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Abstract: In this research, vegetation trends are studied to give valuable information toward effective land use in 13 

the East African region, based on the Normalized Difference Vegetation Index (NDVI).  Previously, testing 14 

procedures controlling the rate of false discoveries were used to detect areas with significant changes based on 15 

square regions of land.   This paper improves the assignment of grid points (pixels) to regions by formulating the 16 

spatial problem as a multidimensional temporal assignment problem.  Lagrangian relaxation is applied to the 17 

problem allowing reformulation as a dynamic programming problem.  A recursive heuristic approach with a 18 

penalty/reward function for pixel reassignment is proposed.  This combined methodology not only controls an 19 

overall measure of combined directional false discoveries and nondirectional false discoveries, but make them as 20 

powerful as possible by adequately capturing spatial dependency present in the data.  A larger number of regions are 21 

detected, while maintaining control of the mdFDR under certain assumptions.   22 

Data Link: https://figshare.com/s/ed0ba3a1b24c3cb31ebf 23 

DOI: 24 

https://figshare.com/articles/NDVI_and_Statistical_Data_for_Generating_Homogeneous_Land_Use_Recommendati25 

ons/5897581 26 

 27 

Keywords: Land Use, Mathematical Programming, Dynamic Programming, Multiple Testing, Spatial Data and 28 

Analysis, False Discovery Rate 29 

 30 

1 Introduction 31 

Analysis of vegetation life cycles is fundamental in monitoring and planning agricultural endeavors and optimizing 32 

land use. In particular, gaining knowledge of current vegetation trends and using them to make accurate predictions 33 

is essential to minimize times of food scarcity and manage the consumption of natural resources in underdeveloped 34 

countries. Needing to understand the Earth’s ecology and land cover is increasingly important as the impacts of 35 

climate change start to affect animal, plant, and human life. Vegetation trends are also closely related to 36 

sustainability issues, such as management of conservation areas and wildlife habitats, precipitation and drought 37 

monitoring, improving land usage for livestock, and finding optimum agriculture seeding and harvest dates for 38 

crops. 39 

 For this reason, there are many agencies and organizations that focus on the study of land use and land cover trends, 40 

linking them to climate change and the socioeconomic consequences of these changes. The United States Global 41 

Change Research Program (Land Use and Land Cover Change Interagency Working Group), the United Nations 42 

Framework Convention on Climate Change (Land Use, Land Use Change, and Forestry), and NASA’s Land Cover 43 

Land Use Change Program are just three examples of well-known interdisciplinary/ interagency programs that 44 

conduct and sponsor research related to the question of global land change as noted in OCHA (2011).     45 

Assessment of changes in a region’s vegetation structure is challenging, especially in topographically diverse areas, 46 

like East Africa. Forecasting future vegetation and agricultural planning become particularly difficult when 47 
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unknown trends are occurring. However, the regions with vegetation changes are often the areas of most interest in 48 

land use management.  Ideally, an automated screening process can identify areas with significant vegetation 49 

changes and facilitate objective decision making about land-use management such as in Cressie & Wikle (2011). 50 

As a first step in creating an automatic screening processes, data collection on vegetation and land cover is needed.  51 

This is typically done through satellite remote sensing. The remote sensing imagery is used to convert the observed 52 

elements (i.e., the image color, texture, tone, and pattern) into numeric quantities at each pixel in the image. The 53 

image pixels correspond to a square grid of land, the size of which depends on the satellite’s resolution. One such 54 

numeric indicator is the normalized difference vegetation index (NDVI). In this article, the NDVI series came from 55 

satellite remote sensing data collected between 1982 and 2006 over 8,000-meter grid points.  It has been shown to be 56 

highly correlated with vegetation parameters such as green-leaf biomass and green-leaf area, and hence is of 57 

considerable value for vegetation monitoring as in Curran (1980) and Jackson, Et al. (1983).  58 

The NDVI standard scale ranges from −1 to 1, indicating how much live green vegetation is contained in the 59 

targeted pixel. An NDVI value close to 1 indicates more abundant vegetation.  For example, low values of NDVI 60 

(say, 0.1 and below) correspond to scarce vegetation consisting mostly of rock, sand and dirt. A range of moderate 61 

values (0.2 to 0.3) indicates small vegetation such as shrub or grassland; larger NDVI values can be found in 62 

rainforests (0.6 to 0.8). Often, negative NDVI values are consolidated to be zero since negative values indicate non-63 

vegetation and are of little use for vegetation monitoring.  Vegetation activity is a continuous space-time process and 64 

NDVI data provide a space-time lattice system, in the sense that observations are available over equally spaced 65 

regular grids. Often, the spatial resolution ranges from 1000 to 8000 meters, while the temporal one ranges from 7 66 

days to 1 month. 67 

Statistical and computational methods are needed to analyze remotely sensed data, like NDVI values, to determine 68 

trends in land condition and to predict areas at risk from degradation.  Methodologies that detect land cover changes 69 

need to be sensitive as well as accurate, since it can be costly and risky to relocate human populations, agriculture or 70 

livestock to new regions of detected change. In such spatio-temporal data, time series models are tempting for 71 

representing such processes. Other existing change detection methodologies include the geographically weighted 72 

regression of Foody (2003), the principal component analysis of Hayes & Sader (2001), and the smoothing 73 

polynomial regression of Chen & Tamura (2004). However, these methods are unable to provide an upper bound on 74 

false detections. Since there is large risk associated with falsely declaring an area to have significant vegetation 75 

changes, land use managers seek new methods that have a meaningful control over such errors.   76 

In this article, we build on the previous work of Vrieling, et al. (2008) and Clements, et al., (2014).  Vrieling, et al. 77 

(2008) first investigated this vegetation screening problem in the hypothesis testing framework of but did not 78 

attempt to address the inherent multiplicity issue by controlling an overall false detection rate while making their 79 

final conclusions. Clements, et. al. (2014) made improvements by incorporating the spatial dependencies, somewhat 80 

arbitrarily, before applying multiple testing procedures.  The arbitrary spatial dependency was accounted for by 81 

dividing the region into square blocks, based on an overall measure of spatial correlation using a semivariogram 82 
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plot.  After creating such sub-regions, two-sided monotonic trend tests from Brillinger (1989) were used to identify 83 

significant increasing or decreasing monotonic vegetation changes based on these arbitrarily chosen square regions 84 

of land.  They demonstrated that this screening procedure controlled the mixed directional false discovery rate 85 

(mdFDR), which is defined as the expected proportion of Types I errors (False Positives) and Type III errors 86 

