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1. Abstract.  

The use of ground sampled water quality information for global studies is limited due to practical and financial constraints. 

Remote sensing is a valuable means to overcome such limitations and to provide synoptic views of ambient water quality at 10 

appropriate spatio-temporal scales. In past years several large data processing efforts were initiated to provide corresponding 

data sources. The Diversity II water quality dataset consists of several monthly, yearly and 9-year averaged water quality 

parameters for 340 lakes worldwide and is based on data from the full ENVISAT MERIS operation period (2002-2012). 

Existing retrieval methods and datasets were selected after an extensive algorithm intercomparison exercise using in situ 

reference measurements for more than 40 lakes representing a wide range of bio-optical conditions. Chlorophyll-a, total 15 

suspended matter, turbidity, coloured dissolved organic matter, lake surface water temperature, cyanobacteria and floating 

vegetation maps, as well as several auxiliary data layers, provide a generically specified data basis that can be used for 

assessing a variety of locally relevant ecosystem properties and environmental problems. We demonstrate the use of the 

products by illustrating and discussing remotely sensed evidence of lake-specific processes and prominent regime shifts 

documented in literature. The Diversity II data are available from https://doi.pangaea.de/10.1594/PANGAEA.871462, and  20 

Python scripts for their analysis and visualization are provided at https://github.com/odermatt/diversity/.  

2. Introduction 

Freshwater ecosystems have undergone more dramatic changes than any other type of ecosystems (Sectretariat of the 

Convention on Biological Diversity, 2010). Lakes contain about 87% of all surface freshwater (Gleick, 1996). The major 

threats that affect lakes and reservoirs are water level changes, toxic pollution, salinization, eutrophication, acidification, 25 

sediment pollution and invasion of exotic species. Several upstream anthropogenic activities are related to these threats, such 

as agriculture, forestry, grazing, mining, irrigation, urbanisation and dams, hydraulic engineering and industrial 

development. All these pressures are interconnected and act concurrently to reduce water quality and contribute to the 

deterioration of the ecosystem, including habitat loss and reduced biodiversity. 
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The conditions of inland waters vary over a wide range of spatial and temporal scales, leading to important logistic and 

economic difficulties to monitor them on a regular basis. Some countries have national or regional lake monitoring 

programmes, which are primarily based on ground surveys. However ground surveys often fail to sample on appropriate 

spatial and temporal scales. Other countries do not have monitoring programmes due to a lack of funds. The use of satellite 

remote sensing is a potentially cost-effective and efficient way to supplement the conventional in-situ point sampling 5 

surveys. Remotely sensed products for water availability and quality are complementary to in-situ data in terms of spatial 

and temporal coverage. They provide synoptic views of spatial distribution unachievable by other means, and are ideally 

suited to cover the broad range of space and time scales associated with inland water applications. However, remote sensing 

is limited in terms of parameter coverage and depth resolution. 

The Medium Resolution Imaging Spectrometer (MERIS) was operated by the European Space Agency (ESA) in 2002-2012 10 

and demonstrated unparalleled capabilities for water quality remote sensing. Extensive reviews of popular retrieval methods 

revealed a wide range of different algorithms, but the usage of MERIS data prevailed (Matthews, 2011; Odermatt et al., 

2012). The first globally representative lake water quality dataset from remote sensing provided a snapshot of chlorophyll-a 

(CHL-a) concentrations in 80’000 lakes worldwide based on MERIS Full Resolution (FR) data acquired in 2011 (Sayers et 

al., 2015). However, this dataset was compiled with an algorithm optimized for ocean colour remote sensing, whose 15 

suitability for inland waters was disavowed on several occasions (see e.g. Mobley et al., 2004; Morel and Prieur, 1977). 

Therefore we carried out an intercomparison of well-known and publicly available algorithms for the retrieval of CHL-a and 

other water quality parameters in optically complex waters with a heterogeneous reference dataset for more than 40 lakes 

(Odermatt et al., 2015a). The Diversity II water quality dataset is produced with the most suitable retrieval methods 

identified through these investigations.  20 

In addition to the optimized methodology, the Diversity II water quality dataset excels previous work by covering the full 

MERIS operation period with monthly, yearly and 9-year product aggregates, and a several additional water quality 

parameters. Hence it provides a generically specified data basis that can be used for assessing a variety of locally relevant 

ecosystem properties and environmental problems. Several case studies are available that demonstrate such assessments with 

lake-specific foci (Odermatt et al., 2015b), but the larger part of the dataset is yet to be exploited. 25 

3. Input data 

3.1. Geographical scope 

We selected 340 lakes for processing (Figure 1) based on their biodiversity relevance, size, auxiliary and reference data 

availability, geographic distribution and particular user requests. 66 of those lakes are at least 50 km2 large and located 

within Ramsar Wetlands or listed as LakeNet Biodiversity Priority sites (www.worldlakes.org). The data table 30 

(https://doi.pangaea.de/10.1594/PANGAEA.871462?format=html#download) allows for their identification. The dataset 

includes 250 of the world’s 350 largest lakes by extent, whereas size implies regional relevance and favours the feasibility of 
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remote sensing retrievals in general and of Lake Surface Water Temperature (LSWT) in particular (Politi et al., 2016). 

