainage area is multiplied by the mean annual precipitation. This formulation is based on the 25 

concept of the topography-climate wetness index (Mérot et al., 2003) in which the effective precipitation was introduced as 

the climate factor. The new index is calculated at 1 km resolution using GTOPO30 elevation data developed by the USGS. 

Wetlands are categorized into “water” and “non-water wetlands” based on regionally calibrated thresholds for each large basin 

of the world (level-1 drainage area of Hydro1k) using a sample trained adjustment model. The water classes of several land 

cover datasets are used to train the model for the “water” threshold, and the model for the “non-water wetland” threshold is 30 

trained on the regularly flooded tree cover and herbaceous cover categories (additional details are available in the 

supplementary information, Sect. S1 and Fig. S2). The global coverage of the “water” and “non-water wetland” classes in Hu 

et al. (2017) is 22.6% of the Earth land surface area (excluding lakes, Antarctica and the Greenland ice sheet), considering no 

loss due to human influence. This dataset gives the largest wetland extent within the accessible literature, with notably large 

water wetlands in South America and large non-water wetlands in Central Asia and Northern American continent. In this 35 

paper, we used the union of the “water” and “non-water wetlands” classes of this dataset for further evaluations.  
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2.5.3 Amazon basin wetland map (Hess et al., 2015) 

Hess et al. (2015) used the L-band synthetic aperture radar (SAR) data from the Japanese Earth resources satellite (JRES-

1) imagery scenes at a 100 m resolution to map wetlands during the period 1995-1996 for high and low water seasons. The 

studied domain excludes zones with altitudes higher than 500 m and corresponds to a large fraction of the Amazon basin 

(87%). Wetlands are defined as the sum of lakes and rivers (both covering 1% of the basin area) and other flooded areas plus 5 

zones not flooded but adjacent to flooded areas and sharing wetland geomorphology. The flooded fraction of wetlands varies 

considerably (from 38% to 75%.) between the low and high-water season. The total maximum mapped wetland area extends 

over 0.8 million km2 and is used in evaluation of CW maps in this study.  

2.5.4 Modelled potentially wet zones of France  

The map of potentially wet zones in France (les Milieux Potentiellement Humides de France Modélisée: MPHFM; 10 

Berthier et al., 2014) constructed at 50 m resolution is based on the topo-climatic wetness index (Mérot et al., 2003) and the 

elevation difference to streams using the national high resolution DEMs. Meteorological data for calculation of the topo-

climatic index (precipitation and potential evaporation rates; see further details in Sect. 3.2.2) are taken from the SAFRAN 

atmospheric reanalysis (Vidal et al., 2010) at 8 km resolution. Index thresholding for wetland delineation is performed 

independently in 22 hydro-ecoregion units and delimited based on lithology, drainage density, elevation, slope, precipitation 15 

rate and temperature. The wet fraction defining the threshold in each hydro-ecoregion is the fraction of hydromorphic soils 

(extrapolated from local soil maps to almost 18% of the France metropolitan area) taken from national soil maps at 1:250,000 

(InfoSol, 2013). Additionally, the elevation difference between land pixels and natural streams was used to separate large 

streambeds and plain zones, which are difficult to model with indices based on topography. Based on MPHFM, potential 

wetlands extend over almost 130,000 km2 of France (23% of the area of metropolitan France). The dataset was validated 20 

against available pedological point data (based on profiles or surveys) available over France. These point data are classified 

into wetlands and non-wetlands for the validation procedure. This procedure used statistical criteria such as spatial coincidence 

(number of correctly diagnosed points over total number of points) and Kappa coefficient (modelling error compared with a 

random classification error). 

3 Construction of composite wetland maps 25 

3.1 Definitions and layer preparation 

3.1.1 Wetland definition 

The wetland definition behind the composite maps is focused on hydrological functioning, and we aim to include both 

seasonal and permanent wetlands as well as shallow surface water bodies (including rivers, both permanent and intermittent). 

Surface water bodies and wetlands are often hydrologically connected, and the transition between them is not sharp and varies 30 

seasonally. Moreover, these features are difficult to separate based on observations (either in situ or remote), and no dedicated 

exhaustive dataset is currently available (Raymond et al 2013; Schneider et al., 2017). Inclusion of the shallow surface water 

bodies (in the RFW map) is compatible with the Ramsar classification, but we depart from this approach with respect to large 

permanent lakes, which are excluded from all input datasets to RFW and GDW maps (Sect. 2.2) because of their distinct 

hydrology and ecology compared with wetlands. In contrast, groundwater-driven wetlands can remain wet without inundation 35 

due to the presence of shallow water tables. As further discussed in Sect. 3.2, these areas are defined in this study as areas 

where the mean annual WTD is less than 20 cm, following similar assumptions in the literature (U.S. Army Corps of Engineers, 

1987; Constance et al., 2007; Tamea et al., 2010; Fan and Miguez-Macho, 2011).  
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Based on this definition, another feature of the proposed wetland maps is that they are static. As stated in Prigent et al. 

(2007), the maps represent the “climatological maximum extent of active wetlands and inundation” (for CWs and RFWs, 

respectively), i.e., the areas that happen to be saturated or near saturated sufficiently frequently to develop specific features of 

wetlands (high soil moisture over a significant period of the year, potentially leading to reducing conditions in selected horizons 

and specific flora and fauna). 5 

3.1.2 Data processing  

To project, resample, intersect/overlap and convert different datasets used in wetland mapping in this study, we relied on 

ArcMap software (Esri, ArcGIS Desktop: Release 10.3.1 Redlands, CA) and its different tools. All datasets were projected to 

a WGS84 equi-rectangular coordination system and subsequently resampled to a single resolution for facilitated fusion and 

comparison. The resulting raster datasets were processed with ArcMap tools available in almost any GIS software such as 10 

QGIS (Table 3). 

The final resolution of the maps is targeted to 15 arc-sec (~500 m at the Equator) for consistency with the available water 

datasets. Therefore, all datasets were resampled to 15 arc-sec resolution which is within the resolution range of state-of-the-

art wetland-related datasets. For datasets at coarser resolutions, each coarse pixel is disaggregated to 15 arc-sec while retaining 

the same value. We used an “all-or-nothing” approach, i.e., the pixels are either fully recognized as wetland (or lake) or not at 15 

all, based on the dominant type if the input data is finer than 15 arc-sec (ESA-CCI land cover and JRC surface water). 

Eventually, each 15 arc-sec global raster contains more than 80,000 pixels along a circle of 360° of longitude, and wetlands 

can exhibit notably small-scale patterns (e.g., patchy or river-like). To facilitate visual inspection, we calculated the mean 

wetland densities at 3 arc-min grids for most of the maps presented in this work. The same 3 arc-min resolution (~6 km at the 

Equator) was used in calculating the spatial correlations. For zonal wetland area distributions, the area covered by wetlands in 20 

each 1° latitude band is displayed. 

 

3.2 Regularly flooded wetland (RFW) maps  

3.2.1 Mapping by data fusion 

To identify the RFWs, we overlapped carefully selected datasets of surface water, land cover and wetlands, namely, the 25 

ESA-CCI land cover, GIEMS-D15 inundation surface, and the maximum water extent in JRC surface water. These datasets 

were selected to include different types of data acquisition. The idea behind the fusion approach chosen in this work is that 

wetlands identified by the different datasets are all valid despite their uncertainties, although none of them are exhaustive. As 

a result, use of multiple inundation datasets fills the observational gap. Several other surface water datasets exist that were not 

used in this work, either because they mostly consist of lakes or because they rely on similar methodologies (Verpoorter et al., 30 

2014; Yamazaki et al., 2015).  

