The Hestia Fossil Fuel CO₂ Emissions Data Product for the Los 1 **Angeles Megacity (Hestia-LA)** 2

- 5 6 7 8 9 ¹School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
- ²School of Life Sciences, Arizona State University, Tempe AZ USA
- ³Now at ESRI, Redlands, CA USA
- ⁴Citrus County, Dept. of Systems Management, Lecanto, FL, USA
- ⁵Contra Costa County, Department of Information Technology, Martinez, CA, USA
- 10 ⁶School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
- 11 ⁷National Institute for Standards and Technology, Gaithersburg, MD, USA
- 12 ⁸NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
- 13 Correspondence to: Kevin R. Gurney (kevin.gurney@nau.edu)
- 14 Abstract. High-resolution bottom-up estimation provides a detailed guide to city greenhouse gas mitigation options,
- 15 offering details that can increase the economic efficiency of emissions reduction options and synergize with other
- 16 urban policy priorities at the human scale. As a critical constraint to urban atmospheric CO₂ inversion studies,
- 17 bottom-up spatiotemporally-explicit emissions data products are also necessary to construct comprehensive urban
- 18 CO₂ emission information systems useful for trend detection and emissions verification. The 'Hestia Project' is an
- 19 effort to provide bottom-up granular fossil fuel (FFCO₂) emissions for the urban domain with building/street and
- 20 hourly space-time resolution. Here, we report on the latest urban area for which a Hestia estimate has been
- 21 completed - the Los Angeles Megacity, encompassing five counties: Los Angeles County, Orange County,
- 22 Riverside County, San Bernardino County and Ventura County. We provide a complete description of the methods
- 23 used to build the Hestia FFCO₂ emissions data product for the years 2010-2015. We find that the LA Basin emits
- 24 $48.06 (\pm 5.3)$ MtC/yr, dominated by the onroad sector. Because of the uneven spatial distribution of emissions, 10%
- 25 of the largest emitting gridcells account for 93.6%, 73.4%, 66.2%, and 45.3% of the industrial, commercial, onroad,
- 26 and residential sector emissions, respectively. Hestia FFCO₂ emissions are 10.7% larger than the inventory estimate
- 27 generated by the local metropolitan planning agency, a difference that is driven by the industrial and electricity
- 28 production sectors. The detail of the Hestia-LA FFCO₂ emissions data product offers the potential for highly
- 29 targeted, efficient urban greenhouse gas emissions mitigation policy. The Hestia-LA v2.5 emissions data product
- 30 can be downloaded from National Institute of Standards and Technology repository
- 31 (https://doi.org/10.18434/T4/1502503).

32 **1** Introduction

- 33 Driven by the growth of fossil fuel energy demand, the amount of carbon dioxide (CO_2) , the most important
- 34 anthropogenic greenhouse gas (GHG) in the Earth's atmosphere, recently reached an annual average global mean
- 35 concentration of 402.8 ± 0.1 parts per million (ppm) on its way to doubling pre-industrial levels (IPCC, 2013;

³ Kevin R. Gurney¹, Risa Patarasuk⁴, Jianming Liang^{2,3}, Yang Song², Darragh O'Keeffe⁵, Preeti 4 Rao⁶, James R. Whetstone⁷, Riley M. Duren⁸, Annmarie Eldering⁸, Charles Miller⁸

- 36 LeQuere et al., 2018). We have also witnessed the first time that the majority of world's inhabitants reside in urban
- 37 areas. This trend, like atmospheric CO₂ levels, is intensifying. Projections show cities worldwide could add 2 to 3
- 38 billion people this century and are projected to triple in area by 2030 (UN DESA 1015; Seto et al., 2012).
- 39 These two thresholds are linked—almost three-quarters of energy-related, atmospheric CO₂ emissions are driven by
- 40 urban activity (Seto et al., 2014). If the world's top 50 emitting cities were counted as one country, that nation would
- 41 rank third in emissions behind China and the United States (World Bank 2010). Indeed, urbanization is a factor
- 42 shaping national contributions to internationally agreed emission reductions, as subnational governments are playing
- 43 an increasing role in climate mitigation and adaptation policy implementation (Bulkeley 2010; Hsu et al., 2017).
- 44 Furthermore, the pace of urbanization continues to increase and opportunities to avoid carbon "lock-in" where
- 45 relationships between technology, infrastructure, and urban form dictate decades of high-CO₂ development are
- 46 diminishing (Ürge-Vorsatz et al., 2018; Seto et al., 2016; Erickson et al., 2015).
- 47 Motivated by these numerical realities and the recognition that low-emission development is consistent with a
- 48 variety of other co-benefits (e.g. air quality improvement), cities are taking steps to mitigate their CO₂ emissions
- 49 (Rosenzweig et al., 2010; Hsu et al., 2015; Watts 2017). For example, 9120 cities representing over 770 million
- 50 people (10.5% of global population) have committed to the Global Covenant of Mayors (GCoM) to promote and
- 51 support action to combat climate change (GCoM, 2018). Over 90 large cities, as part of the C40 network, have
- 52 similarly committed to mitigation actions with demonstrable progress. However, the scale of actual reductions
- 53 remains modest, despite the many pledges and initial progress. For example, a recent study reviewed 228 cities
- 54 pledged to reduce 454 megatons of CO₂ per year by 2020 (Erickson and Lazarus, 2012). Were they to meet these
- 55 commitments, the reduction would account for about 3% of current global urban emissions and less than 1% of total
- 56 global emissions projected for 2020. More important, there is a need for timely information to manage and assess
- 57 the performance of implemented mitigation efforts and policies (Bellassen et al., 2015).
- 58 One of the barriers to targeting a deeper list of emission reduction activities is the limited amount of actionable
- 59 emissions information at scales where human activity occurs: individual buildings, vehicles, parks, factories and
- 60 power plants (Gurney et al., 2015). These are the scales at which interventions in CO₂-emitting activity must occur.
- 61 Hence, the emissions magnitude and driving forces of those emissions must be understood and quantified at the
- 62 "human" scale to make efficient (i.e. prioritizing the largest available emitting activities/locales) mitigation choices
- 63 and to capture the urban co-benefits that also occur at this scale (e.g. improve traffic congestion, walkability, green
- 64 space). Similarly, a key obstacle to assessing progress is a lack of independent atmospheric evaluation (ideally
- 65 consistent in space and time with the human-scale emissions mapping) (Duren and Miller, 2011).
- 66 Existing methods and tools to account for urban emissions have been developed primarily in the non-profit
- 67 community (WRI/WBCSD, 2004; Fong et al., 2014). In spite of these important efforts, most cities lack
- 68 independent, comprehensive and comparable sources of data and information to drive and/or adjust these
- 69 frameworks. Furthermore, the existing tools and methods are designed at an aggregate level (i.e. whole city, whole
- 70 province), missing the most important scale—sub-city—and hence provide limited actionable information. The need
- for greater granularity and specificity of emissions promises more efficient policy solutions. As all cities reach

- 72 beyond the existing "low hanging fruit" of emissions mitigation (i.e. those actions that are already planned for other
- reasons, those that are simple and cost-plus), competition for limited resources and policy justification will increase.
- 74 Having information that can isolate the most efficient and effective emission reduction investments (specific
- 75 roadways/intersections, building subdivisions or commercial building clusters) will be at a premium.
- 76 The scientific community has begun to build information systems aimed at providing independent assessment of
- virban CO₂ emissions. Through a combination of atmospheric measurements, atmospheric transport modeling and
- 78 data-driven "bottom-up" estimation, the scientific community is exploring different methodologies, applications,
- and uncertainty estimation of these approaches (Hutyra et al., 2014). Atmospheric monitoring includes ground-based
- 80 CO₂ concentration measurements (McKain et al., 2012; Djuricin et al., 2010; Miles et al., 2017; Turnbull et al.,
- 81 2015, Verhulst et al., 2017), ground-based eddy flux (i.e. emissions of CO₂ into the atmosphere and/or CO₂ being
- 82 removed from the atmospheric by vegetation) measurements (Christen 2014; Crawford and Christen 2014;
- 83 Grimmond et al., 2002; Menzer et al., 2015; Velasco and Roth 2010; Velasco et al., 2005), aircraft-based flux
- 84 measurements (Mays et al., 2009; Cambaliza et al., 2014; 2015) and whole-column abundances from both ground,
- 85 and space-based, remote sensing platforms (Wunch et al., 2009; Kort et al., 2012; Wong et al., 2015; Schwandner et
- 86 al., 2018).
- 87 "Bottom-up" approaches, by contrast, include a mixture of direct flux measurement, indirect measurement and
- 88 modeling. Common among the bottom-up approaches are those that include flux estimation based on a combination
- 89 of activity data (population, number of vehicles, building floor area) and emission factors (amount of CO₂ emitted
- 90 per activity), socioeconomic regression modeling, or scaling from aggregate fuel consumption (VandeWeghe and
- 91 Kennedy, 2007; Shu and Lam, 2011; Zhou and Gurney, 2011; Gurney et al., 2012; Jones and Kammen, 2014;
- 92 Ramaswami and Chavez, 2013; Patarasuk et al., 2016; Porse et al., 2016). Direct end-of-pipe flux monitoring is
- 93 often used for large point sources such as power plants (Gurney et al., 2016). Indirect fluxes (those occurring outside
- 94 of the domain of interest but driven by activity within) can be estimated through either direct atmospheric
- 95 measurement (and apportioned to the domain of interest) or can be modeled through process-based (Clark and
- 96 Chester 2017) or economic input-output models (Ramaswami et al., 2008).
- 97 Integration of bottom-up urban flux estimation with atmospheric monitoring has been achieved with atmospheric
- 98 inverse modeling, an approach whereby surface fluxes are estimated from a best fit between bottom-up estimation
- 99 and fluxes inferred, via atmospheric transport modeling, from atmospheric concentrations (Lauvaux et al., 2013;
- 100 Lauvuax et al., 2016; Breon et al., 2015; Davis et al., 2017). Though the various measurement and modeling
- 101 components continue to be tested, integration offers an urban anthropogenic CO₂ information system which can
- 102 provide accuracy, emissions process information, and spatiotemporal detail. This combination of attributes satisfies
- 103 a number of urgent requirements. For example, it can offer the means to evaluate urban emissions mitigation efforts
- 104 by assessing urban trends. Space, time, and process detail of emitting activity can guide mitigation efforts,
- 105 illuminating where efficient opportunities exist to maximize reductions or focus new efforts. Finally, emissions
- 106 quantification is also seen as a potentially powerful metric with which to better understand the urbanization process
- 107 itself, given the importance of energy consumption to the evolution of cities.

- 108 The Hestia Project was begun to estimate bottom-up urban fossil fuel CO₂ (FFCO₂) fluxes for use within integrated
- 109 flux information systems. Begun in the city of Indianapolis, the Hestia effort is now part of a larger experiment that
- 110 includes many of the modeling and measurement aspects described above. Referred to as the Indianapolis Flux
- 111 Experiment (INFLUX), this integrated effort has emerged to test and explore quantification and uncertainties of the
- 112 urban CO₂ and methane (CH₄) measurement and modeling approaches using Indianapolis as the testbed
- 113 experimental environment (Whetstone et al., 2018; Davis et al., 2017).
- 114 Because urban areas differ in key attributes such as size, geography, and emission sector composition, multiple cities
- are now being used to test aspects of anthropogenic CO₂ monitoring and modeling. For example, ongoing efforts at
- 116 integration of atmospheric measurements and bottom-up emissions information are taking place in Paris (Breon et al.,
- 117 2015; Staufer et al., 2016), Boston (Sargent et al., 2018), Salt Lake City (Mitchell et al., 2018) and London (Font et
- al., 2015), to name a few. The Hestia approach has been used in a number of these urban domains. Here, we provide
- 119 the methods and results from one of those urban domains, the Los Angeles Basin Megacity. The Hestia-LA effort was
- 120 developed under the Megacities Carbon framework (https://megacities.jpl.nasa.gov/portal/). It was designed to serve
- 121 the Megacities Carbon Project in a similar capacity to its role in INFLUX. The Hestia-LA result is unique in that it is
- 122 the first high-resolution spatiotemporally-explicit inventory of FFCO₂ emissions centered over a megacity. A
- 123 preliminary version of Hestia-LA containing only the transportation sector emissions was reported by Rao et al.
- 124 (2017). While emphasis thus far has been focused on atmospheric CH4 monitoring analyses in the LA megacity
- 125 (Carranza et al., 2017; Wong et al., 2016; Verhulst et al., 2017; Hopkins et al., 2016), work is ongoing to use the
- 126 extensive atmospheric CO₂ observing capacity in the Los Angeles domain (e.g. Newman et al., 2016; Feng et al.,
- 127 2016; Wong et al., 2015; Wunch et al., 2009) within an atmospheric CO₂ inversion (i.e. an approach whereby CO₂
- 128 concentration measurements in the atmosphere are combined with models of wind motions to infer what the emissions
- emanating from the surface must be).
- 130 In this paper, we describe the study domain, the input data, uncertainty, and the methods used to generate the Hestia-
- 131 LA (v2.5) data product and provide descriptive statistics at various scales of aggregation. We compare the Hestia
- 132 results to the metro region planning authority estimate and place the results in the context of urban greenhouse gas
- 133 mitigation. We discuss known gaps and weaknesses in the approach and goals for future work.