(Directional errors) among all rejected null hypotheses, introduced by Benjamini & Yekutieli (2005). 87 

In this article, we utilize the same historic NDVI time series for East Africa from 1982 to 2006. Since real-time 88 

monitoring for change is not part of the scope, we focused improving the methodologies previously used to identify 89 

significant changes in land cover in the region. We do this by first framing the research question as an NP-hard 90 

temporal multi-objective assignment problem.  Using heuristics to solve this problem, we first find improved sub-91 

regions than the previous arbitrarily chosen square grids.  Using this approach allows us to adequately capture the 92 

specific data structure and answer questions in the present context.  Secondly, we reapply the multiple testing 93 

procedures in Clements, et al., (2014) and demonstrate that the testing procedure become more powerful while still 94 

maintaining control an error rate, the mdFDR.  In summary, our methods aim to incorporate spatial local 95 

dependencies using a multi-dimensional assignment problem formulation to improve sub-region formation, which in 96 

turn improves the multiple testing results.   97 

We organize the paper as follows.  In the next section, we give a review of the literature followed by a detailed 98 

description of the historical data set.  We then describe the temporal assignment problem formulation to create more 99 

homogeneous sub-regions and explain the heuristic procedure using dynamic programming.  Next, we apply the 100 

multiple testing procedures to the improved sub-regions.  Finally, we reveal the results of the model implementation, 101 

followed by a discussion, conclusions, and final remarks. 102 

2 Literature 103 

2.1 Multiple Testing Overview 104 

To control over false vegetation trend detections, multiple testing procedures can be employed.  An overview of 105 

multiple testing notation and procedures are described next.  When testing a single null hypothesis against a two-106 

sided alternative, two types of error can occur when a directional decision is made following rejection of the null 107 

hypothesis. These are Type I error and Type III (or directional) errors. The Type I error occurs when the null 108 

hypothesis is falsely rejected, while the Type III error occurs when the null hypothesis is correctly rejected but a 109 

wrong directional decision is made about the alternative.  110 

Consider testing n hypotheses simultaneously, such as testing for trend changes in n pixels over the East African 111 

region.  Table 1 gives the various outcomes of these tests, where H୧: θ୧ ൌ θ୧ is the null hypothesis and H୧ଵ: θ୧ ്112 

θ୧ is the two-sided alternative, for i ൌ 1, 2, … , n.  Of these quantities in Table 1, only n, A, and R (where R ൌ Rଵ 113 

Rଶ) are known after applying a particular testing procedure.  The number of Type I errors, Type II errors, and Type 114 

III errors are V ൌ Vଵ  Vଶ, T ൌ Tଵ  Tଶ, and U ൌ ܵଶ  Sଷ respectively.  All three quantities are unknown but 115 
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desirably small.  Most multiple testing procedures focus on controlling V in some capacity. In this paper, we utilize a 116 

procedure that controls V and ܷ.  117 

    Decision  

Truth 

  Fail to Reject Null Reject Null ܪ
ሺାሻ  Reject Null ܪ

ሺିሻ  Total 

ߠ ൌ  ߠ ܹ
(Correct Decisions) 

ଵܸ
(Type I errors) 

ଶܸ
(Type I errors) 

݊ 

ߠ   ߠ ଵܶ
(Type II errors) 

ଵܵ
(Correct Decisions) 

ܵଶ
(Correct Decisions) 

݊ା 

  ߠ ൏  ߠ ଶܶ
(Type II errors) 

ܵଷ
(Correct Decisions) 

ܵସ
(Correct Decisions) 

݊ି 

  Total   ܣ ܴଵ ܴଶ ݊ 
 118 

Table 1: Multiple Testing outcomes from testing n hypotheses 119 

One of the most commonly used measures of overall Type I error is called the Familywise Error Rate (FWER).  The 120 

FWER is the probability of making one or more Type I errors.  In other words, out of n simultaneously tested 121 

hypotheses, where V is the number of Type I errors made out of n decisions (recall: V is an unknown quantity), then 122 

FWER =ProbሼV  0ሽ.  In the case of multiple hypothesis testing, the FWER should be controlled at a desired 123 

overall level, called	α.  The Bonferroni procedure is the most popular method to control the FWER, but there are 124 

other techniques, such as those in Holland & Copenhaver (1987), Hochberg & Tamhane (1987), Šidák (1967), Holm 125 

(1979), Hochberg (1988), Sarkar (1998), and Sarkar & Chang (1997). 126 

The False Discovery Rate (FDR), proposed by Benjamini and Hochberg (1995), is the second most common 127 

measure of Type I errors.  The FDR is the expected proportion of Type I errors among all the rejected null 128 

hypotheses. If there are no rejected hypotheses, the FDR is defined to be zero.  In terms of Table 1, FDR ൌ129 

E ቂV max	ሺR, 1ሻൗ ቃ. Comparatively, the FDR is less conservative than the FWER, meaning FWER control ensures 130 

FDR control. However, a multiple testing procedure with FDR control will not necessarily maintain control of the 131 

FWER.  The FDR is a widely accepted and utilized notion of Type I errors in large-scale multiple testing 132 

investigations.  Recent literature has proposed methods to control the FDR, including Benjamini and Hochberg 133 

(1995), Benjamini and Yekutieli (2001), Sarkar (2002), Blanchard and Roquain (2009), Storey, Taylor, and 134 

Siegmund (2004), and Benjamini, Krieger, and Yekutieli (2006). 135 

Often, it becomes essential for researchers to determine the direction of significance, rather than significance alone, 136 

when testing multiple null hypotheses against two-sided alternatives. In other words, for each test, researchers have 137 

to decide whether or not the null hypothesis should be rejected and, if rejected, determine the direction of the 138 

alternative. Typically, this direction is determined based on the test statistic falling in the right- or left-side of the 139 

rejection region. Such decisions can potentially lead to one of two types of error for each test resulting in rejection of 140 

the null hypothesis - the Type I error if the null hypothesis is true or the directional error, also known as the Type III 141 
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error, if the null hypothesis is not true but the direction of the alternative is falsely declared (i.e. a rejection of a false 142 

null using a two-sided alternative, but where the sign of the true parameter, say ߚ, is opposite of its estimate ߚప ). 143 