3.2.2 Geographic analysis 

Overall, the RFW map covers 9.7% of the land surface area (12.9 million km2) including river channels, deltas, coastal 

wetlands and flooded lake margins (Fig. 1e). Areal coverage of the RFWs is by definition larger than the area of wetlands in 

all three input datasets (Fig. 1b-d), which were selected to be representative of different types of data acquisition (sensors and 35 

wavelengths). Therefore, they correspond to different definitions of inundated areas, and their contribution to the RFW map is 

fairly different. In particular, the shared fraction of the three input maps is minuscule (5% of the total RFW land surface area 

coverage), and is mostly composed of the large river corridors and ponds which are detectable by satellite visible range imaging 

techniques in the JRC dataset. The latter misses most understorey inundations, which are better identified by the ESA-CCI 
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dataset owing to specific vegetation classification. Finally, owing to the use of microwave sensors, GIEMS-D15 extends over 

larger areas since it captures both flooded areas and wet soils, below most vegetation canopies unless the densest ones (Prigent 

et al., 2007).  Besides, the distribution of wetlands in GIEMS-D15 involves downscaling as a function of topography, and can 

be very different from the other datasets. Hence, 58% of RFWs are solely sourced from GIEMS-D15, mostly in the South-east 

Asian floodplains, North-east Indian wet plains and rice paddies, and in the Prairie Pothole Region (in Northern US and 5 

Canada). The ESA-CCI contribution is mainly found in the Ob River basin where wetland vegetation exists but wet soils are 

not easily detected by visible (JRC) or microwave (GIEMS-D15) observation. Due to its high resolution, JRC surface water 

adds small-scale wetlands such as patchy wetlands, small ponds and oases (0.4% of the land surface area). 

In terms of zonal distribution, 31% of the RFWs are concentrated north of 50°N with most of the wetlands formed in the 

Prairie Pothole Region and Siberian lowlands. Cold and humid climates and the poorly drained soils of the boreal forest regions 10 

in Northern Canada on the Precambrian shield are the main hotspots of peat in the American continent. The same situation 

exists in the western Siberian plains as well. The second zonal peak in RFWs lies between 20°N and 33°N, where the major 

contributors are the vast floodplains surrounding the Mississippi, Brahmaputra, Ganges, Yangtze, and Yellow Rivers and 

Mesopotamian marshes. A total of 30% of the world’s RFWs are found in tropical regions (20°N to 20°S), concentrated mainly 

in the Amazon, Orinoco and Congo River floodplains and in inundated portions of wetlands such as the Sudd swamp in South 15 

Sudan.  

3.3 Groundwater-driven wetland (GDW) maps 

3.3.1 Mapping based on WTD 

Due to a lack of integrated, standardized and globally distributed WTD observations, a sound approach to location of 

groundwater-driven wetlands is the use of available global direct GW modelling results. In this study, we used the global WTD 20 

estimations of Fan et al. (2013), and the resulting wetland map is denoted as GDW-WTD. As explained in Sect. 3.1.1 we 

assumed the mean annual WTD in wetlands to be less than 20 cm which results in a wetland area extending over 15% of the 

land surface, with large wetlands in the northern areas and the Amazon basin (Fig. 2a). We also performed a sensitivity analysis 

on the areal fraction of wetlands with different WTD thresholds (supplementary section S2, Fig. S3 and S4), revealing that the 

variation in total wetland fraction is quite weak (between 13.7% and 16.7%) for thresholds ranging from 0 to 40 cm. Therefore, 25 

a 20 cm threshold appears to be a credible representative value. However, the wetland fraction rapidly increases for deeper 

thresholds, showing that a clear distinction exists between shallow WTD areas (wetlands according to our definition) and the 

remainder of the land.  

3.3.2 Mapping based on various TIs 

In line with many studies (Rodhe and Seibert 1999; Curie et al., 2007; Hu et al., 2017), we define TI-based wetlands as 30 

the pixels with TI above a certain threshold, defined to match a certain fraction of total land. In doing so, we prescribe the 

global GDW fraction as a chosen value, and the various TI formulations (section 2.4.2) only change the geographic distribution 

of the corresponding wetlands. To apprehend the uncertainty related to the choice of the global GDW fraction, we tested two 

choices within the bounds derived from the global WTDs of Fan et al. (2013). In the first approach, we set the TI threshold 

such that the wet pixels (with high index values) cover 15% of the land surface area, such as the fraction of WTD ≤ 20 cm 35 

according to Fan et al. (2013). The corresponding maps are noted as GDW-TI15, GDW-TCI15 and GDW-TCTrI15 in Table 

2 and show fairly different patterns (Fig. 2b-d). The second approach assumes that the total wetland extent (this time including 

both GDWs and RFWs) covers 15%. The TI thresholds are subsequently set such that the union of RFWs and GDW-TI 

(TCI/TCTrI), i.e., the composite wetlands, has the same extent as GDW-WTD. The resulting GDWs cover between 6 and 

6.6% of the land area depending on the TI formulation and level of overlap with RFWs (Table 4) and are noted as GDW-TI6, 40 
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GDW-TCI6.6, and GDW-TCTrI6. The patterns of these three maps are highly similar to those of GDW-TI15, GDW-TCI15 

and GDW-TCTrI15 with diminished extents and densities (Fig. 2e-g). 

3.3.3 Comparison of the proposed GDW maps 

As shown in Table 2, seven GDW maps are developed, consisting of GDW-WTD (Sect. 3.2.1) and six GDW-TIs (Sect. 

3.2.2). The GDW-WTD map contains high wetland extents over the northern latitudes (Fig. 2a), in contrast to the other six 5 

GDW maps. The diagnosed wetlands of GDW-TI maps (Fig. 2b, e) are equally distributed over well-known arid areas such as 

the Sahara and Kalahari Desert, Australian shield and Arabian Peninsula as in wet regions such as West Siberian plain and 

Northern Canada (Fig. 2b, e). As a result, for a given threshold (15% in Fig. 3a), the distribution of wetlands derived from the 

simple TI is nearly uniform over different latitudes. Lower thresholds on TI variants (Fig. 2e-g and Fig. 3b) obviously result 

in a smaller wetland extent with no major change in the zonal pattern when the wet fraction threshold changes from 15% to 10 

6% (Fig. 2b-d and Fig. 3a, b).  

Introducing a climate factor in the form of effective precipitation in GDW-TCI6.6 and GDW-TCI15 increases the value 

of the wetness index in wet areas and decreases it in dry climates (Fig. 2c, f and Fig. 3a, b). Therefore, previously diagnosed 

wetlands with TI in dry climates disappear and transfer to regions with wet climates (such as the Amazon basin and South 

Asia). However, because transmissivity values sharply change by several orders of magnitude over regions with small 15 

permeability, the patterns of GDW-TCTrI maps are nearly replicas of the low hydraulic conductivity distribution in 

GLHYMPS (e.g., large diagnosed wetlands in North America and central Asia; Fig. 2d, g). Although at times GDW-TCTrI 

coincides with famous wetlands such as the Pampas in South America (Fig. 2d, g and near 25°S in Fig. 3a), diagnosed wetlands 

extend far beyond the actual wet regions into neighbouring arid/semi-arid zones, e.g., vast diagnosed wetlands in the western 

Siberian lowlands extend southward towards the Kazakh upland arid zones. In the absence of precise and consistent subsurface 20 

characteristics information (particularly for cold areas), GDW-TCTrI shows low wetland densities in zones with the known 

effect of transmissivity, such as the Hudson Bay lowlands and the Prairie Pothole Region. 

3.4 Composite wetland (CW) maps 

Each GDW map was overlapped with the RFW map to generate seven CW maps. Equi-resolution raster pixels of RFWs 

and GDWs were aligned to coincide exactly with each other. The resulting composite wetland maps are named with respect 25 

to their contributing GDW component (Table 2), e.g., the composite map containing RFW and GDW-TI6 is known as CW-

TI6. These composite wetlands cover between 15% and 22% of the land surface area. Each CW map contains RFWs and GDW 

and thus wetlands shared by both wetland classes (the intersection). The intersection between GDW and RFW maps is larger 

for TCI-based maps and GDW-WTD (almost one third of RFWs intersect with these GDW maps) compared with TI and 

TCTrI-derived GDW maps (Table 4). These intersection zones are further discussed in Sect. 4. The wetland extent in CWs is 30 

by definition larger than both RFW and GDWs, and their spatial patterns depend on the contribution percentage of each 

component. As an example, in CW-TCI15, over most latitudes, the spatial pattern is similar to that of RFW, except over the 

tropical zones where GDWs are far more extensive than RFWs, thus shaping the general latitudinal pattern (Fig. 3c). Changing 

the percentage of GDWs (between 6 and 15%) based on different TI formulations increases the wetland fraction of the CW 

maps to between 5.3% and 12.5% of the land area, but it does not considerably change their overall latitudinal pattern (Fig. 35 

3d, e). In RFW, large wetlands are present between 25°N and 35°N (Fig. 3c), whereas in all GDW maps, the wetland extents 

over these latitudes are smaller than in other wetland regions (Fig. 3a, b). 
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 4 Validation 

4.1 Spatial similarity assessment 

A difficulty inherent in the validation of any wetland map is the vast disagreements among available datasets and 

estimates. In this paper, we used independent validation datasets (explained in Sect. 2.5) that are not used in any step as input 

to our final products, but we made an exception for the GDW-WTD (derived from Fan et al., 2013), although it is a direct 5 

input to CW-WTD, and we used the total wetland fraction of GDW-WTD (corresponding to WTD ≤ 20 cm) to define the TI 

thresholds behind the TI-based CW maps. This exception is considered for two reasons. Firstly, we focus here on spatial 

patterns, which are completely independent between TI-based CW maps and GDW-WTD, because of very different GW 

modelling assumptions and input data. Secondly, we also focus on wetlands rather than inundated areas, and on their detection 

under dense vegetation: GDW-WTD is one of the very few global datasets with these properties, but it results from a different 10 

method than Hu et al. (2017) and GLWD-3, so it can help enriching the uncertainty discussion. All seven developed CW maps 

and the RFW map were evaluated using the spatial coincidence, Jaccard index and spatial Pearson correlation coefficient with 

respect to the validation datasets over the globe and in several regions, the latter of which are discussed in detail below.  