134 2 Methods

135 2.1 Study Domain

- 136 The Los Angeles metropolitan area is the second-largest metropolitan area in the United States and one of the largest
- 137 metropolitan areas in the world. Under the definition of the Metropolitan Statistical Area (MSA) by the U.S. Office
- 138 of Management and Budget, Metropolitan Los Angeles consists of Los Angeles and Orange counties with a land
- area of 12,562 km² and a population of 9,819,000. The Greater Los Angeles Area, as a Combined Statistical Area
- 140 (CSA) defined by the U.S. Census Bureau, encompasses the three additional counties of Ventura, Riverside, and San
- 141 Bernardino with a total land area of 87,945 km² and an estimated population of 18,550,288 in 2014. The Hestia-LA
- 142 FFCO₂ emissions data product covers the complete geographic extent of these five counties including the Eastern,

- relatively non-urbanized portions of San Bernardino and Riverside counties. Airport emissions associated with
- 144 aircraft up to 3000 feet are included as are marine shipping emissions out to 12 nautical miles from the coastal
- boundary. Emissions considered here are carbon dioxide only; other important greenhouse gases such as methane
- 146 (CH₄) and nitrous oxide (N₂O) are not included.

149 2.2 Input data

150 Input data to the Hestia-LA data product are supplied by output of the Vulcan Project (Figure 2), a quantification of

151 FFCO₂ emissions at fine space and time scales for the entire US landscape (Gurney et al., 2009) The Hestia-LA

152 process extracts these results for the five counties within the Hestia-LA domain and adjusts these estimates where

153 superior local data are available and further downscales/distributes the Vulcan v3.0 results to buildings and street

154 segments. Details of the Vulcan v3.0 methodology is provided elsewhere (Gurney et al., 2018). Here, we summarize

155 the Vulcan v3.0 methods and then provide greater detail regarding the Hestia-LA processing of that data to high-

156 resolution space/time scales.

158 Figure 2: Total annual FFCO₂ emissions for the year 2011 from the Vulcan v3.0 output.

159 The Vulcan v3.0 input data (the output of which is the input for the Hestia-LA) are organized following nine 160 economic sector divisions (see Table 1) - residential, commercial, industrial, electricity production, onroad, nonroad, 161 railroad, commercial marine vessel, and airport. Also included are emissions associated with the calcining process in 162 the production of cement. The data sources within each sector are either acquired as FFCO2 emissions (the onroad 163 sector and most of the nonroad and electricity production sectors) or as carbon monoxide (CO) emissions (all other 164 sectors) and transformed to FFCO₂ emissions via emission factors. Furthermore, the data sources are represented 165 geographically as either geocoded emitting locations ("point") or as spatial aggregates ("nonpoint" or area-based 166 emissions). Point sources are stationary emitting entities identified to a geocoded location such as industrial facilities 167 in which emissions exit through a stack or identifiable exhaust feature (USEPA, 2015a). Area or nonpoint source 168 emissions are not inventoried at the facility-level but represent diffuse emissions within an individual U.S. county. 169 Because the focus of the current study is CO₂ emissions resulting from the combustion of a fossil fuels, fugitive or 170 evaporative emissions are not included nor are "process" emissions, for example, associated with high-temperature

171 metallurgical processes. Similarly emissions associated with waste decay (organic or inorganic) are not included.

- 172 Much of the input data for Vulcan v3.0 are acquired from the Environmental Protection Agency's (EPA) National
- 173 Emission Inventory (NEI) for the year 2011 (referred to hereafter as the "2011 NEI") which is a comprehensive
- 174 inventory of all criteria air pollutants (CAPs) and hazardous air pollutants (HAPs) across the United States (USEPA,
- 175 2015b). All of the individual record-level reporting in the 2011 NEI comes with a source classification code (SCC)
- 176 which codifies the general emission technology, fuel type used, and sector (USEPA 1995).
- 177 FFCO₂ emissions from the electricity production sector are primarily retrieved from two sources other than the 2011
- 178 NEI. The first is the EPA's Clean Air Markets Division (CAMD) data (USEPA, 2015c) which reports FFCO₂
- emissions at geocoded electricity production facility locations. The second is the Department of Energy's Energy
- 180 Information Administration (DOE EIA) reporting data (DOE/EIA, 2003) which reports fuel consumption at
- 181 geocoded electricity production facility locations. Some electricity production emissions are retrieved from the 2011
- 182 NEI (as CO emissions). Overlap between these three data sources is eliminated via preference in the order listed
- above. A detailed comparison made between the CAMD and EIA FFCO₂ emissions along with greater detail
- regarding data sources, data processing and procedures can be found in Quick et al., (2014) and Gurney et al. (2014;
- 185 2016; 2018).
- 186 The 2011 onroad FFCO₂ emissions are retrieved from the EMissions FACtors 2014 model (EMFAC2014), produced
- 187 by the California Air Resources Board (CARB, 2014). Onroad transportation represents all mobile transport using
- 188 paved roadways and include both private and commercial vehicles of many individual classes (e.g., passenger
- 189 vehicles, buses, light duty trucks, etc). The nonroad sector, by contrast, includes all surface mobile vehicles that do
- 190 not travel on designated paved roads surface and include a large class of vehicles such as construction equipment
- 191 (e.g., bulldozers, backhoes, etc.), ATVs, snowmobiles, and airport fueling vehicles. The nonroad emissions are
- derived from the 2011 NEI reporting of nonroad CO emissions. Airport emissions include all the emissions
- 193 emanating from aircraft during their taxi, takeoff, landing cycles up to 3000 feet and are derived from the 2011 NEI
- point reporting. Other activities occurring at airports resulting in FFCO₂ emissions are captured in the commercial
- building sector (building heating) or the nonroad sector (baggage vehicles), sourced to the 2011 NEI nonpoint, 2011
- 196 NEI point and 2011 NEI nonroad reporting. Railroad emissions include passenger and freight rail travel and are
- 197 sourced to the 2011 NEI nonpoint and point reporting. Commercial marine vessels (CMV) include all commercial-
- based aquatic vessels on either ocean or freshwater sourced to the 2011 NEI nonpoint reporting. Personal aquatic
- vehicles such as pleasure craft and sailboats are included in the nonroad sector. Emissions associated with cement
- 200 calcining are included given its potential size and the tradition of including it with CO₂ inventories and use
- 201 information from multiple sources (PCA, 2006; USGS, 2003; IPCC, 2006).
- 202 The FFCO₂ emissions input to the Hestia system from the Vulcan v3.0 output is associated with spatial elements
- 203 represented by points, lines and polygons, depending upon the data source, the sector and the available spatial proxy
- 204 data (Table 1). Further spatialization and temporalization occurs in the Hestia system.

205Table 1. Data sources used in the spatiotemporal distribution of FFCO2 emissions (text provides acronym206explanations and sources).

Sector	/type	Emissions Data Source	Original spatial resolution/information	Spatial distribution	Temporal distribution
L					

Onroad	EMFAC ^a , EPA NEI ^b onroad	County, road class, vehicle class	SCAG AADT	PeMS₫, CCS⁰
Electricity	CAMD ^f CO2, EIA ^g fuel,	Lat/lon, fuel type, technology	EPA NEI Lat/Lon, Google	CAMD, EIA and EPA
production	EPA NEI point CO		Earth	
Residential	EPA NEI nonpoint CO	County, fuel type	SCAG Parcel, floor area,	eQUEST ⁱ
nonpoint buildings			DOE RECS NE-EUI ^h , LA	
			County building footprint	
Nonroad	NEI nonpoint CO	County, vehicle class	EPA spatial surrogates	EPA temporal
			(vehicle class specific)	surrogates (by SCCi)
Airport	EPA NEI point CO	Lat/lon, aircraft class	Lat/Lon	LAWA ^k
Commercial	EPA NEI nonpoint CO	County, fuel	SCAG Parcel, floor area,	eQUEST
nonpoint buildings			DOE CBECS NE-EUI	
Commercial point	EPA NEI point CO	Lat/lon, fuel type, combustion	EPA NEI Lat/Lon, Google	eQUEST
sources		technology	Earth	
Industrial point	EPA NEI point CO	Lat/Lon, fuel type, combustion	EPA NEI Lat/Lon, Google	EPA temporal
sources		technology	Earth	surrogates (by SCC)
Industrial nonpoint	EPA NEI nonpoint CO	County, fuel type	SCAG-Parcel, floor area,	eQUEST
buildings			DOE MECS NE-EUI ^m	
Commercial	EPA NEI nonpoint CO	County, fuel type, port/underway	MEM ⁿ	MEM
Marine Vessels				
Railroad	EPA NEI nonpoint CO,	County, fuel type, segment	EPA NEI rail shapefile and	EPA temporal
	EPA NEI point CO		density distribution	surrogates (by SCC)

a. Emissions Factors Model

b. Environmental Protection Agency, National Emissions Inventory

c. Southern California Association of Governments, Annual Average Daily Traffic

d. Performance Measurement System

e. Continuous Count Stations

f. Clean Air Markets Division

g. Energy Information Administration

h. Department of Energy Residential Energy Consumption Survey, non-electric energy use intensity

i. Quick Energy Simulation Tool

j. Source Classification Code

k. Los Angeles World Airport

I. Department of Energy Commercial Energy Consumption Survey, non-electric energy use intensity

m. Department of Energy Manufacturing Energy Consumption Survey, non-electric energy use intensity

n. Marine Emissions Model

221 To estimate FFCO₂ emissions as a multiyear time series from 2010 to 2015, the results for the year 2011 were scaled

222 using sector/state/fuel consumption data (thermal units) from the DOE EIA (DOE/EIA, 2018). The electricity

223 production sector was an exception to this approach where year-specific data was available in the CAMD and EIA

data sources. Ratios were constructed relative to the year 2011 in all SEDS sector designations for each US state.

225 The ratio values are applied to the annual totals in each of the sector/fuel categories specific to the state FIPS code.

226 **2.3** Space/time processing

227 2.3.1 Residential, commercial, industrial nonpoint buildings

228 The general approach to spatializing the residential, commercial and industrial nonpoint FFCO₂ emissions is to

allocate the county-scale, fuel-specific annual sector totals to individual buildings (or parcels) using data on building

type, building age, total floor area, energy use intensity, and location.

231 A portion of the Hestia-LA building information were provided by the Southern California Association of

232 Governments (SCAG) (SCAG, 2012) and included building type, age, floor area, and location. The spatial

resolution of this information was at the land parcel scale (larger than the building footprint). Building footprint data

was available in the county of Los Angeles only which offered additional building floor area information needed to

correct some floor area values in the SCAG parcel data (LAC, 2016). For example, a large number of commercial

- parcels with zero floor area were found in the Riverside County data which were visually inspected in Google Earth
- to contain qualifying buildings. These floor area values were corrected through the combination of the Census
- 238 block-group General Building Stock (GBS) database from the Federal Emergency Management Agency (FEMA)
- 239 (FEMA, 2017) and the National Land Cover Database 2011 (NLCD) which classifies the US land surface in 30m
- 240 pixels (Homer et al., 2015).
- 241 Building energy use intensity was derived from data gathered by the DOE EIA and the California Energy
- 242 Commission (CEC). The DOE EIA Commercial Buildings Energy Consumption Survey (CBECS), Manufacturing
- 243 Energy Consumption Survey (MECS), and Residential Energy Consumption Survey (RECS) represent regional
- surveys of building energy consumption categorized by building type, fuel type, and age cohort (RECS, 2013;
- 245 CBECS, 2016; MECS, 2010). Data for the Pacific West Census Division was used and in the case of the commercial
- sector, was appended by the CECs Commercial End-Use Survey (CEUS) data (CEC, 2006).
- 247 In the residential sector the non-electric energy use intensity (NE-EUI) was calculated from the reported energy
- consumed and total floor area sampled specific to five building types (Table 2) in the 2009 RECS survey. This was
- additionally categorized by fuel type (natural gas and fuel oil) and two age cohorts (pre-1980, post-1979).

Table 2. Residential NE-EUI survey values by building type from the Residential Energy Consumption Survey (RECS)

RECS building type	Pre-1980 NG NE- EUI (kbtu/ft ²)	Post-1979 NG NE-EUI (kbtu/ft ²)	Pre-1980 Fuel oil NE-EUI (kbtu/ft ²)	Post-1979 Fuel oil NE-EUI (kbtu/ft ²)
Mobile home	52.56	22.90	NA*	NA
Single-family detached house	24.53	18.00	18.87	7.23
Single-family attached house	42.56	32.38	NA	NA
Apartment building with 2-4 units	27.84	42.27	NA	NA
Apartment building with 5 or more units	17.21	30.85	NA	NA

252 * "NA" - not applicable. This indicates that there was no fuel consumption of this type evident from the survey data.

253 In the commercial sector, the NE-EUI was similarly calculated from the 2012 CBECS energy consumption

254 microdata and total floor area sampled specific to twenty building types, two fuel types (natural gas and fuel oil) and

two age cohorts (pre-1980 and post-1979). However, the sampling for the two age cohorts was insufficient to

256 generate estimates and the age distinction was eliminated. Furthermore, where the sample sizes remained small, NE-

EUI data from the CEUS was used in place of CBECS estimates (7 of 20 building types qualified). As the CEUS

- follows a building typology different from CBECS, a crosswalk of building types between the two datasets was
- 259 necessary (Table 3).

