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Abstract. High-resolution bottom-up estimation provides a detailed guide to city greenhouse gas mitigation options, 14 
offering details that can increase the economic efficiency of emissions reduction options and synergize with other 15 
urban policy priorities at the human scale. As a critical constraint to urban atmospheric CO2 inversion studies, 16 
bottom-up spatiotemporally-explicit emissions data products are also necessary to construct comprehensive urban 17 
CO2 emission information systems useful for trend detection and emissions verification. The ‘Hestia Project’ is an 18 
effort to provide bottom-up granular fossil fuel (FFCO2) emissions for the urban domain with building/street and 19 
hourly space-time resolution. Here, we report on the latest urban area for which a Hestia estimate has been 20 
completed – the Los Angeles Megacity, encompassing five counties: Los Angeles County, Orange County, 21 
Riverside County, San Bernardino County and Ventura County. We provide a complete description of the methods 22 
used to build the Hestia FFCO2 emissions data product for the years 2010-2015. We find that the LA Basin emits 23 
48.06 (± 5.3) MtC/yr, dominated by the onroad sector. Because of the uneven spatial distribution of emissions, 10% 24 
of the largest emitting gridcells account for 93.6%, 73.4%, 66.2%, and 45.3% of the industrial, commercial, onroad, 25 
and residential sector emissions, respectively. Hestia FFCO2 emissions are 10.7% larger than the inventory estimate 26 
generated by the local metropolitan planning agency, a difference that is driven by the industrial and electricity 27 
production sectors. The detail of the Hestia-LA FFCO2 emissions data product offers the potential for highly 28 
targeted, efficient urban greenhouse gas emissions mitigation policy. The Hestia-LA v2.5 emissions data product 29 
can be downloaded from National Institute of Standards and Technology repository 30 
(https://doi.org/10.18434/T4/1502503). 31 

1 Introduction   32 

Driven by the growth of fossil fuel energy demand, the amount of carbon dioxide (CO2), the most important 33 
anthropogenic greenhouse gas (GHG) in the Earth’s atmosphere, recently reached an annual average global mean 34 
concentration of 402.8 ± 0.1 parts per million (ppm) on its way to doubling pre-industrial levels (IPCC, 2013; 35 
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LeQuere et al., 2018). We have also witnessed the first time that the majority of world’s inhabitants reside in urban 36 
areas. This trend, like atmospheric CO2 levels, is intensifying. Projections show cities worldwide could add 2 to 3 37 
billion people this century and are projected to triple in area by 2030 (UN DESA 1015; Seto et al., 2012). 38 

These two thresholds are linked—almost three-quarters of energy-related, atmospheric CO2 emissions are driven by 39 
urban activity (Seto et al., 2014). If the world’s top 50 emitting cities were counted as one country, that nation would 40 
rank third in emissions behind China and the United States (World Bank 2010). Indeed, urbanization is a factor 41 
shaping national contributions to internationally agreed emission reductions, as subnational governments are playing 42 
an increasing role in climate mitigation and adaptation policy implementation (Bulkeley 2010; Hsu et al., 2017). 43 
Furthermore, the pace of urbanization continues to increase and opportunities to avoid carbon “lock-in” - where 44 
relationships between technology, infrastructure, and urban form dictate decades of high-CO2 development - are 45 
diminishing (Ürge-Vorsatz et al., 2018; Seto et al., 2016; Erickson et al., 2015). 46 

Motivated by these numerical realities and the recognition that low-emission development is consistent with a 47 
variety of other co-benefits (e.g. air quality improvement), cities are taking steps to mitigate their CO2 emissions 48 
(Rosenzweig et al., 2010; Hsu et al., 2015; Watts 2017). For example, 9120 cities representing over 770 million 49 
people (10.5% of global population) have committed to the Global Covenant of Mayors (GCoM) to promote and 50 
support action to combat climate change (GCoM, 2018). Over 90 large cities, as part of the C40 network, have 51 
similarly committed to mitigation actions with demonstrable progress. However, the scale of actual reductions 52 
remains modest, despite the many pledges and initial progress. For example, a recent study reviewed 228 cities 53 
pledged to reduce 454 megatons of CO2 per year by 2020 (Erickson and Lazarus, 2012). Were they to meet these 54 
commitments, the reduction would account for about 3% of current global urban emissions and less than 1% of total 55 
global emissions projected for 2020. More important, there is a need for timely information to manage and assess 56 
the performance of implemented mitigation efforts and policies (Bellassen et al., 2015).  57 

One of the barriers to targeting a deeper list of emission reduction activities is the limited amount of actionable 58 
emissions information at scales where human activity occurs: individual buildings, vehicles, parks, factories and 59 
power plants (Gurney et al., 2015). These are the scales at which interventions in CO2-emitting activity must occur. 60 
Hence, the emissions magnitude and driving forces of those emissions must be understood and quantified at the 61 
“human” scale to make efficient (i.e. prioritizing the largest available emitting activities/locales) mitigation choices 62 
and to capture the urban co-benefits that also occur at this scale (e.g. improve traffic congestion, walkability, green 63 
space). Similarly, a key obstacle to assessing progress is a lack of independent atmospheric evaluation (ideally 64 
consistent in space and time with the human-scale emissions mapping) (Duren and Miller, 2011).  65 

Existing methods and tools to account for urban emissions have been developed primarily in the non-profit 66 
community (WRI/WBCSD, 2004; Fong et al., 2014). In spite of these important efforts, most cities lack 67 
independent, comprehensive and comparable sources of data and information to drive and/or adjust these 68 
frameworks. Furthermore, the existing tools and methods are designed at an aggregate level (i.e. whole city, whole 69 
province), missing the most important scale—sub-city—and hence provide limited actionable information. The need 70 
for greater granularity and specificity of emissions promises more efficient policy solutions. As all cities reach 71 
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beyond the existing “low hanging fruit” of emissions mitigation (i.e. those actions that are already planned for other 72 
reasons, those that are simple and cost-plus), competition for limited resources and policy justification will increase. 73 
Having information that can isolate the most efficient and effective emission reduction investments (specific 74 
roadways/intersections, building subdivisions or commercial building clusters) will be at a premium. 75 

The scientific community has begun to build information systems aimed at providing independent assessment of 76 
urban CO2 emissions. Through a combination of atmospheric measurements, atmospheric transport modeling and 77 
data-driven “bottom-up” estimation, the scientific community is exploring different methodologies, applications, 78 
and uncertainty estimation of these approaches (Hutyra et al., 2014). Atmospheric monitoring includes ground-based 79 
CO2 concentration measurements (McKain et al., 2012; Djuricin et al., 2010; Miles et al., 2017; Turnbull et al., 80 
2015, Verhulst et al., 2017), ground-based eddy flux (i.e. emissions of CO2 into the atmosphere and/or CO2 being 81 
removed from the atmospheric by vegetation) measurements (Christen 2014; Crawford and Christen 2014; 82 
Grimmond et al., 2002; Menzer et al., 2015; Velasco and Roth 2010; Velasco et al., 2005), aircraft-based flux 83 
measurements (Mays et al., 2009; Cambaliza et al., 2014; 2015) and whole-column abundances from both ground, 84 
and space-based, remote sensing platforms (Wunch et al., 2009; Kort et al., 2012; Wong et al., 2015; Schwandner et 85 
al., 2018).  86 

“Bottom-up” approaches, by contrast, include a mixture of direct flux measurement, indirect measurement and 87 
modeling. Common among the bottom-up approaches are those that include flux estimation based on a combination 88 
of activity data (population, number of vehicles, building floor area) and emission factors (amount of CO2 emitted 89 
per activity), socioeconomic regression modeling, or scaling from aggregate fuel consumption (VandeWeghe and 90 
Kennedy, 2007; Shu and Lam, 2011; Zhou and Gurney, 2011; Gurney et al., 2012; Jones and Kammen, 2014; 91 
Ramaswami and Chavez, 2013; Patarasuk et al., 2016; Porse et al., 2016). Direct end-of-pipe flux monitoring is 92 
often used for large point sources such as power plants (Gurney et al., 2016). Indirect fluxes (those occurring outside 93 
of the domain of interest but driven by activity within) can be estimated through either direct atmospheric 94 
measurement (and apportioned to the domain of interest) or can be modeled through process-based (Clark and 95 
Chester 2017) or economic input-output models (Ramaswami et al., 2008). 96 

Integration of bottom-up urban flux estimation with atmospheric monitoring has been achieved with atmospheric 97 
inverse modeling, an approach whereby surface fluxes are estimated from a best fit between bottom-up estimation 98 
and fluxes inferred, via atmospheric transport modeling, from atmospheric concentrations (Lauvaux et al., 2013; 99 
Lauvuax et al., 2016; Breon et al., 2015; Davis et al., 2017). Though the various measurement and modeling 100 
components continue to be tested, integration offers an urban anthropogenic CO2 information system which can 101 
provide accuracy, emissions process information, and spatiotemporal detail. This combination of attributes satisfies 102 
a number of urgent requirements. For example, it can offer the means to evaluate urban emissions mitigation efforts 103 
by assessing urban trends. Space, time, and process detail of emitting activity can guide mitigation efforts, 104 
illuminating where efficient opportunities exist to maximize reductions or focus new efforts. Finally, emissions 105 
quantification is also seen as a potentially powerful metric with which to better understand the urbanization process 106 
itself, given the importance of energy consumption to the evolution of cities. 107 
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The Hestia Project was begun to estimate bottom-up urban fossil fuel CO2 (FFCO2) fluxes for use within integrated 108 
flux information systems. Begun in the city of Indianapolis, the Hestia effort is now part of a larger experiment that 109 
includes many of the modeling and measurement aspects described above. Referred to as the Indianapolis Flux 110 
Experiment (INFLUX), this integrated effort has emerged to test and explore quantification and uncertainties of the 111 
urban CO2 and methane (CH4) measurement and modeling approaches using Indianapolis as the testbed 112 
experimental environment (Whetstone et al., 2018; Davis et al., 2017).  113 