Various contributors provided in situ water quality measurements for 42 lakes, which are used as reference sites for quality 

assessment (Odermatt et al., 2015a). The largest reservoirs in South America and individual sites in Asia and Australia are 

included in order to improve the global representativeness. 50 additional lakes are included due to specific stakeholder 

requests.  5 

In principle, the Diversity II water quality dataset could be extended to a much larger number of lakes. Size is the most 

important restriction in this regard, with a contiguous open water surface of roughly 1 km by 1 km being the theoretical 

minimum, but certain complications occurring even for larger water bodies. The total number of suitable lakes worldwide is 

expected to be between the 80’000 demonstrated by Sayers et al. (2015), and, neglecting shape properties, the 350’000 lakes 

larger than 1 km2 identified by Verpoorter et al. (2014). 10 

3.2. ENVISAT MERIS L1B FSG imagery 

MERIS was operated in 2002-2012 on-board the near-polar orbiting ENVISAT satellite by the European Space Agency 

(ESA; Rast et al., 1999). It measured reflected solar radiance in 15 narrow spectral bands across visible and near-infrared 

(NIR) wavelengths. In FR mode, its push-broom charge-coupled device (CCD) arrays sampled the 1150 km wide swath at 

approximately 260 by 290 m ground resolution in across track and along track direction, respectively. MERIS had a nominal 15 

revisit time of 2-3 days at the equator and less at higher latitudes, but FR data was not systematically acquired in the early 

years until 2005, and in later years it varied slightly due to mission operations, and therefore the availability of usable data 

varies regionally and temporally (Figure 1).  

We refer to three widely, but not consistently, used satellite image processing levels, in which Level 1 (L1) consists of Top-

Of-Atmosphere (TOA) signals, Level 2 (L2) includes derived geophysical quantities and Level 3 (L3) represents spatio-20 

temporally aggregated data. Approximately 300’000 MERIS L1 images were used as input for the production of the 

Diversity II water quality dataset. The data represents calibrated TOA radiance, also referred to as at-sensor radiance. It 

emerged from the 2014 bulk reprocessing using MERIS Instrument Processing Facility version 6. Its geo-orthorectification 

was improved using the Accurate MERIS Ortho-Rectified Geolocation Operational Software (AMORGOS; Bourg and 

Etanchaud, 2007), thus the data is referred to as MERIS L1B Full-Swath Geo-corrected (FSG).  25 

3.3. AATSR ARC-Lake LSWT products 

The Diversity II water quality dataset includes Lake Surface Water Temperature (LSWT) products that were readily 

provided by the ESA ARC-Lake project as version 3 production. The LSWT retrieval was performed with an optimal 

estimation approach (MacCallum and Merchant, 2013, 2012). Lake-specific prior surface temperatures were generated using 

an iterative scheme that is initiated with the monthly MODIS land and sea surface temperature climatologies. The ARC-Lake 30 

processor then uses valid satellite observations, simulations with the FLake model (Mironov, 2008) and Data Interpolating 
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Empirical Orthogonal Function (DINEOF; Alvera-Azcárate et al., 2005) techniques to iteratively create from this spatially 

and inter-annually invariant initial guess a field of spatially resolved temperature fields.  

Several product types using different processing techniques, spatial and temporal aggregations are available (MacCallum and 

Merchant, 2014). We selected the DINEOF reconstructed, day- and night-time acquired monthly products in 0.05° spatial 

resolution, whose file names are ALIDXXXX_PLREC9D_TS012SR.nc and ALIDXXXX_PLREC9N_TS012SR.nc, 5 

respectively, with XXXX being a four-digit lake ID. They are available for 298 out of the 340 lakes considered, and an 

empty LSWT product layers are contained in the remaining 42 lakes.  