Table 3. Building type crosswalk and NE-EUI values for commercial buildings derived from the CBECS and CUES databases

CBECS building class	CUES building class	NG NE-EUI (kbtu/ft ²)	Fuel oil NE-EUI (kbtu/ft ²)
Vacant	Miscellaneous	9.3	2.5
Office	All Offices	17.9*	1.67
Laboratory	Miscellaneous	174.7	0.93
Nonrefrigerated warehouse	Unrefrigerated Warehouse	3.1*	1.03
Food sales	Food Store	27.6*	2.5
Public order and safety	Miscellaneous	58.2	2.09
Outpatient health care	Health	29.1	3.05

Refrigerated warehouse	Refrigerated Warehouse	5.6*	2.5
Religious worship	Miscellaneous	35.7	0.00
Public assembly	Miscellaneous	26.5	0.23
Education	College, School	25.1*	1.7
Food service	Restaurant	210*	100.5
Inpatient health care	Health	113.9	2.6
Nursing	Health	67.4	1.2
Lodging	Lodging	42.4*	1.4
Strip shopping mall	Retail	62.7	2.5
Enclosed mall	Retail	4.8	0.02
Retail other than mall	Retail	13.6	16.7
Service	Miscellaneous	34.2	0.45
Other	Miscellaneous	18.5	5.3

262 * NE-EUI uses the CUES NE-EUI value due to sampling limitations in the CBECS data.

263 Unlike the commercial and residential survey data, the 2010 MECS survey data does not quantify energy

264 consumption for individually sampled buildings but rather reports the sum of the sampled buildings within each

265 census region categorized by manufacturing sector. The resulting NE-EUI values are shown in in Table 4. Like the

266 commercial data, there was inadequate sampling to justify two age cohorts.

267 Table 4. Industrial NE-EUI survey values from the DOE EIA MECS database

MECS Class	NG NE-EUI	Fuel oil NE-EUI
	(kbtu/ft²) (kl	
Food	519.3	30.5
Beverage and Tobacco Products	162.4	8.5
Textile Mills	144.9	9.3
Textile Product Mills	63.4	0
Apparel	35.1	0
Leather and Allied Products	66.7	0
Wood Products	76.6	49.5
Paper	672.8	69.1
Printing and Related Support	96.6	0
Petroleum and Coal Products	9766.0	436.2
Chemicals	2126.3	17.9
Plastics and Rubber Products	124.7	2.4
Nonmetallic Mineral Products	556.0	48.9
Primary Metals	895.0	16.7
Fabricated Metal Products	124.2	2.3
Machinery	78.6	3.3
Computer and Electronic Products	80.0	0
Electrical Equip., Appliances, and Components	133.3	3.7
Transportation Equipment	100.6	4.0
Furniture and Related Products	28.6	0
Miscellaneous	44.7	2.8

268 The NE-EUI values derived from the CBECS/RECS/MECS and CEUS survey data reflect the total building fuel

269 consumption for a specific fuel in a census region divided by the total floor area of all buildings in that census region

270 consuming that fuel. This generates a mean building NE-EUI value. Actual buildings will vary around that mean

value for a variety of reasons including different occupancy schedules, different energy efficiencies (in the envelope

272 or heating/cooling system), different microclimate, and other physical/behavioral characteristics. Furthermore, the

273 NE-EUI value applied in this way will not capture the reality that some buildings do not use fossil fuel (electricity-

only buildings) or that some buildings use one fossil fuel only versus another or use a mix of fuels in a proportion

different from the county total. Hence, each building will be allocated a mix of fossil fuel consumption identical tothe county total.

277 2.3.1.1 Spatial distribution

The county-scale commercial, residential and industrial nonpoint FFCO₂ emissions are allocated to each land parcel in proportion to the product of the NE-EUI and the total floor area,

$$280 \quad EC(b)_s^f = NE_EUI_s^f FA(b) \tag{1}$$

where the energy consumed, EC, in each building, b, is the product of the NE-EUI value, NE_EUI, and the floor

area, *FA*, for each fuel, *f*, and each building in sector, *s*. The total energy consumed, *TEC*, within the county for a sector, *s*, is the sum of all the EC values across the *N* buildings in the sector,

284
$$TEC_s^f = \sum_{b=1}^{N} EC(b)_s^f$$
 (2)

To convert this to $FFCO_2$ emissions, we first calculate the fraction of the total energy consumption associated with each building,

$$287 F(b)_s^f = \frac{EC(b)_s^f}{TEC_s^f} (3)$$

where, F is the fraction of *TEC* consumed in building, b, of sector s. This is then used to distribute the county total FFCO₂ emissions as,

290
$$E(b)_{s}^{f} = E_{s}^{f}F(b)_{s}^{f}$$
 (4)

where *E*, is the FFCO₂ emissions either for the county or for building, *b*, and fuel. In allocating emissions from coal
consumptions, however, *NE-EUI* takes the value of "1" for all building types so that the allocated emission in a
building is directly proportional to the floor area.

294 2.3.1.2 Temporal distribution

295 The hourly time structure for buildings in the residential and commercial sectors are created via the use of eQUEST,

a building energy simulation tool run for each of the building classes listed in Table 2 and Table 3 and using only

the temporal structure of the energy consumption output (*Hirsch & Associates*, 2004). The model domain is

- specified as the city of Los Angeles for the year 2011 with TMY weather data from the DOE (*Marion and Urban*,
- 299 1995). The mean building area is provided by the parcel data as described previously.
- 300 For the industrial buildings, a temporal profile representing the mean of industrial point source temporal surrogates
- 301 provided by EPA, are used (USEPA, 2015a). Figure 3 shows the hourly time profile during a one-week period in
- 302 April for a selected building in the residential and commercial sector, respectively.

Figure 3. Energy consumption intensity (hourly fraction) from an eQUEST simulation on the average week in 2011 for two types of buildings: "single family detached house" and "office".

306 2.3.2 Industrial and commercial point sources

303

307 Little space/time processing is required for industrial and commercial point source emissions since they are

308 geocoded to specific facilities/emitting stacks or similar identifiable emission points. However, visual inspection of

the point source locations in GIS suggested potential geocoding errors. Point source locations were reviewed by

310 searching facility names to an online address search or via the EPA's Facility Registry Service (FRS) which can link

311 the facility in question to all the reporting made to the federal government under other environmental regulations

312 (USEPA, 2013). This often returns a more accurate physical location. The geolocations considered inaccurate were

313 manually corrected. Out of the total 192 facilities with corrected locations, 13 were moved a distance of between

314 924 and 1022 km while the remaining 179 were moved 0.5 km or less. The large magnitude location changes were

315 likely transcription errors when originally recording the location coordinates.

316 A given commercial or industrial point source is typically composed of multiple emission processes or units. For

317 example, in Los Angeles County, the 2011 NEI reports a total of 3409 emission records at 842 individual facilities.

318 In some cases, the multiple emitting points at a facility are not at exactly the same geocoded point but may represent

319 different emitting points at a facility that occupies a large area of land. Most often, however, all emitting points at a

320 given facility are geocoded to the same latitude and longitude.

321 The sub-annual temporal distribution for the commercial and industrial point source emissions used temporal

322 surrogate profiles provided by the EPA, linked according to the SCC of the emission record (USEPA, 2015a).

323 2.3.3 Electricity production

324 As described in Section 2.2, three different data sources are used to quantify the FFCO₂ emissions in the Hestia-LA

domain: the Clean Air Markets Division (CAMD), the DOE-EIA reporting and 2011 NEI CO emissions data. In

326 2011 there were a total of 34 CAMD facilities, 228 EIA facilities and 147 NEI facilities (reported through the NEI

- 327 2011 point source fileset) in the Hestia-LA domain. Total electricity production emissions in the domain was 6.21
- 328 MtC/year exclusive of biogenic fuels and 6.68 MtC/year with biogenics included. The CAMD data is reported at
- 329 hourly resolution, while the DOE EIA data is reported at monthly resolution and the 2011 NEI data is reported at
- annual resolution only. Reduction of all data to an hourly time increment was achieved by maintaining constant
- emissions within a month or year for the DOE EIA and 2011 NEI data, respectively.

332 2.3.4 Onroad

A preliminary version of the Hestia-LA onroad emissions estimates were presented by Rao et al. (2017). The version presented here uses updated data and Hestia methodologies.

335 2.3.4.1 Temporal distribution

336 The Hestia-LA onroad FFCO₂ emissions input are retrieved from the Vulcan v3.0 output spatialized to specific road

- segments in the Hestia-LA domain and categorized by vehicle class/fuel. Hence, no further spatialization wasrequired.
- 339 Construction of the temporal distribution in the Hestia system relies upon the California Department of
- Transportation (CalTrans) Performance Measurement System (PeMS) (PeMS, 2018). This dataset contains 2011
- 341 traffic count data collected at 5 min intervals at measuring stations along freeways and principal arterials and along
- 342 some minor arterials and collectors (major and minor). Aggregation of the 5-minute counts to hourly values are used
- to construct hourly fractions for each measurement station.
- To apply a time distribution for the FFCO₂ onroad emissions on each road segment, an Inverse Distance Weighting
- 345 (IDW) spatial interpolation method was used. A search within a neighborhood of a 10 km radius is performed from
- 346 the midpoint of each road segment to locate PeMS sites using a nearest neighbor searching library (Mount and Arya,
- 347 2010). In cases where more than one station was available, the IDW interpolation was applied; in cases where only
- 348 one station was available, the time structure of this station was directly assigned to the road segment in question. In
- 349 cases where no station was available within the 10-km neighborhood, an average temporal distribution was assigned
- 350 (an average of all station values in a county at that hour for that road type). This last case occurred mostly in the
- 351 rural portions of predominantly rural counties.
- 352 For local roads, PeMS data was not available in any of the counties within the Hestia-LA domain. Instead, the
- 353 weekday hourly time fractions were generated from Annual Average Weekday Traffic (AAWT) data supplied by
- 354 SCAG (*Mike Ainsworth*, 2014). The data contained five distinct time periods within a single 24 hour cycle: 6-9 am,
- 355 9 am-3 pm, 3-7 pm, 7-9 pm, 9 pm-6 am. Hourly time fractions for weekends were derived from the county average
- 356 of weekend hourly time fractions. The weekday and weekend hourly time fractions were combined to form a
- 357 complete week, and then replicated for all 52 weeks in the entire year. This was done because there was no
- 358 significant seasonality in weekday and weekend traffic across the year as observed from PeMS data.

359 2.3.5 Nonroad

- 360 The nonroad Hestia-LA FFCO₂ emissions are completely determined in the Vulcan system and hence, passed to the
- Hestia-LA domain without further processing (see Gurney et al., 2018 for details). To summarize the Vulcan
- 362 process, California did not report FFCO₂ nonroad emissions to the NEI 2011 but did report nonroad CO emissions.
- 363 The CO emissions were converted to FFCO₂ using the SCC-specific ratios of CO₂/CO derived from all other states
- that reported both species (a mean value). The spatial distribution of the nonroad FFCO₂ emissions followed two
- approaches. Nonroad FFCO₂ emissions reported through the 2011 NEI point data source (5 locations, 12% of
- 366 nonroad FFCO₂ in the LA Megacity) are located in space according to the provided latitude and longitude.
- 367 Emissions reported through the county-scale nonroad data source utilize multiple spatial surrogates provided by the
- 368 EPA reflecting a series of spatial entities such as the mines, golf courses and agricultural lands. There were instances
- in which nonroad FFCO₂ emissions could not be associated with a spatial entity due to missing data. These
- 370 emissions are spatialized by first aggregating all the offending sub-county emission elements within a county for a
- 371 given surrogate shape type (e.g., golf courses, mines) and then distributing these emissions evenly across the county.
- 372 To distribute the nonroad FFCO₂ emissions from the annual to hourly timescale, a series of surrogate time profiles
- 373 provided by the EPA are used. These temporal surrogates are comprised of three cyclic time profiles (diurnal,
- 374 weekly, monthly) specific to SCC that are combined to generate hourly SCC-specific time fractions for an entire
- 375 calendar year.

376 **2.3.6** Airport

- 377 Emissions of FFCO₂ from airports retrieved from the Vulcan system for the Hestia-LA domain are specific to
- 378 geocoded airport locations. Hence, the Hestia-LA system performs the temporal distribution only. There are 374
- 379 commercial airports/helipads in the Hestia-LA domain totaling 0.77 MtC/year, dominated by Los Angeles County
- 380 (0.39 MtC/year), and LAX in particular.
- 381 The annual airport FFCO₂ emissions are distributed in time utilizing airport-specific flight volume data from four 382 datasets:
- 383 1) The Operations Network (OPSNET) data from the Federal Aviation Administration (FAA) which reports total
- date-specific, daily flight volume (365 values) at specific airports for specific aircraft classes (FAA, 2018a);
- 2) "AIRNAV" data which reports average daily percentage flight volume for aircraft class at US airports and
- 386 facilities (Airnav.com, 2018);
- 387 3) The Enhanced Traffic Management System Counts (ETMSC) daily flight volume data from the FAA was for two
- 388 airports in the Hestia-LA domain (NTD and RIV) with mostly military operations (FAA, 2018b);
- 389 4) The Los Angeles World Airports (LAWA) data which reports hourly flight volume for Los Angeles International
- 390 airport (LAX), Ontario airport (ONT), and Van Nuys airport (VNY) (LAWA, 2014).
- 391 For three large airports (LAX, ONT, VNY), the daily aircraft class-specific flight volume (from OPSNET) and the
- 392 hourly data on flight volume (from LAWA) were combined to create hourly aircraft class-specific time profiles

393 (Figure 4-6). All of the flight volume data are specific to four aircraft classes: Military (MIL), Air Carrier (AC),

Figure 4. Average hourly flight volume at LAX for a) total, b) AC, c) AT, d) GA, and e) MIL aircraft classes for each day of the week. The plots represent the mean diurnal cycle for all Mondays, Tuesday, Wednesdays, and so on, given a full year of data.