Because urban areas differ in key attributes such as size, geography, and emission sector composition, multiple cities 114 
are now being used to test aspects of anthropogenic CO2 monitoring and modeling. For example, ongoing efforts at 115 
integration of atmospheric measurements and bottom-up emissions information are taking place in Paris (Breon et al., 116 
2015; Staufer et al., 2016), Boston (Sargent et al., 2018), Salt Lake City (Mitchell et al., 2018) and London (Font et 117 
al., 2015), to name a few. The Hestia approach has been used in a number of these urban domains. Here, we provide 118 
the methods and results from one of those urban domains, the Los Angeles Basin Megacity. The Hestia-LA effort was 119 
developed under the Megacities Carbon framework (https://megacities.jpl.nasa.gov/portal/). It was designed to serve 120 
the Megacities Carbon Project in a similar capacity to its role in INFLUX. The Hestia-LA result is unique in that it is 121 
the first high-resolution spatiotemporally-explicit inventory of FFCO2 emissions centered over a megacity. A 122 
preliminary version of Hestia-LA containing only the transportation sector emissions was reported by Rao et al. 123 
(2017). While emphasis thus far has been focused on atmospheric CH4 monitoring analyses in the LA megacity 124 
(Carranza et al., 2017; Wong et al., 2016; Verhulst et al., 2017; Hopkins et al., 2016), work is ongoing to use the 125 
extensive atmospheric CO2 observing capacity in the Los Angeles domain (e.g. Newman et al., 2016; Feng et al., 126 
2016; Wong et al., 2015; Wunch et al., 2009) within an atmospheric CO2 inversion (i.e. an approach whereby CO2 127 
concentration measurements in the atmosphere are combined with models of wind motions to infer what the emissions 128 
emanating from the surface must be). 129 

In this paper, we describe the study domain, the input data, uncertainty, and the methods used to generate the Hestia-130 
LA (v2.5) data product and provide descriptive statistics at various scales of aggregation. We compare the Hestia 131 
results to the metro region planning authority estimate and place the results in the context of urban greenhouse gas 132 
mitigation. We discuss known gaps and weaknesses in the approach and goals for future work. 133 

2 Methods 134 

2.1 Study Domain 135 

The Los Angeles metropolitan area is the second-largest metropolitan area in the United States and one of the largest 136 
metropolitan areas in the world. Under the definition of the Metropolitan Statistical Area (MSA) by the U.S. Office 137 
of Management and Budget, Metropolitan Los Angeles consists of Los Angeles and Orange counties with a land 138 
area of 12,562 km2 and a population of 9,819,000. The Greater Los Angeles Area, as a Combined Statistical Area 139 
(CSA) defined by the U.S. Census Bureau, encompasses the three additional counties of Ventura, Riverside, and San 140 
Bernardino with a total land area of 87,945 km² and an estimated population of 18,550,288 in 2014. The Hestia-LA 141 
FFCO2 emissions data product covers the complete geographic extent of these five counties including the Eastern, 142 
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relatively non-urbanized portions of San Bernardino and Riverside counties. Airport emissions associated with 143 
aircraft up to 3000 feet are included as are marine shipping emissions out to 12 nautical miles from the coastal 144 
boundary. Emissions considered here are carbon dioxide only; other important greenhouse gases such as methane 145 
(CH4) and nitrous oxide (N2O) are not included. 146 

 147 
Figure 1: The Hestia-LA urban domain 148 

2.2 Input data 149 

Input data to the Hestia-LA data product are supplied by output of the Vulcan Project (Figure 2), a quantification of 150 
FFCO2 emissions at fine space and time scales for the entire US landscape (Gurney et al., 2009) The Hestia-LA 151 
process extracts these results for the five counties within the Hestia-LA domain and adjusts these estimates where 152 
superior local data are available and further downscales/distributes the Vulcan v3.0 results to buildings and street 153 
segments. Details of the Vulcan v3.0 methodology is provided elsewhere (Gurney et al., 2018). Here, we summarize 154 
the Vulcan v3.0 methods and then provide greater detail regarding the Hestia-LA processing of that data to high-155 
resolution space/time scales. 156 
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 157 
Figure 2: Total annual FFCO2 emissions for the year 2011 from the Vulcan v3.0 output. 158 

The Vulcan v3.0 input data (the output of which is the input for the Hestia-LA) are organized following nine 159 
economic sector divisions (see Table 1) - residential, commercial, industrial, electricity production, onroad, nonroad, 160 
railroad, commercial marine vessel, and airport. Also included are emissions associated with the calcining process in 161 
the production of cement. The data sources within each sector are either acquired as FFCO2 emissions (the onroad 162 
sector and most of the nonroad and electricity production sectors) or as carbon monoxide (CO) emissions (all other 163 
sectors) and transformed to FFCO2 emissions via emission factors. Furthermore, the data sources are represented 164 
geographically as either geocoded emitting locations (“point”) or as spatial aggregates (“nonpoint” or area-based 165 
emissions). Point sources are stationary emitting entities identified to a geocoded location such as industrial facilities 166 
in which emissions exit through a stack or identifiable exhaust feature (USEPA, 2015a). Area or nonpoint source 167 
emissions are not inventoried at the facility-level but represent diffuse emissions within an individual U.S. county. 168 
Because the focus of the current study is CO2 emissions resulting from the combustion of a fossil fuels, fugitive or 169 
evaporative emissions are not included nor are “process” emissions, for example, associated with high-temperature 170 
metallurgical processes. Similarly emissions associated with waste decay (organic or inorganic) are not included. 171 
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Much of the input data for Vulcan v3.0 are acquired from the Environmental Protection Agency’s (EPA) National 172 
Emission Inventory (NEI) for the year 2011 (referred to hereafter as the “2011 NEI”) which is a comprehensive 173 
inventory of all criteria air pollutants (CAPs) and hazardous air pollutants (HAPs) across the United States (USEPA, 174 
2015b). All of the individual record-level reporting in the 2011 NEI comes with a source classification code (SCC) 175 
which codifies the general emission technology, fuel type used, and sector (USEPA 1995).  176 

FFCO2 emissions from the electricity production sector are primarily retrieved from two sources other than the 2011 177 
NEI. The first is the EPA’s Clean Air Markets Division (CAMD) data (USEPA, 2015c) which reports FFCO2 178 
emissions at geocoded electricity production facility locations. The second is the Department of Energy’s Energy 179 
Information Administration (DOE EIA) reporting data (DOE/EIA, 2003) which reports fuel consumption at 180 
geocoded electricity production facility locations. Some electricity production emissions are retrieved from the 2011 181 
NEI (as CO emissions). Overlap between these three data sources is eliminated via preference in the order listed 182 
above. A detailed comparison made between the CAMD and EIA FFCO2 emissions along with greater detail 183 
regarding data sources, data processing and procedures can be found in Quick et al., (2014) and Gurney et al. (2014; 184 
2016; 2018). 185 

The 2011 onroad FFCO2 emissions are retrieved from the EMissions FACtors 2014 model (EMFAC2014), produced 186 
by the California Air Resources Board (CARB, 2014). Onroad transportation represents all mobile transport using 187 
paved roadways and include both private and commercial vehicles of many individual classes (e.g., passenger 188 
vehicles, buses, light duty trucks, etc). The nonroad sector, by contrast, includes all surface mobile vehicles that do 189 
not travel on designated paved roads surface and include a large class of vehicles such as construction equipment 190 
(e.g., bulldozers, backhoes, etc.), ATVs, snowmobiles, and airport fueling vehicles. The nonroad emissions are 191 
derived from the 2011 NEI reporting of nonroad CO emissions. Airport emissions include all the emissions 192 
emanating from aircraft during their taxi, takeoff, landing cycles up to 3000 feet and are derived from the 2011 NEI 193 
point reporting. Other activities occurring at airports resulting in FFCO2 emissions are captured in the commercial 194 
building sector (building heating) or the nonroad sector (baggage vehicles), sourced to the 2011 NEI nonpoint, 2011 195 
NEI point and 2011 NEI nonroad reporting. Railroad emissions include passenger and freight rail travel and are 196 
sourced to the 2011 NEI nonpoint and point reporting. Commercial marine vessels (CMV) include all commercial-197 
based aquatic vessels on either ocean or freshwater sourced to the 2011 NEI nonpoint reporting. Personal aquatic 198 
vehicles such as pleasure craft and sailboats are included in the nonroad sector. Emissions associated with cement 199 
calcining are included given its potential size and the tradition of including it with CO2 inventories and use 200 
information from multiple sources (PCA, 2006; USGS, 2003; IPCC, 2006). 201 

The FFCO2 emissions input to the Hestia system from the Vulcan v3.0 output is associated with spatial elements 202 
represented by points, lines and polygons, depending upon the data source, the sector and the available spatial proxy 203 
data (Table 1). Further spatialization and temporalization occurs in the Hestia system.  204 

Table 1. Data sources used in the spatiotemporal distribution of FFCO2 emissions (text provides acronym 205 
explanations and sources). 206 

