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Abstract. Tillage is a central element in agricultural soil management and has direct and indirect effects on 5 
processes in the biosphere. Effects of agricultural soil management can be assessed by soil, crop, and ecosystem 

models but global assessments are hampered by lack of information on the type of tillage  and their spatial 

distribution. This study describes the generation of a classification of tillage practices and presents the spatially 

explicit mapping of these crop-specific tillage systems for around the year 2005.  

Tillage practices differ by the kind of equipment used, soil surface and depth affected, timing, and their purpose 10 
within the cropping systems. We classified the broad variety of globally relevant tillage practices to six 

categories: no-tillage in the context of Conservation Agriculture, traditional annual, traditional rotational, 

rotational, reduced, and conventional annual tillage. The identified tillage systems were allocated to gridded 

crop-specific cropland areas with a resolution of 5 arc-minutes. Allocation rules were based on literature findings 

and combine area information on crop type, water management regime, field size, water erosion, income, and 15 
aridity. We scaled reported national Conservation Agriculture areas down to grid cells via a probability-based 

approach for 54countries. We provide area estimates of the six tillage systems aggregated to global and country 

scale. We found that 8.67 Mkm² of global cropland area were tilled intensively at least once a year whereas the 

remaining 2.65 Mkm² were tilled less intense. Further we identified 4.67 Mkm² of cropland as area where 

Conservation Agriculture could be expanded to under current conditions.   20 
The tillage classification enables the parameterization of different soil management practices in various kinds of 

model simulations. The crop-specific tillage dataset indicates the spatial distribution of soil management 

practices, which is prerequisite to assess erosion, carbon sequestration potential, as well as water, and nutrient 

dynamics of cropland soils. The dynamic definition of the allocation rules and accounting for national statistics, 

such as the share of Conservation Agriculture per country, also allows for deriving datasets for historical and 25 
future global soil management scenarios. The resulting tillage system dataset and source code are accessible via 

an open-data repository (DOIs: 10.5880/PIK.2019.009 and 10.5880/PIK.2019.010 (Porwollik et al., 2019a, b)).  
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1 Introduction to tillage  

Global cropland covers an area of about 15 Mkm2 (Ramankutty et al., 2008), which is approximately 13% of 30 
global ice-free land. Cropland and associated land management contribute about 4.5% of global anthropogenic 

GHG emissions accounting for emissions from rice cultivation, peatland drainage, and nitrogen fertilizer 

application in the year 2000 (Carlson et al., 2016). Tillage and plowing (further jointly referred to as tillage) are 

practiced on most of this cropland (Erb et al., 2016; Pugh et al., 2015). Tillage comprises farm operations usually 

practiced for seedbed preparation, weed and pest control, or incorporation of soil amendments. According to 35 
Schmitz et al. (2015) conventional tillage can be distinguished on the one hand into traditional systems with 

manual labor and tools, and on the other hand mechanized systems. Conventional tillage usually comprises 

inversion and mixing of the soil layers with the biophysical loosening of the soil, leading to altered temperature 

and soil moisture levels in the affected soil layer (S1 for further terms and definitions used in this study). Current 

global soil management practices trend towards a reduction of tillage operations and intensity (Derpsch, 2008; 40 
Smith et al., 2008). Reduced intensity of the tillage operation as either in the case of strip-, mulch-, ridge- and 

no-tillage is also referred to as conservation tillage (CTIC, 2018). Reduced tillage practices are especially 

suitable for agricultural production (a) of grain crops such as cereals, legumes, and oilseed crops (Giller et al., 

2015); (b) on large, mechanized farms to save labor (Mitchell et al., 2012; Ngwira et al., 2012), fuel (Young and 

Schillinger, 2012), and machine wearing (Saharawat et al., 2010); (c) under arid climate conditions, because of 45 
its soil moisture preserving effect (Kassam et al., 2009; Pittelkow et al., 2015); and (d) on soils with high erosion 

rates (Govaerts et al., 2009; Schmitz et al., 2015).  