400 Figure 5. Same as figure 4 but for the Ontario (ONT) airport.

401

402 Figure 6. Same as figure 4 but for the Van Nuys (VNY) airport.

403 To generate hourly time profiles for all other airports in the Hestia-LA domain for which this type of detailed hourly 404 data was not available, airports first were categorized based on average daily flight volumes and average aircraft 405 class proportions from the OPSNET, AIRNAV and ETMSC data. Each airport was categorically matched to one of 406 the two non-international airports with hourly data (ONT, VNY) and the hourly time fractions adopted. LAX was 407 unique in terms of its volume and aircraft class proportions and hence was not used for any other airports. For 408 helipads and very small airports, a flat time structure was used.

409 2.3.7 Railroad

410 Railroad FFCO₂ emissions are similarly distributed in space within the Vulcan system and passed through to the 411 Hestia-LA landscape without alteration (see Gurney et al., 2018 for additional details). The Vulcan process treats 412 railroad point records somewhat differently from the railroad nonpoint records. The point source railroad emissions 413 are associated with rail yards and related geo-specific locales and are placed in space according to the provided 414 latitude and longitude. The railroad FFCO₂ emissions associated with the nonpoint 2011 NEI reporting contain an 415 ID variable that links to a spatial feature (rail line segment) in the EPA railroad GIS Shapefile. Nearly two-thirds of 416 the railroad emitting segments have no segment link. The sum of these "unlinked" railroad FFCO₂ emissions are

- 417 distributed to rail line within the given county according to freight statistics. The annual railroad FFCO₂ emissions
- 418 are distributed to the hourly timescale with no additional temporal structure (a "flat" time distribution).

419

2.3.8 Commercial marine vessels

- 420 The commercial marine vessel (CMV) FFCO₂ emissions retrieved from the Vulcan system are specific to county
- 421 and SCCs which are subsequently aggregated by the Hestia-LA system into emissions associated with two activity
- 422 categories: "port" emissions "underway". For the port CMV emissions (Figure 7), a port Shapefile from the EPA
- 423 was used as a reference along with a visual inspection of the coastline (USEPA, 2015a).

425 Figure 7. The 6 ports in the Hestia-LA domain to which Vulcan FFCO₂ port emissions are allocated.

426 Allocation of the FFCO₂ emissions designated as "underway" used a polyline Shapefile (Figure 8) of commercial

427 shipping lanes in California provided by CARB (Alexis, 2011). The shipping lanes for each county were bounded so

428 that only lanes between the exterior of ports and a distance of 24 miles from the port exterior, were included. County

429 total FFCO₂ emissions were then distributed evenly to these shipping lanes on a per unit length basis individually for

- 430 each of the three counties. Each shipping lane segment receives its length fraction of the annual total of underway
- 431 emissions.

Figure 8. Commercial Marine Vessel (CMV) shipping lanes in the Hestia-LA to which Vulcan FFCO2
 underway emissions are allocated.

- The time profile was based on the Marine Emissions Model (MEM) developed by CARB. MEM had marine vessel activity data which includes the arrival time of ocean-going vessels for all ports in California spanning the 2004 to 2006 time period (Alexis, 2011). This hourly dataset was analyzed using a Fourier time series which allowed for an isolation of the dominant cycles of ship traffic in the data. Results from the Fourier fit were then used to fill in the missing hours. Weekday hours were examined separately from weekend hours to isolate potential differences in traffic volume. Three cycles resulted: a 24-hour diurnal cycle, a weekly cycle and a monthly cycle. These were applied to all years of the annual FFCO₂ emissions to create an hourly distribution at each of the CMV ports within
- the domain.

443 **2.3.9** Cement

- Emissions of FFCO₂ from cement production facilities retrieved from the Vulcan system for the Hestia-LA domain
- 445 are specific to geocoded facility locations. CO₂ is emitted from cement manufacturing as a result of fuel combustion
- and as process-derived emissions [van Oss, 2005]. The emissions from fuel combustion are captured in the industrial
- sector. The process-derived CO₂ emissions result from the chemical process that converts limestone to calcium

- 448 oxide and CO₂ during "clinker" production (clinker is the raw material for cement which is producing by grinding
- the clinker material). These emissions are reported as cement sector emissions
- 450 These emissions are fully calculated, spatialized and temporalized in the Vulcan v3.0 system and passed directly to
- 451 the Hestia-LA landscape. The cement facilities are geocoded with some corrections to provide more accurate
- 452 placement of the emission stacks.

453 **2.4 Gridding**

- 454 The county-level FFCO₂ emissions inventory, which has been distributed into the point, line and polygon features
- 455 by sector, are rasterized into a sector-specific and time-resolved gridded form under a common grid reference. This
- grid reference divides the entire Hestia-LA domain into 509-by-342 1 km x 1 km grid cells on the California State
- Plane Coordinate System. The grid reference is made into "fishnet" in the Shapefile format with 509-by-342 squaregeometries.
- 459 The first step of the gridding procedure is to perform a spatial intersection operation between the fishnet and each of
- the sectoral emissions layers in ArcGIS. The output of an intersection operation is a new set of features common to
- both input layers. The emissions value of each feature in the intersection output was scaled by the ratio of the spatial
- 462 footprint of the feature to that of the original feature in the sectoral emissions layer. For line-source and polygon-
- 463 source emissions layers, the spatial footprint represents the line length and polygon area respectively. For point-
- 464 source layers, the footprint is equal to 1.

465 2.5 Uncertainty

- 466 Uncertainty estimation for Hestia results are challenging owing to the fact that many of the datasets used to 467 construct the flux results are not accompanied by uncertainty or traceable to transparent sources or methods. The 468 approach taken for the Hestia-LA v2.5 results was to conservatively estimate the uncertainty based on available 469 comparisons to Hestia results and exploration of the dominant components of the Hestia output. The first of these is 470 a comparison of the Hestia-Indianapolis (Hestia-Indy) results to an inverse-estimation of fluxes in the INFLUX 471 project (Gurney et al., 2017). In that study, it was shown that the Hestia-Indy whole-city FFCO₂ emissions result 472 agreed with an inverse estimate (Lauvaux et al., 2016) within 3.3% (CI: -4.6% to +10.7%). This suggests both 473 potential bias (3.3%) and an estimation uncertainty (~7.5%). This comparison was accomplished by estimating 474 portions of the carbon budget, included in the inverse estimate, but not explicitly included in the Hestia-Indy result. 475 Most importantly, biosphere respiration estimated from chamber studies at commensurate urban latitudes combined 476 with a remote-sensing based approach to quantifying the available vegetated landscape. This comparison, it should 477 be noted, is for a single city (Indianapolis) for a single time period. We directly sum the random and systematic error 478 and use this in the current study to represent the Hestia-LA whole-city uncertainty (a 95% CI), rounded up to 11%. 479 The next element for consideration with a conservative uncertainty estimate is the work done to compare two 480 different electricity production FFCO₂ estimates in the US. This work (Gurney et al., 2016) found that one-fifth of 481 the facilities had monthly FFCO₂ emission differences exceeding -6.4%/+6.8% for the year 2009 (the closest 482 analyzed year to the 2011 analysis examined here). The distributions of emissions of the two datasets were not
 - 19

- 483 normally distributed nor were the differences. Hence, a typical gaussian uncertainty estimate cannot be made –
- rather, the difference distribution was represented by quintiles of percentage difference. Hence, these values cannot
- 485 be cast within the context of other normally-distributed errors. However, we conservatively consider the quintile
- 486 value (the positive and negative tails) as a one-sigma value and 13% as a two-sigma value. The contribution of
- 487 electricity production is important to urban FFCO₂ emissions uncertainty given how large power production can be
- 488 within the total urban FFCO₂ context. For example, in the Los Angeles Megacity electricity production accounts for
- 489 19% of the total FFCO₂ emissions. The percentage differences can act as a form of uncertainty at the pointwise or
- 490 (conservatively) the gridcell scale, though only representative of the type of uncertainties represented by electricity
- 491 production point sources.
- 492 Finally, an initial assessment of the range of two critical parameters in the Vulcan/Hestia estimation is included as
- 493 part of the conservative uncertainty estimation. The two critical parameters are the CO emissions factor and the CO₂
- 494 emissions factor. Primarily for the CO EF, there is a range of potential values for each application (combination of
- 495 fuel category and combustion technology) though that range is not represented by a well-populated distribution of
- 496 values, but rather a discrete set of values within the data sources described in Gurney et al. (2009). Furthermore, the
- 497 expectation is that the CO EFs would not be normally distributed even were there to be a well-populated distribution
- 498 of values (i.e. many literature estimates of the same fuel/combustion technology) owing to the nature of CO
- 499 emissions from fuel combustion. This is driven by both the variation in combustion conditions for a given
- 500 fuel/technology combination and the variation is CO EF values across combustion technology. The distribution
- 501 would likely be a positively skewed "heavy" or "long" tailed distribution. For the current study, a range of the CO
- 502 and CO₂ EF values culled from the literature are conservatively assigned a one-sigma uncertainty of 10% or a two-
- 503 sigma value of 20%. Like the electricity production analysis in the previous paragraph, the uncertainty associated
- 504 with the CO and CO₂ emission factors is a gridcell-scale uncertainty (as opposed to whole city where error
- 505 cancelation occurs) and is independent of the electricity production uncertainty estimate (the CO and CO₂ EF values
- 506 are not used in the electriity production sector but in the other point sources and nonpoint sources).
- 507 These latter two uncertainty are more representative of gridcell-scale uncertainties and sum them in quadrature to
- 508 arrive at a gridcell-scale uncertainty (95% CI) of 23.4% or conservatively rounded to 25%. Work is underway that
- 509 includes a complete input parameter range for the Hestia emissions data results to more formally assign uncertainty
- 510 at multiple scales.

511 3 Results

- 512 The total 2011 emissions for the Hestia-LA domain are 48.06 ± 5.3 MtC/yr (Figure 9, Table 5). Transportation
- 513 accounts for the largest share $(24.27 \pm 2.7 \text{ MtC/yr})$ of the total and within the transportation sector, onroad emissions
- 514 account for the largest portion (20.81 ± 2.3 MtC/yr). The next largest sectors are the industrial (11.65 MtC/yr ± 1.3)
- and electricity production $(5.88 \pm 0.76 \text{ MtC/yr})$ sectors, respectively. Onroad, electricity production, residential and
- 516 industrial FFCO₂ emissions make up 86% of the total. Petroleum accounts for almost 75% of the total LA Megacity
- 517 fuel consumption for direct FFCO₂ emissions consistent with the dominance of the transportation and industrial

- 518 sectors which are mostly reliant on petroleum fuels. Los Angeles County dominates emissions in the five counties of
- 519 the Hestia-LA domain accounting for 55% of the total FFCO₂ emissions. This is followed by San Bernardino,
- 520 Orange, Riverside, and Ventura counties, respectively. Los Angeles and San Bernardino counties are dominated by
- 521 onroad and industrial FFCO₂ emissions, while onroad emissions account for the largest share, by far, in the
- 522 remaining three counties. Not surprisingly, Los Angeles county has the largest CMV FFCO₂ emissions among the
- 523 five counties owing to the port of Los Angeles which hosts a large amount of international commercial shipping. At
- 524 0.61 \pm 0.067 MtC/yr, it rivals in emission magnitude the combination of residential and commercial building
- 525 emissions in each of the other four counties.

527 Figure 9. Total FFCO₂ emissions proportions for the Hestia-LA domain. a) FFCO₂ emission proportions by

528 sector; b) FFCO₂ emission proportions by fuel category.

Sector	Los Angeles (MtC/yr)	Orange (MtC/yr)	San Bernardino (MtC/yr)	Riverside (MtC/yr)	Ventura (MtC/yr)	Total (MtC/yr)
Residential	2.00	0.64	0.40	0.36	0.20	3.59
Commercial	1.47	0.12	0.21	0.24	0.071	2.12
Industrial	7.27	0.94	2.99	0.25	0.20	11.65
Electricity production	2.73	0.69	1.54	0.71	0.21	5.88
Transportation	12.95	3.83	3.58	2.88	1.02	24.27
Onroad	11.03	3.46	2.98	2.51	0.82	20.81
Nonroad	0.79	0.27	0.19	0.19	0.087	1.52
Airport	0.39	0.06	0.14	0.11	0.070	0.77
Railroad	0.13	0.028	0.27	0.072	0.010	0.51
CMV	0.61	0.012	0	0	0.037	0.66
Cement	0	0	0.55	0.0077	0	0.55
Total	26.42	6.22	9.28	4.45	1.70	48.06

529 Table 5. Sectoral FFCO₂ emissions in the five Hestia-LA domain counties for the year 2011. Units: MtC/yr.

- 530 Total emissions in the LA Megacity show a small downward trend over the 2010-2015 time period of 0.44%/year
- 531 which is a statistically significant trend (slope: -0.21 MtC/yr; CI: -0.397, -0.023). Individual sectors show greater
- 532 variation there are compensating temporal changes among the individual sectors (Figure 10). The residential sector
- showed a relatively large decline in 2014, though due to its relatively small portion of total emissions, has limited
- 534 impact on the total temporal variation from 2010-2015. Similarly, 2015 showed a large increase in commercial

- 535 sector emissions which also do not translate to large changes in the total FFCO₂ emissions time series. The relative
- 536 temporal stability of the industrial and onroad FFCO₂ emissions sectors combined with their large share of the total
- 537 FFCO₂ emissions are reflected in the total emissions trend. When categorized by fuel type, natural gas FFCO₂
- 538 emissions exhibited the greatest variation with a maxima in 2012 and to a lesser extent 2013, driven primarily by
- 539 consumption in the electricity production sector.