3.4. Auxiliary data 

Each lake’s perimeter was defined in a shapefile that resulted from vectorized outlines of the Synthetic Aperture Radar 

Water Bodies (SAR-WB) map created by Santoro and Wegmüller (2014). These perimeters represent the maximum extent 10 

of water available from ENVISAT-ASAR acquisitions between 2002-2012, and each polygon’s area and circumference were 

added to an attribute table. The polygons are intersected with the Global Lakes and Wetlands Database (GLWD; Lehner and 

Döll, 2004) Level 1 dataset, and ambiguities were manually resolved. The merged tabulated attributes are available in a 

metadata list (https://doi.pangaea.de/10.1594/PANGAEA.871462?format=html#download). Alternative lake names were 

added to the list at every opportunity, but are neither exhaustive nor tracked.  15 

Lake water surface level data (Crétaux et al., 2011) provided by the Laboratory of Studies on Spatial Geophysics and 

Oceanography (LEGOS) through their Hydroweb portal (http://www.legos.obs-mip.fr/soa/hydrologie/hydroweb/) was 

originally complementing and distributed with the Diversity II database. This data come as 1D discrete time samples, as 

opposed to the 2D temporal aggregated water quality maps. Furthermore, it is based on independent developments and 

updates that would require continuous mirroring. Due to these differences, we refrained from adding them to the Pangaea 20 

Diversity II repository. 

4. Data processing methods  

The bulk production of temporally aggregated water quality parameters from L1B and auxiliary data requires a combination 

of several methods in an unsupervised processing chain. For this purpose we implemented the CaLimnos v1 processing chain 

(Figure 2) for deployment on ESA’s Earth observation data processing cluster Calvalus (Fomferra et al., 2012). It is 25 

composed of several processors for the ESA BEAM Toolbox (Fomferra and Brockmann, 2005), which has recently evolved 

into the Sentinel Application Platform (SNAP). The same input and auxiliary data, pre- and post-processing modules were 

also used to create 10-day aggregates for the investigation of phenological cycles in Lake Balaton (Palmer et al., 2015), and 

corresponding CaLimnos v1 L2 intermediate outputs were used for assessing the spatio-temporal variability of CHL-a in 

Lake Geneva (Kiefer et al., 2015). 30 
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4.1. Pre-processing 

The identification of pure water pixels is an essential pre-processing step, because even sub-pixel signal contributions from 

land surfaces can strongly affect the retrieval procedures, especially when using band arithmetic algorithms that do not check 

for input signal compliance at runtime. The Idepix algorithm is an open-source SNAP processor and performs such 

identification for clouds, cloud shadows, cloud buffers, land, snow/ice, sun glint and mixed pixels (Danne, 2016) based on 5 

bottom-of-Rayleigh reflectance (BRR; Santer et al., 1999). BRR is subject to a partial correction of atmospheric effects, 

representing reflectance at the hypothetical boundary between an infinitesimally small aerosol layer and gaseous air layers 

above. It is the preferred signal when background reflectance for the estimation of aerosol optical thickness is highly 

uncertain, therefore BRR intermediate products are also used for the identification of shallow water areas and as input for the 

Maximum Peak Height processor (Matthews et al., 2012) according to Figure 2.  10 

Idepix uses the Shuttle Radar Topography Mission (SRTM) Water Body Dataset (SWBD; Slater et al., 2006) as a static a 

priori land-water mask, which is a snapshot of global water surface extent between 56°S and 60°N in February 2000. It 

applies several arithmetic expressions, a spectral unmixing algorithm for mixed pixel identification, and two back-

propagation Neural Networks (NN) for cloud identification to MERIS FSG L1B and BRR input data (Kirches et al., 2013). 

Output is a pixel identification flag layer which is much better suited for water constituent retrieval than the original L1B 15 

product flags (Ruescas et al., 2014). However, usage with inland waters is subject to two particular challenges. First, Idepix’ 

sea ice identification uses climatological auxiliary data that is not available for lakes, therefore lake ice identification is less 

accurate. Second, ephemeral water surfaces that may extend far beyond the SRTM observed extent are always clipped to the 

latter.  

Bottom visibility is a critical and unmastered error source for water quality retrieval, because most algorithms that provide 20 

concentrations of water constituents do not account for benthic reflectance contributions in these so-called optically shallow 

waters. In fact, a pre-conditions for them is optically deep water (i.e. no bottom reflection). Sandy or vegetated substrates 

cause surface-leaving signals that can closely resemble increased suspended sediment and phytoplankton concentrations in 

the water column, respectively, and thus distort retrievals. Only very few algorithms are actually dealing with the detection 

of optically deep water, and none of them applies to inland waters. Based on recommendations for clear coastal waters 25 

(Cannizzaro and Carder, 2006) and own investigations, we defined a band ratio that evaluates the relative elevation of 

oligotrophic lakes’ 555 nm water-leaving reflectance peak, but using BRR in three MERIS bands as input due to the lack of 

robust automated atmospheric correction algorithms for such conditions (Eq. 1; Odermatt et al., 2015a).  