Up to now there has been only little effort in the classification and area assessment of tillage systems at the 

global scale. Erb et al. (2016) reviewed data availability of land management practices at the global scale and 

found that there was no continental or global dataset on area, distribution, and intensity of tillage practices. They 50 
report 7.43 Mkm² to be under high intensity tillage comprising the cropland area of annual crops  and 4.73 Mkm² 

of area under low intensity tillage, which comprises the cropland area of perennial crops, zero-tillage as stated by 

Derpsch et al. (2010), and young and temporal fallow cropland area as reported by Siebert et al. (2010). 

The only global statistical data on a kind of tillage system area is provided by the FAO for the extent of 

Conservation Agriculture (CA) area (FAO, 2016) at the national scale. CA is a soil management concept 55 
comprising minimum soil disturbance (through direct seeding techniques), a permanent organic soil cover as 

mulch or green manure, and a diversified crop rotation (Kassam et al., 2009). It is applied on about 10% of the 

global cropland area (FAO, 2016). Widest area spread of CA practice is reported for South America followed by 

North America (accounting for over 84.6 % of total global CA area), where it has been originally developed. 

Adoption of CA is much lower in Europe, Asia, Australia & New Zealand, and with lowest adoption rate in 60 
Africa (1.1%, 2.3%, 11.5%, and 0.3% of reported total global CA area respectively) (Derpsch et al., 2010). The 

top-three adopting countries of CA in terms of area are Argentina, Paraguay, and Uruguay (73.51%, 66.67%, and 

46.13% of their arable land respectively) (FAO, 2016). 

Prestele et al. (2018) mapped reported national values of CA area  from Kassam et al. (2015) to cropland of the 

History Database of the Global Environment database (HYDE; Klein Goldewijk et al. (2017)) for the year 2012.  65 
Based on literature findings, Prestele et al. (2018) developed a CA adoption index per grid cell composed by a 

set of spatial predictors as aridity, field size, soil erosion, market access, and poverty for downscaling reported 

national CA area values. Their resulting global map of CA area at a spatial grid resolution of 5 arc-minutes can 

be applied for impact assessments in global model simulations. 
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Data on tillage practices are available, e.g. for the USA through the reporting of the National Crop Residue 70 
Management Survey published by Conservation Technology Information Center 

(http://www.ctic.purdue.edu/CRM/crm_search/, accessed 08/21/2018). The survey was pursued at national level 

until 2004 and continued for a subset of counties for subsequent years reporting on farming area managed under 

conventional, reduced, and conservation tillage (with further sub-categories of no-, ridge-, and mulch-tillage). 

For Europe, tillage practices have most recently been assessed by the Survey on agricultural production methods 75 
(SAPM) in 2010 based on census and sample survey data and published by EUROSTAT 

(http://ec.europa.eu/eurostat/statistics-

explained/index.php?title=Glossary:Survey_on_agricultural_production_methods_(SAPM), accessed 

08/23/2018). In the EUROSTAT data portal farm type and size, and their corresponding area managed under the 

tillage categories: conventional, conservation tillage, and zero-tillage (often used as a synonym for no-tillage as 80 
referring to direct seeding techniques) are reported. Analyzing tillage practices in the EU-27 for the year 2010, it 

has been found that on average the share of conservation and zero-tillage practices increases with the size of the 

arable land area of a farm holding (EUROSTAT, 2018). 