The first evaluation criterion of spatial coincidence (SC) is defined as the fraction of pixels identified as wet in a validation 

dataset that are also detected in the composite wetland dataset: 15 

𝑆𝐶 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑒𝑑 𝑤𝑒𝑡𝑙𝑎𝑛𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝐶𝑊 𝑚𝑎𝑝𝑠

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑤𝑒𝑡𝑙𝑎𝑛𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝐶𝑊 𝑚𝑎𝑝
. 

SC is calculated at 15 arc-sec resolution by intersecting CWs and validation datasets, and it ranges from 0 to 1 with higher 

values showing greater similarity between two datasets. For pair-wise comparisons of datasets with different wet fraction, the 

Jaccard index (JI) is better suited. This index is the fraction of shared wetlands in CW and the validation dataset over the size 

of their union: 20 

𝐽𝐼 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑒𝑑 𝑤𝑒𝑡𝑙𝑎𝑛𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝐶𝑊 𝑚𝑎𝑝𝑠

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑤𝑒𝑡𝑙𝑎𝑛𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑢𝑛𝑖𝑜𝑛 𝑜𝑓 𝐶𝑊 𝑎𝑛𝑑 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑝𝑠
. 

JI ranges from 0 to 1 as well, and a zero index represents the case in which the two datasets are disjoint, and a value of one 

occurs if two datasets are exactly the same. The last criterion is the spatial Pearson correlation coefficient, further referred to 

as SPC. SPC is independent from the wet fractions in the CWs and evaluation datasets but is sensitive to the spatial distribution 

pattern in pair-wise comparisons. SPC values range from 0 to 1 with higher values showing greater similarity. Although the 25 

first two criteria were applied for comparison at the original 15 arc-sec resolution, SPC was calculated based on aggregated 

wetland densities at 0.5° resolution. 

Spatial similarity evaluations are displayed as radar charts in Fig. 4 for RFW and the different CW maps for the globe and 

the selected regions. Because the values of the criteria are sometimes quite similar, three CW maps were selected for display 

in colour for clarity while the others are shown in grey (CW-TCI6.6, CW-TCI15 and CW-WTD).  30 

4.1.1 Global analysis 

With the exception of CW-WTD, which is always more similar to GDW-WTD because the latter is a component of the 

former, the validation criteria for the CW maps are rather small overall (between 0.2 and 0.6). However, the criteria are larger 

than the same values between the surface water and wetlands datasets (less than 0.3 in Table 5 for the SPC of the globe and 

Table S1) showing their advantages. CW maps (especially CW-TCI maps) are more similar to GDW-WTD and Hu’s map with 35 

respect to GLWD-3 because all but GLWD-3 share the GW modelling methodology. In contrast, the RFW map extends over 

a 60% larger surface area than GLWD-3 and displays the highest similarity to GLWD-3, suggesting that wetlands in GLWD-

3 are the regularly flooded ones. The inclusion of GDWs in the CW maps makes them depart from GLWD-3, but it markedly 

increases their similarity to the other two validation datasets for JI and SPC (e.g., SPC [RFW, GDW-WTD]=0.3 versus SPC 

[CW-TCI15, GDW-WTD]=0.6). As demonstrated in Fig. 4a (and also Table S1), increasing the GDW contribution from CW-40 
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TCI6.6 to CW-TCI15, as an example, also improves the similarity criteria (except the SC for GLWD-3 and GDW-WTD), 

justifying the need to account for the GDWs to provide a comprehensive description of wetlands. This is clearer for the global 

spatial correlation values which all increase when the contribution of GDW is increased from 6.6% to 15% (Table S1: first 

row block).  

The following section breaks down the comparative wetland representation between our maps and those of the validation 5 

datasets at the regional scale. The selected regions encompass different climates, vegetation covers and ecosystems, both within 

and outside important wetland areas of the world, to assure the applicability of CW maps. These six regions are France in the 

temperate climate, the Amazon basin and Southeast Asia over the tropical zone, the cold boreal areas of the Hudson Bay 

lowlands and Ob river basin, and the Sudd swamp in South Sudan with a semi-arid savannah climate. 

4.1.2 France 10 

Over France, wetland fractions from the validation datasets are highly inconsistent (Fig. 5). Visible range satellite imagery 

(JRC surface water) shows the smallest wet fraction (1%). The GLWD-3 and ESA-CCI maps also produce low wetland 

coverage whereas GIEMS-D15, which essentially forms the RFW map, gives 12% coverage concentrated along the coastline 

and over the floodplains of the northern rivers. Wetlands from GW modelling-based datasets cover even larger areas (14% and 

18% in GDW-WTD and Hu et al., 2017) and are scattered countrywide, except for the French Pyrenees and the Alps, with 15 

moderately denser wetlands along large rivers (such as the Rhine floodplain at the eastern border) and the Landes (South-

western shore). The MPHFM map (Berthier et al., 2014) can be considered as the most comprehensive validation dataset for 

the country because it relies on hydromorphic soil properties and was extensively validated. This map shows much larger 

wetland extents (23% of France) than the above estimates because of its inclusion of both floodplains (along the Loire, Saône 

and Rhône rivers) and groundwater-driven wetlands, including those over the weakly permeable granites of Brittany (shown 20 

in green in Fig. 5g). These notorious wetlands are not considered in the global validation datasets but are captured to a good 

extent in CW maps (Fig. 5i,j).  

By combining RFWs (which overlap with 20% of MPHFM) and GDWs, our CW maps capture many features of the 

MPHFM map, including the total wetland extent (23% for MPHFM versus 22% and 25% for CW-WTD and CW-TCI15) and 

correctly capturing most of the coastal and riparian wetlands (Fig. 5). The larger wetland fraction in MPHFM and CW maps 25 

is consistent with the work of Pison et al. (2018), who found that (wetland-driven) methane emissions over France deduced 

from atmospheric inversion were almost a third higher than direct estimates, from anthropogenic inventories and 

biogeochemical models driven by global wetland datasets (e.g. the overlap of GLWD and SWAMPS in Saunois et al., 2016). 

The added value of CW maps is demonstrated by the higher similarity criteria between CW maps such as CW-TCI15 and 

MPHFM (SPC=0.52) than between surface water maps such as GIEMS-D15 and MPHFM (SPC= 0.43). However, it is difficult 30 

to identify the best CW map over France based on the similarity criteria against MPHFM because four of our CW maps (all 

shown in grey in Fig. 4b) display nearly the same values (Table S2). 

4.1.3 Amazon basin 

The Amazon River basin is considered one of the richest tropical wetland ecosystems in the world (Mitsch and Gosselink, 

2000). For ease of comparison, we limited our study to the domain of Hess et al. (2015), which covers 5 million km2 (Fig. 6). 35 

RFWs (mostly consisting of GIEMS-D15) show a pattern rather similar to that of GLWD-3 and Hess et al. (2015) (Fig. 4c and 

Fig. 6d, g, h), covering only the main drainage network of the Amazon and certain seasonally flooded wetlands and floodplains. 