Sector/type Emissions Data 
Source 

Original spatial 
resolution/information 

Spatial distribution Temporal 
distribution 
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Onroad EMFACa, EPA NEIb 
onroad 

County, road class, vehicle class SCAG AADTc PeMSd, CCSe 

Electricity 
production 

CAMDf CO2, EIAg fuel, 
EPA NEI point CO 

Lat/lon, fuel type, technology EPA NEI Lat/Lon, Google 
Earth  

CAMD, EIA and EPA 

Residential 
nonpoint buildings 

EPA NEI nonpoint CO County, fuel type SCAG Parcel, floor area, 
DOE RECS NE-EUIh, LA 
County building footprint 

eQUESTi 

Nonroad NEI nonpoint CO County, vehicle class EPA spatial surrogates 
(vehicle class specific) 

EPA temporal 
surrogates (by SCCj) 

Airport EPA NEI point CO Lat/lon, aircraft class Lat/Lon LAWAk 
Commercial 
nonpoint buildings 

EPA NEI nonpoint CO County, fuel SCAG Parcel, floor area, 
DOE CBECS NE-EUIl 

eQUEST 

Commercial point 
sources 

EPA NEI point CO Lat/lon, fuel type, combustion 
technology 

EPA NEI Lat/Lon, Google 
Earth  

eQUEST 

Industrial point 
sources 

EPA NEI point CO Lat/Lon, fuel type, combustion 
technology 

EPA NEI Lat/Lon, Google 
Earth  

EPA temporal 
surrogates (by SCC) 

Industrial nonpoint 
buildings 

EPA NEI nonpoint CO County, fuel type SCAG-Parcel, floor area, 
DOE MECS NE-EUIm 

eQUEST 

Commercial 
Marine Vessels 

EPA NEI nonpoint CO County, fuel type, port/underway MEMn MEM 

Railroad EPA NEI nonpoint CO, 
EPA NEI point CO 

County, fuel type, segment EPA NEI rail shapefile and 
density distribution 

EPA temporal 
surrogates (by SCC) 

a. Emissions Factors Model 207 
b. Environmental Protection Agency, National Emissions Inventory 208 
c. Southern California Association of Governments, Annual Average Daily Traffic 209 
d. Performance Measurement System 210 
e. Continuous Count Stations 211 
f. Clean Air Markets Division 212 
g. Energy Information Administration 213 
h. Department of Energy Residential Energy Consumption Survey, non-electric energy use intensity 214 
i. Quick Energy Simulation Tool 215 
j. Source Classification Code 216 
k. Los Angeles World Airport 217 
l. Department of Energy Commercial Energy Consumption Survey, non-electric energy use intensity 218 
m. Department of Energy Manufacturing Energy Consumption Survey, non-electric energy use intensity 219 
n. Marine Emissions Model 220 

To estimate FFCO2 emissions as a multiyear time series from 2010 to 2015, the results for the year 2011 were scaled 221 
using sector/state/fuel consumption data (thermal units) from the DOE EIA (DOE/EIA, 2018). The electricity 222 
production sector was an exception to this approach where year-specific data was available in the CAMD and EIA 223 
data sources. Ratios were constructed relative to the year 2011 in all SEDS sector designations for each US state. 224 
The ratio values are applied to the annual totals in each of the sector/fuel categories specific to the state FIPS code. 225 

2.3 Space/time processing 226 

2.3.1 Residential, commercial, industrial nonpoint buildings 227 

The general approach to spatializing the residential, commercial and industrial nonpoint FFCO2 emissions is to 228 
allocate the county-scale, fuel-specific annual sector totals to individual buildings (or parcels) using data on building 229 
type, building age, total floor area, energy use intensity, and location. 230 

A portion of the Hestia-LA building information were provided by the Southern California Association of 231 
Governments (SCAG) (SCAG, 2012) and included building type, age, floor area, and location. The spatial 232 
resolution of this information was at the land parcel scale (larger than the building footprint). Building footprint data 233 
was available in the county of Los Angeles only which offered additional building floor area information needed to 234 
correct some floor area values in the SCAG parcel data (LAC, 2016). For example, a large number of commercial 235 
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parcels with zero floor area were found in the Riverside County data which were visually inspected in Google Earth 236 
to contain qualifying buildings. These floor area values were corrected through the combination of the Census 237 
block-group General Building Stock (GBS) database from the Federal Emergency Management Agency (FEMA) 238 
(FEMA, 2017) and the National Land Cover Database 2011 (NLCD) which classifies the US land surface in 30m 239 
pixels (Homer et al., 2015).  240 

Building energy use intensity was derived from data gathered by the DOE EIA and the California Energy 241 
Commission (CEC). The DOE EIA Commercial Buildings Energy Consumption Survey (CBECS), Manufacturing 242 
Energy Consumption Survey (MECS), and Residential Energy Consumption Survey (RECS) represent regional 243 
surveys of building energy consumption categorized by building type, fuel type, and age cohort (RECS, 2013; 244 
CBECS, 2016; MECS, 2010). Data for the Pacific West Census Division was used and in the case of the commercial 245 
sector, was appended by the CECs Commercial End-Use Survey (CEUS) data (CEC, 2006).  246 

In the residential sector the non-electric energy use intensity (NE-EUI) was calculated from the reported energy 247 
consumed and total floor area sampled specific to five building types (Table 2) in the 2009 RECS survey. This was 248 
additionally categorized by fuel type (natural gas and fuel oil) and two age cohorts (pre-1980, post-1979). 249 

Table 2. Residential NE-EUI survey values by building type from the Residential Energy Consumption 250 
Survey (RECS) 251 

RECS building type Pre-1980 NG NE-
EUI (kbtu/ft2) 

Post-1979 NG 
NE-EUI (kbtu/ft2) 

Pre-1980 Fuel oil 
NE-EUI (kbtu/ft2) 

Post-1979 Fuel oil 
NE-EUI (kbtu/ft2) 

Mobile home 52.56 22.90 NA* NA 
Single-family detached house 24.53 18.00 18.87 7.23 
Single-family attached house 42.56 32.38 NA NA 
Apartment building with 2-4 units 27.84 42.27 NA NA 
Apartment building with 5 or more units 17.21 30.85 NA NA 

* “NA” – not applicable. This indicates that there was no fuel consumption of this type evident from the survey data. 252 

In the commercial sector, the NE-EUI was similarly calculated from the 2012 CBECS energy consumption 253 
microdata and total floor area sampled specific to twenty building types, two fuel types (natural gas and fuel oil) and 254 
two age cohorts (pre-1980 and post-1979). However, the sampling for the two age cohorts was insufficient to 255 
generate estimates and the age distinction was eliminated. Furthermore, where the sample sizes remained small, NE-256 
EUI data from the CEUS was used in place of CBECS estimates (7 of 20 building types qualified). As the CEUS 257 
follows a building typology different from CBECS, a crosswalk of building types between the two datasets was 258 
necessary (Table 3). 259 

Table 3. Building type crosswalk and NE-EUI values for commercial buildings derived from the CBECS and 260 
CUES databases  261 

CBECS building class CUES building class NG NE-EUI 
(kbtu/ft2) 

Fuel oil NE-EUI 
(kbtu/ft2) 

Vacant Miscellaneous 9.3 2.5 
Office All Offices 17.9* 1.67 
Laboratory Miscellaneous 174.7 0.93 
Nonrefrigerated warehouse Unrefrigerated Warehouse 3.1* 1.03 
Food sales Food Store 27.6* 2.5 
Public order and safety Miscellaneous 58.2 2.09 
Outpatient health care Health 29.1 3.05 



10 

Refrigerated warehouse Refrigerated Warehouse 5.6* 2.5 
Religious worship Miscellaneous 35.7 0.00 
Public assembly Miscellaneous 26.5 0.23 
Education College, School 25.1* 1.7 
Food service Restaurant 210* 100.5 
Inpatient health care Health 113.9 2.6 
Nursing Health 67.4 1.2 
Lodging Lodging 42.4* 1.4 
Strip shopping mall Retail 62.7 2.5 
Enclosed mall Retail 4.8 0.02 
Retail other than mall Retail 13.6 16.7 
Service Miscellaneous 34.2 0.45 
Other Miscellaneous 18.5 5.3 

* NE-EUI uses the CUES NE-EUI value due to sampling limitations in the CBECS data. 262 

Unlike the commercial and residential survey data, the 2010 MECS survey data does not quantify energy 263 
consumption for individually sampled buildings but rather reports the sum of the sampled buildings within each 264 
census region categorized by manufacturing sector. The resulting NE-EUI values are shown in in Table 4. Like the 265 
commercial data, there was inadequate sampling to justify two age cohorts. 266 

Table 4. Industrial NE-EUI survey values from the DOE EIA MECS database 267 
MECS Class NG NE-EUI 

(kbtu/ft2) 
Fuel oil NE-EUI 

(kbtu/ft2) 
Food 519.3 30.5 
Beverage and Tobacco Products 162.4 8.5 
Textile Mills 144.9 9.3 
Textile Product Mills 63.4 0 
Apparel 35.1 0 
Leather and Allied Products 66.7 0 
Wood Products 76.6 49.5 
Paper 672.8 69.1 
Printing and Related Support 96.6 0 
Petroleum and Coal Products 9766.0 436.2 
Chemicals 2126.3 17.9 
Plastics and Rubber Products 124.7 2.4 
Nonmetallic Mineral Products 556.0 48.9 
Primary Metals 895.0 16.7 
Fabricated Metal Products 124.2 2.3 
Machinery 78.6 3.3 
Computer and Electronic Products 80.0 0 
Electrical Equip., Appliances, and Components 133.3 3.7 
Transportation Equipment 100.6 4.0 
Furniture and Related Products 28.6 0 
Miscellaneous 44.7 2.8 