Soil, crop, vegetation, erosion, and Earth system models (ESMs) (in the following jointly referred to as 

ecosystem models) can be applied to assess the effect of different tillage practices on ecosystem elements, fluxes 85 
and stocks. Some global carbon studies assess the climate mitigation potential of soils managed with no-tillage 

compared to conventional tillage, which was simulated as a temporally limited enhancement of the 

decomposition factor on the soil carbon pools under cultivated cropland (Levis et al., 2014; Olin et al., 2015; 

Pugh et al., 2015; Smith et al., 2008). More process-based representations of the tillage effect are applied in 

models as the decision support system for agrotechnology transfer -- cropping system model (DSSAT-CSM, 90 
White et al. (2010)), and the crop growth simulator (CROPGRO-soybean, Andales et al. (2000) having direct 

and indirect biophysical effects on soil, water, crop yield, and emissions. Another field of global scale studies 

assessing the tillage effect refers to the analysis of albedo enhancement perceived in cases of no-tillage in 

conjunction with associated increased residue levels left on the soil surface (Hirsch et al., 2017; Lobell et al., 

2006). Furthermore, tillage is important in soil erosion assessment studies, often represented within the context 95 
of the land management factor amplifying sub-factors as surface cover and roughness (Nyakatawa et al., 2007; 

Panagos et al., 2015).  

McDermid et al. (2017) reviewed regional and ESMs’ approaches of representing agricultural management 

practices and land use conversion with a focus on climate and land surface interactions, including tillage 

modifying carbon stocks in the soil as well as biogeophysical surface attributes. They reveal sources of 100 
uncertainty due to missing land management data and limited representation of processes in current assessment 

models. In regard to the tillage effect they elaborate on the findings of Levis et al. (2014) who found decreased 

soil carbon levels below cropped and cultivated land compared to land without cultivation. McDermid et al. 

(2017) mention a potential overestimation of the efficacy of no-tillage practices’ contributions to mitigate 

anthropogenic carbon by enhanced carbon stock based on findings of Powlson et al. (2014).  105 
Pongratz et al. (2017) also reviewed data availability and process implementations within ESMs for ten land 

management practices and resumed tillage to be currently underrepresented. They recommend simple and 

complex methods to model tillage effects on albedo, soil moisture, respiration, and resulting impact on soil 

carbon stocks and fluxes. In the absence of detailed tillage area and type information, the global ecosystem 

http://www.ctic.purdue.edu/CRM/crm_search/
http://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Survey_on_agricultural_production_methods_(SAPM)
http://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Survey_on_agricultural_production_methods_(SAPM)
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modeling community currently can assess difference of contrasting tillage type impacts just in form of stylized 110 
scenarios, simulating the effect on the entire cropland area (Del Grosso et al., 2009; Olin et al., 2015; Pugh et al., 

2015). One recent exception is the assessment by Hirsch et al. (2018) who estimate the effects of an altered 

albedo from residues used for soil cover on CA areas, using the spatial data of Prestele et al. (2018). 

The objective of this study is to a) increase the understanding of differences in tillage practices at the global scale 

b) formulate rules to spatially map tillage systems to the grid scale, and c) develop an open source and open data 115 
crop-specific tillage system dataset for the parameterization of tillage events and area in global ecosystem 

models and assessments. In order to do so we develop a global tillage system classification. Further we analyze 

underlying causes for the occurrence of different tillage systems and make use of available data in order to map 

them to a global grid of 5 arc-minutes resolution. 

2 Data and method 120 

2.1 Tillage system classification 

Globally tillage systems differ by the kind of implement used, soil depth and share of soil surface affected, 

mixing efficiency, timing, frequency, and by their purpose within the relevant cropping systems (Table 1). 

Conventional tillage, often done with a moldboard plow refers to the inversion and mixing of soil layers for 

seedbed preparation, incorporation of soil amendments, weed, pest, and residue management. In traditional 125 
tillage systems soils are usually managed with hand tools, e.g. hoe or cutlass (Schmitz et al., 2015), which is 

very labor and time intensive. The application of animal-drawn plows or the use of a moldboard plow attached to 

some motorized vehicle result in increased soil depth and mixing efficiencies of the tillage operation compared 

to traditional tillage implements. In the case of CA, there is only a minimal mechanical soil disturbance by direct 

seeding equipment or none in the case of broadcasting seeds. 130 
The soil depth affected by the tillage operation is determined by the soil depth to bedrock, the implement used to 

till the soil, and by the purpose of the tillage event. A moldboard plow usually inverts and mixes the soil layers 

up to 20-30 cm depth. Pimental and Sparks (2000) state the minimum soil depth for agricultural production to be 