Two variants to deal with Type I and Type III errors have been introduced in the literature. First is the pure 144 

directional FDR (dFDR), which is the expected proportion of directional errors among rejected hypotheses. Second 145 

is the mixed directional FDR (mdFDR), which is the expected proportion of Type I and Type III errors among 146 

rejected hypotheses. To deal with both errors in an FDR framework, the notion of mixed directional FDR (mdFDR) 147 

was been introduced by Benjamini et al. (1993).  Since then, other methods to control directional errors have been 148 

introduced, including Benjamini and Yekutieli (2005), Benjamini and Hochberg (2000), Shaffer (2002), Williams et 149 

al. (1999), Guo et al. (2009), and Sarkar and Zhou (2008). 150 

Controlling both false discoveries (V, from Table 1) and directional false discoveries (U, from Table 1) is important 151 

in this application. For instance, when declaring a particular 8,000 m × 8,000 m grid of land as ‘significantly’ 152 

changing in terms of vegetation, a Type I error is made if the area is not truly changing, and a Type III error is made 153 

if the area is truly changing but in the opposite direction of what is determined from the data. When such decisions 154 

are made simultaneously based on testing multiple hypotheses, one should adjust for multiplicity and control an 155 

overall measure of Types I and III errors. Without such multiplicity adjustment, more Types I and III errors can 156 

occur than the desired α level. It is particularly important to avoid these errors as much as possible in the present 157 

application. Land use managers, government and local farmers are looking to relocate East African populations of 158 

people, livestock and crops to areas of promising vegetation changes and avoid regions with decreasing changes. 159 

Since these migrations can be risky and costly, a careful consideration of the multiplicity issue seems essential when 160 

making declarations of significant vegetation changes. 161 

In this article, p-values generated using the monotonic trend test in Brillinger (1989) are computed for each site 162 

(8,000 m × 8,000 m grid of land) and provide evidence of vegetation change occurring over the years—the smaller 163 

the p-value, the higher is the evidence of a significant vegetation change. For each site, a decision must be made 164 

regarding the significance of vegetation change that might have occurred over the years at that site, and, if 165 

vegetation change is found significant, determine the direction in which this change has taken place. This must be 166 

done simultaneously for all sites (≈50,000) in the East African region in a multiple testing framework designed to 167 

ensure a control over a meaningful combined measure of statistical Types I and III errors.  168 

In this paper, we will first be framing the research question as a heuristic multi-objective temporal assignment 169 

problem, in which better sub-regions were created than the arbitrarily chosen square grids in Clements et.al. (2014).  170 

By using temporal assignments to create subregions, we will demonstrate that the testing procedure becomes more 171 

powerful.  Also in this article, we provide theoretical proof that the mdFDR is still controlled under sub-region 172 

independence. 173 

2.1 Temporal Assignment Problem Overview 174 
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There is a wealth of research on assignment problems and specialized assignment problems that display 175 

complicating constraints. Though the generalized assignment problem is solvable, once the number of dimensions 176 

reaches 3, as in the formulation presented in this paper, this is no longer the case.   177 

The multidimensional assignment problem was introduced by Pierskalla (1968) and a bibliography of multidi-178 

mensional assignment problems was prepared by Gilbert & Hofstra (1988).  Miori (2011, 2008, 2014) used 179 

assignment problems to model truckload routing problems and the Pollyanna gift exchange problem.  Scheduling 180 

medical residents with the temporal component was addressed by Franz & Miller (1993).   Bandelt, Et al. (1994, 181 

2004) addressed multi-dimensional assignment problems with decomposable costs. The three-dimensional 182 

assignment problem was applied to teaching schedules by Frieze & Yadegar (1981) and Balas & Saltman (1991).  183 

Multidimensional approximation was applied to capacity expansion problems by Troung & Roundy (2011).  184 

Lagrangian Relaxation was applied to a multi-dimensional assignment problem arising from multi-target tracking by 185 

Poore & Rijavec (1993).  Multi-tracking data was also addressed by Robertson (2001).  186 

Approximations to the multi-dimensional assignment problem were generated by Kuroki & Matsui (2007),  Gutin, 187 

Et al. (2008), Krokhmal, Et al. (2007), and Karapetyan &Gutin (2011).  The multi-objective assignment problem 188 

seeking solutions to the assignment problem in the face of additional objectives using efficient sets was posed by 189 

White (1984). A weighting function approach has also been applied to multi-objective (multicriteria) problems with 190 

conflicting objectives by Phillips (1987). 191 

Agricultural planning problems have been addressed by Samuelson (1952), Takayama (1964), Norton & Scandizzo 192 

(1981), Kutcher & Norton (1982), Önal & McCarl, and Weintraub & Romero (2017).  Multicriteria approaches to 193 

agriculture decisions have also been applied by Gasson (1973), Harper & Eastman (1980), Wheeler & Russel 194 

(1977), Hayashi (2000), and Romero & Rehman (2003).   195 

  196 

2.2 Land Use Optimization Overview 197 

The most basic methods in land use optimization involve limited enumeration of alternatives and developing metrics 198 

to directly assess these alternatives.  Landscape metrics addressing various land use goals were used by Kuchma, Et 199 

al. (2013) to evaluate enumerated options for land use.  A similar approach was proposed by Wang & Guldmann 200 

(2015) to mitigate seismic damages in Taichung, Taiwan.   201 

Heuristic methods and in sustainable land use were applied by Steward, Et al. (2004), Cao, Et al. (2011), Liu, Et al. 202 

(2016) and Sahebgharani (2016).  Genetic algorithms were presented Cao, Et al. (2012) and the Analytical 203 

Hierarachy Process was utilized by Memarian, Et al. (2014).  Multi-objective linear programming with sensitivity 204 

analysis was found effective by Sadeghi, Et al. (2009) while Soil and Water Assessment Toll (SWAT) was 205 

employed by Sunandar, Et al. (2014).   206 
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3 Data Description 207 

East Africa spans a wide variety of climate types and precipitation regimes which are reflected in its vegetation 208 

cover. To capture this, satellite imagery was collected over a sub-Saharan region of East Africa that includes five 209 

countries in their entirety (Kenya, Uganda, Tanzania, Burundi and Rwanda) and portions of seven countries 210 

(Somalia, Ethiopia, South Sudan, Democratic Republic of Congo, Malawi, Mozambique and Zimbabwe). This 211 

roughly ‘rectangular’ region extends from 27.8°E to 42.0°E longitude and 15.0°S to 6.2°N latitude. Also included in 212 

the region are several East African Great Lakes such as Lake Victoria, Lake Malawi and Lake Tanganyika.  213 