The NE-EUI values derived from the CBECS/RECS/MECS and CEUS survey data reflect the total building fuel 268 
consumption for a specific fuel in a census region divided by the total floor area of all buildings in that census region 269 
consuming that fuel. This generates a mean building NE-EUI value. Actual buildings will vary around that mean 270 
value for a variety of reasons including different occupancy schedules, different energy efficiencies (in the envelope 271 
or heating/cooling system), different microclimate, and other physical/behavioral characteristics. Furthermore, the 272 
NE-EUI value applied in this way will not capture the reality that some buildings do not use fossil fuel (electricity-273 
only buildings) or that some buildings use one fossil fuel only versus another or use a mix of fuels in a proportion 274 



11 

different from the county total. Hence, each building will be allocated a mix of fossil fuel consumption identical to 275 
the county total.  276 

2.3.1.1 Spatial distribution 277 

The county-scale commercial, residential and industrial nonpoint FFCO2 emissions are allocated to each land parcel 278 
in proportion to the product of the NE-EUI and the total floor area,  279 

𝐸𝐶(𝑏)&
' = 𝑁𝐸_𝐸𝑈𝐼&

'𝐹𝐴(𝑏) (1) 280 

where the energy consumed, EC, in each building, b, is the product of the NE-EUI value, NE_EUI, and the floor 281 
area, FA, for each fuel, f, and each building in sector, s. The total energy consumed, TEC, within the county for a 282 
sector, s, is the sum of all the EC values across the N buildings in the sector, 283 

𝑇𝐸𝐶&
' = ∑ 𝐸𝐶(𝑏)&

'1
234  (2) 284 

To convert this to FFCO2 emissions, we first calculate the fraction of the total energy consumption associated with 285 
each building, 286 

𝐹(𝑏)&
' = 56(2)7

8

9567
8  (3) 287 

where, F is the fraction of TEC consumed in building, b, of sector s. This is then used to distribute the county total 288 
FFCO2 emissions as,  289 

𝐸(𝑏)&
' = 𝐸&

'𝐹(𝑏)&
' (4) 290 

where E, is the FFCO2 emissions either for the county or for building, b, and fuel. In allocating emissions from coal 291 
consumptions, however, NE-EUI takes the value of “1” for all building types so that the allocated emission in a 292 
building is directly proportional to the floor area. 293 

2.3.1.2 Temporal distribution 294 

The hourly time structure for buildings in the residential and commercial sectors are created via the use of eQUEST, 295 
a building energy simulation tool run for each of the building classes listed in Table 2 and Table 3 and using only 296 
the temporal structure of the energy consumption output (Hirsch & Associates, 2004). The model domain is 297 
specified as the city of Los Angeles for the year 2011 with TMY weather data from the DOE (Marion and Urban, 298 
1995). The mean building area is provided by the parcel data as described previously. 299 
For the industrial buildings, a temporal profile representing the mean of industrial point source temporal surrogates 300 
provided by EPA, are used (USEPA, 2015a). Figure 3 shows the hourly time profile during a one-week period in 301 
April for a selected building in the residential and commercial sector, respectively. 302 
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 303 
Figure 3. Energy consumption intensity (hourly fraction) from an eQUEST simulation on the average week in 304 
2011 for two types of buildings: “single family detached house” and “office”. 305 

2.3.2 Industrial and commercial point sources 306 

Little space/time processing is required for industrial and commercial point source emissions since they are 307 
geocoded to specific facilities/emitting stacks or similar identifiable emission points. However, visual inspection of 308 
the point source locations in GIS suggested potential geocoding errors. Point source locations were reviewed by 309 
searching facility names to an online address search or via the EPA’s Facility Registry Service (FRS) which can link 310 
the facility in question to all the reporting made to the federal government under other environmental regulations 311 
(USEPA, 2013). This often returns a more accurate physical location. The geolocations considered inaccurate were 312 
manually corrected. Out of the total 192 facilities with corrected locations, 13 were moved a distance of between 313 
924 and 1022 km while the remaining 179 were moved 0.5 km or less. The large magnitude location changes were 314 
likely transcription errors when originally recording the location coordinates. 315 

A given commercial or industrial point source is typically composed of multiple emission processes or units. For 316 
example, in Los Angeles County, the 2011 NEI reports a total of 3409 emission records at 842 individual facilities. 317 
In some cases, the multiple emitting points at a facility are not at exactly the same geocoded point but may represent 318 
different emitting points at a facility that occupies a large area of land. Most often, however, all emitting points at a 319 
given facility are geocoded to the same latitude and longitude. 320 

The sub-annual temporal distribution for the commercial and industrial point source emissions used temporal 321 
surrogate profiles provided by the EPA, linked according to the SCC of the emission record (USEPA, 2015a).  322 

2.3.3 Electricity production 323 

As described in Section 2.2, three different data sources are used to quantify the FFCO2 emissions in the Hestia-LA 324 
domain: the Clean Air Markets Division (CAMD), the DOE-EIA reporting and 2011 NEI CO emissions data. In 325 
2011 there were a total of 34 CAMD facilities, 228 EIA facilities and 147 NEI facilities (reported through the NEI 326 
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2011 point source fileset) in the Hestia-LA domain. Total electricity production emissions in the domain was 6.21 327 
MtC/year exclusive of biogenic fuels and 6.68 MtC/year with biogenics included. The CAMD data is reported at 328 
hourly resolution, while the DOE EIA data is reported at monthly resolution and the 2011 NEI data is reported at 329 
annual resolution only. Reduction of all data to an hourly time increment was achieved by maintaining constant 330 
emissions within a month or year for the DOE EIA and 2011 NEI data, respectively.  331 

2.3.4 Onroad 332 

A preliminary version of the Hestia-LA onroad emissions estimates were presented by Rao et al. (2017). The version 333 
presented here uses updated data and Hestia methodologies. 334 

2.3.4.1 Temporal distribution 335 

The Hestia-LA onroad FFCO2 emissions input are retrieved from the Vulcan v3.0 output spatialized to specific road 336 
segments in the Hestia-LA domain and categorized by vehicle class/fuel. Hence, no further spatialization was 337 
required.  338 

Construction of the temporal distribution in the Hestia system relies upon the California Department of 339 
Transportation (CalTrans) Performance Measurement System (PeMS) (PeMS, 2018). This dataset contains 2011 340 
traffic count data collected at 5 min intervals at measuring stations along freeways and principal arterials and along 341 
some minor arterials and collectors (major and minor). Aggregation of the 5-minute counts to hourly values are used 342 
to construct hourly fractions for each measurement station.  343 

To apply a time distribution for the FFCO2 onroad emissions on each road segment, an Inverse Distance Weighting 344 
(IDW) spatial interpolation method was used. A search within a neighborhood of a 10 km radius is performed from 345 
the midpoint of each road segment to locate PeMS sites using a nearest neighbor searching library (Mount and Arya, 346 
2010). In cases where more than one station was available, the IDW interpolation was applied; in cases where only 347 
one station was available, the time structure of this station was directly assigned to the road segment in question. In 348 
cases where no station was available within the 10-km neighborhood, an average temporal distribution was assigned 349 
(an average of all station values in a county at that hour for that road type). This last case occurred mostly in the 350 
rural portions of predominantly rural counties.  351 

For local roads, PeMS data was not available in any of the counties within the Hestia-LA domain. Instead, the 352 
weekday hourly time fractions were generated from Annual Average Weekday Traffic (AAWT) data supplied by 353 
SCAG (Mike Ainsworth, 2014). The data contained five distinct time periods within a single 24 hour cycle: 6-9 am, 354 
9 am-3 pm, 3-7 pm, 7-9 pm, 9 pm-6 am. Hourly time fractions for weekends were derived from the county average 355 
of weekend hourly time fractions. The weekday and weekend hourly time fractions were combined to form a 356 
complete week, and then replicated for all 52 weeks in the entire year. This was done because there was no 357 
significant seasonality in weekday and weekend traffic across the year as observed from PeMS data. 358 
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2.3.5 Nonroad 359 

The nonroad Hestia-LA FFCO2 emissions are completely determined in the Vulcan system and hence, passed to the 360 
Hestia-LA domain without further processing (see Gurney et al., 2018 for details). To summarize the Vulcan 361 
process, California did not report FFCO2 nonroad emissions to the NEI 2011 but did report nonroad CO emissions. 362 
The CO emissions were converted to FFCO2 using the SCC-specific ratios of CO2/CO derived from all other states 363 
that reported both species (a mean value). The spatial distribution of the nonroad FFCO2 emissions followed two 364 
approaches. Nonroad FFCO2 emissions reported through the 2011 NEI point data source (5 locations, 12% of 365 
nonroad FFCO2 in the LA Megacity) are located in space according to the provided latitude and longitude. 366 
Emissions reported through the county-scale nonroad data source utilize multiple spatial surrogates provided by the 367 
EPA reflecting a series of spatial entities such as the mines, golf courses and agricultural lands. There were instances 368 
in which nonroad FFCO2 emissions could not be associated with a spatial entity due to missing data. These 369 
emissions are spatialized by first aggregating all the offending sub-county emission elements within a county for a 370 
given surrogate shape type (e.g., golf courses, mines) and then distributing these emissions evenly across the county.  371 