15 cm. Whereas Kouwenhoven et al. (2002) find that for burying green manure and annual weed, a minimum 

tillage depth of 12 cm to be necessary, and suggest 20 cm for the management of perennial weeds. We decided 135 
for a minimum depth of mechanized tillage of 20 cm. For traditional tillage with manual labor, tillage is assumed 

to reach only to a lesser depth, because of limited capacity to penetrate the soil profile (Schmitz et al., 2015). The 

affected depth by minimum soil disturbance practices under CA is assumed to be as deep as the seed placement 

requires, which is stated as approximately 5 cm by White et al. (2010) for no-tillage systems.  

In conventional tillage systems, the tillage implement is usually applied on the entire soil surface to be effective. 140 
In contrast to that, no-tillage under CA may affect at most 20 to 25% of the soil surface during the direct seeding 

procedure (Kassam et al., 2009; White et al., 2010). On the field, reduced tillage as partial disturbance of the soil 

surface in case of strip-, mulch- or ridge tillage can be achieved by applying either an inverting implement to a 

lesser soil depth or a lower share of soil surface affected, by using harrows or disks, or by less field passes. 

Reduced tillage practice can be simulated in the form of lower soil disturbance, frequency, depth, mixing 145 
efficiency, or higher residue share left on the soil surface ranging between values of conventional and no-tillage 

(15 to 30%). 
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Tillage mechanically loosens the soil by decreasing the bulk density of the soil. Soil bulk density and pore space 

determine the levels of surface contact between seeds and soil particles, root growth, and water infiltration. The 

mixing efficiency of tillage describes the degree of homogeneity achieved e.g. when burying crop residues and 150 
redistributing soil particles in the affected soil horizon. The type of soil, its moisture content, and the speed of 

the tillage practice are further determining factors for the mixing efficiency of tillage (White et al., 2010) under 

field conditions. Too intensively or inappropriately tilled soils over a longer time period exhibit the destruction 

of soil aggregates by increasing bulk density leading to compaction or crusting (White et al., 2010). The mixing 

efficiency can be modelled as a factor modifying the homogeneity level of soil components and associated 155 
characteristics. 

Conventional tillage both in mechanized and traditional farming systems leaves a low portion of residues 

covering the soil surface after seeding - usually less than 15% (CTIC, 2018; White et al., 2010). Reduced tillage 

may leave 15-30% whereas in CA systems minimum soil surface covered by organic mulch is defined as at least 

30% after the seeding operation (CTIC, 2018). Timing and frequency of soil disturbance by tillage depend on the 160 
type of cropping system. For annual crops, tillage is performed annually at the time of establishment, after 

harvest, or both. When modelling perennial crops, the interval of the main tillage events on fields should reflect 

the length of the perceived entire plantation cycle. During the growing period less intense tillage may be 

necessary for weed management or intended inter-cropping purposes several times. This soil management is 

locally restricted to the space between the rows of the main crop and can be replaced by herbicide applications. 165 
Within CA managed systems disturbance of the soil occurs only at the time of seeding. Weed in CA systems is 

either managed by sustaining a permanent soil cover of either mulch or cover crops, by diversified rotations, or 

by application of herbicide so that no further mechanical soil disturbance is necessary during the growing season. 

Based on the literature findings mentioned above we consider six different tillage systems, namely no-tillage in 

the context of Conservation Agriculture, conventional annual, rotational, traditional annual, traditional rotational, 170 
and reduced tillage (Table 1). 