Vegetative analysis in this region is of interest for a variety of reasons, including the importance of the region for 214 

global biodiversity and the vulnerability of the region to climate change, deforestation of the Congo, urban 215 

development, civil conflict, and agricultural practices. 216 

 217 

Figure 1 The study area, as indicated by the box. 218 

 219 

The remotely sensed images were recorded twice a month from 1982–2006 and then converted to NDVI values. 220 

Hence, the spatio-temporal data set consists of approximately 50,000 sites (pixels), each with 600 time series 221 

observations (24 observations per year over 25 years). The satellite’s resolution corresponds to each pixel spanning 222 

an 8,000m × 8,000m grid of land, which we will refer to as a ‘location.’  This Global Inventory Modeling and 223 

Mapping Studies (GIMMS) data set is derived from imagery obtained from the Advanced Very High Resolution 224 
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Radiometer (AVHRR) instrument onboard the National Oceanic and Atmospheric Administration (NOAA) satellite 225 

series 7, 9, 11, 14, 16 and 17. The NDVI values have been corrected by Tucker, Et al. (2005) for calibration, view 226 

geometry, volcanic aerosols, cloud coverage and other effects not related to vegetation change. 227 

All the negative NDVI values were consolidated to zero, as commonly done in vegetation monitoring, and re-scaled 228 

the remaining values by 1,000. Negative NDVI values indicate non-vegetation areas, and so they are of no use in our 229 

statistical analysis. Prior to the analysis, we examined the data for quality assurance and eliminated a small number 230 

of pixels that were found to have several consecutive years with identical data values, which may be due to data 231 

entry errors or machine malfunction. 232 

When this data was first examined in Vrieling, de Beurs and Brown (2008), the percentage of pixels with the trend 233 

test p-value less than α = 0.10 was reported separately for positive and negative slopes. The reported results indicate 234 

that much of the region has ‘significant’ vegetation change. For example, the cumulative NDVI indicator detected 235 

44.2% of sites with p-values less than 0.10. However, this result fails to address the important statistical issue of 236 

multiplicity when making these claims about significant vegetation changes and their directions simultaneously for 237 

all the regions based on hypothesis testing.  Later, Clements, et. al. (2014) addressed the multiplicity issue by 238 

proposing a 3-stage multiple testing procedure to control the mixed-directional False Discovery Rate (mdFDR), but 239 

did so on subregions of East Africa that were not optimally formed. 240 

The associated csv file for this analysis is the information generated from Clements, et al, (2014) which was the 241 

initial starting point for this analysis.  It contains the following fields: 242 

 site: Consecutive ID number, acting as a unique identified 243 

 xcoord: pixel longitude 244 

 ycoord: pixel latitude 245 

 ndvi.avg: Overall pixel average NDVI from 1982 to 2006 (observations taken twice monthly) 246 

 pval: Resulting p value from the Brillinger Trend Test (Brillinger, 1989) 247 

 slp: Resulting slope from the Brillinger Tren Test (Brillinger, 1989) 248 

 block: Block number – initial assignment was arbitrary 249 

Using the algorithm below, followed by the multiple testing procedure, users may generate the revised and improved 250 

block assignments. 251 

 252 

4 Assignment Problem Formulation 253 

We propose an assignment formulation to this problem, using these analysis results, with the goal of an improved 254 

solution.  The object of the geographic assignment problem is to map each pixel within the satellite images to an 255 

appropriate block based upon a target value for each block.  The block target values represent equal size ranges 256 

within the overall range of the objective function values.  The objective function for the pixel assignment is the sum 257 
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of absolute difference between the pixel NDVI and the block target NDVI.  The number of blocks is set objectively 258 

and may be reset for each assignment problem solution generated.   259 

Note that pixels may be formed entirely of water; these pixels have been assigned arbitrarily high NDVI values to 260 

effectively eliminate them from consideration in the block assignments.  A ‘water block’ with an arbitrarily high 261 

target value ensures that all of these pixels may be assigned to blocks. 262 

The objective of the pixel assignment problem is to minimize the NDVI difference function.  Let m = the number of 263 

pixels, let n = the number of blocks, and let T = the number of time periods.  The decision variable x୧୨
୩ is a binary 264 

variable that represents the assignment, or lack of assignment, of pixel i to block j at time k.  The constraints 265 

formulated ensure that each pixel is assigned to a block, during each period of time.  The formulation in Eq. (1) – (3) 266 

follows the notation. 267 

,ݔ
  Decision variable ∈ ሺ0,1ሻ ݅ ൌ 1,⋯ ,݉; ݆ ൌ 1,⋯ , ݊; ݇ ൌ 1,⋯ , ܶ 

ܰ∙
 Pixel i NDVI score for time k: ݅ ൌ 1,⋯ ,݉; ݇ ൌ 1,⋯ , ܶ 

∙ܰ
 Block j NDVI target for time k: ݆ ൌ 1,⋯ , ݊; ݇ ൌ 1,⋯ , ܶ 

Table 2 Assignment Problem Notation. 268 

 269 

ห	݁ݖ݅݉݅݊݅ܯ ∙ܰ
 െ ܰ∙

ห ∙ ,ݔ




																																																		ሺ1ሻ 270 

Subject to: 271 

ݔ,
 ൌ ݇	ݎ݂		1 ൌ 1,⋯ , ܶ



																																																						ሺ2ሻ 272 

,ݔ
 ∈ ሺ0,1ሻ																																																																										ሺ3ሻ 273 

The binary decision variables utilize three indices, rendering the problem NP hard.  We therefore propose and 274 

employ a heuristic approach that relies heavily on dynamic programming. 275 

5 Assignment Problem Solutions 276 

5.1 Lagrangian Relation 277 

Restatement of the pixel assignment problem as a Markov Process will facilitate alternative solution methodologies. 278 

We present a Lagrangian relaxation of the formulation and introduce a Lagrangian multiplier ሺφ୩ሻ for the single 279 

constraint to be relaxed in each time period k ൌ 1,⋯ , T.  We include a simplifying assumption that the penalty is 280 

constant over all time periods and is denoted as φ   The revised formulation is presented in Eq. (4) - (5).  281 
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ห	݁ݖ݅݉݅݊݅ܯ ∙ܰ
 െ ܰ∙

ห ∙ ,ݔ




߮ቌݔ,
 െ 1



ቍ


																															ሺ4ሻ 282 

Subject to: 283 

,ݔ
 ∈ ሺ0,1ሻ																																																																										ሺ5ሻ 284 

A dynamic programming formulation may now be presented using the relaxed formulation.   285 