 
IF ratio_ 490 = BRRband3 ⋅BRRband 7

(BRRband5 )
2 < Thres, shallow = TRUE  Eq. 1 

Due to the ambiguity of certain substrates’ shallow water reflectance and deep-water reflectances, this optical signature alone 30 

is prone to false positive identifications. It becomes much more robust when applied to temporally aggregated ratio_490 due 

to the relative persistence of benthic features as opposed to the dynamically changing water composition. Summer half-year 
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mean averages were selected after evaluation of several statistical aggregation methods. Corresponding aggregates are 

composed of all cloud-free MERIS observations in May to October 2008 for the Northern hemisphere, and November 2008 

to April 2009 for the Southern hemisphere. Lakes with constantly high turbidity, such as Lake Balaton, still trigger false 

positives. Therefore each ratio_490 aggregate map was verified with high-resolution satellite imagery and bathymetry 

information. Considerable shallow water areas in about 30 oligo- to mesotrophic lakes were masked using a threshold of 5 

0.65, which, in the case of the Beaver Island Archipelago in Lake Michigan, masks areas that are between 5-10 m deep 

(Figure 3). Pixels removed in such manner are indicated in a separate product layer (shallow, Figure 3 bottom). In the Lake 

Michigan example, there are some patterns in the chl_fub product that still resemble bathymetry features, but their 

concentration levels are within variations for deep water areas apart from a few individual pixels. Especially in more turbid 

lakes, lower thresholds are applied to prevent false positives according to the corresponding column in the lakes list 10 

(https://doi.pangaea.de/10.1594/PANGAEA.871462?format=html#download).  

4.2. Water quality retrieval 

CHL-a retrieval in optically complex waters is straightforward when using the secondary reflectance peak at red and near-

infrared (NIR) wavelengths (e.g. Gitelson, 1992; Gons, 1999; Gower et al., 1999). However, using MERIS observations this 

peak is only accessible in moderately productive or turbid waters, while clear and humic waters call for different approaches 15 

(Odermatt et al., 2012). Moore et al. (2014) developed an Optical Water Type classification (OWT) framework, which 

supports the distinction of these different water types, and which is available as SNAP plugin (Peters, 2016). It assigns 

water-leaving reflectance spectra to seven end members, which were identified through cluster analysis of in situ 

measurements. Classes 1-3 represent clear or absorbing waters, classes 4-5 represent high phytoplankton and classes 6-7 

represent high suspended mineral contents (Figure 4). The OWT algorithm depends on the accurate correction of 20 

atmospheric effects (Eleveld et al., 2017), which was assessed by classifying 42 matchup pairs of in situ reflectance 

measurements in 10 diverse lakes and MERIS water-leaving reflectance from various atmospheric corrections. Water-

leaving reflectance obtained with the CoastColour NN algorithm (description below) achieved the best agreement, in which 

half the matchup pairs were assigned to the same OWT, and adjacent classes were assigned in 14 cases (Odermatt et al., 

2015a). In 5 out of the remaining 7 cases, the optically quite similar classes 1 and 3 are confused. This mismatch due to 25 

differences between in situ measured and satellite observed reflectance is quite significant. However, when considering only 

the separation between classes 1-3 and 4-7, and thus the feasibility of CHL-a retrieval based on the secondary reflectance 

peak, the approach becomes very robust, with only 2 out of the 42 pairs being confused. The OWT maps therefore provide a 

rough but robust indicator for CHL-a algorithm selection. Most lakes are relatively clearly dominated by either OWT 1-3 or 

4-7, which makes the CHL-a product selection straightforward. In rare cases like Lake Turkana (Figure 5), such a selection 30 

can only be made if either the lower or the upper end of the dynamic range is considered more relevant. Otherwise, it is 

recommended to either split the lake perimeter or merge the CHL-a products e.g. by weighting them with turbidity levels.  

Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-2

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Discussion started: 22 January 2018
c© Author(s) 2018. CC BY 4.0 License.