 (Table 1) 

2.2 Datasets used for mapping tillage systems to the grid 

For mapping the six tillage systems, spatial indicators on the basis of several environmental and socio-economic 

datasets are applied (Table 2). The basic data layer to this mapping study is the cropland dataset by the spatial 175 
production allocation model further referred to as SPAM2005 by the International Food Policy Research 

Institute and International Institute for Applied Systems Analysis (IFPRI/IIASA, 2017b). It reports physical 

cropland area for 42 crop types (Table S2 for a list of crop types) for the year 2005. SPAM2005 is a result of a 

disaggregation of national and sub-national data sources in an cross-entropy approach. The SPAM2005 dataset 

comprises four technology levels of crop production, distinguishing high input irrigated from purely rainfed with 180 
further distinction of rainfed into high input, low input, and subsistence production per crop type and grid cell 

(You et al., 2014). In this study only the entire physical cropland and the separated irrigated and rainfed cropland 

were used per grid cell. Adding up the reported cropland area of SPAM2005 for 42 crop types results in a total 

sum of 11.31 Mkm².  

The grid cell allocation key to country accompanying the SPAM2005 cropland dataset (IFPRI/IIASA, 2017a) 185 
was applied in this study for any grid cell aggregation to country scale. Sub-national aggregations of grid cells to 
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state or province level were done with the Global Administrative Areas data base (Global Administrative Areas, 

2015).   

The dataset on soil depth to bedrock (Hengl et al., 2014) has been retrieved from SoilGrids, which is a soil 

information system reporting spatial predictors of soil classes and soil properties at several depths. It has been 190 
derived on the basis of the United States Department of Agriculture (USDA) soil taxonomy classes, World 

Reference Base soil groups, regional and national compilations of soil profiles, several remote sensing, and land 

cover products using multiple linear regressions. The dataset reports on the absolute depth to bedrock (cm) per 

grid cell. 

The global gridded field size dataset by Fritz et al. (2015) has been derived and validated on the basic of a 195 
crowd-sourcing campaign. It reports four field size classes as “very small” (smaller than 0.5 ha), “small” (0.5 to 

2 ha), “medium” (2 to 100 ha), and “large” (larger than 100 ha) (Herrero et al., 2017) for the year 2005. The field 

size and the SPAM2006 datasets both use the cropland extent presented in Fritz et al. (2015). 

The Global Land Degradation Information System (GLADIS) (Nachtergaele et al., 2011) reports land 

degradation types and their spatial extent around the year 2000. From this database the global gridded water 200 
erosion data has been selected. The water erosion data reports the sediment erosion load (t ha-1 year-1) per grid 

cell which the authors derived by applying the Wischmeier equation (Wischmeier and Smith, 1978). Values of 

the data range from 0 to 12,110 t ha-1 year-1 with highest water erosion levels occurring in mountainous areas. 

The aridity index dataset was retrieved from the Food and Agriculture Organization Statistics (FAO, 2015). The 

aridity index was calculated as the average yearly precipitation divided by the average yearly potential 205 
evapotranspiration (PET), based on Climate Research Unit (CRU) CL 2.0 climate data averaged for the years 

from 1961 to 1990 applying the Penman-Monteith method. It reports values per grid cell ranging from 0 to 

10.48, where values smaller than 0.05 are regarded as “hyper arid”, 0.05-0.2 as "arid”, 0.2-0.5 as “semi-arid”, 

0.5-0.65 as “dry humid”, and values larger 0.65 as “humid”.  

 (Table 2) 210 

The online data base AQUASTAT reports annually the spread of Conservation Agriculture (CA) practices at the 

national scale (FAO, 2016). From this data source, national CA area values were retrieved for all 54 countries 

that reported any CA with the total area sum of 1.1 Mkm². Not all of these countries reported values for the year 

2005, so that values closest to 2005 were selected from the available set, giving preference to data availability 

over matching the year 2005. 215 
The average farm size per country dataset (n=133) (Lowder et al., 2014) is based on FAO farm size time series 

data. National average farm size was largest in land-rich countries, with the top-three countries being Australia 

(3243.2 ha), Argentina (582.4 ha), and Uruguay (287.4 ha) (Lowder et al., 2014). The authors found average 

farm size to increase with elevated income level of a country.  