However, certain spatial disagreements exist among these three datasets in seasonally flooded wetlands such as Llanos de 

Moxos (12°30’-17°30’ S, 63°-68° W), the Roraima savannah, and the Negro River basin (2° N-2° S, 60°-65° W), which are 

larger in RFW and Hess et al. (2015) than in GLWD-3.  40 
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The CW maps capture the wetland pattern of GDW-WTD and Hu et al. (2017) considerably better than RFW (Fig. 6), 

highlighting the significance of groundwater wetlands over the Amazon. Wetland densities in CW maps, Hu et al. (2017) and 

GDW-WTD are more realistically high over the leached and swampy soils of the Northern Amazon basin (e.g., Japurá-

Solimões-Negro moist forests) and over the Purus-Madeira ecoregion, in line with recent estimates of wetlands and peatlands 

(Hess et al., 2015). This result suggests that the extended shallow peatlands of South America are the main causal contributor 5 

to the global tropical wetland extent (Gumbricht et al., 2017). The higher wetland densities of CW maps with respect to all 

satellite observations over these particular areas can be attributed to the coincidence of GDWs and dense rainforests (covering 

almost two thirds of this domain), with large non-flooded wetlands over the Amazon. River channels and surrounding 

floodplains are better represented in CW maps, as compared with Hess et al. (2015), due to the inclusion of the RFW 

component. Similarly, CW compares well against other datasets because almost none of the river floodplains are delineated in 10 

Hu et al., 2017, and GDW-WTD misses the Tapajós River floodplain and portions of downstream Amazon corridor. However, 

CW maps represent the wetland extent in lower density over grassland/savannahs and the Andes dry regions compared with 

the validation datasets.  

4.1.4 Southeast Asian deltas 

The selected window over South and Southeast Asia stretches over notably wet regions, similar to the Amazon, but with 15 

severe human interference and deforestation (Miettinen et al., 2011; Stibig et al., 2013). In Southeast Asia, RFWs (mostly 

composed of GIEMS-D15) are larger than all validation datasets (Fig. 7d-g) because GIEMS-D15 also detects inundated areas 

associated with cultivation activities such as rice paddies (Fluet-Chouinard et al., 2015), which are not considered in inventories 

and GW modelling-based estimates. Over the window, RFWs and CWs coincide with the majority of wetlands in the validation 

sets, particularly over the Ganges-Brahmaputra floodplain, Northern Indochina and Yunnan plateau subtropical forests (Fig. 20 

4d: SC between 0.59 and 0.91), showing the good agreement of our developed maps with respect to spatial patterns. As a 

general rule in Southeast Asia, floodplains and deltas (Ganges, Brahmaputra, Irrawaddy, Mekong and Red Rivers) extend over 

larger areas in CW maps than in validation maps (Fig. 7), giving a more realistic extent than those in Fan et al. (2013) and Hu 

et al. (2017) considering the vast flood irrigated cultivation lands along floodplains. However, only a few small wetlands in 

the validation datasets are missed in RFW (and CW maps), such as the upstream Mekong River corridor (near 20°N-102°E) 25 

and Irrawaddy River (near 25°N-97°E) in GLWD-3.  

The CW-WTD and CW-TCI15 maps present patterns that are highly similar to each other (Fig. 7h, i) and to the validation 

datasets. However, high similarity criteria (especially SC) can be the result of large extension of RFWs, itself overlapping 

almost all of the wetlands in the validation datasets. In addition, the similarity of CW-WTD and CW-TCI15, also derived from 

similarities between their GDW components, notes that groundwater wetland formation is almost completely explained by 30 

topography and climate (of the TCI formulation) in these areas and the negligible role of subsurface characteristics included 

in GDW-WTD.  

4.1.5 Hudson Bay lowlands 

The Hudson Bay lowlands (HBL) is a vast flat wetland area in the low subarctic regions of North America dominated by 

extensive peatlands, swamps and marshes (Mitsch and Gosselink, 2000; Packalen et al., 2014), where below-freezing 35 

temperatures for most of the year reduce drainage in the soil layer (Hamilton et al., 1994). A systematic contrast is noted 

between inundation maps (Fig. 8a-c; maximum wet fraction: 21%) and validation datasets (Fig. 8d-f; minimum wet fraction: 

49%) underlining the inability of satellite imagery to capture wetlands in this area (e.g., Landsat images used in JRC surface 

water, Fig. 8c). Surprisingly, GLWD-3 has a pattern notably similar to those of the other two validation maps due to the 

comprehensive wetland maps in Canada available to its developers. Moreover, HBL is one of the few regions where similarity 40 
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indices sharply increase with increased GDW contribution (Table S1). The Jaccard index rises from 0.46 to 0.53 when 

increasing the total GDW extent from 6.6 to 15% between CW-TCI6.6 and CW-TCI15. CW maps perform fairly well, 

particularly CW-WTD, which predominantly obtains the highest validation criteria (Fig. 4e). Due to an explicit 

parameterization of the permafrost (adjusted to reproduce the “observed wetland areas” in Northern America, Fan and Miguez-

Macho, 2011), dense wetlands are extended south of 50°N in the GW model by Fan et al (2013), which are less dense in CW-5 

TCI15 in the absence of a soil-freezing mechanism. Comparing wetlands detected through satellite imagery and validation 

datasets, GW modelling appears to be the best wetland delineation method over boreal zones due to non-permanent surface 

inundation, shallow WTD or snow/ice cover.  

4.1.6 Ob River basin 

The Ob River basin in western Siberia extends over ~3×106 km2. The annual variability of the inundated area is large (e.g., 10 

Mialon et al., 2005), making this basin one of the largest wetland complexes in the world, which contributes to buffer peak 

discharge during the flooding period (Grippa et al., 2005). Wetland fractions in different datasets compare similarly to HBL, 

except for GLWD-3, which appears to underestimate the total wetland extent although the climatic and geomorphologic 

properties are nearly alike. Datasets recognizing the contribution of GW to wetland formation (Fig. 9e, f, h, i) indicate 

consistently higher wet fractions than others. However, CW-TCI15 appears to miss wetlands south of 60° N that are extended 15 

to the upstream Ob river basin near 50° N in both GDW-WTD and Hu et al. (2017), most likely due to the permafrost effect 

on wetland formation. With respect to the evaluation criteria, CW-WTD often displays better performances, although CW-

TCI15 show the highest SPC. We also find that CW-TCI15 outperforms CW-TCI6.6 for all criteria/validation dataset 

combinations (Table S1). TCTrI-based CW maps fail to surpass others in the validation process, considering that we used the 

transmissivity map without the permafrost adjustment due to its imprecise representation of hydraulic conductivity in these 20 

zones (Sect. 2.4.4). CW-WTD tends to better capture the wetland extent and spatial pattern with more concentrated wetlands 

in the downstream lowlands and north-western regions (65° N-65° E) of the basin due to RFWs. Overall, considering the 

wetland fraction solely attributed to GDWs in CW-TCI15 and CW-WTD (13% and 29% of the basin area) and the difference 

found between the inundation and validation dataset (Fig. 9, first and second row), it becomes clear that the uncertainty of the 

wetland extent and spatial pattern is rather high over boreal zones.  25 

4.1.7 Sudd swamp 

This large wetland is located in eastern South Sudan, nearly 300 m above mean sea level and is the largest freshwater 

wetland in the Nile basin (Sutcliffe et al., 2016). The Sudd swamp extent estimations are highly uncertain in the literature, 

ranging from 7.2 to 48×103 km2 (Mohamed et al., 2004 and references therein). Over the selected window, the wetlands and 

surface water distribution is also highly disparate and varies from 1% to 27% for different datasets (Fig. 10). Additionally, 30 

wetlands in Hu et al. (2017) are rather patchy and show sharp density changes with what seems to be periods of 0.5°. Because 

GLWD-3 appears to represent only flooded wetlands (with the same wetland fraction of RFWs and overlapping with one third 

of them), and Hu et al. (2017) contains technical issues, GDW-WTD can be considered as the only comprehensive validation 

dataset over the Sudd swamp. 

The CW datasets in Fig. 10 show high wetland densities in the central floodplain, in rather good agreement with GLWD-35 

3, GDW-WTD and regional estimates of saturated soil (compared with visuals in Mohamed et al., 2004; Mohamed and 

Savenije, 2014). CW-WTD compares more similarly to validation datasets, closely followed by CW-TCI15 (Fig. 4g), but the 

main difference between these two CW maps is that the groundwater wetlands in CW-TCI15 are extended southwest into the 

southern National Park (over local flat valley bottoms) but are more concentrated over the main floodplain in the SE-NW 

direction for CW-WTD. The total wetland fraction is nearly equal in CW-TCI15 and CW-WTD (25 and 27% of the selected 40 
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window area), underlining a primary role of topography and climate in wetland formation. Considering the wetland fraction 

in the RFW map (mostly consisting of ESA-CCI wetlands) and GDW-WTD, groundwater wetlands appear to be the dominant 

feature in the Sudd swamp, as is the case for CW-WTD and CW-TCI15. The added value of CW maps with respect to GDW-

WTD is not substantial, but they additionally contain the seasonally flooded plains downstream of the White Nile (top right of 

the selected window in Fig. 10g: 12°-14° N, 32-34° E), which are not completely captured by validation datasets due to the 5 

inclusion of RFWs.  