5.2 Dynamic Programming Formulation 286 

The pixel assignment decisions may be made in stages, and while the outcome of each decision is not fully 287 

predictable, it can be observed before the next decision is made.  We begin the dynamic programming formulation 288 

by organizing the problem into a tree structure (Fig. 2) reflecting pixels and levels (time increments).  Each level of 289 

the tree corresponds to a time increment, beginning with time 0 which represents the first satellite images retrieved 290 

within the data set and ending at the final images at time T-1 and the pixels in each level number from 1 to m.  The 291 

tree provides a discrete-time dynamic system.  292 

 293 

Figure 2 General Tree Structure. 294 

 295 
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An additive value function reflects both present cost of each pixel assignment to a block, and potential future cost of 296 

all pixel assignments to blocks (expected cost-to-go).  Block NDVI targets must be established in order to match 297 

pixels to blocks.  Initialization of these targets is accomplished by evenly distributing the range of NDVI values 298 

across n candidate blocks.  Recall that the NDVI values ranges between 0 and 1000, resulting in block targets 299 

starting at zero with an increment 1000 n⁄  up to 1000. 300 

To calculate expected cost-to-go, we must also identify and calculate transition probabilities.   In doing so, we 301 

consider only the current level (time period).  The Markov Property (6) allows us to omit consideration of the 302 

probabilities of the path leading to the current level.  The tree may now be viewed as a finite Nonhomogeneous 303 

Markov Process with transition probability matrix Pሺ୩ሻ representing transitions at any level.   304 

ܲሺܺାଵ ൌ ାଵ|ܺݔ ൌ …,ݔ , ܺ ൌ ܺሻ ൌ ܲሺܺାଵ ൌ ାଵ|ܺݔ ൌ  ሺ6ሻ 305																		ሻݔ

The objective of the dynamic programming formulation is the minimization of the sum of cost at the current stage, 306 

and the cost-to-go (the best case to be expected from future stages).  The notation required for the formulation 307 

follows.   308 

ሺ݇ܣ  1, ݇ሻ Available pixels at level (time) k+1, depends on pixel chosen at level k 

݉ାଵ 
Cardinality of ܣሺ݇  1, ݇ሻ  (the number of pixels available at level k+1, depends on 
pixel selected at level k) 

 ሺ݇ሻ The pixel chosen at level kݏ

 ሺሻ Transition probability matrix at level kࡼ

,ࡼ
ሺሻ Transition probability of moving from pixel i to pixel j at level k 

 ௦ሺሻ, Cost of adding node j after the pixel chosen at level kܥ

ܷሺ݅, ݇ሻ The number of unassigned pixels if we choose pixel i at level k 
݂ሺ݅, ݇ሻ Expected cost-to-go if we choose pixel i at level k 
݂ሺ1,0ሻ Initialize to 0 
߮  Pixel assignment penalty 

 309 

Pixel assignments to blocks may begin at any pixel in level 0 of the tree and end at any pixel in level T-1.  All pixels 310 

must be assigned to a single block but individual blocks need not have pixels assigned to them.  Let z be the 311 

candidate block. 312 

݂ሺݏሺ݇ሻ, ݇ሻ ൌ min
௭∈ሺାଵ,ሻ,ఝ

ቄܥ௦ሺሻ,௭
  ,ࡼ

ሺሻܷ߮ሺݏሺ݇ሻ, ݇ሻ  ݂ሺݖ, ݇  1ሻቅ																							ሺ7ሻ 313 

௦ሺሻ,௭ܥ
 ൌ ห ∙ܰ௭

 െ ௦ܰሺሻ∙
 ห																																																												ሺ8ሻ 314 

Though this approach resolves issues with the original assignment formulation, it necessitates the calculation of 315 

transition probability matrices ൫Pሺ୩ሻ൯ at each level.  Transition probabilities are dependent on the number of blocks 316 

chosen, and the ability to statistically characterize the changes in vegetation in the pixels over time.  With as few as 317 

Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-18

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Discussion started: 24 April 2018
c© Author(s) 2018. CC BY 4.0 License.



 
 

13 
 

100 blocks, the probabilities would have a very small order of magnitude and an expectation of high levels of 318 

inaccuracy, resulting in a lack of ability to detect meaningful differences.  We present a heuristic, rooted in dynamic 319 

programming principles to render an efficient and useful solution to the pixel assignment problem. 320 

5.3 Recursive Heuristic Procedure 321 

Due to the original assignment problem being NP hard, and the dynamic programming approach resulting in 322 

extreme computational and structural complexity, we introduce a heuristic method that leverages knowledge gained 323 

in the assignment and dynamic programming approaches.  This heuristic also leverages the previous research 324 

completed in controlling the mdFDR.   325 

The heuristic procedure was initialized with the 150 blocks used in Clements et. al (2014) and 56,355 total pixels, 326 

and utilized the previously calculated slopes and resulting p-values from monotonic trend tests.  Rather than 327 

assigning the pixels to blocks over the duration of the 25-year span of the data collection as the assignment 328 

formulation would, this approach focused on assignment at the final observations in the 25th year but the use of 329 

slope and p-value allowed the approach to reflect the trends that occurred over time.  This same approach could be 330 

used at any time during the study, reflecting all previous data. 331 

The heuristic performance metric, like the objective function in the pixel assignment problem, required the 332 

calculation of block values corresponding to the pixel values.  The metric leverages the initial random blocks by 333 

including the block average NDVI, the block average slope, the block average p-value, and the slope change 334 

indicator variable.  Notation is introduced in Table 3, followed by the formulation of the performance metric.  335 

∋  Block assignmentݕ ሺ0,1ሻ ݂ ൌ 1,⋯ ,݉; ݃ ൌ 1,⋯ , ݊ 

  Slope change Indicator variableܫ

ܰ∙ Pixel i NDVI score at final observation: ݅ ൌ 1,⋯ ,݉ 

ܴܰ  NDVI range for block g  

ܵ∙ Pixel i slope over time:  ݅ ൌ 1,⋯ ,݉ 

ܴܵ  Slope Range for block g 

ܲ∙ Pixel i p-value over time:  iൌ 1,⋯ ,݉ 

ܴܲ  p-value range for block g 

ௗ Weight for scoring factor d:  dൌݓ 1,⋯4 

Table 3 Heuristic Metric Notation. 336 

Let f = pixel number and let g = block number and let 337 

ݕ ൌ ൜
1				if	pixel	݂	is	assigned	to	block	݃								
0			if	pixel	݂	is	not	assigned	to	block	݃. 338 