Further we retrieved the income level per country by World Bank (2017) for the year 2005. The data refers to 220 
four categories of countries gross national income (GNI capita-1 year-1), as “Low income” (less than 875 US $), 

“Lower middle income” (876-3,465 US $), “Upper middle income” (3,466-10,725 US $), and “High income” 

(more than 10,725 US $).   
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2.3 Processing of input data and mapping rules  

For calculation purposes, all gridded input datasets mentioned above were harmonized in terms of spatial extent, 225 
resolution, and origin. The spatial extent of the target dataset comprises all cropland cells reported by 

SPAM2005 (IFPRI/IIASA, 2017b). Targeted resolution is 5 arc-minutes, which partially required resampling 

and (dis-)aggregation of the applied datasets using the R (R Development Core Team, 2013) version 3.3.2  

loading packages ‘raster’ (Hijmans and van Etten, 2012), ‘fields’ (Nychka et al., 2016), and ‘ncdf4’ (Pierce, 

2015). More details on the input data harmonization and processing can be found in the accompanying R-code 230 
(Porwollik et al., 2019a).  

We developed several mapping rules to allocate the six tillage systems to the grid-cell scale, employing a 

decision tree as shown in Fig. 1. The decision tree approach has also been applied in other spatial mapping 

exercises, e.g. in Verburg et al. (2002) and Waha et al. (2012). Hierarchical classification procedures based on 

expert-rules can be used to distribute data of a larger spatial (e.g. administrative) unit to the grid cell level (Dixon 235 
et al., 2001; Siebert et al., 2015; van Asselen and Verburg, 2012; van de Steeg, 2010).  

As a first step, the SPAM2005 cropland dataset is masked for grid cells reporting cropland but soil depth to 

bedrock of less than the required 15 cm for agricultural production according to Pimental and Sparks (2000) 

(Fig. 1). This contextual mismatch between these two datasets may be caused by different input data used by the 

producers or by their method of averaging values within one grid cell, in which the soil depth to bedrock is 240 
heterogeneous. The entire cropland of these shallower grid cells is allocated directly to the reduced tillage system 

area, where ridging or raised beds may be practiced by the farmer, because of physical hindrance for inverting 

tillage practices at increased depth.  

The remaining cropland is treated separately for annual and perennial crops following Erb et al. (2016)’s 

findings, differing between plant type associated tillage by intensity in terms of frequency and timing of the 245 
tillage operation (Table S2 for crop type classification).  

As a further step, we distinguished tillage practices per water management regime. We assumed that soils of 

irrigated crops are more regularly exposed to some level of mechanical soil surface alteration, i.e. leveling off of 

the surface in order to distribute irrigation water most efficient and homogeneous over the field. We allocated all 

irrigated annual cropland either to traditional or conventional annual tillage area depending on field size and 250 
income level (Fig. 1).  

Annual and perennial tillage systems, both are further distinguished by the level of mechanization and 

commercial orientation of the crop production. We follow the definition for smallholder farming used in Lowder 

et al. (2016), if cultivation area is smaller than 2 ha. According to Fritz et al. (2015), field size can be regarded as 

a proxy for agricultural mechanization and human development. Further Levin (2006) found that field size and 255 
farm size are positively related. Based on these findings, we apply the field size dataset as a proxy for farm size 

and mechanization. We categorize cropland per grid cell reporting field size equal or larger than 2 ha as ‘large’ 

scale assuming access of the farmer to mechanized farming equipment and field size smaller than 2 ha as ‘small’ 

scale farming with rather manual labor. Field size data is not available for all grid cells where SPAM2005 

reported cropland. Consequently we interpolated for missing field size grid cell values, using the mean of 260 
surrounding grid cell values. The spatial distance to the Hawaiian Islands was too far for this operation, so there 

field size was set to value of 2 ha, assuming a land restriction to field size due to the island’s geographic pattern 