4.2 Wetland extents 

Fig. 11 shows that the global wetland fractions of the different CW maps are in range of those in Fan et al. (2013) and Hu 

et al. (2017), with twice the wetlands in GLWD-3, itself 60% smaller than the RFW extent. Over France (Fig. 11b), the wetland 

fraction of the CW maps is notably similar to that of MPHFM, which is a calibrated and validated wetland dataset including 10 

the GDWs. The regional uncertainty of CW maps is smaller over subtropical areas and higher over boreal and tropical zones. 

For instance, although the global wetland extents of CW-WTD and CW-TCI15 are nearly equal, the former contains 52% 

more wetlands over the Hudson Bay lowlands. However, in Southeast Asia, where RFWs have a rather large contribution to 

total wetlands, CW maps are in relative agreement on wetland extents, whereas the validation dataset appears to critically 

underestimate the wetland extents. The underestimation of global validation datasets, especially GLWD-3, is quite clear in 15 

France, the Amazon and the Ob river basin. Nevertheless, regional differences in wetland fractions among CW maps reaching 

up to 25% in the HBL and Amazon basin (due to the effect of permafrost in Northern latitudes and high effective precipitation 

over the tropics) make our estimates uncertain as well. Additionally, the uncertainty of the reference validation datasets is 

almost always higher than that of CW maps (global: CW 7%, validation 17%; Ob basin: CW 25%, validation 32%).  

5 Discussion 20 

5.1 Uncertainties of the CW maps and underlying layers 

It must be stressed that the uncertainty of the proposed CW maps is high, owing to several factors impeding the accuracy 

of the RFW and GDW maps. The uncertainty of the RFW map comes from the three input layers (ESA land cover, GIEMS-

D15, and JRC surface water), and the lack of accuracy of the remote sensing products they rely on (shown by their large range 

of global flooded extents, from 1.5 to 7.7% excluding lakes). Of particular relevance is the uncertainty of GIEMS-D15, which 25 

contributes a lot to the high fraction of RFWs, and exhibits a small overlap with the other two datasets (less than 10% of 

inundated areas in GIEMS-D15 are confirmed by either ESA land cover or JRC surface water). Taking GLWD as a reference, 

Adam et al. (2010) concluded that inundation extents are overestimated in GIEMS (0.25° product of Papa et al., 2010) over 

parts of Northern Europe and India “because very wet soils may be wrongly identified as inundated”, but this kind of error is 

not a major issue to identify wetlands, instead of inundated areas, as targeted by the CW maps. In India and South-East Asia, 30 

GIEMS-D15 also includes areas with flooded irrigation, including large rice-paddies, which correspond to artificial wetlands, 

not recognized in GLWD. Eventually, it is plausible that the RFW contribution from GIEMS-D15 is overestimated, but it must 

also be underlined that GLWD is not an exhaustive reference as it likely lacks some wetlands, as reported by Adam et al. 

(2010) and in section 4.2. 

Regarding the GDW maps, two major sources of uncertainty can be identified, related to modelling and thresholding. 35 

Whatever the involved GW modelling (simplified based on wetness indices, or direct like in Fan et al., 2013), a major challenge 

is to define thresholds on TI or WTD to separate the wet and non-wet pixels. Following the existing literature, we defined 

wetlands as areas where the mean WTD is less than 20 cm, and this WTD threshold was translated into the TI threshold 

defining the same global wetland extent (15%). Any error on this extent because of modelling errors will propagate to TI-
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based wetland mapping. In particular, the steady state assumption and 1-km resolution used by Fan et al. (2013), as well as 

their imperfect input data, only leads to a “first-order estimate of global land area likely affected by shallow groundwater”, 

according to the authors. Nevertheless, the threshold choices remain subjective in the absence of consensual global wetland 

map and definition, and the related uncertainty in wetland extent was shown to amount to a few percent of the total land area 

based on sensitivity analyses for reasonable values of the different thresholds (supplementary section S2, Fig. S3 and S4).  5 

We also considered several classic variants of the TI to conclude that the TCI (topography-climate wetness index), also 

favoured by Hu et al. (2017) with a modified formula, offers the best correspondence with the validation datasets. The original 

TI did not capture the wetland density contrasts between arid and wet areas, and the inclusion of sub-surface transmissivity in 

TCTrI induced overly sharp density contrasts that did not always match the recognized patterns of large wetlands. This does 

not question the role of transmissivity in forming wetlands, but calls for improved global transmissivity datasets or new 10 

methods to supply a more continuous description of transmissivity than those currently proposed based on discrete classes of 

lithology (Hartmann and Moosdorf, 2012; Gleeson et al., 2014) or soil texture (Fan et al., 2013). A particular attention needs 

also to be devoted to the effect of permafrost on wetland formation, but simple maps are probably not sufficient to describe 

the complexity of hydrology-permafrost feedbacks, especially under global warming (Walvoord and Kurylyk, 2016).  

The resolution of the input data sets is also prone to errors if coarser than the target wetlands. It is the case for 15 

transmissivity, as discussed above, and for climate input, at the 0.5° resolution for both GDW-TCI and GDW-WTD, which 

may lead to anomalous discontinuities, although they are not discernible in Fig. 2a,c,f. More relevant is the resolution of 

topography, at 15 and 30 arc-sec for the TI calculation (Marthews et al., 2015) and WTD modelling (Fan et al., 2013) 

respectively. An important consequence is that the pixels of our 15-arc wetland maps are either fully wet or fully non-wet, 

which is obviously wrong in many places with patchy wetlands in small depressions or along headwater streams. A finer 20 

delineation can be expected from higher resolution DEMs, such as HydroSHEDS or the MERIT (Multi-Error-Removed 

Improved-Terrain) DEM of Yamazaki et al. (2017), both offering a worldwide 3-arc resolution.  

Finally, it must be underlined that the RFW, GDW and CW maps largely overlook the loss of wetlands induced by 

anthropogenic pressures, estimated to affect 30 to 50% of undisturbed or potential wetlands (Finlayson et al., 1999; Sterling 

and Ducharne, 2008; Hu et al., 2017), mostly due to urbanization and agricultural drainage. This feature is especially true for 25 

GDWs because most human influences were neglected in the input datasets (climate, topography, transmissivity, and sea level) 

for global WTD modelling. In contrast, the RFW map was derived by overlapping satellite imagery for the contemporary 

period (past 5 to 34 years), thus showing most human-induced changes on the surface water, including artificial wetlands 

linked to flooded irrigation (Adam et al., 2010) or the way in which damming shifts wetlands to lakes or drylands (Pekel et al., 

2016). Nevertheless, the overlap of several inundation datasets with different historical depths was intended to minimize these 30 

disturbances, as justified by the higher spatial correlation between the inundation datasets and the CW maps than between 

themselves. Therefore, by construction, the proposed CW largely correspond to potential wetland. Considering that the loss of 

natural wetlands exceeds by far the extent of artificial ones, they have a larger extent than actual wetlands, making validation 

all the more complicated. 

5.2 Selection of two representative CW maps 35 

If none of the resulting CW maps systematically over-perform the others, two of them usually display the best similarity 

scores, namely, CW-TCI15 and CW-WTD (Fig. 4, Table 5 and Tables S1 to S7 in the supplementary document). These two 

datasets (hereafter simply referred to as “CW maps”) have many similarities, and by construction, they have almost the same 

wetland extent (ca 21%), and the combination with RFWs reduces the differences found between the corresponding GDWs in 

boreal and tropical areas (Fig. 3). Both CW maps are among the highest estimates of global wetland, considerably larger than 40 

GLWD-3 and close to Hu et al. (2017). An interesting point is that the SPC between these two CW maps and the existing 

wetland datasets is higher than the SPC among these existing datasets (Table 5), which are rather low (e.g., the SPC between 
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JRC surface water and GIEMS-D15 is 0.4). This observation underscores that the two outperforming CW maps reconcile the 

differences between existing wetland maps, whether they focus on RFWs (ESA-CCI, GIEMS-D15 and JRC surface water) or 

also encompass non-inundated wetlands (GLWD-3, GDW-WTD and Hu et al., 2017).  