Figure 10. Fractional changes over the 2010 to 2015 timeframe in LA Basin FFCO₂ emissions. a) by fuel
 category; b) by sector. Whole-city error provided for the total FFCO₂ emissions only.

543 Spatial distribution of the Hestia-LA FFCO₂ emissions demonstrate the importance of the populated areas and road-

544 intensive portions of the domain in the overall emissions (Figure 11). The constant emissions that appear over large

545 areas, particularly in San Bernardino and Riverside counties, are due to the nonroad FFCO₂ emissions which have

- 546 relatively simple spatial distribution proxies with considerable areal extent.
- 547

- 552 Figure 12 shows the cumulative FFCO₂ emissions across four of the sectors for which the 1 km² gridcell
- 553 accumulation is most appropriate: the commercial, industrial, onroad, and residential sectors. The other FFCO₂
- 554 emission sectors (airport, electricity production, cement) are not included in Figure 12 because they are dominated
- by a few points, have limited spatial distribution (railroad) or no spatial variance (nonroad). The accumulation of
- 556 FFCO₂ emissions at the threshold by which 10% of the gridcells are accumulated is noted on the figure. For the
- 557 industrial sector, 10% of the largest emitting gridcells account for 93.6% of the total industrial sector emissions. For
- the commercial sector this occurs at 73.4% of the accumulated gridcells. For the onroad and residential sectors this
- occurs at 66.2% and 45.3%, respectively. This demonstrates two important points about the FFCO₂ emissions in the
- 560 Los Angeles Megacity (and most cities). First, the emissions have very high spatial variance with few gridcells
- accounting for a large portion of the total FFCO₂ emissions. Second, this is particularly true for the industrial sector,
- 562 driven by the fact that it is comprised of a large proportion of point emitters. This is somewhat true of the

Figure 11. Hestia-LA v2.5 FFCO₂ emissions for the year 2011 represented on a 1 km x 1 km grid. a) total
 FFCO₂ emissions; b) onroad FFCO₂ emissions; c) residential FFCO₂ emissions; d) commercial FFCO₂
 emissions. Units: natural logarithm KgC/gridcell/yr.

- 563 commercial sector which does have some pointwise data within the original NEI reporting. Of the remaining two
- sectors, which contain no pointwise spatial emitters, the majority (66.2%) of the onroad emissions are captured in
- the largest 10% while the residential sector, being less concentrated, shows an accumulation just short of the 50%
- 566 threshold at a 10% gridcell accumulation threshold.

567

568 Figure 12. Cumulative FFCO₂ emissions according to key sectors in the Hestia-LA FFCO₂ emissions data 569 product. The dashed line at 10% cumulative grid cells is given for reference. See text for details.

570 An important attribute of estimating urban emissions at fine space and time scales is the resulting clustering in space 571 (and time) of the emissions and the varying patterns of the clustering across the emitting sectors. Figure 13 provides 572 an analysis of spatial clustering using the *Getis-Ord-Gi* statistic which provides a score that measures statistically 573 significant departures from random local clustering (Getis and Ord, 1992). The three sectors included in this 574 analysis are the residential, commercial and onroad sectors. The onroad sector shows a more widely dispersed 575 clustering pattern with local "hotspots" generated by high traffic flow points and traffic congestion, primarily on the 576 interstate network coincident with a greater density of commercial and residential activity. The residential sector 577 exhibits less extensivity compared to the onroad FFCO2 emissions clustering but with larger individual hotspot 578 areas. Particularly large clustering occurs from the coast centered on Santa Monica and Marina del Rey and 579 extending East and North through West Hollywood on to Pasadena and Alhambra. Other hotspots occur in the 580 Manhattan Beach to Redondo Beach corridor, the Burbank and Glendale area and the coastal portion of Orange 581 county (e.g. Huntington Beach, Newport Beach). The commercial sector shows the a similar overall extensivity to

the residential sector but with less extensive individual hotspots associated with commercial building clusters.

583

584
585
586
586
586
586
586
586
586
586
586
586
586
587
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588

587 There are very few estimates that can serve as an assessment of the accuracy of the Hestia FFCO₂ emissions as few 588 inventory efforts have been accomplished at the sub-state spatial scale in the United States. However, the Southern 589 California Association of Governments (SCAG) have completed a regional greenhouse gas emissions inventory for 590 a base year period of 1990-2009 with projections out to the year 2035 (SCAG, 2012). The SCAG inventory reflects 591 two components that make comparison to the Hestia-LA FFCO₂ emissions data product imperfect. First, the domain 592 considered in the SCAG inventory includes Imperial county, a county not included in the Hestia-LA domain. 593 However, Imperial county is estimated to be less than a few percent of the SCAG domain total. For example, 594 Imperial county onroad VMT is 1.9% of the SCAG domain total. The Imperial county retail sales of electricity is 595 1.1% of the SCAG domain total. The other distinction is that the SCAG inventory reports total GHGs, inclusive of 596 both methane (CH₄) and nitrous oxide (N₂O). However, in the sectors and activities used in comparing the SCAG 597 inventory to the Hestia-LA FFCO₂ emissions data product, both CH₄ and N₂O are negligibly small. Hence, small

- 598 differences (<5%) could be due to these categorical discrepancies. We use only the reported scope 1 emissions
- 599 which were based on the approach adopted by CARB based on guidelines from the Intergovernmental Panel on
- 600 Climate Change (CARB, 2010).
- 601 Figure 14 shows a 2010 comparison between the two estimates using the comparable sector divisions. The Hestia-
- LA FFCO₂ emissions estimate is 10.7% larger than the SCAG estimate, 95% of the difference (4.46 MtC/yr) owing
- 603 to the larger industrial and electricity production FFCO₂ emissions in the Hestia estimate. We have included the

- 604 nonroad sector in the onroad category as the SCAG inventory did not explicitly include a nonroad sector. SCAG
- 605 documentation suggests that the nonroad sector is included in the forecasts for the residential, commercial and
- 606 industrial sectors (SCAG, 2012, page C-10) but further details on the base year estimates could not be found and no
- 607 mention is made in the report where these sectors are described. If the Hestia nonroad estimate (1.56 MtC/yr) were
- 608 not allocated to onroad but distributed to the residential, commercial and industrial sectors it would exacerbate the
- 609 difference in the onroad, commercial and industrial sectors.

Figure 14. Comparison of sector-specific FFCO₂ emissions for the year 2010 between the Hestia-LA and
 SCAG estimates. Units: MtC/yr.

613 The California Energy Commission archives energy consumption data for both natural gas and electricity

614 (http://ecdms.energy.ca.gov/). The data is archived as specific to the residential sector and the non-residential sector.

615 Because of ambiguities regarding the non-residential sector definition, we compare the reported values by county for

616 the residential only (Table 6). Good agreement for natural gas FFCO₂ emissions is achieved for the Los Angeles

617 Megacity as a whole (<1%) with some variation at the scale of the individual counties. Agreement with the CEC

- 618 estimate is better than that found for the comparison with the SCAG inventory (Hestia being 3.1% lower than the
- 619 SCAG residential NG FFCO₂ estimate).

Table 6. Residential natural gas FFCO₂ emissions in the five Hestia-LA domain counties for the year 2011
 compared to estimates from the California Energy Commission (CEC). Units: MtC/yr.

County	Hestia	CEC	diff (%)
Los Angeles	1.94	1.98 -2.0%	
Orange	0.63	0.59 5.7%	
San Bernardino	0.40	0.39 0.8%	
Riverside	0.35	0.39	-11.1%
Ventura	0.19	0.18 6.5%	

LA Megacity 3.51 3.54 -0.9%	LA Megacity
-----------------------------	-------------

- 622 Average hourly variations in FFCO₂ emissions are sensitive to both the sector and spatial location. Figure 15
- 623 presents annual mean diurnal patterns specified by county and sector (the railroad or cement sectors were
- 624 constructed with no diurnal cycle and hence is not shown). As noted previously, Los Angeles county shows the
- 625 greatest emissions overall, particularly for the commercial marine vessel sector where the port of Los Angeles
- 626 dominates. The commercial, residential, onroad and CMV sectors exhibit two maxima, one in the morning (~5-10
- 627 am, local time) and another in the afternoon/evening. In the commercial sector, this afternoon/evening maximum
- 628 occurs later in this time period centered on 9 pm local time, coinciding with retail closing schedules. The maximum
- 629 CMV emissions are shifted by roughly two hours earlier in the day for both the morning and afternoon/evening
- 630 peaks. The afternoon/evening maximum for the onroad sector shows an afternoon/evening maximum that is of
- 631 longer duration than that in the morning with emissions gradually rising after the midpoint of the day, local time. In
- 632 addition to large daily variations, the onroad sector contains a significant weekly temporal pattern with emissions
- 633 largest on Monday and smallest on Saturday (Figure 16).
- 634 Diurnal patterns in onroad and airport FFCO₂ emissions have a single maximum at the middle of the day but broadly
- 635 extending across all daylit hours. In the case of the nonroad emissions, this is simply a reflection of the EPA
- 636 temporal surrogate applied. In the case of the airport FFCO₂ emissions, the time structure reflects the reported air
- traffic volume at the major airports in the LA Megacity. Finally, the industrial and electricity production sectors
- 638 maintain relatively constant emissions across all 24 hours. In the case of the industrial sector, this reflects the
- 639 integration of industry-specific EPA temporal surrogates within a given county. For the electricity production sector,
- 640 the time structure is primarily driven by the stack-monitored emissions and shows a slightly greater emission in the
- 641 evening hours compared to all other hours.
- 642 The diurnal patterns are consistent across all five counties with the exception of the commercial sector where there
- are small differences in the maximum point of the morning emissions in San Bernardino and Ventura counties
- 644 compared to the other LA Megacity counties.
- 645

656 production; g) industrial; h) nonroad. Note: different scale range on each plot. Units: kgC/hour.

658

Figure 16. Average weekly onroad FFCO₂ emissions from the Hestia-LA v2.5 data product for five counties.
 Units: kgC/day

661 4 Discussion

- 662 The first Hestia urban FFCO₂ emissions data product was produced for the Indianapolis domain (Gurney et al., 663 2012). As an outcome of the Hestia effort, a large multifaceted effort, the Indianapolis Flux Experiment (INFLUX), 664 emerged (Whetstone et al., 2017; Davis et al., 2017). INFLUX aims to advance quantification and associated 665 uncertainties of urban CO₂ and CH₄ emissions by integrating a high-resolution bottom-up emission data product, 666 such as Hestia, with atmospheric concentration measurements (Turnbull et al., 2015; Miles et al., 2017; Richardson 667 et al., 2017), flux measurements (Cambaliza et al., 2014; 2015; Heimberger et al., 2017), and atmospheric inverse 668 modeling. In addition to its use as a key constraint in the INFLUX atmospheric inverse estimation (Lauvaux et al., 669 2016), Hestia has been informed by atmospheric observations making it useable as a standalone high-resolution flux 670 estimate offering a detailed space-time understanding of urban emissions. Begun in the late 2000s, INFLUX has 671 explored many aspects of the individual elements of a scientifically-driven urban flux assessment (e.g. Wu et al., 672 2018) in addition to demonstrating potential reconciliation between Hestia and the atmospheric measurements 673 (Gurney et al., 2017; Turnbull et al., 2018). Similar efforts are ongoing in the Salt Lake City (Mitchell et al., 2016;
- Lin et al., 2018) and Baltimore (Martin et al., 2018) domains with a different arrangement of atmospheric
- 675 monitoring and modeling. As with INFLUX, a Hestia FFCO₂ emissions data product was produced in each domain
- 676 (Patarasuk et al., 2016; Gurney et al., 2018).

- 677 The Hestia Los Angeles Megacity effort was developed under the Megacities Carbon Project framework
- 678 (https://megacities.jpl.nasa.gov/portal/). It was designed to serve the Megacities Carbon Project in a similar capacity
- to its role in INFLUX. The Hestia-LA results are unique in that it is the first high-resolution spatiotemporally-
- 680 explicit inventory of FFCO₂ emissions centered over a megacity. Presented here at the 1 km² spatial and hourly
- temporal resolution, the emissions can be represented at finer spatial scales down to the individual building, though
- 682 with higher uncertainty. While policy emphasis in California thus far has been focused on CH₄ emissions (Carranza
- 683 et al., 2017; Wong et al., 2016; Verhulst et al., 2017; Hopkins et al., 2016), work is ongoing to use the extensive
- atmospheric CO₂ observing capacity in the Los Angeles domain (e.g. Newman et al., 2016; Wong et al., 2015;
- 685 Wunch et al., 2009) within an atmospheric CO₂ inversion. This will offer an important evaluation of the Hestia-LA
- 686 emissions for which limited independent evaluation is currently available.
- 687 The potential of the Hestia-LA FFCO₂ emissions to enable or assist with policymaking in the cities, counties or
- metropolitan planning domain of the overall Southern California area is considerable. The traditional urban
- 689 inventory approach, such as accomplished by many cities as part of their climate action plans, are whole-city
- 690 accounts, often specific to sector, that follow one of a few inventory protocols. Given the challenges of data
- 691 acquisition and the idiosyncrasies of protocol choice and needs, the traditional urban inventories are difficult to
- 692 compare across cities and hence, aggregate reliably in a metropolitan domain such as the LA Megacity. Importantly,
- 693 without space and time explicit emissions information, they are difficult to calibrate with atmospheric measurements
- and hence, evaluate against this important scientific constraint. The Hestia-LA FFCO₂ emissions approach attempts
- to overcome these limitations to traditional inventory work. By quantifying emissions at the scale of individual
- buildings and road segments, with process detail such as the sector, fuel, and combustion technology, Hestia results
- 697 can be organized according to most of the protocols in use by cities. This explicit space and time detail also allow
- 698 for calibration to atmospheric measurements, for which emission location and time structure is essential.
- 699 The state of California continues to lead the nation in climate policy with numerous legislative and executive orders
- 700 outlining both general reduction goals and specific policy instruments. The California Global Warming Solutions
- 701 Act (Assembly Bill 32) passed in 2006, specifies a statewide reduction in greenhouse gas emissions to 1990 levels
- by the year 2020 (https://www.arb.ca.gov/cc/ab32/ab32.htm). Furthermore, the bill requires reporting and
- verification of reductions in order to demonstrate compliance. Executive order B-30-15 and Senate Bill, SB 32 have
- built on this with an aim to reduce emissions 40% below 1990 levels by 2030 and 80% below 1990 levels by 2050,
- respectively (https://www.gov.ca.gov/2015/04/29/news18938/;
- 706 https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201520160SB32). Ultimately, much of the
- specific action needed to meet these goals will rest upon local governments and authorities. Given that 87% of the
- state population resides in urban areas and nearly half of state population resides in the Los Angeles Megacity, the
- 709 cities and counties that comprise the Los Angeles metropolitan area have a central role to play in achieving the
- 710 statewide climate change policy goals. The city of Los Angeles, the largest individual city in the metro region, has
- specified goals consistent with the state commitments, expecting to reduce greenhouse gas emissions 35% below
- 712 1990 levels by the year 2030 (http://environmentla.org/pdf/GreenLA CAP 2007.pdf). To meet these reduction

goals, policy actions will become increasingly difficult to achieve at no- or low-cost and economic efficiency will
 become central to making policy choices.