and in absence of any alternative information.  
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We further assume that animal draught power and mechanized soil management practices on a farm also occur 

as a function of income, indicating the financial capital a farmer might have access to. Therefore, we additionally 265 
apply the national average income level dataset to differentiate between small field sizes in higher income 

countries, where access to financial capital for investment into farm equipment is perceived easier than for 

farmers with small field sizes in lower income countries. In order to do so, we reclassified countries reported in 

the income dataset considered “low” and “lower-middle income” as ‘low income’, and those countries formerly 

considered “upper middle” and “high income” as ‘high income’ in this study. In grid cells reporting newly 270 
derived small field size and low income, we then allocated perennial cropland to traditional rotational tillage and 

annual cropland to traditional annual tillage. In high income countries or in a grid cell reporting field size larger 

than 2 ha situated in low income countries, perennial cropland was assigned to rotational tillage and annuals’ 

cropland to conventional annual tillage assuming a rather commercially oriented farming system with access to 

market, financial capital, and therefore mechanized soil management equipment (Fig. 1).  275 
We applied a downscale algorithm of national reported CA area values on a subset of rainfed annuals’ cropland 

area (see Fig. 1 box “Downscaling”; see following Sect. 2.4 for more details). The remaining rainfed annuals’ 

cropland not being assigned to CA area is checked again for soil depth to bedrock. In case it was shallower than 

20 cm, the cropland was as well assigned to reduced tillage, assuming less depth, frequency, mixing efficiency, 

or alternative cultivation practices. In case of soil depth to bedrock of 20 cm or more the remaining cropland 280 
depending on crop type was either mapped to the conventional annual or to the rotational tillage system. 
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Figure 1: Decision tree for allocating cropland to six derived tillage systems. The data processing and mapping was 
pursued as depicted from top to bottom of the diagram. Each box represents a check on a grid cell whether reporting 
values from the different data layers meet the derived thresholds or specific cropland features. The arrows with solid 285 
lines indicate a ‘yes’ and arrows with dotted lines a ‘no’ in the allocation procedure of crop-specific area to tillage 
systems. The box indicating the ‘Downscaling’ represents our probability and suitability indicators applied to 
downscale national CA area values to a spatially heterogeneous pattern at per grid cell. Boxes with darker grey 
background shading and thicker frames show the derived types of tillage systems. (Abbreviation of Gross National 
Income as: GNI) 290 

2.4 Downscaling reported national CA area to the grid cell  

2.4.1 Mapping rules for downscaling CA  

Generally it can be assumed that the entire cropland is suitable for some kind of sustainable farming technique 

but in the following we refer to ‘potential CA area’ as the area where we regard the adoption of CA as more 

likely than for the remaining cropland where CA adoption would require additional assistance or support for the 295 
farmer. Potential CA area is derived from the cropland of 22 rainfed annual crops in grid cells reporting 

dominant large field size in low income countries and all field sizes in high income countries. Cropland areas of 

annually planted rainfed crop types were considered as suitable for CA practice following the finding of Kassam 

et al. (2009) who state, that much of the CA development to date has been associated with rainfed arable crops. 

We selected the following annual crop types reported by SPAM2005 as suitable for CA in this study: barley, 300 
beans, chick peas, cotton, cowpea, groundnut, lentil, maize, other cereals, other pulses (e.g. broad beans, 
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vetches), pearl millet, pigeon pea, rapeseed, rest (e.g. spices, other sugar crops), sesameseed, small millet, 

sorghum, soybean, sunflower, tobacco, vegetables (e.g. cabbages and other brassicas), and wheat (see Table S2) 

following Giller et al. (2015)’s findings on CA-suitability of (dryland) grain crop types. All annual rainfed root, 

tuber, and rice cropland is excluded from the potential CA area following Pittelkow et al. (2015), who reported 305 
larger yield penalties for these crop types when applying no-tillage practices. Rice is often produced as paddy 

rice, requiring puddling, which is a practice modifying the soil aggregates a lot in order to facilitate the flooded 

condition, e.g. to suppress weed growth. A conversion from puddled to dryland rice production as well as 

improved drainage of tuber crop production area may require additional management steps by the farmer in 

order to achieve comparable yield levels with no-tillage as under conventional production methods. The resulting 310 
potential CA area amounts to 4.65 Mkm².   