7 
 

For the Diversity II production the Maximum Peak Height algorithm (MPH; Matthews et al., 2012) was developed further 

and implemented in a SNAP operator (Block, 2016) because it outperformed other red-NIR reflectance peak algorithm in the 

algorithm intercomparison study (Matthews and Odermatt, 2015; Odermatt et al., 2015a). It uses BRR in MERIS bands 6-10 

and 14 for the retrieval of the red-NIR reflectance peak height and position, which allow for the identification of 

cyanobacteria and eukaryote dominated pixels, water surface covering by cyanobacteria scum or floating vegetation, and 5 

CHL-a quantification. Dedicated empirically calibrated equations are used for the retrieval of CHL-a concentrations in 

eukaryote and cyanobacteria dominated waters. Technically, the algorithm is designed to cover the range of 0-1000 mg/m3 

CHL-a. However, retrieval accuracy is significantly better for lakes that are predominantly OWT 4-7, namely eutrophic to 

hypertrophic waters.  

The FUB algorithm (Schroeder et al., 2007), named after the Free University of Berlin, is a bundle of dedicated NN 10 

algorithms for CHL-a, Total Suspended Matter (TSM) and Coloured Dissolved Organic Matter (CDOM) retrieval from 

MERIS L1B data, and a fourth NN that computes AOT at four wavelengths (440, 550, 670, 870 nm) and water-leaving 

reflectance in all bands up to 708 nm, except at 680 nm. The algorithms are trained with radiative transfer simulations using 

the Matrix Operator Model (MOMO; Fell and Fischer, 2001) covering CHL-a, TSM and CDOM concentration ranges of 

0.05-50 mg/m3, 0.05-50 g/m3 and 0.005-1 m-1, respectively, and using  MERIS bands 1-7, 9, 10 and 12-14 as input. The 15 

training ranges are a severe limitation for global usage, but specific retrieval quality flags indicate for each of the four NN 

algorithms if the input or output exceeds the training range. However for oligo- to eutrophic and in particular humic lakes, 

which are commonly identified as OWT 1-3, the FUB algorithm’s CHL-a output outperformed all other candidates in the 

intercomparison study (Odermatt et al., 2015a). Note that FUB uses shorter wavelengths that reach deeper into the water 

column than MPH, which means that the two CHL-a products represent different depths and may not converge at 20 

intermediate concentrations (ca. 10-30 mg/m3), where both algorithms produce valid results. 

For the retrieval of TSM via particulate backscattering at 443 nm (bb_spm_443 in Figure 2) and turbidity, as well as water-

leaving reflectance input for the OWT classification, we used the CoastColour NN algorithm. Its architecture is based on the 

approach described in Doerffer & Schiller (2007), with two dedicated NN systems performing atmospheric correction  and 

inherent optical properties retrieval (Doerffer, 2011; Ruescas et al., 2014). In contrast to earlier NN algorithms, the 25 

CoastColour NN was trained with significantly larger concentration ranges, namely 0.03-1000 g/m3 TSM and 0.03-500 

mg/m3 CHL. It was extensively validated with the CoastColour Round Robin data set (Nechad et al., 2015; available in 

Pangaea) and lake in situ measurements (Odermatt et al., 2015a).  

4.3. Post-processing and auxiliary data 

The aggregation of L2 to L3 products (Figure 2) facilitates temporal binning and collocation in a common coordinate grid 30 

with WGS 84 (EPSG 7030) coordinate system. Monthly aggregates are created using the input, output and aggregation 

methods listed in Table 1, and the same aggregation methods are used to create yearly and 9-year aggregates from monthly 

and yearly aggregates, respectively, which ensures that all months input aggregate periods are weighted equally even if the 
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numbers of L2 available in these periods may differ strongly. Aggregation of biophysical parameters is done using the mean 

of all valid nearest-neighbour input pixels for each output pixel, while the OWT L3 output layer consists of the most 

frequently observed class value across all available input layers, using the lower class in the rare case of a draw.  

Monthly, yearly and 9-year aggregates for each lake are saved in individual GeoTIFF files, and compressed in 13 ZIP files 

representing 11 annual archives for the monthly aggregates, one archive for the yearly aggregate, and the 9-year aggregate. 5 

These 13 ZIP archives are zipped again to make each lake available for download in a single file of up to 18.9 Gigabyte size 

(Caspian Sea).  

For extracting product statistics and for visualization of the products, a Python package is available at 

https://github.com/odermatt/diversity. The scripts included in the package allow for creating spatial and temporal plots such 

as shown in Section 5 (Figure 5 to Figure 12). They also feature the use of blacklists, e.g. to exclude all products with scarce 10 

lake extent coverage from further analyses. 

 

Table 1: Input, output and aggregation specifications for the monthly products. 