715 The most important attribute of the Hestia-LA approach, therefore, is the potential it offers for targeting urban CO₂ 716 reduction policy more efficiently. As shown in Figures 12 and 13, FFCO₂ emissions are highly variable in space and 717 typically cluster in concentrated areas. In choosing specific policy approaches and instruments, this offers Los 718 Angeles policymakers the ability to target specific neighborhoods, road segments, or commercial hubs, where 719 policies will achieve the greatest reduction for resources expended. This rests on the argument that specificity leads 720 to efficiency. As all cities, including those in the Los Angeles Megacity, move towards those aspects of carbon 721 emission reductions that are not part of the "low hanging fruit" policy instruments, competition for limited resources 722 and policy justification will increase. Having information that targets the most efficient and effective emission 723 reduction investments, established by independent rigorous scientific information, will be at a premium. For 724 example, if a small proportion of the commercial sector buildings in the LA Megacity account for a large proportion 725 of the FFCO₂ emissions, knowing the location of these buildings and targeting energy efficiency programs to those 726 buildings, may offer the most economically efficient route to emissions reductions in the commercial sector. A 727 similar argument can be made in the onroad sector due to the clustering of large onroad emitting gridcells and

728 specific road-class attributes (see Rao et al., 2017).

A number of caveats are worth mentioning in association with the Hestia-LA v2.5 FFCO₂ emissions results. With

730 Vulcan v3.0 as the starting point for the quantification in Hestia, errors in Vulcan will be passed to Hestia, with a

731 few exceptions. Of particular note are the industrial sector and more specifically, refining operations which have

732 limited emissions reporting. These remain difficult to quantify due to the range of CO emission factors representing

many of the combustion processes undertaken at these large and complex facilities. The uncertainty estimation

described remains limited and there are additional sources of uncertainty that must be quantified such as categorical

rrors (e.g. mis-specification of fuel category or road class), errors in spatial accuracy and spatial error correlation.

736 Quantifying these contributions to the overall uncertainty presented here remain a task for future work.

737 5 Data availability, policy and future updates

738 The Hestia-LA v2.5 emissions data product can be downloaded from the data repository at the National Institute

of Standards and Technology (<u>https://doi.org/10.18434/T4/1502503</u>) and is distributed under Creative Commons

740 Attribution 4.0 International (CC-BY 4.0, https://creativecommons.org/licenses/by/ 4.0/deed.en). The Hestia-LA

v2.5 FFCO₂ emissions data product is provided as annual and hourly (local and UTC versions) 1 km x 1 km

742 NetCDF file formats, one file for each of the 6 years (2010-2015). The hourly files are approximately 2.9 GB each.

The annual files are 0.34 GB each.

Attempts will be made to update the Hestia-LA FFCO₂ emissions on a roughly bi-annual basis, depending upon

support, the availability of updates to the Vulcan FFCO₂ emissions data product, and updates to the additional data

sources described in this study.

747 6 Conclusion

- 748 The Hestia Project quantifies urban fossil fuel CO₂ emissions at high space- and time-resolution with application to
- both scientific and policy arenas. We present here the Hestia-LA version 2.5 FFCO₂ emissions data product which
- represents hourly, 1 km², sector-specific emissions for the five counties of the Los Angeles metropolitan area for the
- 751 2010 to 2015 time period. The methodology relies on the results of the Vulcan Project (version 3.0) further
- enhancing and distributing emissions to the scale of individual buildings and road segments with local data sources
- acquired from local government agencies. Each sector is quantified using data sources and spatial/temporal
- distribution approaches distinct to the sector characteristics. The results offer a detailed view of FFCO₂ emissions
- across the LA Megacity and point to the extreme spatial variance of emissions. For example, 10% of the 1 km^2
- emitting gridcells account for 93.6%, 73.4%, 66.2%, and 45.3% of the emissions in the industrial, onroad,
- 757 commercial, and residential sectors, respectively. We find that the LA Megacity emitted 48.06 ± 5.3 MtC/yr in the
- year 2011, dominated by Los Angeles county (26.42 ± 2.9 MtC/yr) and from a sector-specific viewpoint, dominated
- by the onroad sector (20.81 ± 2.3 MtC/yr). Hestia FFCO₂ emissions are 10.7% larger than the inventory estimate
- generated by the local metropolitan planning agency, a difference that is driven by the industrial and electricity
- 761 production sectors. Good agreement is found (<1%) when comparing residential natural gas FFCO₂ emissions to
- tility-based reporting at the county spatial scale. The largest temporal variations are found in the diurnal cycle with
- the residential, commercial, onroad, and commercial marine vessel emissions showing to maxima, one in the
- morning and a second in the afternoon/evening. Airport and nonroad emissions, by contrast show broad maxima
- across the daylit hours. Finally, the industrial and electricity production sectors show little diurnal variation across
- 766 24 hours. The onroad sector also exhibits variation in the weekly distribution of emissions with maximum FFCO₂
- 767 emissions on Monday and minimum emissions on Saturday.
- 768 The Hestia-LA v2.5 FFCO₂ emissions data product offers the scientific and policymaking communities
- 769 unprecedented spatially and temporally-resolved information on FFCO₂ emission sources in the Los Angeles
- 770 Megacity. As part of the Megacities Carbon Project, future work includes incorporation into atmospheric CO₂
- inversion research to further evaluate the Hestia-LA data product and improve estimation. Policymakers can use the
- Hestia-LA results to better-understand FFCO₂ emissions at the human scale, offering the potential for improved
- targeting of FFCO₂ reduction policy instruments. Finally, urban researchers can use Hestia-LA to explore a number
- of important urban science questions such as how emissions intersect with other urban sociodemographic variables
- such as income, education, housing size, or vehicle ownership.
- The Hestia-LA data product is publicly available and will be updated with future years as data becomes available.
- 777 **Competing Interests.** The authors declare that they have no conflict of interest.
- 778 Acknowledgments. This research was made possible through support from the National Aeronautics and Space
- 779 Administration Carbon Monitoring System program, Understanding User Needs for Carbon Information project
- 780 (subcontract 1491755), the National Aeronautics and Space Administration grant NNX14AJ20G, the National

- 781 Institute of Standards and Technology grant 70NANB14H321 and 70NANB16H264, JPL's Strategic
- 782 University Research Partnership program, and the Trust for Public Land.

783 References

- Ainsworth, M. (2014) Shapefile with AAWT data. Retrieved by personal communication from Mike Ainsworth
- 785 (AINSWORT@scag.ca.gov) and Cheryl Leising (leising@scag.ca.gov) at Transportation Planning Department,
 786 SCAG Riverside Office.
- 787 AirNav.com. Data retrieved from: http://www.airnav.com/airports/ (Aug 1, 2018).
- Alexis, A. (2011), Marine Emissions Model, California Air Resources Board. personal communication with Andy
 Alexis, July 6, 2011 (email: aalexis@arb.ca.gov). Retrieved from:
- 790 https://www.arb.ca.gov/ports/marinevess/ogv/ogv1085.htm
- Bréon, F. M., Broquet, G., Puygrenier, V., Chevallier, F., Xueref-Remy, I., Ramonet, M., Dieudonne, E., Lopez, M.,
- Schmidt, M., Perrussel, O., and Ciais, P.: An attempt at estimating Paris area CO₂ emissions from atmospheric
 concentration measurements, Atmos. Chem. Phys., 15, 1707–1724, https://doi.org/10.5194/ acp-15-1707-2015,
 2015.
- Cambaliza, M. O. L., Shepson, P. B., Caulton, D. R., Stirm, B., Samarov, D., Gurney, K. R., Turnbull, J., Davis, K.
 J., Possolo, A., Karion, A., Sweeney, C., Moser, B., Hendricks, A., Lauvaux, T., Mays, K., Whetstone, J.,
 Huang, J., Razlivanov, I., Miles, N. L. and Richardson, S. J.: Assessment of uncertainties of an aircraft-based
- mass balance approach for quantifying urban greenhouse gas emissions, Atmos. Chem. Phys., 14(17), 9029–
 9050, doi:10.5194/acp-14-9029-2014, 2014.
- Cambaliza, M. O. L., Shepson, P. B., Bogner, J., Caulton, D. R., Stirm, B., Sweeney, C., Montzka, S. a., Gurney, K.
 R., Spokas, K., Salmon, O. E., Lavoie, T. N., Hendricks, A., Mays, K., Turnbull, J., Miller, B. R., Lauvaux, T.,
- 802 Davis, K., Karion, A., Moser, B., Miller, C., Obermeyer, C., Whetstone, J., Prasad, K., Miles, N. and
- 803 Richardson, S.: Quantification and source apportionment of the methane emission flux from the city of
- Indianapolis, Elem. Sci. Anthr., 3, 37, doi:10.12952/journal.elementa.000037, 2015.
- California Air Resources Board (2010) *Documentation of California's Greenhouse Gas Inventory*, June 2010.
 Retrieved from: http://www.arb.ca.gov/cc/inventory/doc/doc.htm.
- California Air Resources Board (2014) *EMFAC2014 Volume I User's Guide*, v1.0.7, April 30, 2014, California
 Environmental Protection Agency Air Resources Board, Mobile Source Analysis Branch, Air Quality Planning
 & Science Division. EMFAC data retrieved from: https://www.arb.ca.gov/emfac/2014/.
- California Energy Commission (2006) California Commercial End-Use Survey, CEC-400-2006-005. Retrieved
 from: http://www.energy.ca.gov/ceus/2006 enduse.html (Aug 1, 2018).
- 812 Carranza, V., T. Rafiq, I. Frausto-Vicencio, F.M. Hopkins, K.R. Verhulst, P. Rao, R.M. Duren, C.E. Miller: Vista-
- LA: Mapping methane-emitting infrastructure in the Los Angeles megacity, Earth Syst., Sci. Data, 10, 653-676,
 https://doi.org/10.5194/essd-10-653-2018, 2018.
- 815 Chavez, A., and Ramaswami, A: Progress toward low carbon cities: Approaches for transboundary GHG emissions'
- 816 footprinting, Carbon Management, **2**(4), 471-482, doi: 10.4155/cmt.11.38, 2011.