To distribute the nonroad FFCO2 emissions from the annual to hourly timescale, a series of surrogate time profiles 372 
provided by the EPA are used. These temporal surrogates are comprised of three cyclic time profiles (diurnal, 373 
weekly, monthly) specific to SCC that are combined to generate hourly SCC-specific time fractions for an entire 374 
calendar year. 375 

2.3.6 Airport 376 

Emissions of FFCO2 from airports retrieved from the Vulcan system for the Hestia-LA domain are specific to 377 
geocoded airport locations. Hence, the Hestia-LA system performs the temporal distribution only. There are 374 378 
commercial airports/helipads in the Hestia-LA domain totaling 0.77 MtC/year, dominated by Los Angeles County 379 
(0.39 MtC/year), and LAX in particular. 380 
The annual airport FFCO2 emissions are distributed in time utilizing airport-specific flight volume data from four 381 
datasets:  382 

1) The Operations Network (OPSNET) data from the Federal Aviation Administration (FAA) which reports total 383 
date-specific, daily flight volume (365 values) at specific airports for specific aircraft classes (FAA, 2018a);  384 

2) “AIRNAV” data which reports average daily percentage flight volume for aircraft class at US airports and 385 
facilities (Airnav.com, 2018);  386 

3) The Enhanced Traffic Management System Counts (ETMSC) daily flight volume data from the FAA was for two 387 
airports in the Hestia-LA domain (NTD and RIV) with mostly military operations (FAA, 2018b);  388 

4) The Los Angeles World Airports (LAWA) data which reports hourly flight volume for Los Angeles International 389 
airport (LAX), Ontario airport (ONT), and Van Nuys airport (VNY) (LAWA, 2014).  390 

For three large airports (LAX, ONT, VNY), the daily aircraft class-specific flight volume (from OPSNET) and the 391 
hourly data on flight volume (from LAWA) were combined to create hourly aircraft class-specific time profiles 392 
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(Figure 4-6). All of the flight volume data are specific to four aircraft classes: Military (MIL), Air Carrier (AC), 393 
General Aviation (GA), and Air Taxi (AT). 394 

 395 
Figure 4. Average hourly flight volume at LAX for a) total, b) AC, c) AT, d) GA, and e) MIL aircraft classes 396 
for each day of the week. The plots represent the mean diurnal cycle for all Mondays, Tuesday, Wednesdays, 397 
and so on, given a full year of data. 398 

 399 
Figure 5. Same as figure 4 but for the Ontario (ONT) airport. 400 
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 401 
Figure 6. Same as figure 4 but for the Van Nuys (VNY) airport. 402 

To generate hourly time profiles for all other airports in the Hestia-LA domain for which this type of detailed hourly 403 
data was not available, airports first were categorized based on average daily flight volumes and average aircraft 404 
class proportions from the OPSNET, AIRNAV and ETMSC data. Each airport was categorically matched to one of 405 
the two non-international airports with hourly data (ONT, VNY) and the hourly time fractions adopted. LAX was 406 
unique in terms of its volume and aircraft class proportions and hence was not used for any other airports. For 407 
helipads and very small airports, a flat time structure was used.  408 

2.3.7 Railroad 409 

Railroad FFCO2 emissions are similarly distributed in space within the Vulcan system and passed through to the 410 
Hestia-LA landscape without alteration (see Gurney et al., 2018 for additional details). The Vulcan process treats 411 
railroad point records somewhat differently from the railroad nonpoint records. The point source railroad emissions 412 
are associated with rail yards and related geo-specific locales and are placed in space according to the provided 413 
latitude and longitude. The railroad FFCO2 emissions associated with the nonpoint 2011 NEI reporting contain an 414 
ID variable that links to a spatial feature (rail line segment) in the EPA railroad GIS Shapefile. Nearly two-thirds of 415 
the railroad emitting segments have no segment link. The sum of these “unlinked” railroad FFCO2 emissions are 416 
distributed to rail line within the given county according to freight statistics. The annual railroad FFCO2 emissions 417 
are distributed to the hourly timescale with no additional temporal structure (a “flat” time distribution). 418 

2.3.8 Commercial marine vessels 419 

The commercial marine vessel (CMV) FFCO2 emissions retrieved from the Vulcan system are specific to county 420 
and SCCs which are subsequently aggregated by the Hestia-LA system into emissions associated with two activity 421 
categories: “port” emissions “underway”. For the port CMV emissions (Figure 7), a port Shapefile from the EPA 422 
was used as a reference along with a visual inspection of the coastline (USEPA, 2015a).  423 
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 424 
Figure 7. The 6 ports in the Hestia-LA domain to which Vulcan FFCO2 port emissions are allocated. 425 

Allocation of the FFCO2 emissions designated as “underway” used a polyline Shapefile (Figure 8) of commercial 426 
shipping lanes in California provided by CARB (Alexis, 2011). The shipping lanes for each county were bounded so 427 
that only lanes between the exterior of ports and a distance of 24 miles from the port exterior, were included. County 428 
total FFCO2 emissions were then distributed evenly to these shipping lanes on a per unit length basis individually for 429 
each of the three counties. Each shipping lane segment receives its length fraction of the annual total of underway 430 
emissions. 431 
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 432 
Figure 8. Commercial Marine Vessel (CMV) shipping lanes in the Hestia-LA to which Vulcan FFCO2 433 
underway emissions are allocated. 434 

The time profile was based on the Marine Emissions Model (MEM) developed by CARB. MEM had marine vessel 435 
activity data which includes the arrival time of ocean-going vessels for all ports in California spanning the 2004 to 436 
2006 time period (Alexis, 2011). This hourly dataset was analyzed using a Fourier time series which allowed for an 437 
isolation of the dominant cycles of ship traffic in the data. Results from the Fourier fit were then used to fill in the 438 
missing hours. Weekday hours were examined separately from weekend hours to isolate potential differences in 439 
traffic volume. Three cycles resulted: a 24-hour diurnal cycle, a weekly cycle and a monthly cycle. These were 440 
applied to all years of the annual FFCO2 emissions to create an hourly distribution at each of the CMV ports within 441 
the domain. 442 

2.3.9 Cement 443 

Emissions of FFCO2 from cement production facilities retrieved from the Vulcan system for the Hestia-LA domain 444 
are specific to geocoded facility locations. CO2 is emitted from cement manufacturing as a result of fuel combustion 445 
and as process-derived emissions [van Oss, 2005]. The emissions from fuel combustion are captured in the industrial 446 
sector. The process-derived CO2 emissions result from the chemical process that converts limestone to calcium 447 
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oxide and CO2 during “clinker” production (clinker is the raw material for cement which is producing by grinding 448 
the clinker material). These emissions are reported as cement sector emissions  449 
These emissions are fully calculated, spatialized and temporalized in the Vulcan v3.0 system and passed directly to 450 
the Hestia-LA landscape. The cement facilities are geocoded with some corrections to provide more accurate 451 
placement of the emission stacks. 452 

2.4 Gridding 453 

The county-level FFCO2 emissions inventory, which has been distributed into the point, line and polygon features 454 
by sector, are rasterized into a sector-specific and time-resolved gridded form under a common grid reference. This 455 
grid reference divides the entire Hestia-LA domain into 509-by-342 1 km x 1 km grid cells on the California State 456 
Plane Coordinate System. The grid reference is made into “fishnet” in the Shapefile format with 509-by-342 square 457 
geometries.  458 

The first step of the gridding procedure is to perform a spatial intersection operation between the fishnet and each of 459 
the sectoral emissions layers in ArcGIS. The output of an intersection operation is a new set of features common to 460 
both input layers. The emissions value of each feature in the intersection output was scaled by the ratio of the spatial 461 
footprint of the feature to that of the original feature in the sectoral emissions layer. For line-source and polygon-462 
source emissions layers, the spatial footprint represents the line length and polygon area respectively. For point-463 
source layers, the footprint is equal to 1.  464 