Algorithm L2 input layer(s) Aggr. L3 output layer(s) 

MPH chl: float [mg/m3] mean chl_mph: float [mg/m3] 

FUB algal-2: float [mg/m3] mean chl_fub: float [mg/m3] 

FUB yellow_subs: float [m-1] mean cdom_fub: float [m-1] 

CoastColour bb_spm_443 mean tsm_cc: float [g/m3] 

CoastColour turbidity: floating numbers [FTU] mean turbidity_cc: float [FTU] 

MPH if CYANO_FLAG not FLOAT_FLAG: binary mean immersed_cyanobacteria: float [0-1, dl] 

MPH if CYANO_FLAG and FLOAT_FLAG: binary mean floating_cyanobacteria: float [0-1, dl] 

MPH if FLOAT_FLAG not CYANO_FLAG: binary mean floating_vegetation: float [0-1, dl] 

OWT dominant_class: integer [1-7, dl] mode owt_cc_dominant_class: integer [1-7, dl] 

ratio_490 See Section 4.1 mean shallow: binary 

lswt_d See Section 3.3 none lswt_d_mean: float [deg. K] 

lswt_n See Section 3.3 none lswt_d_mean: float [deg. K] 

5. Results 

The Diversity II water quality datasets were used for several lake-specific assessments, most prominently for indicating fish 15 

assemblages and status assessments in Lake Vänern (Sweden; Sandström et al., 2016). Other use cases are described as 

biodiversity stories and made available from www.diversity2.info. A summary of three selected examples verifies how the 

remotely sensed parameters respond to spatio-temporally evident or relatively well-documented biophysical events.  
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5.1. Lake Biwa 

Lake Biwa is a monomictic lake northeast of Kyoto (Japan), up to 104 m deep and with a surface area of 658 km2 among the 

smaller lakes in the dataset. The primary productivity of the lake is relatively low, but subject to strong spatial gradients that 

are related to the distribution of residential and industrial areas, which are concentrated on the south-eastern shore and 

responsible for increased riverine Nitrogen input (Ohte et al., 2010) that increase near-shore phytoplankton growth (Figure 5 

6). In December 2007 investigations with an AUV (Autonomous Underwater Vehicle) revealed more than 2000 dead 

organisms on the lake’s bottom, mostly endemic Isaza gobi fish and lake prawns. Low dissolved oxygen concentrations of 

less than 1.0 mg/l near the lake bottom in November were identified as the main cause for an increased exposure of aquatic 

organisms to heavy metals and the die-off (Itai et al., 2012; Kawanabe et al., 2012). Oxygen supply depends on wintertime 

vertical mixing, which, aside from wind stress, depends on the vertical density gradients and thus thermal stratification. In 10 

situ temperature profiles from the Lake Biwa Environmental Research Institute’s regular limnological survey program 

suggest that vertical mixing remained very weak in the winter of 2006/2007 (Kawanabe et al., 2012). Even though relating 

surface to bottom temperatures is not without caveats, significantly higher LSWT with spatially averaged 8.2°C is observed 

in March 2007 than in the other years (Figure 7), suggesting that minimal annual LSWT could be a valuable proxy for 

vertical mixing in temperate lakes.  15 

5.2. Lake Nicaragua 

Lake Nicaragua/Cocibolca is the largest lake in Central America with a surface area of 7851 km2. It is polymictic with a 

maximum and average depth of only 26 and 15 m, respectively. It is subject to prevalent ecological issues such as untreated 

urban wastewater discharge and immissions from agriculture (soil erosion, fertilizer and pesticide immissions) and 

aquacultures that introduce non-resident Tilapia species and possibly novel diseases. Moreover, the planned construction of 20 

the Nicaragua Canal connecting the Caribbean Sea to the Pacific Ocean would bring about a significant shift in the lakes 

ecological status, most directly through the excavation of a 27.6 m deep, 520 m wide and 286 km long waterway across the 

centre of the shallow lake, which will strongly affect light availability within the water (Meyer and Huete-Pérez, 2014). In 

spite of the limited availability of MERIS FR data over Latin America (Figure 1), it can contribute to estimating baseline 

conditions prior to the intervention. Generally maximum and minimum turbidity occur around August and February, 25 

respectively (Figure 8, top), within a range between 2-20 FNU. Outliers such as in October 2005 and May 2007 can occur 

when only a small area of the lake is sampled. However, the 2011 turbidity peak in October is related to an extraordinary 

shift from cyanobacteria to eucaryotic algae (Figure 9), which comes with significantly lower CHL concentrations 

throughout the year from both the MPH (Figure 8, top) and the FUB algorithm (not shown), but also a second productivity 

peak. Even though data continuity and in situ measurements are required for further interpretation, the available data 30 

suggests that the lake was in a relatively unstable state at the end of the observation period.  

Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-2

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Discussion started: 22 January 2018
c© Author(s) 2018. CC BY 4.0 License.



10 
 

5.3. Lake Victoria 

Lake Victoria is the second largest fresh water lake in the world and is situated in a shallow depression between the Great 

Rift Valley and the western Albertine Rift, with a shoreline shared by Kenya, Uganda and Tanzania. It is up to 83 m deep, 

eutrophic and light-limited (Hecky et al., 2010), and it’s thermocline is usually at around 30-40 m with complete mixing 

occurring once a year (MacIntyre et al., 2014; Payne, 1986). About 80% of the water input to Lake Victoria are from direct 5 

rainfall (Swenson and Wahr, 2009), and atmospheric deposition is the most important Phosphorous source in pelagic areas of 

the main basin (Tamatamah et al., 2005). In contrast, the Nyanza Gulf (also known as Winam or Kavirondo Gulf), the lake’s 

most distinctive morphological feature in the north-east, receives about 10% of the lake’s terrestrial inflow, and it was 

concluded from ground measurements between March 2005 and March 2006 that the Nyanza Gulf even received 

Phosphorous input from the main basin, in contrast to the paradigm that the gulf is a major contributor to the lake’s 10 

increasing nutrient enrichment (Gikuma-Njuru et al., 2013). As a matter of fact, MERIS observations confirm that the most 

productive areas are located in the very east of the Gulf throughout 2005 (Figure 11) and for the first half of 2006 (not 

shown). During this period, the CHL levels in the lake’s centre in July 2005 appear extraordinarily high. This observation 

can be verified through a comparison with the number of available observations (2-7) and the abundance of immersed 

cyanobacteria (0.4-1) in this area and month. This means that most parts of this cyanobacteria bloom were identified in 15 

several observations.  

The Nyanza Gulf was also subject to intensive growth of water hyacinths (Eichhorna crassipes) in response to El Niño 

precipitation anomalies in 1998 (Albright et al., 2004) and 2007 (Fusilli et al., 2013). Figure 12 displays the 2007 

proliferation event according to Diversity II data. The hyacinths appear in floating_cyanobacteria_mean rather than the 

expected floating_vegetation_mean, assumingly due to persistent cyanobacteria dominance in the Gulf. Given that Idepix is 20 

likely to mask completely overgrown pixels as land (see Section 4.1), the remaining water pixels counted for the abundance 

consist partly of immersed cyanobacteria, partly of floating eucaryotes. Despite these limitations and the fact that monthly 

aggregates lack the spatial details of individual observations, the extent and course of the proliferation matches well with the 

MODIS observations presented by Fusilli et al. (2013).  

6. Discussion 25 

6.1. Conclusions 

The Diversity II dataset is the first globally representative, temporally resolved and methodologically consistent information 

source for inland water quality dynamics from satellite Earth observations. It includes monthly, yearly and 9-year temporally 

aggregated geophysical maps of various water quality parameters, which provide unprecedented possibilities for exploitation 

at global and local scale. Global analyses are yet to be carried out, with caution to the limitations mentioned hereafter. At 30 

local scale, several case studies demonstrated how the data could effectively contribute to traditional investigations of lake 
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specific processes and events. The Diversity II product user handbook (Odermatt et al., 2015b) helps to improve such 

interpretation of remotely sensed data by providing background knowledge of acquisition and retrieval methods, and Python 

scripts are available that facilitate standard information extraction and visualization from the individual GeoTIFF files.  

The methods used for producing the Diversity II dataset represent the state-of-the art at the end of the ENVISAT era. It is a 

major asset of Earth observation that productions from L1 observations can be repeated as improved methods become 5 

available, so there is no doubt that the methods in use for Diversity II will be improved and overhauled in the future. Several 

lessons were learned for such repeated productions, some of them involving challenges for future research. For example, the 

binary identification of optically shallow waters and floating lake ice have received relatively little attention in recent years, 

but under certain circumstances they have much larger effects on the final product accuracy than retrieval algorithms. Our 

method for the identification of clouds, land and mixed pixels is more advanced, but it remains critical for all partly cloudy 10 

situations. Therefore, the development of such methods should receive much more attention, relative to the number of 

retrieval algorithms that were developed in recent years. The latest generation of retrieval algorithms will be based on further 

advanced water types (Spyrakos et al., n.d.) and ensemble approaches that account for the selection of multiple algorithms’ 

estimates (as e.g. left to the user with chl_mph_mean/chl_fub_mean). Finally, new approaches are needed for the 

consolidation of such increasingly large geospatial datasets, and for the extraction of relevant information, which is still 15 

mostly based on lake-specific knowledge.  