- Christen, A.: Atmospheric measurement techniques to quantify greenhouse gas emissions from cities, Urban
 Climate, 10, 241-260, doi: 10.1016/j.uclim.2014.04.006, 2014.
- 819 Clark, S. S., and Chester, M. V.: A hybrid approach for assessing the multi-scale impacts of urban resource use:
- Transportation in Phoenix, Arizona, J. of Industrial Ecology, **21**(1), 136-150, doi: 10.1111/jiec.12422, 2017.
- 821 Commercial Building Energy Consumption Survey (2016) 2012 CBECS microdata files and information, U.S.
- 822 Energy Information Administration. Data retrieved from:
- 823 https://www.eia.gov/consumption/commercial/data/2012/index.php?view=microdata (Aug 1, 2018).
- Davis, K. J., A. Deng, T. Lauvaux, N. L. Miles, S. J. Richardson, D. Sarmiento, K. R. Gurney, R. M. Hardesty, A.
- 825 Brewer, P. B. Shepson, M. O. Cambaliza, C. Sweeney, J. Turnbull, J. Whetstone, A. Karion: The Indianapolis
- 826 Flux Experiment (INFLUX): A test-bed for developing anthropogenic greenhouse gas measurements, Elem.
- 827 Sci. Anth., 5(21), https://www.elementascience.org/article/10.1525/elementa.188/, 2017.
- 828 Department of Energy/Energy Information Administration 2003 Electric Power Monthly March 2003 Energy
- 829 Information Administration, Office of Coal, Nuclear, and Alternate Fuels, US Department of Energy,
- 830 Washington D.C. 20585. DOE/EIA form 923 reporting data retrieved from:
- 831 http://www.eia.gov/electricity/data/eia923 (July 27, 2018).
- Bepartment of Energy/Energy Information Administration (2018) State Energy Consumption Estimates 1960
 through 2016, DOE/EIA-0214(2016), June 2018, Washington DC.
- Biguing CO2 sources in an urban
 Biguing
- Federal Aviation Administration (2018a), OPSNET Manual: http://aspmhelp.faa.gov/index.php/OPSNET_Manual
 (Aug 1, 2018). Data retrieved from: https://aspm.faa.gov/opsnet/sys/main.asp.
- 838 Federal Aviation Administration (2018b), ETMSC Manual: http://aspmhelp.faa.gov/index.php/ETMSC Manual
- 839 (Aug 1, 2018). Data retrieved from: https://aspm.faa.gov/tfms/sys/main.asp (Aug 1, 2018).
- 840 Federal Emergency Management Agency (2017) HAZUS database. Retreived from:
- 841 https://www.fema.gov/summary-databases-hazus-multi-hazard (Aug 1, 2018).
- 842 Feng, S., Lauvaux, T., Newman, S., Rao, P., Ahmadov, R., Deng, A., Díaz-Isaac, L. I., Duren, R. M., Fischer, M. L.,
- 843 Gerbig, C., Gurney, K. R., Huang, J., Jeong, S., Li, Z., Miller, C. E., O'Keeffe, D., Patarasuk, R., Sander, S. P.,
- Song, Y., Wong, K. W., and Yung, Y. L.: Los Angeles megacity: a high-resolution land–atmosphere modelling
 system for urban CO₂ emissions, Atmos. Chem. Phys., 16, 9019-9045, doi:10.5194/acp-16-9019-2016, 2016.
- 846 Fong, W. K., M. Sotos, M. Doust, S. Schultz, A. Marques, and C. Deng-Beck, 2014: Global Protocol for
- 847 Community-Scale Greenhouse Gas Emissions Inventories: An Accounting and Reporting Standard for Cities.
 848 WRI/C40/ICLEI.
- Font, A., Grimmond, C. S. B., Kotthaus, S., Morguí, J. A., Stockdale, C., O'Connor, E., Priestman, M. and Barratt,
 B.: Daytime CO₂ urban surface fluxes from airborne measurements, eddy-covariance observations and
- emissions inventory in Greater London, Environ. Pollution, https://doi.org/10.1016/j.envpol.2014.10.001, 2015.
- 852 Getis, A., & Ord, J. K.:. The analysis of spatial association by use of distance statistics. Geographical
- Analysis, 24(3), 189-206, 1992.

- 854 Grimmond, C. S. B., T. S. King, F. D. Cropley, D. J. Nowak, and Souch, C.: Local-scale fluxes of carbon dioxide in
- urban environments: Methodological challenges and results from Chicago. *Environmental Pollution*,
 116(SUPPL. 1). https://doi.org/10.1016/S0269-7491(01)00256-1, 2002.
- 857 Gurney, K. R., D. Mendoza, Y. Zhou, M Fischer, S. de la Rue du Can, S. Geethakumar, Miller, C.: The Vulcan
- Project: High resolution fossil fuel combustion CO₂ emissions fluxes for the United States, Environ. Sci.
 Technol., 43(14), 5535-5541, doi:10.1021/es900806c, 2009.
- Gurney K.R., Huang J and Coltin K.: Comment on quick, J. C. (2014) carbon dioxide emission tallies for 210 US
 coal-fired power plants: a comparison of two accounting methods J. Air Waste Manage. Assoc. 64: 73–79, J.
 Air Waste Manage. Assoc., 64 1215–7, 2014.
- Gurney, K.R., Huang, J., and Coltin, K.: Bias present in US federal agency power plant CO₂ emissions data and
 implications for the US clean power plan, Env. Res. Lett., 11, 064005, doi:10.1088/1748-9326/11/6/064005,
 2016.
- Gurney, K.R., J. Liang, R. Patarasuk, D. O'Keeffe, J. Huang, M. Hutchins, T. Lauvaux, J. C. Turnbull, and P. B.
 Shepson: Reconciling the differences between a bottom-up and inverse-estimated FFCO₂ emissions estimate in a large U.S. urban area, Elem. Sci. Anthr., 5, 44, doi: 10.1525/elementa.137, 2017.
- Gurney, K. R., Liang, J, D. O. O'Keeffe, R. Patarasuk, M. Hutchins, J. Huang, P. Rao, and Song, Y.: Comparison of
 Global Downscaled Versus Bottom-Up Fossil Fuel CO₂ Emissions at the Urban Scale in Four US Urban Areas,
 J. Geophys. Res.-Atmos., https://doi.org/10.1029/2018JD028859, 2018.
- Gurney K.R., J. Liang, D. O'Keeffe, J. Huang, Y. Song, P. Rao, Wong, T. M.: Hestia Fossil Fuel Carbon Dioxide
 (FFCO₂) Data Product Los Angeles Basin, Version 2.5, 1km grid, https://doi.org/10.18434/T4/1502503 (last
 accessed December 20, 2018), 2019.
- Heimburger, A. M. F., Harvey, R. M., Shepson, P. B., Stirm, B. H., Gore, C., Turnbull, J., Cambaliza, M. O. L,
- 876 Salmon, O. E., Kerlo, A-E. M., Lavoie, T. N., Davis, K.J., Lauvaux, T., Karion, A., Sweeney, C., Brewer, W.
- A., Hardesty, R. M., and Gurney, K. R.: Assessing the optimized precision of the aircraft mass balance method
- for measurement of urban greenhouse gas emission rates through averaging. Elem. Sci. Anth., 5(0), 26.
- 879 https://doi.org/10.1525/elementa.134, 2017.
- 880 Hirsch, J. & Associates (2004) Energy Simulation Training for Design & Construction Professionals. Retrieved
- from: http://doe2.com/download/equest/eQuestTrainingWorkbook.pdf_(Aug 1, 2018). eQuest model download
 available from: http://www.doe2.com/eQuest/ (Aug 1, 2018).
- Homer, C.G., Dewitz, J.A., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N.D., Wickham, J.D.,
- and Megown, K.: Completion of the 2011 National Land Cover Database for the conterminous United StatesRepresenting a decade of land cover change information, Photogrammetric Engineering and Remote Sensing,
 886 81(5), 345-354, 2015.
- Hopkins, F. M., Kort, E. A., Bush, S. E., Ehleringer, J., Lai, C., Blake, D., and Randerson, J. T.: Spatial patterns and
 source attribution of urban methane in the Los Angeles Megacity, J. Geophys. Res.-Atmos., 121, 2490–2507,
 https://doi.org/10.1002/2015JD024429, 2016.

- Hutyra, L. R., R. Duren, K. R. Gurney, N. Grimm, E. A. Kort, E. Larson, and Shrestha, G.: Urbanization and the
- 891 carbon cycle: Current capabilities and research outlook from the natural sciences perspective, Earth's Future,
- 892 2(10), 473-495, doi: 10.1002/2014ef000255, 2014.
- Intergovernmental Panel on Climate Change "IPCC guidelines for national greenhouse gas inventories, Prepared by
 the National Greenhouse Gas Inventories Programme" (IGES, Japan, 2006).
- 895 Jones, C., and Kammen, D. M.: Spatial distribution of U.S. household carbon footprints reveals suburbanization
- undermines greenhouse gas benefits of urban population density, Env. Sci. and Tech., 48(2), 895-902,
 doi:10.1021/es4034364, 2014.
- Kort, E. A., C. Frankenberg, C. E. Miller, and Oda, T.: Space-based observations of megacity carbon dioxide,
 Geophys. Res. Lett., 39(17), doi: 10.1029/2012gl052738, 2012.
- 900 Lauvaux, T, Miles, N. L., Richardson, S.J., Deng, A, Stauffer, D., Davis, K.J., Jacobson, G., Rella, C., Calonder, G.-
- 901 P., DeCola, P.L.: Urban emissions of CO₂ from Davos, Switzerland: the first real-time monitoring system using
- 902 an atmospheric inversion technique, J. Appl Meteor. and Climatol., 52: 2654–2668. doi:
- 903 https://doi.org/10.1175/JAMC-D-13-038.1, 2013.
- Lauvaux, T., Miles, N. L., Deng, A., Richardson, S. J., Cambaliza, M. O., Davis, K. J., Gaudet, B., Gurney, K. R.,
 Huang, J., O'Keefe, D., Song, Y., Karion, A., Oda, T., Patarasuk, R., Razlivanov, I., Sarmiento, D., Shepson, P.,
 Sweeney, C., Turnbull, J. and Wu, K.: High-resolution atmospheric inversion of urban CO₂ emissions during
 the dormant season of the Indianapolis Flux Experiment (INFLUX), J. Geophys. Res. Atmos., 121(10), 5213–
 5236, doi:10.1002/2015JD024473, 2016.
- 209 Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A. C., Korsbakken, J. I., Peters, G.
- 910 P., Canadell, J. G., Jackson, R. B., Boden, T. A., Tans, P. P., Andrews, O. D., Arora, V. K., Bakker, D. C. E.,
- 911 Barbero, L., Becker, M., Betts, R. A., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Cosca, C. E., Cross, J.,
- 912 Currie, K., Gasser, T., Harris, I., Hauck, J., Haverd, V., Houghton, R. A., Hunt, C. W., Hurtt, G., Ilyina, T., Jain,
- A. K., Kato, E., Kautz, M., Keeling, R. F., Klein Goldewijk, K., Körtzinger, A., Landschützer, P., Lefèvre, N.,
- 914 Lenton, A., Lienert, S., Lima, I., Lombardozzi, D., Metzl, N., Millero, F., Monteiro, P. M. S., Munro, D. R.,
- 915 Nabel, J. E. M. S., Nakaoka, S.-I., Nojiri, Y., Padin, X. A., Peregon, A., Pfeil, B., Pierrot, D., Poulter, B.,
- 916 Rehder, G., Reimer, J., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Stocker, B. D., Tian, H.,
- 917 Tilbrook, B., Tubiello, F. N., van der Laan-Luijkx, I. T., van der Werf, G. R., van Heuven, S., Viovy, N.,
- 918 Vuichard, N., Walker, A. P., Watson, A. J., Wiltshire, A. J., Zaehle, S., and Zhu, D.: Global Carbon Budget
- 919 2017, Earth Syst. Sci. Data, 10, 405-448, https://doi.org/10.5194/essd-10-405-2018, 2018.
- 920 Lin, J.C., Mitchell, M., Buchert, E., Crosman, E., Mendoza, D., Gurney, K.R., Patasuruk, R., Bowling, D., Pataki,
- 921 D., Bares, R., Fasoli, B., Catherine, D., Baasandorj, M., Jacques, A., Hoch, S., Horel, J., and Ehleringer, J.: CO₂
- 922 and carbon emissions from cities: linkages to air quality, socioeconomic activity and stakeholders in the Salt
- 923 Lake City urban area, Bull Am. Meteorological Soc., 99(11), 2325–2339. https://doi.org/10.1175/bams-d-17-
- 924 0037.1, 2018.

- 925 Los Angeles County (2016) Countywide Building Outlines 2014 Update Public Domain Release. Retrieved
- from: https://egis3.lacounty.gov/dataportal/2016/11/03/countywide-building-outlines-2014-update-public domain-release/ (Aug 1, 2018).
- Los Angeles World Airports (2014), Personal communication: Norene Hastings, Environmental Supervisor, Los
 Angeles World Airports, Environmental Services division, January 2014.
- 930 Manufacturing Energy Consumption Survey (2010) 2010 MECS Survey Data, U.S. Energy Information
- 931 Administration. Retrieved from: https://www.eia.gov/consumption/manufacturing/data/2010/#r10 (Aug 1,
 932 2018).
- Marion, W. and Urban, K. 1995. User's Manual for TMY2s Typical Meteorological Years. National Renewable
 Energy Laboratory (NREL), http://rredc.nrel.gov/solar/pubs/tmy2/PDFs/tmy2man.pdf, accessed date July 22,
 2014.
- Martin, C.R., N Zeng, A. Karion, K. Mueller, S. Ghosh, I. Lopez-Coto, K. R. Gurney, T. Oda, K. Prasad, Y. Liu,
 R.R. Dickerson, Whetstone, J.: Investigating Sources of Variability and Error in Simulations of Carbon Dioxide
- 938 in an Urban Region, Atmos. Env., 199, 55-69. https://doi.org/10.1016/j.atmosenv.2018.11.013, 2018.
- Mays, K. L., Shepson, P. B., Stirm, B.H., Karion, A., Sweeney, C., and Gurney, K., R.: Aircraft-Based
 Measurements of the Carbon Footprint of Indianapolis, Env. Sci. and Tech., 43(20): 7816–7823.
 https://doi.org/10.1021/es901326b, 2009.
- McKain, K., A. Down, S. M. Raciti, J. Budney, L. R. Hutyra, C. Floerchinger, S. C. Herndon, T. Nehrkorn, M. S.
 Zahniser, R. B. Jackson, Phillips, N. and Wofsy, S. C.: Methane emissions from natural gas infrastructure and
 use in the urban region of Boston, Massachusetts, Proceedings of the Nat. Acad. of Sci. USA, 112(7), 19411946, doi: 10.1073/pnas.1416261112, 2015.
- Menzer, O., W. Meiring, P. C. Kyriakidis, and McFadden, J. P.: Annual sums of carbon dioxide exchange over a
 heterogeneous urban landscape through machine learning based gap-filling. Atmos. Env., 101, 312-327,
 doi:10.1016/j.atmosenv.2014.11.006, 2015.
- Miles, NL, Richardson, SJ, Lauvaux, T, Davis, KJ, Deng, A, Turnbull, J. C., Sweeney, Gurney, K.R., Patarasuk, R.,
 Razlivanov, I., Cambaliza, M.O.L., and Shepson, P. B.: Quantification of urban atmospheric boundary layer
 greenhouse gas dry mole fraction enhancements: Results from the Indianapolis Flux Experiment (INFLUX),
- 952 Elem. Sci. Anth., 5(0), 27, https://doi.org/10.1525/elementa.127, 2017.
- Mitchell, L., J.C. Lin, D. R. Bowling, D. E. Pataki, C. Strong, A. J. Schauer, R. Bares, S. E. Bush, B. B. Stephens,
 D. Mendoza, D. Mallia, L. Holland, K. R. Gurney, Ehleringer, J. R.: Long-term urban carbon dioxide
- observations reveal spatial and temporal dynamics related to urban characteristics and growth, Proceedings of
 the National Academy of Sciences, March 5, 2018, https://doi.org/10.1073/pnas.1702393115, 2018.
- Mount, D.M. and S. Arya (2010) ANN: A Library for Approximate Nearest Neighbor Searching, Version 1.1.2,
 Release Date: Jan 27, 2010. Retrieved from: https://www.cs.umd.edu/~mount/ANN/ (Aug 1, 2018).
- 959 Newman, S., Xu, X., Gurney, K. R., Hsu, Y. K., Li, K. F., Jiang, X., Keeling, R., Feng, S., O'Keefe, D., Patarasuk,
- 960 R., Wong, K. W., Rao, P., Fischer, M. L., and Yung, Y. L.: Toward consistency between trends in bottom-up