2.5 Uncertainty 465 

Uncertainty estimation for Hestia results are challenging owing to the fact that many of the datasets used to 466 
construct the flux results are not accompanied by uncertainty or traceable to transparent sources or methods. The 467 
approach taken for the Hestia-LA v2.5 results was to conservatively estimate the uncertainty based on available 468 
comparisons to Hestia results and exploration of the dominant components of the Hestia output. The first of these is 469 
a comparison of the Hestia-Indianapolis (Hestia-Indy) results to an inverse-estimation of fluxes in the INFLUX 470 
project (Gurney et al., 2017). In that study, it was shown that the Hestia-Indy whole-city FFCO2 emissions result 471 
agreed with an inverse estimate (Lauvaux et al., 2016) within 3.3% (CI: -4.6% to +10.7%). This suggests both 472 
potential bias (3.3%) and an estimation uncertainty (~7.5%). This comparison was accomplished by estimating 473 
portions of the carbon budget, included in the inverse estimate, but not explicitly included in the Hestia-Indy result. 474 
Most importantly, biosphere respiration estimated from chamber studies at commensurate urban latitudes combined 475 
with a remote-sensing based approach to quantifying the available vegetated landscape. This comparison, it should 476 
be noted, is for a single city (Indianapolis) for a single time period. We directly sum the random and systematic error 477 
and use this in the current study to represent the Hestia-LA whole-city uncertainty (a 95% CI), rounded up to 11%.  478 
The next element for consideration with a conservative uncertainty estimate is the work done to compare two 479 
different electricity production FFCO2 estimates in the US. This work (Gurney et al., 2016) found that one-fifth of 480 
the facilities had monthly FFCO2 emission differences exceeding -6.4%/+6.8% for the year 2009 (the closest 481 
analyzed year to the 2011 analysis examined here). The distributions of emissions of the two datasets were not 482 
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normally distributed nor were the differences. Hence, a typical gaussian uncertainty estimate cannot be made – 483 
rather, the difference distribution was represented by quintiles of percentage difference. Hence, these values cannot 484 
be cast within the context of other normally-distributed errors. However, we conservatively consider the quintile 485 
value (the positive and negative tails) as a one-sigma value and 13% as a two-sigma value. The contribution of 486 
electricity production is important to urban FFCO2 emissions uncertainty given how large power production can be 487 
within the total urban FFCO2 context. For example, in the Los Angeles Megacity electricity production accounts for 488 
19% of the total FFCO2 emissions. The percentage differences can act as a form of uncertainty at the pointwise or 489 
(conservatively) the gridcell scale, though only representative of the type of uncertainties represented by electricity 490 
production point sources. 491 
Finally, an initial assessment of the range of two critical parameters in the Vulcan/Hestia estimation is included as 492 
part of the conservative uncertainty estimation. The two critical parameters are the CO emissions factor and the CO2 493 
emissions factor. Primarily for the CO EF, there is a range of potential values for each application (combination of 494 
fuel category and combustion technology) though that range is not represented by a well-populated distribution of 495 
values, but rather a discrete set of values within the data sources described in Gurney et al. (2009). Furthermore, the 496 
expectation is that the CO EFs would not be normally distributed even were there to be a well-populated distribution 497 
of values (i.e. many literature estimates of the same fuel/combustion technology) owing to the nature of CO 498 
emissions from fuel combustion. This is driven by both the variation in combustion conditions for a given 499 
fuel/technology combination and the variation is CO EF values across combustion technology. The distribution 500 
would likely be a positively skewed “heavy” or “long” tailed distribution. For the current study, a range of the CO 501 
and CO2 EF values culled from the literature are conservatively assigned a one-sigma uncertainty of 10% or a two-502 
sigma value of 20%. Like the electricity production analysis in the previous paragraph, the uncertainty associated 503 
with the CO and CO2 emission factors is a gridcell-scale uncertainty (as opposed to whole city where error 504 
cancelation occurs) and is independent of the electricity production uncertainty estimate (the CO and CO2 EF values 505 
are not used in the electriity production sector but in the other point sources and nonpoint sources). 506 
These latter two uncertainty are more representative of gridcell-scale uncertainties and sum them in quadrature to 507 
arrive at a gridcell-scale uncertainty (95% CI) of 23.4% or conservatively rounded to 25%. Work is underway that 508 
includes a complete input parameter range for the Hestia emissions data results to more formally assign uncertainty 509 
at multiple scales. 510 

3 Results 511 

The total 2011 emissions for the Hestia-LA domain are 48.06 ± 5.3 MtC/yr (Figure 9, Table 5). Transportation 512 
accounts for the largest share (24.27 ± 2.7 MtC/yr) of the total and within the transportation sector, onroad emissions 513 
account for the largest portion (20.81 ± 2.3 MtC/yr). The next largest sectors are the industrial (11.65 MtC/yr ± 1.3) 514 
and electricity production (5.88 ± 0.76 MtC/yr) sectors, respectively. Onroad, electricity production, residential and 515 
industrial FFCO2 emissions make up 86% of the total. Petroleum accounts for almost 75% of the total LA Megacity 516 
fuel consumption for direct FFCO2 emissions consistent with the dominance of the transportation and industrial 517 
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sectors which are mostly reliant on petroleum fuels. Los Angeles County dominates emissions in the five counties of 518 
the Hestia-LA domain accounting for 55% of the total FFCO2 emissions. This is followed by San Bernardino, 519 
Orange, Riverside, and Ventura counties, respectively. Los Angeles and San Bernardino counties are dominated by 520 
onroad and industrial FFCO2 emissions, while onroad emissions account for the largest share, by far, in the 521 
remaining three counties. Not surprisingly, Los Angeles county has the largest CMV FFCO2 emissions among the 522 
five counties owing to the port of Los Angeles which hosts a large amount of international commercial shipping. At 523 
0.61 ± 0.067 MtC/yr, it rivals in emission magnitude the combination of residential and commercial building 524 
emissions in each of the other four counties. 525 

 526 
Figure 9. Total FFCO2 emissions proportions for the Hestia-LA domain. a) FFCO2 emission proportions by 527 
sector; b) FFCO2 emission proportions by fuel category. 528 

Table 5. Sectoral FFCO2 emissions in the five Hestia-LA domain counties for the year 2011. Units: MtC/yr. 529 
Sector Los Angeles 

(MtC/yr) 
Orange 
(MtC/yr) 

San Bernardino 
(MtC/yr) 

Riverside 
(MtC/yr) 

Ventura 
(MtC/yr) 

Total 
(MtC/yr) 

Residential 2.00 0.64 0.40 0.36 0.20 3.59 
Commercial 1.47 0.12 0.21 0.24 0.071 2.12 
Industrial 7.27 0.94 2.99 0.25 0.20 11.65 
Electricity production 2.73 0.69 1.54 0.71 0.21 5.88 
Transportation 12.95 3.83 3.58 2.88 1.02 24.27 
   Onroad 11.03 3.46 2.98 2.51 0.82 20.81 
   Nonroad 0.79 0.27 0.19 0.19 0.087 1.52 
   Airport 0.39 0.06 0.14 0.11 0.070 0.77 
   Railroad 0.13 0.028 0.27 0.072 0.010 0.51 
   CMV 0.61 0.012 0 0 0.037 0.66 
Cement 0 0 0.55 0.0077 0 0.55 
Total 26.42 6.22 9.28 4.45 1.70 48.06 

Total emissions in the LA Megacity show a small downward trend over the 2010-2015 time period of 0.44%/year 530 
which is a statistically significant trend (slope: -0.21 MtC/yr; CI: -0.397, -0.023). Individual sectors show greater 531 
variation there are compensating temporal changes among the individual sectors (Figure 10). The residential sector 532 
showed a relatively large decline in 2014, though due to its relatively small portion of total emissions, has limited 533 
impact on the total temporal variation from 2010-2015. Similarly, 2015 showed a large increase in commercial 534 
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sector emissions which also do not translate to large changes in the total FFCO2 emissions time series. The relative 535 
temporal stability of the industrial and onroad FFCO2 emissions sectors combined with their large share of the total 536 
FFCO2 emissions are reflected in the total emissions trend. When categorized by fuel type, natural gas FFCO2 537 
emissions exhibited the greatest variation with a maxima in 2012 and to a lesser extent 2013, driven primarily by 538 
consumption in the electricity production sector. 539 

 540 
Figure 10. Fractional changes over the 2010 to 2015 timeframe in LA Basin FFCO2 emissions. a) by fuel 541 
category; b) by sector. Whole-city error provided for the total FFCO2 emissions only. 542 

Spatial distribution of the Hestia-LA FFCO2 emissions demonstrate the importance of the populated areas and road-543 
intensive portions of the domain in the overall emissions (Figure 11). The constant emissions that appear over large 544 
areas, particularly in San Bernardino and Riverside counties, are due to the nonroad FFCO2 emissions which have 545 
relatively simple spatial distribution proxies with considerable areal extent. 546 
 547 
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 548 
Figure 11. Hestia-LA v2.5 FFCO2 emissions for the year 2011 represented on a 1 km x 1 km grid. a) total 549 
FFCO2 emissions; b) onroad FFCO2 emissions; c) residential FFCO2 emissions; d) commercial FFCO2 550 
emissions. Units: natural logarithm KgC/gridcell/yr. 551 

Figure 12 shows the cumulative FFCO2 emissions across four of the sectors for which the 1 km2 gridcell 552 
accumulation is most appropriate: the commercial, industrial, onroad, and residential sectors. The other FFCO2 553 
emission sectors (airport, electricity production, cement) are not included in Figure 12 because they are dominated 554 
by a few points, have limited spatial distribution (railroad) or no spatial variance (nonroad). The accumulation of 555 
FFCO2 emissions at the threshold by which 10% of the gridcells are accumulated is noted on the figure. For the 556 
industrial sector, 10% of the largest emitting gridcells account for 93.6% of the total industrial sector emissions. For 557 
the commercial sector this occurs at 73.4% of the accumulated gridcells. For the onroad and residential sectors this 558 
occurs at 66.2% and 45.3%, respectively. This demonstrates two important points about the FFCO2 emissions in the 559 
Los Angeles Megacity (and most cities). First, the emissions have very high spatial variance with few gridcells 560 
accounting for a large portion of the total FFCO2 emissions. Second, this is particularly true for the industrial sector, 561 
driven by the fact that it is comprised of a large proportion of point emitters. This is somewhat true of the 562 
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commercial sector which does have some pointwise data within the original NEI reporting. Of the remaining two 563 
sectors, which contain no pointwise spatial emitters, the majority (66.2%) of the onroad emissions are captured in 564 
the largest 10% while the residential sector, being less concentrated, shows an accumulation just short of the 50% 565 
threshold at a 10% gridcell accumulation threshold. 566 

 567 
Figure 12. Cumulative FFCO2 emissions according to key sectors in the Hestia-LA FFCO2 emissions data 568 
product. The dashed line at 10% cumulative grid cells is given for reference. See text for details. 569 