6.2. Limitations 

Areas of melting lake ice are optically very similar to water, and the false retention of a lake ice covered pixel by the Idepix 

algorithm can lead to highly irregular constituent estimates. Indicators for such cases are the seasonal timing, sharp linear 

features in water constituent products, indicating lake ice borders or cracks, and very low values in mean LSWT. Auxiliary 20 

data from the NOAA/NSDIC Global Lake and River Ice Phenology Database could also help with the identification. A 

procedure to fix monthly products that are affected by melting lake ice artefacts using the BEAM L3 binner is described in 

Odermatt et al. (2015b).  

Ephemeral (also intermittent or seasonal) lakes as well as other lakes and reservoirs that significantly change their extent 

over time are usually not well represented because the lakes’ areas are clipped to the extent of the SWBD in February 2000. 25 

Their change in extent also complicates the identification of shallow water areas in a way that makes our approach based on 

temporally consistent spectroradiometric properties inapplicable. Therefore ratio_490 thresholds for such lakes were set to 

0.0 to disable shallow water identification. Furthermore, many of these lakes are subject to very high salinity levels and other 

typical habitat properties that favour extraordinary types of water constituents and accordingly bio-optical properties, which 

can significantly affect the validity of the water quality products. Particular care is thus needed when a lakes’ product layer 30 

extent is significantly smaller than expected. 

Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-2

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Discussion started: 22 January 2018
c© Author(s) 2018. CC BY 4.0 License.



12 
 

The relative abundances in the floating_vegetation and floating_cyanobacteria layers include only pixels that passed the 

foregoing Idepix masking. This means that especially very densely covered water pixels are previously identified as land 

pixels and not counted, resulting in an overall underestimation of abundances.  
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Figure 1: Global density maps for the bulk reprocessed MERIS FR dataset in the years 2002-2012, and distribution of the 340 lakes available in the 
Diversity II water quality dataset (bottom right).  
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Figure 2: The CaLimnos v1 processing chain for inland waters. Coloration indicates algorithms and downstream processes (white), 
input and auxiliary data (dark grey), intermediate products (light grey) and output products (blue).  
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Figure 3: Shallow water flagging for the Beaver Island Archipelago in the North of Lake Michigan. Top: Sentinel-2A true colour 
image, 8 May 2017. Centre: ratio_490 from MERIS data, acquired in May-October 2008. Bottom: Shallow water mask for 5 
ratio_490 with a threshold of 0.65 on top of the CHL layer for October 2011 as contained in the product layer shallow. Bathymetry 
data provided by NOAA-NCEI. 
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Figure 4: OWT end member water-leaving reflectance spectra and a OWT 2 retrieval example for an in situ and MERIS CCL2 
reflectance pair from Lake Zurich, 15 August 2007. Respective class membership scores are indicated in the legend. 
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Figure 5: 9-year aggregated OWT in Lake Turkana (left; owt_cc_dominant_class_mode), which features a very prominent gradient 
in turbidity (right; turbidity_cc_mean). Maximum turbidity and predominantly OWT 7 are observed in the North, where its main 
tributary, the Omo River, provides about 90% of the lake’s inflow (Beadle, 1981). In contrast, the terminal basin in the South 
corresponds to OWT 1 and 3, which are 2nd and 3rd lowest in turbidity according to the end members in Figure 4.  

 5 

 
Figure 6: CHL in Lake Biwa, May 2007, L3 aggregate of four cloud-free and one partly cloudy image (chl_fub_mean). 
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Figure 7: LSWT in March in Lake Biwa (lswt_n_mean). The March LSWT mark the annual minimum for every year contained in 
the dataset. 
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Figure 8: Timeseries of spatially averaged Turbidity (top) and CHL (bottom) in Lake Nicaragua, with data gaps especially during 
the rainy season (June-October).  
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Figure 9: Mean annual cyanobacteria probability in Lake Nicaragua, 2003-2011 (immersed_cyanobacteria_mean). Note that the 
number and distribution of valid observations across the years is quite unequal (Figure 10).  

 

 5 
Figure 10: Number of observations for the annual cyanobacteria abundance maps in Figure 9 (num_obs). 
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Figure 11: Monthly CHL concentrations in north-eastern Lake Victoria, 2005 (chl_mph_mean).  
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Figure 12: Peak of the 2007 water hyacinth growth in Nyanza Gulf, Lake Victoria (floating_cyanobacteria_mean).  
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