- 961 CO₂ emissions and top-down atmospheric measurements in the Los Angeles megacity, Atmos. Chem. Phys., 16,
 962 3843–3863, https://doi.org/10.5194/acp-16-3843-2016, 2016.
- Patarasuk, R., Gurney, K. R., O'Keeffe, D., Song, Y., Huang, J., Rao, P., Buchert, M., Lin, J. C., Mendoza, D., and
 Ehleringer, J. R.: Urban high-resolution fossil fuel CO₂ emissions quantification and exploration of emission
 drivers for potential policy applications, Urban Ecosyst., 19, 1013–1039, https://doi.org/10.1007/s11252-016-
- 966 0553-1, 2016.
- Porse, E., J. Derenski, H. Gustafson, Z. Elizabeth, and Pincetl, S.: Structural, geographic, and social factors in urban
 building energy use: Analysis of aggregated account-level consumption data in a megacity, Energy Policy, 96,
 179-192, doi: 10.1016/j.enpol.2016.06.002, 2016.
- 970 Portland Cement Company, Economic Research Department (2006) U.S. and Canadian Portland Cement Industry
 971 Plant Information Summary, Portland Cement Association, Skokie, IL.
- Quick J.: Carbon dioxide emission tallies for 210 US coal- fired power plants: a comparison of two accounting
 methods, J. Air Waste Manage. Assoc., 64 73–9, 2014.
- 974 Performance Measurement System (PeMS) Data Source: http://www.dot.ca.gov/trafficops/mpr/source.html (Aug 1,
 975 2018).
- 876 Ramaswami, A., T. Hillman, B. Janson, M. Reiner, and Thomas, G.: A demand-centered, hybrid life-cycle
 877 methodology for city-scale greenhouse gas inventories, Environmental Science and Technology, 42(17), 6455878 6461, doi: 10.1021/es702992q, 2008.
- Rao, P., Gurney, K. R., Patarasuk, R., Yang, S., Miller, C. E., Duren, R. M., and Eldering, A.: Spatio-temporal
 variations in on-road CO₂ emissions in the Los Angeles Megacity, AIMS Geosci., 3, 239–267,
- 981 https://doi.org/10.3934/geosci.2017.2.239, 2017.
- Residential Energy Consumption Survey (2013) 2009 RECS Survey Data, U.S. Energy Information Administration.
 Retrieved from: https://www.eia.gov/consumption/residential/data/2009/index.php?view=microdata (Aug 1,
- 984 2018).
- Richardson, S. J., Miles, N. L., Davis, K. J., Lauvaux, T., Martins, D. K., Turnbull, J. C., McKain, K., Sweeney, C.,
 and Cambaliza, M. O. L.: Tower measurement network of in-situ CO₂, CH₄, and CO in support of the
- 987 Indianapolis FLUX (INFLUX) Experiment, Elem. Sci. Anth., 5(0), 59. https://doi.org/10.1525/elementa.140,
 988 2017.
- 989 Sargent, M., Barrera, Y., Nehrkorn, T., Hutyra, L. R., Gately, C. K., Mckain, K., Sweeney, C., Hegarty, J.,
- Hardiman, B., Wang, J.A., and Wofsy, S. C.: Anthropogenic and biogenic CO₂ fluxes in the Boston urban
 region, Proceedings of the National Academy of Sciences USA, 115(40), E9507–E9507, 2018.
- 992 https://doi.org/10.1073/pnas.1815348115, 2018.
- 993 Schwandner, F. M., Gunson, M. R., Miller, C. E., Carn, S. A., Eldering, A., Krings, T., ... Podolske, J. R.:
- 994 Spaceborne detection of localized carbon dioxide sources, Science, 358(6360).
- 995 https://doi.org/10.1126/science.aam5782, 2017.
- Seto, K. C., Dhakal, S., Bigio, A., Blanco, H., Delgado, G. C., et al.: Human Settlements, Infrastructure and Spatial
 Planning. In: *Climate Change 2014: Mitigation of Climate Change*. Contribution of Working Group III to the

- 998 Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O, Pichs-Madruga, R,
- 999 Sokona, Y, Farahani, E, Kadner, S, Seyboth, K, Adler, A, Baum, I, Brunner, S, Eickemeier, P, Kriemann, B,
- 1000 Savolainen, J. Schlömer, S. von Stechow, C. Zwickel, T. and Minx, J. C. (eds.)]. Cambridge University Press, 1001 Cambridge, United Kingdom and New York, NY, US, 2014.
- 1002 Shu, Y., and Lam, S. N.: Spatial disaggregation of carbon dioxide emissions from road traffic based on multiple 1003 linear regression model, Atmospheric Environment, 45(3), 634-640, doi: 10.1016/j.atmosenv.2010.10.037,
- 1004 2011.
- 1005 Southern California Association of Governments (2012) Parcel Data GIS Shapefiles. Retrieved by personal 1006 communication from Kimberly S. Clark (Clark@scag.ca.gov) and Christine Fernandez 1007 (fernandez@scag.ca.gov).
- 1008 Southern California Association of Governments (2014) SCAG AWDT data, personal communication, Mike 1009 Ainsworth (AINSWORT@scag.ca.gov), Transportation Modeling, Air Quality & Conformity, October, 2014.
- 1010 Staufer, J., Broquet, G., Bréon, F. M., Puygrenier, V., Chevallier, F., Xueref-Rémy, I., Dieudonne, E., Lopez, M.,
- 1011 Schmidt, M., Ramonet, M., Perrussel, O., Lac, C., Wu, L., Ciais, P.: The first 1-year-long estimate of the Paris
- 1012 region fossil fuel CO2 emissions based on atmospheric inversion, Atmospheric Chemistry and Physics, 16(22), 1013 14703-14726. https://doi.org/10.5194/acp-16-14703-2016, 2016.
- 1014 Turnbull, J. C., Sweeney, C., Karion, A., Newberger, T., Lehman, S. J., Tans, P. P., Davis, K. J., Lauvaux, T., Miles, 1015 N. L., Richardson, S. J., Cambaliza, M. O., Shepson, P. B., Gurney, K., Patarasuk, R. and Razlivanov, I.:
- 1016 Toward quantification and source sector identification of fossil fuel CO₂ emissions from an urban area: Results 1017
- from the INFLUX experiment, J. Geophys. Res. Atmos., 120(1), 292–312, doi:10.1002/2014JD022555, 2015.
- 1018 United States Environmental Protection Agency (1995) FIRE Version 5.0 Source Classification Codes and Emission 1019 Factor Listing for Criteria Ai Pollutants, EPA-454/R-95-012. Retrieved from
- 1020 https://www3.epa.gov/ttn/chief/old/efdocs/454r95012.pdf (July 27, 2018).
- 1021 United States Environmental Protection Agency (2013) Facility Registry Service (FRS). Setting Up A Data Flow
- 1022 with FRS: FRS Information Needs. Retrieved from https://www.epa.gov/frs/setting-data-flow-frs-frs-1023 information-needs (Aug 1, 2018).
- 1024 United States Environmental Protection Agency (2015a) Technical Support Document (TSD) Preparation of 1025 Emissions Inventories for the Version 6.2, 2011 Emissions Modeling Platform. Retrieved from
- 1026 https://www.epa.gov/air-emissions-modeling/2011-version-62-technical-support-document (July 27, 2018).
- 1027 United States Environmental Protection Agency (2015b) 2011 National Emissions Inventory, version 2 Technical
- 1028 Support Document. Document retrieved from https://www.epa.gov/air-emissions-inventories/2011-national-
- 1029 emissions-inventory-nei-technical-support-document (July 27, 2018). NEI version 2.0 data retrieved from:
- 1030 https://www.epa.gov/air-emissions-inventories/2011-national-emissions-inventory-nei-data (July 27, 2018).
- 1031 United States Environmental Protection Agency (2015c), 40 DFR Part 60, EPA-HQ-OAR-2013-0602; FRL-XXXX-
- 1032 XX-OAR, RIN 2060-AR33, Carbon Pollution Emission Guidelines for Existing Stationary Sources: Electric
- 1033 Utility Generating Units, August 3, 2015. Air Markets Program Data 2012 Pre-packaged data retrieved from:
- 1034 ftp://ftp.epa.gov/dmdnload/emissions/hourly/monthly/ (May 28, 2012).

- 1035 USGS (2003) *Minerals Yearbook, Vol. 1, Metals and Minerals, 2002.* U.S. Geological Survey. U.S. Department of
 1036 the Interior. July 2003.
- 1037 VandeWeghe, J. R., and C. Kennedy, 2007: A spatial analysis of residential greenhouse gas emissions in the
 1038 Toronto census metropolitan area, Journal of Industrial Ecology, 11(2), 133-144, doi: 10.1162/jie.2007.1220.
- 1039 Velasco, E., and Roth, M.: Cities as net sources of CO₂: Review of atmospheric CO₂ exchange in urban
 1040 environments measured by eddy covariance technique, Geography Compass, 4(9), 1238-1259,
- 1041 doi:10.1111/j.1749-8198.2010.00384.x, 2010.
- Velasco, E., S. Pressley, E. Allwine, H. Westberg, and Lamb, B.: Measurements of CO₂ fluxes from the Mexico
 City urban landscape, Atmospheric Environment, 39(38), 7433-7446, doi:10.1016/j.atmosenv.2005.08.038,
 2005.
- Verhulst, K. R., Karion, A., Kim, J., Salameh, P. K., Keeling, R. F., Newman, S., Miller, J., Sloop, C., Pongetti, T.,
 Rao, P., Wong, C., Hopkins, F. M., Yadav, V., Weiss, R. F., Duren, R. M., and Miller, C. E.: Carbon dioxide

1047 and methane measurements from the Los Angeles Megacity Carbon Project – Part 1: calibration, urban

- enhancements, and uncertainty estimates, Atmos. Chem. Phys., 17, 8313–8341, https://doi.org/10.5194/acp-178313-2017, 2017.
- Whetstone, J.R.: Advances in urban greenhouse gas flux quantification: The Indianapolis Flux Experiment
 (INFLUX), Elem. Sci. Anth., 6: 24. doi: https://doi.org/10.1525/elementa.282, 2018.
- Wong, C. K., Pongetti, T. J., Oda, T., Rao, P., Gurney, K. R., Newman, S., Duren, R. M., Miller, C. E., Yung, Y. L.,
 and Sander, S. P.: Monthly trends of methane emissions in Los Angeles from 2011 to 2015 inferred by CLARSFTS observations, Atmos. Chem. Phys., 16, 13121–13130, https://doi.org/10.5194/acp-16-13121-2016, 2016.
- 1055 Wong, K. W., Fu, D., Pongetti, T. J., Newman, S., Kort, E. A., Duren, R., Hsu, Y.-K., Miller, C. E., Yung, Y. L.,
- and Sander, S. P.: Mapping CH₄:CO₂ ratios in Los Angeles with CLARS- FTS from Mount Wilson, California,
 Atmos. Chem. Phys., 15, 241–252, https://doi.org/10.5194/acp-15-241-2015, 2015.
- 1058 WRI/WBCSD, 2004: The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard. World
- 1059 Business Council for Sustainable Development and the World Resources Institute.
- 1060 [http://www.ghgprotocol.org/corporate-standard].
- Wu, K., Lauvaux, T., Davis, K. J., Deng, A., Lopez Coto, I., Gurney, K. R. and Patarasuk, R.: Joint inverse
 estimation of fossil fuel and biogenic CO₂ fluxes in an urban environment: An observing system simulation
- 1063 experiment to assess the impact of multiple uncertainties, Elem. Sci. Anth., doi: http://
- 1064 doi.org/10.1525/elementa.138, 2018.
- Wunch, D., Wennberg, P. O., Toon, G. C., Keppel-Aleks, G., and Yavin, Y. G.: Emissions of greenhouse gases from
 a North American megacity, Geophys. Res. Lett., 36, 1–5, https://doi.org/10.1029/2009GL039825, 2009.
- 1067 Zhou, Y. Y., and Gurney, K. R.: Spatial relationships of sector-specific fossil fuel CO₂ emissions in the United
- 1068 States, Global Biogeochemical Cycles, 25, GB3002, doi: 10.1029/2010gb003822, 2011.