5.3 Zonal patterns 

Despite many similarities, the zonal distributions of the CW maps, RFW and validation datasets are sometimes different. 5 

Generally, wetland datasets such as GLWD-3 and GDW-WTD appear to underestimate global wetland extents with respect to 

CW maps (Fig. 12 and the visuals for France and Southeast Asia: Fig. 5 and 7). The latitudinal patterns are also different 

among maps in Fig. 12, particularly over the tropics and the boreal zones. Although the wetlands in all validation datasets and 

CW-WTD are densely concentrated between 50°N and 60°N, in the RFW map, the Northern subtropical (25°N-35°N) and 

boreal (60°N-70°N) wetlands are of similar extent (1.9 and 2.0 million km2), and in CW-TCI(15%), tropical wetlands (10°N-10 

10°S) globally outweigh others (covering almost 9 million km2). In fact, tropical wetlands in both CW maps are much more 

extensive than the maximum reported wetland extents for these latitudes in the literature (almost 5.6 million km2 in Hu et al., 

2017). This result is in accordance with recent studies signalling underestimation of tropical wetlands and the subsequent 

underestimation of their effect on the energy, water and carbon cycles (Collins et al., 2011; Gumbricht et al., 2017; Melton et 

al., 2013). 15 

Focusing on the differences between CW maps, because the two selected maps are constrained to share the same GDW 

extent, a trade-off exists between northern and tropical wetlands. In CW-WTD, northern wetlands extend further south into 

the Sakhalin Taiga and Prairie Pothole Region, as shown by the green belt between 40° and 60°N in Fig. 13c. This southward 

extension is actually stronger than the permafrost zones (Gruber, 2012), suggesting that the description of the permafrost region 

in CW-WTD leads to wetland densities that are too strong. However, in the absence of an explicit mechanism for freezing and 20 

permafrost in the TCI formulation, CW-TCI15 is prone to underestimating boreal wetlands. Additionally, the difference 

between the CW maps over the humid tropical zones is consistent with the fact that TCI assumes that effective precipitation is 

entirely available for wetland formation while it also contributes to surface runoff in the model used by Fan et al. (2013).  

5.4 Relative role of RFWs and GDWs  

Based on the intersection areas between RFWs and GDWs (Table 3) and the global CW fractions, 55% of the global 25 

composite wetlands are solely groundwater-driven, with varying contribution levels in different ecoregions and climate zones. 

GDWs are the main wetland classes in the tropics and to a lesser extent in the boreal zones. RFWs dominate over the North 

American lowlands (Fig. 8), Southeast Asia (Fig. 7) and coastal areas and the tropical/subtropical transitional latitudes (Fig. 

3c and Fig. 12).  

The role of RFWs and GDWs is further analysed in six wetland “hotspots” common to both CW maps (indicated by 30 

rectangles in Fig. 13a,b). These areas cover 22% of the land surface area, yet account for 75% of the wetland surface area: (1) 

North American cold lowlands and permafrost regions, (2) South American tropics and equatorial basins, (3) Ob river basin 

and west Siberian plains, (4) African northern savanna belt, (5) Wetlands and rice paddies in north-eastern Indian plains and 

Southeast Asian river deltas, and (6) Coastal wetlands, within a 100 km distance to oceans and with an elevation <100 m above 

sea level. The total wet fractions in the hotspot windows reach 40% and always exceed the mean global wetland extent (Fig. 35 

14). To ensure that the relative contributions of RFWs/GDWs are meaningful, we tested their sensitivity to the size of the 

windows. This adjustment had little impact in most areas except for the coastal wetlands, where the wet fraction in both CW 

maps increases from 43% to 64% when the coastal band is narrowed from 100 km to 20 km. Almost 40% of the RFWs in these 

areas is located within a 100 km distance to oceans and seas and can be assumed to predominantly represent coastal water 

bodies (tidal fresh/saline water marshes and river deltas). However, it must be acknowledged that a more rigorous 40 
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differentiation between coastal wetlands and inland open-water wetlands requires in situ observations or complementary soil 

and vegetation information.  

Outside of the hotspots described above, our CW maps contain small GDWs, ephemeral streams and oases. Such scattered 

wetlands cover less than 5% of the land area (ca 7 million km2 in both CW maps), but they are of great importance for life in 

semi-arid and arid areas. Many oases and small depressions of this type are represented in CW maps in North Africa, the 5 

Arabian Peninsula, southern US and Central Asia and are not captured in any previous mapping efforts, to the best of our 

knowledge. These bodies are strongly driven by GW and are more difficult to detect by satellite imagery because their size 

and saturation level change rapidly, sometimes faster than the revisit period of the satellites. As such, we might represent water 

bodies that cannot be captured by existing satellite-based surveying techniques, but we have not validated these small wetlands 

against local observational data in this study.  10 

6 Data availability and application 

The dataset consisting of the two selected composite wetlands maps (CW-WTD and CW-TCI(15%)) is supplied in raster 

format at 15 arc-sec resolution through PANGAEA https://doi.pangaea.de/10.1594/PANGAEA.892657.Pixels located in 

oceans and glaciated lands of Greenland are assigned NoData, whereas the remainder of land is split into four classes with 

distinct codes for non-wetlands, the intersection of GDW and RFW, and “pure” RFW and GDW. All of the datasets used as 15 

input to the generation of these dataset were available via open access for research and educational applications and could be 

accessed through the web links mentioned in their accompanying scientific papers. 

These classified maps are believed to be useful for hydrological or land surface modelling by assigning specific properties 

or processes to the places identified as wetlands or floodplains. The RFW maps can used in global hydraulic models, for 

instance to constrain the buffering capacity of floodplain reservoirs, recently identified as critical parameter for peak discharge 20 

simulation (Zhao et al., 2017). More originally, the CWs can be viewed as the spatial support of a particular “hydrotope” 

(Gurtz et al., 1999; Hattermann et al., 2004), i.e., the hydrological analogue of plant functional types (PFTs) for vegetation 

properties and processes (Lafont et al., 2012). In these hydrotopes, the extent of which can be deduced  from the CW maps, 

specific models can be used to quantify methane production or denitrification by wetlands, for instance, especially if combined 

with dynamic modelling of the saturation degree within the wetland fractions (Hesse et al., 2008; Post et al., 2008). Depending 25 

on the particular purpose, the user can choose to define a lumped hydrotope merging RFWs and GDWs, thus corresponding 

to the CWs; or to separate RFWs from non-regularly flooded GDWs, the latter being mapped by excluding RFWs from CWs. 

As an example, the CW-WTD map was recently used to calibrate a cost-efficient TOPMODEL approach aiming at simulating 

the dynamics of peatland area and related carbon fluxes (Qiu et al., 2018). Although the CWs do not necessarily match areas 

with specific wetland vegetation, they can also be used to locate areas deserving specific PFTs, corresponding to plant species 30 

adapted to low water stress or shallow water table (e.g. Fan et al., 2017). Another promising application is to constrain GW 

modelling in land surface models, by locating the areas where GW are sufficiently shallow to influence soil moisture by 

capillary rise, as done by Vergnes et al. (2014) based on arbitrary topographical considerations.  Finally, provided the CWs 

maps offer a sufficiently accurate description of potential wetlands, they can be combined to maps of land cover change to 

better quantify wetland losses, and the related impact on the global water or biogeochemical cycles (e.g. Sterling et al. 2013). 35 

7 Conclusions and perspectives 

In an effort to develop a comprehensive global wetland description, we merged regularly flooded wetlands (RFWs) and 

groundwater-driven wetlands (GDWs) to develop composite wetland (CW) maps, under the assumption that both RFWs and 

GDWs are relevant although not exhaustive. The corresponding maps were produced globally at high resolution and two CW 

https://doi.pangaea.de/10.1594/PANGAEA.892657
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maps were selected based on comparisons with global and regional evaluation datasets. Their validity is particularly supported 

by the good match with the MPHFM dataset developed by Berthier et al. (2014) over France, because it was tailored to 

comprehensively include flooded and non-flooded wetlands with calibration against hydromorphic soils and validation against 

local surveys. With a total wetland fraction around 21% of the global land area, these CW maps are in the high-end of the 

literature, together with recent estimates also recognizing the contribution of groundwater-driven wetlands (Fan et al., 2013; 5 