 339 
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Development of the performance metric required definition of the block average values for NDVI, slope and p-value 340 

shown in Eq (9) – (11).  In addition, the indicator parameter, signaling slopes of opposite sign is shown in Eq. (12). 341 

ഥܰ∙ ൌ  ܰ

݊
			∀݃ ൌ 1,⋯ , ݊

∋	௫௦∈	

																																																		ሺ9ሻ 342 

ܵ∙̅ ൌ  ܵ

݊
			∀݃ ൌ 1,⋯ , ݊

∋	௫௦∈	

																																																	ሺ10ሻ 343 

തܲ∙ ൌ  ܲ

݊
			∀݃ ൌ 1,⋯ , ݊

∋	௫௦∈	

																																																		ሺ11ሻ 344 

ܫ ൌ ቊ
1	if	݊݃݅ݏ൫ ܵ∙ ∗ ܵ∙̅൯	is	negative		∀	݂ ∋ pixels	 ∈ block	݃

0	if	݊݃݅ݏ൫ ܵ∙ ∗ ܵ∙̅൯	is	positive		∀	݂ ∋ pixels	 ∈ block	݃
																									ሺ12ሻ 345 

The minimum value of the performance metric in Eq. (13) determines the highest quality heuristic solution.  Pixels 346 

whose current assignment leaves them on the border between blocks are evaluated.  The metric is calculated for their 347 

incumbent (current) assignment and their prospective assignment(s).  The pixel is then assigned to the block yielding 348 

the lowest value of the metric.  As pixels are reassigned, newly exposed border pixels are evaluated in the same 349 

fashion.  This procedure continues until all border pixels belong to the block with the best fit. 350 

ଵݓ
ห ܰ∙ െ ഥܰ∙ห

ܴܰ
 ଶݓ

ห ܵ∙ െ ܵ∙̅ห
ܴܵ

 ଷݓ
ห ܲ∙ െ തܲ∙ห
ܴܲ

   351																																					ܫସݓ

∀	pixel	݂ ൌ 1,⋯ ,݉; bordering	block	݃ ൌ 1,⋯ , ݊																																				ሺ13ሻ 352 

The dynamic programming concept of forward and backward passes has been adapted for the heuristic to 353 

compensate for directional bias in the results.  In this way, all border pixel assignments may be evaluated in all 354 

directions.  Four starting points and starting directions are identified in Fig. 3.  Fig. 4 shows the four passes to be 355 

completed for the first starting direction (upper left-hand corner).  The first two passes are the forward direction 356 

evaluation and the second two passes are the backward direction evaluation.  These same four passes are adapted for 357 

each starting point/direction, with the first pass always corresponding to the starting position.   358 

 359 
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Figure 3 Starting Directions for Evaluation of Pixel Assignments. 360 

 361 

 362 

Figure 4 Forward-backward evaluation: Forward passes 1 and 2; Backward passes 3 and 4. 363 

 364 

Implementation and validation of the heuristic was accomplished through the development of a program written in 365 

the C programming language. 366 

6 Reassignment Model and Implementation 367 

An approach inspired by dynamic programming was utilized to find the best solution to the heuristic problem based 368 

on weight factors that varied between 0 to 1, under the condition that ∑ w୧
ସ
୧ୀଵ ൌ 1.  Table 4 shows a subset of the 369 

factor weight combinations that were examined.  As seen in Table 4, selecting the solution with factor scores of 370 

wଵ ൌ1, wଶ ൌ 0, wଷ ൌ 0, and wସ ൌ 0 generates the smallest value of the performance metric in Eq. (13).  Since 371 

factor 1 represents the NDVI average value at the final observation, this solution suggests performing pixel 372 

reassignment based solely on NDVI information with no weight applied to factors such as slope and p-value.  The 373 

average score function of initial arbitrary square grid solution (calculated to be 0.1339) was compared to the 374 

proposed reassignment solution (calculated to be 0.0998), and yielded an improvement of 25.5%.   375 

[Table 4 near here] 376 

The spatial map in Fig. 5 visualizes the initial arbitrary block assignment using square grids (left) compared to the 377 

final solution (right) that gave the minimum value of the performance metric in Eq. (13).  The contrast in maps 378 

reveals how the solution to the pixel assignment problem created natural looking clusters of differing sizes.  For 379 

example, along some coastline areas, clusters are long and narrow.  This is intuitive because NDVI values tend to be 380 
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similar along the coast where many areas are comprised of sand and rock.  In other areas, clusters became circular 381 

and cover vast areas of known deserts in the East African regions.  Small clusters also exist in the solution and, after 382 

investigating, we found that many of these clusters comprise of cities and urban areas that have little vegetation.  It 383 

is logical that such pixels should be reassigned into the same cluster.   384 

 385 

Figure 5 Initial arbitrary block assignment (left) compared to final solution (right). 386 

 387 

An unbiased validation of the reassignment solution can be calculated using the average coefficient of variation for 388 

the final pixel assignment and compare it to the initial square block assignment.  The coefficient of variation (CV) is 389 

a unit-less measure of spread that describes the amount of variability relative to the mean.  CV is defined as the ratio 390 

of standard deviation over the mean.  Smaller values of CV indicate higher homogeneity of the clusters.  The 391 

average of cluster’s coefficients of variations for our final pixel assignment solution is 11.762.  This is a 27.4% 392 

decrease compared to the average coefficient of variation for the original square blocks, which was 16.205.  This is a 393 

statistically significant difference in CV averages (p=0.000529), providing further evidence that the pixel 394 

reassignment solution was able to increase the level of homogeneity within clusters.  Having homogeneous clusters 395 

is important when making large scale decisions about regions in East Africa that have experienced significant 396 

vegetation trend changes.  397 

7 Multiple Testing Implementation and Results 398 
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Now we can assume that the pixels in the East African region are divided into homogeneous subregions using 399 

temporal assignments, as described above.  Next, we summarize and apply the multiple testing procedure given in 400 

Clements, et. al. (2014).   401 

For notation, let m be the number of such subregions and n୧ be the number of pixels/locations in the i୲୦ subregion.  402 

P-values at each location were calculated using a two-sided monotonic trend test at each location using the Brillinger 403 

(1989) test. Specifically, we denote β୧୨ as the monotonic trend parameter as defined in the Brillinger test for the i୲୦ 404 

subregion and j୲୦ location, where i ൌ 1, 2, … ,m, j ൌ 1, 2, … , n୧.  We also let T୧୨ and P୧୨ be, respectively, the test 405 

statistic and the corresponding p-value for testing the null hypothesis H୧୨:	β୧୨ ൌ 0 against its two-sided alternative 406 