An important attribute of estimating urban emissions at fine space and time scales is the resulting clustering in space 570 
(and time) of the emissions and the varying patterns of the clustering across the emitting sectors. Figure 13 provides 571 
an analysis of spatial clustering using the Getis-Ord-Gi statistic which provides a score that measures statistically 572 
significant departures from random local clustering (Getis and Ord, 1992). The three sectors included in this 573 
analysis are the residential, commercial and onroad sectors. The onroad sector shows a more widely dispersed 574 
clustering pattern with local “hotspots” generated by high traffic flow points and traffic congestion, primarily on the 575 
interstate network coincident with a greater density of commercial and residential activity. The residential sector 576 
exhibits less extensivity compared to the onroad FFCO2 emissions clustering but with larger individual hotspot 577 
areas. Particularly large clustering occurs from the coast centered on Santa Monica and Marina del Rey and 578 
extending East and North through West Hollywood on to Pasadena and Alhambra. Other hotspots occur in the 579 
Manhattan Beach to Redondo Beach corridor, the Burbank and Glendale area and the coastal portion of Orange 580 
county (e.g. Huntington Beach, Newport Beach). The commercial sector shows the a similar overall extensivity to 581 
the residential sector but with less extensive individual hotspots associated with commercial building clusters. 582 
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 583 

 584 
Figure 13. The Getis-Gi z-score for Hestia-LA FFCO2 emissions across three sectors; a) commercial; b) 585 
onroad; c) residential. 586 

There are very few estimates that can serve as an assessment of the accuracy of the Hestia FFCO2 emissions as few 587 
inventory efforts have been accomplished at the sub-state spatial scale in the United States. However, the Southern 588 
California Association of Governments (SCAG) have completed a regional greenhouse gas emissions inventory for 589 
a base year period of 1990-2009 with projections out to the year 2035 (SCAG, 2012). The SCAG inventory reflects 590 
two components that make comparison to the Hestia-LA FFCO2 emissions data product imperfect. First, the domain 591 
considered in the SCAG inventory includes Imperial county, a county not included in the Hestia-LA domain. 592 
However, Imperial county is estimated to be less than a few percent of the SCAG domain total. For example, 593 
Imperial county onroad VMT is 1.9% of the SCAG domain total. The Imperial county retail sales of electricity is 594 
1.1% of the SCAG domain total. The other distinction is that the SCAG inventory reports total GHGs, inclusive of 595 
both methane (CH4) and nitrous oxide (N2O). However, in the sectors and activities used in comparing the SCAG 596 
inventory to the Hestia-LA FFCO2 emissions data product, both CH4 and N2O are negligibly small. Hence, small 597 
differences (<5%) could be due to these categorical discrepancies. We use only the reported scope 1 emissions 598 
which were based on the approach adopted by CARB based on guidelines from the Intergovernmental Panel on 599 
Climate Change (CARB, 2010).  600 

Figure 14 shows a 2010 comparison between the two estimates using the comparable sector divisions. The Hestia-601 
LA FFCO2 emissions estimate is 10.7% larger than the SCAG estimate, 95% of the difference (4.46 MtC/yr) owing 602 
to the larger industrial and electricity production FFCO2 emissions in the Hestia estimate. We have included the 603 
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nonroad sector in the onroad category as the SCAG inventory did not explicitly include a nonroad sector. SCAG 604 
documentation suggests that the nonroad sector is included in the forecasts for the residential, commercial and 605 
industrial sectors (SCAG, 2012, page C-10) but further details on the base year estimates could not be found and no 606 
mention is made in the report where these sectors are described. If the Hestia nonroad estimate (1.56 MtC/yr) were 607 
not allocated to onroad but distributed to the residential, commercial and industrial sectors it would exacerbate the 608 
difference in the onroad, commercial and industrial sectors.  609 

 610 
Figure 14. Comparison of sector-specific FFCO2 emissions for the year 2010 between the Hestia-LA and 611 
SCAG estimates. Units: MtC/yr. 612 

The California Energy Commission archives energy consumption data for both natural gas and electricity 613 
(http://ecdms.energy.ca.gov/). The data is archived as specific to the residential sector and the non-residential sector. 614 
Because of ambiguities regarding the non-residential sector definition, we compare the reported values by county for 615 
the residential only (Table 6). Good agreement for natural gas FFCO2 emissions is achieved for the Los Angeles 616 
Megacity as a whole (<1%) with some variation at the scale of the individual counties. Agreement with the CEC 617 
estimate is better than that found for the comparison with the SCAG inventory (Hestia being 3.1% lower than the 618 
SCAG residential NG FFCO2 estimate). 619 

Table 6. Residential natural gas FFCO2 emissions in the five Hestia-LA domain counties for the year 2011 620 
compared to estimates from the California Energy Commission (CEC). Units: MtC/yr. 621 

County Hestia CEC diff (%) 
Los Angeles 1.94 1.98 -2.0% 
Orange 0.63 0.59 5.7% 
San Bernardino 0.40 0.39 0.8% 
Riverside 0.35 0.39 -11.1% 
Ventura 0.19 0.18 6.5% 
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LA Megacity 3.51 3.54 -0.9% 

Average hourly variations in FFCO2 emissions are sensitive to both the sector and spatial location. Figure 15 622 
presents annual mean diurnal patterns specified by county and sector (the railroad or cement sectors were 623 
constructed with no diurnal cycle and hence is not shown). As noted previously, Los Angeles county shows the 624 
greatest emissions overall, particularly for the commercial marine vessel sector where the port of Los Angeles 625 
dominates. The commercial, residential, onroad and CMV sectors exhibit two maxima, one in the morning (~5-10 626 
am, local time) and another in the afternoon/evening. In the commercial sector, this afternoon/evening maximum 627 
occurs later in this time period centered on 9 pm local time, coinciding with retail closing schedules. The maximum 628 
CMV emissions are shifted by roughly two hours earlier in the day for both the morning and afternoon/evening 629 
peaks. The afternoon/evening maximum for the onroad sector shows an afternoon/evening maximum that is of 630 
longer duration than that in the morning with emissions gradually rising after the midpoint of the day, local time. In 631 
addition to large daily variations, the onroad sector contains a significant weekly temporal pattern with emissions 632 
largest on Monday and smallest on Saturday (Figure 16). 633 

Diurnal patterns in onroad and airport FFCO2 emissions have a single maximum at the middle of the day but broadly 634 
extending across all daylit hours. In the case of the nonroad emissions, this is simply a reflection of the EPA 635 
temporal surrogate applied. In the case of the airport FFCO2 emissions, the time structure reflects the reported air 636 
traffic volume at the major airports in the LA Megacity. Finally, the industrial and electricity production sectors 637 
maintain relatively constant emissions across all 24 hours. In the case of the industrial sector, this reflects the 638 
integration of industry-specific EPA temporal surrogates within a given county. For the electricity production sector, 639 
the time structure is primarily driven by the stack-monitored emissions and shows a slightly greater emission in the 640 
evening hours compared to all other hours.  641 

The diurnal patterns are consistent across all five counties with the exception of the commercial sector where there 642 
are small differences in the maximum point of the morning emissions in San Bernardino and Ventura counties 643 
compared to the other LA Megacity counties.  644 
  645 
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 646 
a) b) 647 

 648 
c) d) 649 

 650 
e) f) 651 

 652 
g) h) 653 

Figure 15. Average daily FFCO2 emissions in the Hestia-LA v2.5 data product for five counties across eight 654 
sectors. A) residential; b) onroad; c) commercial; d) airport; e) commercial marine vessel; f) electricity 655 
production; g) industrial; h) nonroad. Note: different scale range on each plot. Units: kgC/hour. 656 

 657 
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 658 
Figure 16. Average weekly onroad FFCO2 emissions from the Hestia-LA v2.5 data product for five counties. 659 
Units: kgC/day 660 

4 Discussion 661 

The first Hestia urban FFCO2 emissions data product was produced for the Indianapolis domain (Gurney et al., 662 
2012). As an outcome of the Hestia effort, a large multifaceted effort, the Indianapolis Flux Experiment (INFLUX), 663 
emerged (Whetstone et al., 2017; Davis et al., 2017). INFLUX aims to advance quantification and associated 664 
uncertainties of urban CO2 and CH4 emissions by integrating a high-resolution bottom-up emission data product, 665 
such as Hestia, with atmospheric concentration measurements (Turnbull et al., 2015; Miles et al., 2017; Richardson 666 
et al., 2017), flux measurements (Cambaliza et al., 2014; 2015; Heimberger et al., 2017), and atmospheric inverse 667 
modeling. In addition to its use as a key constraint in the INFLUX atmospheric inverse estimation (Lauvaux et al., 668 
2016), Hestia has been informed by atmospheric observations making it useable as a standalone high-resolution flux 669 
estimate offering a detailed space-time understanding of urban emissions. Begun in the late 2000s, INFLUX has 670 
explored many aspects of the individual elements of a scientifically-driven urban flux assessment (e.g. Wu et al., 671 
2018) in addition to demonstrating potential reconciliation between Hestia and the atmospheric measurements 672 
(Gurney et al., 2017; Turnbull et al., 2018). Similar efforts are ongoing in the Salt Lake City (Mitchell et al., 2016; 673 
Lin et al., 2018) and Baltimore (Martin et al., 2018) domains with a different arrangement of atmospheric 674 
monitoring and modeling. As with INFLUX, a Hestia FFCO2 emissions data product was produced in each domain 675 
(Patarasuk et al., 2016; Gurney et al., 2018).  676 
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The Hestia Los Angeles Megacity effort was developed under the Megacities Carbon Project framework 677 
(https://megacities.jpl.nasa.gov/portal/). It was designed to serve the Megacities Carbon Project in a similar capacity 678 
to its role in INFLUX. The Hestia-LA results are unique in that it is the first high-resolution spatiotemporally-679 
explicit inventory of FFCO2 emissions centered over a megacity. Presented here at the 1 km2 spatial and hourly 680 
temporal resolution, the emissions can be represented at finer spatial scales down to the individual building, though 681 
with higher uncertainty. While policy emphasis in California thus far has been focused on CH4 emissions (Carranza 682 
et al., 2017; Wong et al., 2016; Verhulst et al., 2017; Hopkins et al., 2016), work is ongoing to use the extensive 683 
atmospheric CO2 observing capacity in the Los Angeles domain (e.g. Newman et al., 2016; Wong et al., 2015; 684 
Wunch et al., 2009) within an atmospheric CO2 inversion. This will offer an important evaluation of the Hestia-LA 685 
emissions for which limited independent evaluation is currently available. 686 