Hu et al., 2017). It must be stressed that these high-end estimates, including ours, correspond to potential wetlands, as they 

neglect most wetland losses due to human activities, which may reach 30 to 50% of undisturbed or potential wetlands 

(Finlayson et al., 1999; Sterling and Ducharne, 2008; Hu et al., 2017). Overall, many uncertainties prevent from conclusively 

demonstrating that the CW maps are correct, in terms of patterns and extent, but it is also the case for any wetland mapping 

effort at the global scale that extends the definition of wetlands beyond inundated zones.  10 

In this framework, an important conclusion is the marked similarity between the two proposed composite maps, despite 

their different assumptions for GW modelling. In particular, both maps locate 75% of the global wetlands within six wetland 

hotspot regions, in boreal and tropical areas and along the shoreline (coastal wetlands). Higher wetland densities in the tropics 

compared with other datasets originate from the GDW contribution in regions with dense canopy and/or cloud cover. These 

conditions are tightly linked in the humid tropics, where wetlands have long been underrepresented (Collins et al., 2011; 15 

Melton et al., 2013; Gumbricht et al., 2017). The largest differences between the two proposed CW datasets are found in the 

boreal zones (including the two hotspots of the Prairie Pothole Region and East Siberian Taiga), although the RFWs are the 

dominant components. This uncertainty corresponds to subsurface conditions (transmissivity) and might be reduced having a 

better and higher-resolution description of the permafrost extent, active layer depth, hydraulic conductivity, or organic matter 

content.  20 

Another major feature of the two composite maps is the importance of small and scattered wetlands, as shown by the 

extent of wetlands outside the six hotspots (3.8% to 5.2% of the land area according to CW-WTD and CW-TCI15, 

respectively). This is yet another feature derived from the GDWs because these small wetlands are often difficult to detect 

using satellite imagery techniques, especially for the non-inundated or ephemeral wetlands with sizes that vary rapidly 

compared with the revisit period of the satellites. The resolution used in this work (~500 m at the Equator) is sufficiently fine 25 

to detect many of these small wetlands, but a better delineation calls for the use of higher resolution DEMs.   

By distinguishing the RFWs and GDWs, the proposed datasets eventually offer a simple wetland classification focused 

on their hydrologic functioning. Compared to classic wetland classifications, which are strongly based on floristic inventories 

and habitat typologies (e.g., Zoltai and Vitt, 1995; Finlayson et al., 1999; Lehner and Döll, 2004; Herold et al., 2015), we 

separated areas where wet conditions at the surface are primarily driven by flooding, or GW inputs, or both where the two 30 

classes intersect. Since the underlying principles and input datasets are globally valid, this classification is believed to be highly 

useful for land surface hydrological modelling. In particular, we intend to use it in the ORCHIDEE land surface model (Krinner 

et al., 2005; Ducharne et al., 2017) to describe the areas where GW convergence from the uplands to the lowlands can lead to 

high soil moisture, with a potential to enhance the local evapotranspiration and related land-atmosphere feedback (e.g., 

Bierkens and van den Hurk, 2007; Maxwell et al., 2007; Vergnes et al., 2014; Wang et al., 2018).  35 
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Table 1: Summary of water body, wetland and related proxy maps and datasets from the literature. The wet fractions indicated 

in % in the last column are those indicated in the reference paper or data description for each study.  

Name and reference Resolution Type of acquisition 

Wetland extent 

(million 

km2) 
% of the land* 

Maltby and Turner 

(1983) 
- 

Based on Russian geographical 

studies 
8.6 6.6% 

Matthews and Fung 

(1987) 
1 degree 

Development from soil, vegetation 

and inundation maps 
5.3† 4.0% 

Mitsch and Gosselink 

(2000) 
Polygons 

Gross estimates, Combination of 

estimates and maps 
~20† ~15.3% 

GLWD-3  

Lehner and Döll 

(2004) 

30 arc-sec ~1km 
Compilation of 

national/international maps 
8.3 - 10.2‡ 6.2 - 7.6% 

GLC2000 

Bartholomé and 

Belward (2005) 

1 km at Equator 
SPOT vegetation mission satellite 

observations 
4.9 3.4% 

GIEMS 

Prigent et al. (2007) 
0.25° ~25km 

Multi sensor: AVHRR, SSM/I, 

Scatterometer ERS 
2.1 – 5.9 1.4 – 4% 

Fan et al. (2013) 30 arc-sec ~1km Groundwater modelling ~19.3† ~17% 

GLOWABO 

Verpoorter et al. 

(2014) 

Shapefiles of lakes 

larger than 0.002 

km2 

Satellite imagery: Landsat and 

SRTM topography 
5 3.7% 

SWAMPS 

Schroeder et al. (2015) 
25 km 

Modeling using multi sensor info: 

SSM/I, SSM/S, QuikSCAT, ASCAT 
7.7 –  12.5§ 5.2 – 8.5% 

ESA-CCI land cover 

Herold et al. (2015) 
10 arc-sec ~300m 

Multi sensor: SPOT vegetation, 

MERIS products 
6.1 4.7% 

GIEMS-D15 

Fluet-Chouinard et al. 

(2015) 

15 arc-sec ~460m 

Multi-sensor: SSM/I, ERS-1, 

AVHRR, Downscaled from a 0.25° 

wetland map 

6.5 – 17.3 5.0 - 13.2% 

G3WBM  

Yamazaki et al. (2015) 
3 arc-sec ~90m Satellite imagery: Landsat 3.2 2.5% 

JRC Surface water 

Pekel et al. (2016) 
1 arc-sec ~30m 

Satellite imagery: Landsat, including 

maximum water extent and 

interannual occurrence 

2.8 – 4.4 2.1 - 3.4% 

HydroLAKES 

Messager et al. (2016) 

Shapefiles of lakes 

larger than 0.1 km2 

Multiple inventory compilation 

including Canadian hydrographic 

dataset and SWBD 

2.7 1.8% 

Hu et al. (2017) 1 km 
Development based on topographic 

wetness index and land-cover 
29.8¶ 22.5% 

Poulter et al. (2017) 0.5° ~50km Merging SWAMPS and GLWD-3 10.5 7.1% 

* Percentages are those from the corresponding journal article or book. If no mention of percentage coverage exists, 

the value is calculated by dividing the wetland area by the land surface area excluding Antarctica, the glaciated 

Greenland and lakes. 

† Excluding Caspian sea and large lakes 

‡ Excluding Antarctica, glaciated Greenland, lakes and Caspian sea. Additionally the range in GLWD is different 

based on interpretation of fractional wetlands.  

§ Excluding large water bodies 

¶ Including the Caspian sea 
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Table 2: Layers of wetlands constructed in the paper, their definitions and the subsections where they are explained. Total land 

area for wetland percentages excludes lakes, Antarctica and the Greenland ice sheet.  

Layer Definition  
Wetland 

percentage 

Explained 

in 

RFW 

(Regularly Flooded Wetlands) 

Union of three inundation datasets (ESA-CCI, GIEMS-D15, 

JRC surface water) 
9.7% Sect. 3.1 

GDW 

(Groundwater 

Driven 

Wetland) 

WTD 
Pixels with water table depth less than 20 cm (Fan et al. 

2013) 
15% 

Sect. 

3.2.1 

TI 
6 

Pixels with highest Tis, covering 15% of total land when 

combined with RFW 
6% 

Sect. 

3.2.2 

15 Pixels with highest TIs values covering 15% of land 15% 

TCI 
6.6 

Pixels with highest TCIs, covering 15% of total land when 

combined with RFW 
6.6% 

15 Pixels with highest TCI values covering 15% of land 15% 

TCTrI 
6 

Pixels with highest TCTrI, covering 15% of total land when 

combined with RFW 
6% 

15 Pixels with highest TCTrI values covering 15% of land 15% 

CW 

(Composite 

Wetland) 

WTD Union of RFW and GDW-WTD 21.1% 

Sect. 3.3 

TI 
6 Union of RFW and GDW-TI6 15% 

15 Union of RFW and GDW-TI15 22.2% 

TCI 
6.6 Union of RFW and GDW-TCI6.6 15% 

15 Union of RFW and GDW-TCI15 21.6% 

TCTrI 
6 Union of RFW and GDW-TCTrI6 15% 

15 Union of RFW and GDW-TCTrI15 22.3% 
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Table 3: ArcMap tools used in this study for data processing and their equivalent open-source software. 