H୧ଵ: β୧୨ ് 0. 407 

We apply Clements, et. al. (2014) suggestion of using a Bonferroni correction at each subregion, which combines 408 

the p-values by calculating P୧ ൌ n୧minଵஸ୨ஸ୬൫P୧୨൯.  With H୧୨ representing the null hypothesis corresponding to P୧୨, 409 

consider H୧ ൌ ⋂ H୧୨
୬
୨ୀଵ  as the null hypothesis corresponding to i୲୦subregion.  We will test the H୧୨’s against their 410 

respective two-sided alternatives and detect the direction of the alternatives for the rejected hypotheses.  411 

Specifically, we apply the procedure using α=0.05 in the following three steps: 412 

Multiple Testing Procedure Applied to Homogeneous Sub-regions: 413 

1) Apply the BH method to test H୧, i ൌ 1, 2, … ,m, based on their respective p-values Pଵ, Pଶ, … , P୫ as follows: 414 

consider the increasingly ordered versions of the P୧’s,	Pሺଵሻ  	Pሺଶሻ  	…  Pሺ୫ሻ.  Find ܵ ൌ max൛݅:	Pሺ୧ሻ  ߙ݅ ݉ൗ ൟ.  415 

Reject the H୧’s for which the p-values are less than or equal to	Pሺୗሻ, provided this maximum exists, otherwise, accept 416 

all H୧. 417 

2) For every ݅ such that H୧ is rejected at step 1, consider testing H୧୨, ݆ ൌ 1, 2, … , ݊ based on their respective p-418 

values P୧୨, ݆ ൌ 1, 2, … , ݊, as follows: reject H୧୨if P୧୨  ߙܵ ݉݊ൗ . 419 

3) For each rejected H୧୨ in step 2, decide the direction of the monotonic trend to be the same as that of 420 

ሺ݊݃݅ݏ ܶ). 421 

Step 1 and 2 identify first, the subregions and second, the locations with significant vegetation changes.  The third 422 

step allows one to make a more detailed analysis by identifying the directions in which these significant changes 423 

have occurred.  Impressively, this procedure controls the mdFDR at level α if the subregions are independent.  A 424 

mathematical proof of this is given in the Appendix. 425 

The results of implementing this procedure to our homogenous subregions are shown in Fig. 6.  Sites with a 426 

significant increasing change in vegetation are plotted in green. Sites with significant negative vegetation change are 427 

plotted in red. The nonsignificant sites are represented by white. Using the temporal reassignment to form 428 
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homogeneous subregions before implementing the multiple testing procedure detected 518 locations with significant 429 

vegetation changes.  Compared to the procedure in Clements, et. al. (2014) based on arbitrary square subregions, 430 

this is an increase in 10 detected locations, which is indicative of a higher-powered testing procedure, while still 431 

maintaining control over Type I and Type III errors.    432 

Geographically, the results show increasing vegetation trends in the Northern hemisphere as well as coastal Eastern 433 

Tanzania. Decreasing vegetation trends are mostly concentrated directly South of Lake Victoria. These findings are 434 

consistent with historical evidence and other climate change investigations done in this region. 435 

 436 

Figure 6 Pixels detected using the proposed heuristic reassignment solution with multiple testing procedures. 437 

8 Data Availability 438 

The data, titled "NDVI and Statistical Data for Generating Homogeneous Land Use Recommendations", may be 439 

accessed through figshare.  The link to the archives is: https://figshare.com/s/ed0ba3a1b24c3cb31ebf and the DOI is 440 

https://figshare.com/articles/NDVI_and_Statistical_Data_for_Generating_Homogeneous_Land_Use_Recommendati441 

ons/5897581. 442 

9 Conclusions and Future Research 443 
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It is important to consider neighboring pixel’s vegetation when making costly land management decisions that 444 

would potentially relocate East African populations of people, livestock and crops.  The motivation of this paper 445 

stems from the opportunity to optimize the pixel assignments based on neighboring pixel data, rather than using 446 

blocks in an arbitrary grid fashion, prior to using statistical methodologies to detect vegetation changes over regions 447 

in East Africa.  Knowing information about the homogeneous cluster to which a particular pixel belongs can provide 448 

valuable insights and improved methodologies.  449 

Although we demonstrated our methodology using NDVI data, the procedure can be used for any spatial-temporal 450 

data, even on finer scales. Overall, by using dynamic programming to formulate a multidimensional temporal 451 

assignment problem implemented by the heuristic procedure, we were able to reassign pixels to adjacent clusters 452 

based on similar NDVI values over time.  The results of this analysis create more homogeneous regions of East 453 

Africa for decision makers to draw inferences regarding vegetation changes.  We have demonstrated a powerful tool 454 

for homogeneous cluster creation of pixels undergoing land-cover change using temporal satellite data. 455 

Efficient land use for economic sustainability and effective land use for environmental sustainability have become 456 

very important topics addressed by Cole, Et al. (2000) and Duveiller, Et al. (2007).  This research may be directly 457 

extended to consider additional characteristics of land and identify appropriate land use as in Usongo & Nagahuedi 458 

(2008).  This is especially important when considering the inclusion of multiple land purposes: residential, farm, 459 

riparian borders, industrial, commercial, etc. 460 

Another avenue to explore in future research is to extend the proposed methodologies to other applications of spatio-461 

temporal data.  For example, monitoring and detecting transient sources in the night sky, specifically Type Ia 462 

supernovae transients, is an area of astronomical research that receives much attention.  Spatio-temporal astronomy 463 

data has spatial dependencies that exist between pixels in astronomical images, which is well suited for a 464 

multidimensional temporal reassignment to create homogenous clusters.   465 

With extension of this work to other special problems, finding optimal weights will become important and relevant 466 

work.  Though the pixel assignment problems ultimately unveiled the appropriate weights through an iterative 467 

approach, problems with extended criteria provide a greater challenge in determining appropriate or optimal 468 

weights. We anticipate determination of optimal weights to be evaluated as future research as well. 469 
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Appendix A 470 

Proof.  We prove that the mdFDR is controlled at desired level ߙ, by borrowing some ideas in Clements, et. al. 471 

(2014).  Let R be the total number of H୧୨’s that have been rejected, and V and U, respectively, be the numbers of 472 