The potential of the Hestia-LA FFCO2 emissions to enable or assist with policymaking in the cities, counties or 687 
metropolitan planning domain of the overall Southern California area is considerable. The traditional urban 688 
inventory approach, such as accomplished by many cities as part of their climate action plans, are whole-city 689 
accounts, often specific to sector, that follow one of a few inventory protocols. Given the challenges of data 690 
acquisition and the idiosyncrasies of protocol choice and needs, the traditional urban inventories are difficult to 691 
compare across cities and hence, aggregate reliably in a metropolitan domain such as the LA Megacity. Importantly, 692 
without space and time explicit emissions information, they are difficult to calibrate with atmospheric measurements 693 
and hence, evaluate against this important scientific constraint. The Hestia-LA FFCO2 emissions approach attempts 694 
to overcome these limitations to traditional inventory work. By quantifying emissions at the scale of individual 695 
buildings and road segments, with process detail such as the sector, fuel, and combustion technology, Hestia results 696 
can be organized according to most of the protocols in use by cities. This explicit space and time detail also allow 697 
for calibration to atmospheric measurements, for which emission location and time structure is essential.  698 

The state of California continues to lead the nation in climate policy with numerous legislative and executive orders 699 
outlining both general reduction goals and specific policy instruments. The California Global Warming Solutions 700 
Act (Assembly Bill 32) passed in 2006, specifies a statewide reduction in greenhouse gas emissions to 1990 levels 701 
by the year 2020 (https://www.arb.ca.gov/cc/ab32/ab32.htm). Furthermore, the bill requires reporting and 702 
verification of reductions in order to demonstrate compliance. Executive order B-30-15 and Senate Bill, SB 32 have 703 
built on this with an aim to reduce emissions 40% below 1990 levels by 2030 and 80% below 1990 levels by 2050, 704 
respectively (https://www.gov.ca.gov/2015/04/29/news18938/; 705 
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201520160SB32). Ultimately, much of the 706 
specific action needed to meet these goals will rest upon local governments and authorities. Given that 87% of the 707 
state population resides in urban areas and nearly half of state population resides in the Los Angeles Megacity, the 708 
cities and counties that comprise the Los Angeles metropolitan area have a central role to play in achieving the 709 
statewide climate change policy goals. The city of Los Angeles, the largest individual city in the metro region, has 710 
specified goals consistent with the state commitments, expecting to reduce greenhouse gas emissions 35% below 711 
1990 levels by the year 2030 (http://environmentla.org/pdf/GreenLA_CAP_2007.pdf). To meet these reduction 712 
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goals, policy actions will become increasingly difficult to achieve at no- or low-cost and economic efficiency will 713 
become central to making policy choices. 714 

The most important attribute of the Hestia-LA approach, therefore, is the potential it offers for targeting urban CO2 715 
reduction policy more efficiently. As shown in Figures 12 and 13, FFCO2 emissions are highly variable in space and 716 
typically cluster in concentrated areas. In choosing specific policy approaches and instruments, this offers Los 717 
Angeles policymakers the ability to target specific neighborhoods, road segments, or commercial hubs, where 718 
policies will achieve the greatest reduction for resources expended. This rests on the argument that specificity leads 719 
to efficiency. As all cities, including those in the Los Angeles Megacity, move towards those aspects of carbon 720 
emission reductions that are not part of the “low hanging fruit” policy instruments, competition for limited resources 721 
and policy justification will increase. Having information that targets the most efficient and effective emission 722 
reduction investments, established by independent rigorous scientific information, will be at a premium. For 723 
example, if a small proportion of the commercial sector buildings in the LA Megacity account for a large proportion 724 
of the FFCO2 emissions, knowing the location of these buildings and targeting energy efficiency programs to those 725 
buildings, may offer the most economically efficient route to emissions reductions in the commercial sector. A 726 
similar argument can be made in the onroad sector due to the clustering of large onroad emitting gridcells and 727 
specific road-class attributes (see Rao et al., 2017). 728 

A number of caveats are worth mentioning in association with the Hestia-LA v2.5 FFCO2 emissions results. With 729 
Vulcan v3.0 as the starting point for the quantification in Hestia, errors in Vulcan will be passed to Hestia, with a 730 
few exceptions. Of particular note are the industrial sector and more specifically, refining operations which have 731 
limited emissions reporting. These remain difficult to quantify due to the range of CO emission factors representing 732 
many of the combustion processes undertaken at these large and complex facilities. The uncertainty estimation 733 
described remains limited and there are additional sources of uncertainty that must be quantified such as categorical 734 
errors (e.g. mis-specification of fuel category or road class), errors in spatial accuracy and spatial error correlation. 735 
Quantifying these contributions to the overall uncertainty presented here remain a task for future work. 736 

5 Data availability, policy and future updates 737 

The Hestia-LA v2.5 emissions data product can be downloaded from the data repository at the National Institute 738 
of Standards and Technology (https://doi.org/10.18434/T4/1502503) and is distributed under Creative Commons 739 
Attribution 4.0 International (CC-BY 4.0, https://creativecommons.org/licenses/by/ 4.0/deed.en). The Hestia-LA 740 
v2.5 FFCO2 emissions data product is provided as annual and hourly (local and UTC versions) 1 km x 1 km 741 
NetCDF file formats, one file for each of the 6 years (2010-2015). The hourly files are approximately 2.9 GB each. 742 
The annual files are 0.34 GB each.  743 
Attempts will be made to update the Hestia-LA FFCO2 emissions on a roughly bi-annual basis, depending upon 744 
support, the availability of updates to the Vulcan FFCO2 emissions data product, and updates to the additional data 745 
sources described in this study.  746 
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6 Conclusion 747 

The Hestia Project quantifies urban fossil fuel CO2 emissions at high space- and time-resolution with application to 748 
both scientific and policy arenas. We present here the Hestia-LA version 2.5 FFCO2 emissions data product which 749 
represents hourly, 1 km2, sector-specific emissions for the five counties of the Los Angeles metropolitan area for the 750 
2010 to 2015 time period. The methodology relies on the results of the Vulcan Project (version 3.0) further 751 
enhancing and distributing emissions to the scale of individual buildings and road segments with local data sources 752 
acquired from local government agencies. Each sector is quantified using data sources and spatial/temporal 753 
distribution approaches distinct to the sector characteristics. The results offer a detailed view of FFCO2 emissions 754 
across the LA Megacity and point to the extreme spatial variance of emissions. For example, 10% of the 1 km2 755 
emitting gridcells account for 93.6%, 73.4%, 66.2%, and 45.3% of the emissions in the industrial, onroad, 756 
commercial, and residential sectors, respectively. We find that the LA Megacity emitted 48.06 ± 5.3 MtC/yr in the 757 
year 2011, dominated by Los Angeles county (26.42 ± 2.9 MtC/yr) and from a sector-specific viewpoint, dominated 758 
by the onroad sector (20.81 ± 2.3 MtC/yr). Hestia FFCO2 emissions are 10.7% larger than the inventory estimate 759 
generated by the local metropolitan planning agency, a difference that is driven by the industrial and electricity 760 
production sectors. Good agreement is found (<1%) when comparing residential natural gas FFCO2 emissions to 761 
utility-based reporting at the county spatial scale. The largest temporal variations are found in the diurnal cycle with 762 
the residential, commercial, onroad, and commercial marine vessel emissions showing to maxima, one in the 763 
morning and a second in the afternoon/evening. Airport and nonroad emissions, by contrast show broad maxima 764 
across the daylit hours. Finally, the industrial and electricity production sectors show little diurnal variation across 765 
24 hours. The onroad sector also exhibits variation in the weekly distribution of emissions with maximum FFCO2 766 
emissions on Monday and minimum emissions on Saturday. 767 

The Hestia-LA v2.5 FFCO2 emissions data product offers the scientific and policymaking communities 768 
unprecedented spatially and temporally-resolved information on FFCO2 emission sources in the Los Angeles 769 
Megacity. As part of the Megacities Carbon Project, future work includes incorporation into atmospheric CO2 770 
inversion research to further evaluate the Hestia-LA data product and improve estimation. Policymakers can use the 771 
Hestia-LA results to better-understand FFCO2 emissions at the human scale, offering the potential for improved 772 
targeting of FFCO2 reduction policy instruments. Finally, urban researchers can use Hestia-LA to explore a number 773 
of important urban science questions such as how emissions intersect with other urban sociodemographic variables 774 
such as income, education, housing size, or vehicle ownership. 775 

The Hestia-LA data product is publicly available and will be updated with future years as data becomes available. 776 
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