ArcMap Open-source software Application 

Polygon to raster  

(conversion toolbox) 
Rasterize (vector to raster) To convert vector data into raster pixels 

Project raster  

(Data management toolbox) 
QGIS: Warp (reproject) 

Projecting different layers coordinate 

system to WGS84 

Resample & Aggregate 

(Data management toolbox) 
QGIS: Raster calculator To change the resolution of the rasters 

Raster calculator  

(Spatial analyst toolbox) 
QGIS: Raster calculator To intersect/overlap raster datasets 

Reclassify  

(Spatial analyst toolbox) 
QGIS/GRASS: r.reclass To merge raster datasets or mask them 

 

Table 4: Percent of overlap between GDW and RFW (percent of total land pixels).  

 5 

Groundwater-driven 

wetland layer 

Intersecting with 

RFW 

Non-intersecting 

with RFW 

GDW-TI6 0.7% 5.3% 

GDW-TCI6.6 1.3% 5.3% 

GDW-TCTrI6 0.7% 5.3% 

GDW-TI15 2.5% 12.5% 

GDW-TCI15 3.6% 11.4% 

GDW-TCTrI15 2.4% 12.6% 

GDW-WTD15 3.8% 11.2% 
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Table 5: Correlation between the developed and reference datasets (wetland fractions in 3 arc-min grid-cells). The highest three 

values in each column are shown in bold format, and grey cells give the values used in Fig. 4. 

Dataset name ESA-CCI GIEMS-D15 
JRC surface 

water 
RFW GLWD-3 GDW-WTD 

Hu et al. 

(2017) 

GDW-TI15 -0.07 0.11 0.03 0.04 0.23 0.18 0.31 

GDW-TCTrI15 -0.04 -0.01 -0.10 0.01 0.17 0.26 0.26 

GDW-TCI15 0.12 0.24 0.03 0.23 0.23 0.53 0.33 

GDW-WTD 0.27 0.29 0.07 0.30 0.36 1.00 0.45 

CW-TI6 0.56 0.59 0.44 0.91 0.21 0.34 0.33 

CW-TCTrI6 0.49 0.59 0.43 0.78 0.24 0.43 0.40 

CW-TCI6.6 0.58 0.64 0.40 0.80 0.26 0.52 0.31 

CW-TI15 0.63 0.60 0.28 0.57 0.31 0.40 0.32 

CW-TCTrI15 0.55 0.45 0.36 0.51 0.32 0.38 0.28 

CW-TCI15 0.70 0.71 0.47 0.69 0.28 0.58 0.35 

CW-WTD 0.63 0.69 0.37 0.65 0.34 0.65 0.43 

ESA-CCI 1.00 0.33 0.66 0.53 0.28 0.27 0.27 

GIEMS-D15 0.33 1.00 0.36 0.67 0.26 0.29 0.20 

JRC surface water 0.66 0.36 1.00 0.40 0.07 0.07 0.07 

RFW 0.53 0.67 0.40 1.00 0.38 0.30 0.22 

GLWD-3 0.28 0.26 0.07 0.26 1.00 0.36 0.33 

Hu et al. (2017) 0.27 0.20 0.07 0.22 0.33 0.45 1.00 
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Figure 1: Density of lakes, regularly flooded wetlands and components of the latter (percent area in 3 arc-min grid-cells). For zonal
wetland area distributions (right side charts), the area covered by wetlands in each 1° latitude band is displayed.
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Fig. 3 Latitudinal distribution of different wetland maps; (a,b) GDWs, (c) components of CW-TCI15 and
their intersection, (d,e)  CWs. The wetland areas along the y-axis are surface areas in each 1° latitudinal

band.
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Figure 4: Evaluation criteria between composite wetland maps and evaluation datasets (a) global scale, (b) France, (c)
Amazon, (d) South-East Asia, (e) Hudson Bay Lowlands, (f) Ob basin, (g) Sudd swamp
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Figure 5: Maps of wetlands in France according to different water and wetland datasets: (a, b, c)
components of RFW, (d, e, f, g) validation datasets, (h, i, j) datasets generated in this study. The panels also

give the mean areal wetland fraction of each dataset in the study area (using the mean fraction of each
fractional wetland class of GLWD-3, cf. Sect. 2.5.1). The bounds of the study are the French metropolitan

boundaries.
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Figure 6: Maps of the Amazon River basin wetlands according to different water and wetland datasets: (a, b, c)
components of RFW, (d, e, f, g) evaluation datasets, (h, i, j) datasets generated in this study. The panels also give

the mean areal wetland fraction of each dataset in the study area (using the mean fraction of each fractional
wetland class of GLWD-3, cf. Sect. 2.5.1). The bounds of the basin are taken from Hess et al. (2015).

Density of water and wetlands (in percent of surface area)

0 10 20 30 50 100

a) ESA-CCI b) GIEMS-D15 c) JRC surface water

4% 6% 1.5%

d) GLWD-3 e) GDW-WTD

8% 35%

f) Hu et al. (2017)

24%

i) CW-WTD

j) CW-TCI15

h) RFW

8%

42%

38%

g) Hess et al. 2015

14%

38

Llanos de Moxos

Llanos de Moxos

Llanos de Moxos

Negro river
basin

Negro river
basin

Negro river
basin

Llanos de Moxos

Negro river
basin

Llanos de Moxos

Negro river
basin

Llanos de Moxos

Negro river
basin

Llanos de Moxos

Negro river
basin

Llanos de Moxos

Negro river
basin

Llanos de Moxos

Negro river
basin

Llanos de Moxos

Negro river
basin
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Figure 7: Maps of the South-East Asian wetlands according to different water and wetland datasets: (a, b, c)
components of RFW, (d, e, f) evaluation datasets, (g, h, i) datasets generated in this study. The panels also give the mean

areal wetland fraction of each dataset in the study area (using the mean fraction of each fractional wetland class of
GLWD-3, cf. Sect. 2.5.1). The bounds of the study window are (5°-28°N, 82°30’-108°E).

39

Upstream
Mekong

Upstream
Mekong

Upstream
Mekong

Upstream
Mekong

Upstream
Mekong

Upstream
Mekong

Upstream
Mekong

Upstream
Mekong

Upstream
Mekong



Figure 8: Maps of the Hudson Bay Lowlands wetlands according to different water and wetland datasets: (a, b, c)
components of RFW, (d, e, f) evaluation datasets, (g, h, i) datasets generated in this study. The panels also give the
mean areal wetland fraction of each dataset in the study area (using the mean fraction of each fractional wetland

class of GLWD-3, cf. Sect. 2.5.1). The bounds of the study area are (48°-56°N, 76°-86°W).
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Figure 9: Maps of the Ob River basin wetlands according to different water and wetland datasets: (a, b, c) components
of RFW, (d, e, f) evaluation datasets, (g, h, i) datasets generated in this study. The panels also give the mean areal

wetland fraction of each dataset in the study area (using the mean fraction of each fractional wetland class of GLWD-3,
cf. Sect. 2.5.1). The bounds of the basin are taken from the HydroBASINS layer of HydroSHEDS
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Figure 10: Maps of the Sudd swamp wetlands according to different water and wetland datasets: (a, b, c) components of
RFW, (d, e, f) evaluation datasets, (g, h, i) datasets generated in this study. The panels also give the mean areal wetland
fraction of each dataset in the study area (using the mean fraction of each fractional wetland class of GLWD-3, cf. Sect.

2.5.1). The bounds of the study area are (4°30’-14°N, 24° 30’-34°E).
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Figure 11: Total wet fractions for RFW, different CW and validation datasets, at global scale
and in the studied regions (values in percent of the corresponding land surface area). Only
three CW maps are shown in colours, and other are displayed with the grey range.
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Figure 12 Latitudinal distribution of the selected CWs and evaluation datasets. The wetland areas
along the y-axis are surface areas in each 1° latitudinal band.
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Figure 13: Wetland density (as percent area in 3 arc-min grid-cells): (a) in CW-WTD, (b) in CW-
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windows explained in Sect. 5. For zonal wetland area distributions (right side charts), the area
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Figure 14: Contribution of non-wet areas, lakes, RFW, GDW, and their intersection in the wetland hotspot
window shown in Fig. 13: (a) in CW-WTD, (b) in CW-TCI15. The dashed line shows the average global
wetland fraction, equal to 21.1% in (a) and 21.6% in (b).
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