Types I and III errors that occurred out of these R rejections. Then 473 

mdFDR = FDR + dFDR =ܧ ቀ
ା

୫ୟ୶	ሼோ,ଵሽ
ቁ,																																																																	ሺ1ܣሻ 474 

since FDR =	ܧ ቀ


୫ୟ୶	ሼோ,ଵሽ
ቁ and dFDR = ܧ ቀ



୫ୟ୶	ሼோ,ଵሽ
ቁ is the directional FDR.  Let us consider using ܪ as an indicator 475 

variable with ܪ ൌ 0 (or 1), indicating that Brillinger’s null hypothesis ܪ:	ߚ ൌ 0 is true (or false). Then, 476 

ܸ ൌܫ൫ܪ ൌ 0, ܲ  ൯݊݉/ߙܵ



ୀଵ



ୀଵ

																																																																				ሺ2ܣሻ 477 

where S is the number of significant subregions in the first stage of the procedure. Hence, 478 

FDR ൌ ܧ ൬
ܸ

maxሼܴ, 1ሽ
൰																																																																															ሺ3ܣሻ 479 

ൌܧቆ
ܪ൫ܫ ൌ 0, ܲ  ൯݊݉/ߙܵ

max	ሼܴ, 1ሽ
ቇ																																																											ሺ4ܣሻ



ୀଵ



ୀଵ

 480 

ܫ൫ܪ ൌ 0൯ܧ ൮
ܫ ቀ ܲ 

ߙܵ
݉݊

ቁ

maxሼܵ, 1ሽ
൲



ୀଵ



ୀଵ

																																																												ሺ5ܣሻ 481 

since R ≥ S [borrowing the idea from Guo and Sarkar (2012)]. Let ܵሺିሻ be the number of significant subregions that 482 

would have been obtained if we had completely ignored the ݅௧ subregion and applied the first-stage BH method to 483 

the rest of the ݉ െ 1 subregion p-values using the critical values 
ఈ


, ݅ ൌ 2,3, … ,݉.  Then, it can be shown that 484 

൫ܫ ܲ  ൯݊݉/ߙܵ
max	ሼܵ, 1ሽ

ൌ
ܫ ቀ ܲ 

ߙݏ
݉݊

, ܵ ൌ ቁݏ

ݏ



௦ୀଵ

																																																					ሺ6ܣሻ 485 

ൌ
ܫ ቀ ܲ 

ߙݏ
݉݊

, ܵሺିሻ ൌ ݏ െ 1ቁ

ݏ



௦ୀଵ

																																																										ሺ7ܣሻ 486 

Since we assume the m subregions are independent, taking expectation and inserting into FDR definition gives us 487 
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FDR ܫ൫ܪ ൌ 0൯
1
ݏ



௦ୀଵ

ߙݏ
݉݊



ୀଵ

Pr൫ܵሺିሻ ൌ ݏ െ 1൯



ୀଵ

																																						ሺ8ܣሻ 488 

ൌ ߙ
1
݉݊



ୀଵ

ܫሺܪ ൌ 0ሻ



ୀଵ

																																																																ሺ9ܣሻ 489 

ൌ
ߙ
݉
ߨ



ୀଵ

																																																																																										ሺ10ܣሻ 490 

where ߨ is the proportion of true null hypotheses among the total ݊ null hypotheses in the ݅௧  subregion. 491 

 492 

We now work with the dFDR. Let ߜ ൌ signሺߚሻ	representing the true sign of the Brillinger’s monotonic trend 493 

parameter ߚ ݆௧ location in the ݅௧ subregion and ܶ is the test statistic.  Now, U can be expressed as follows: 494 

U ൌܫ ൬ܪ ൌ 1, ܲ 
ߙܵ
݉݊

, ܶߜ ൏ 0൰



ୀଵ



ୀଵ

																																																			ሺ11ܣሻ 495 

from which we first have 496 

 497 

     dFDR ൌ ܧ ቀ


୫ୟ୶ሼோ,ଵሽ
ቁ																																																																						ሺ12ܣሻ 498 

ܷ ൌܫ൫ܪ ൌ 1൯ܧ ൮
I ቀ ܲ 

ߙܵ
݉݊

, ܶߜ ൏ 0ቁ

maxሼܴ, 1ሽ
൲



ୀଵ



ୀଵ

																																					ሺ13ܣሻ 499 

Making arguments similar to those used for the FDR, we then have 500 

dFDR ܫ൫ܪ ൌ 1൯



ୀଵ



ୀଵ


1
ݏ
Pr ൬ ܲ 

ߙݏ
݉݊

, ܶߜ ൏ 0൰ Pr൫ܵሺିሻ ൌ ݏ െ 1൯



௦ୀଵ

																					ሺ14ܣሻ 501 

Notice that ܲ ൌ 2ൣ1 െ Φሺห ܶหሻ൧, where Φ is the cumulative distribution function of the standard normal. 502 

Therefore, assuming without any loss of generality that ߚ  0	when ܪ= 1, we have, for such ܪ, 503 

Pr ൬ ܲ 
ߙݏ
݉݊

, ܶߜ ൏ 0൰																																																																						ሺ15ܣሻ 504 
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ൌ Prఉೕவ ൬| ܶ|  ଵିܨ ൬1 െ
ߙݏ
2݉݊

൰ , ܶ ൏ 0൰																																																										ሺ16ܣሻ 505 

ൌ Prఉೕவ ൭ ܶ  െିܨଵ ൬1 െ
ߙݏ
2݉݊

൰൱																																																																								ሺ17ܣሻ 506 

 Prఉೕୀ ൭ ܶ  െିܨଵ ൬1 െ
ߙݏ
2݉݊

൰൱																																																																								ሺ18ܣሻ 507 

ൌ
௦ఈ

ଶ
. 508 

The last inequality follows from the fact that, when H୧୨= 1, the distribution of T୧୨ is stochastically increasing in β୧୨.  509 

Continuing, we have 510 

dFDR	 
ߙ
2݉


1
݊



ୀଵ

ܫ൫ܪ ൌ 1൯



ୀଵ

ൌ
ߙ
2݉

ߨଵ



ୀଵ

																																																			ሺ19ܣሻ 511 

 512 

where π୧ଵ is the proportion of false null hypotheses among the total n୧ null hypotheses in the i୲୦ subregion. Thus, we 513 

combine and finally prove the desired result. 514 

mdFDR	 
ߙ
݉
൬π୧ 

1
2
π୧ଵ൰



ୀଵ

ൌ
ߙ
݉
൬

1  π୧
2

൰



ୀଵ

																																																	ሺ20ܣሻ 515 

  516 
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