As stated by Powlson et al. (2014) for the Americas and Australia, by Rosegrant et al. (2014) in general on no-

tillage, by Scopel et al. (2013) for Brazil on CA, and by Ward et al. (2018) on CA, largest adoption rates of 

minimum soil disturbance management principles can be found on medium to large farms. There is low adoption 

of CA or no-tillage among small-scale farms, with the exception of Brazil (Rosegrant et al., 2014), where 315 
adoption of CA was supported through policies and technological investments.  

We developed a linear regression with the ‘stats’ package of  R (R Development Core Team, 2013), applying the 

linear correlation model (‘lm function’) to assess the statistical relation between national average farm size 

(Lowder et al., 2014) and percentage share of CA area (FAO, 2016) on arable land. The functional relation 

exhibits an increase in the national share of CA on arable land with an increase of average farm size over the 320 
country sample (Fig. S3). 

Based on the literature findings and regression results, we assumed that no-tillage in the context of CA was 

highly probable for cropland in grid cells with large fields (here serving as a spatial proxy for large farm size and 

mechanization).  

Furthermore, we considered no-tillage as suitable for arable production under arid conditions (Kassam et al., 325 
2009; Pittelkow et al., 2015), because of less aeration, more stable pores and soil aggregates compared to soils 

managed with conventional tillage. In CA systems, the evapotranspiration is additionally reduced by a 

continuous biomass cover of at least 30% of the soil surface, which promotes yield stability in drought prone 

production environments.  

As a last allocation criterion, CA was regarded as suitable for crop production in areas with elevated erosion 330 
levels. Basso et al. (2006) find that farmers may make use of green or residue cover to protect the soil surface 

during high intensity rainfall events. Our mapping rule also is in line with the finding of Kassam et al. (2009) 

stating that wind and water erosion were major drivers of CA adoption in Canada, Brazil, and the USA. 

According to Schmitz et al. (2015) and Govaerts et al. (2009), also Asian and African agricultural producers 

could benefit from the positive effects of CA in erosion prone areas.  335 

2.4.2 Logit model for downscaling national CA  

Cropland, field size, water erosion, and aridity data per grid cell are used as predictors determining the spatial 

distribution of national reported CA area within a country (Fig. S4.1-4).We developed a logit model to transform 

and combine these four spatial predictors into probability values per grid cell, indicating the likelihood of CA 

area occurrence. The logit model was chosen because different ranges of the spatial predictor datasets are made 340 
comparable at equal weights without losing much detail.  
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From the potential CA area data layer we computed the input variable “crop mix” as the ratio of the area sum of 

22 CA-suitable crop types over the sum of total cropland area per grid cell. We assume an increasing probability 

for CA area occurrence in grid cells with increasing cultivated area share of CA-suitable crops types. This was 

based on the assumption that cropland within a grid cell belongs to one management regime, under which 345 
rotations with CA-suitable crops are practiced, and a similar set of soil working equipment is employed. The 

assumptions also takes into account peer group influence and knowledge spillover effects from early adopters of 

a new technology (here CA practice) towards their neighbors (Case, 1992; Maertens and Barrett, 2013). 

Regarding the statistical relation between farm size and CA adoption, we assume that the larger the field size, the 

higher the CA probability especially for field sizes equal or larger 2 ha depending on the income level of a 350 
country, taking 2 ha as the midpoint of the transformed field size logit curve.  

We set missing water erosion values in grid cells reporting potential CA area to the neutral value of 12 t ha-1 

year-1, since it depends on very small-scale conditions, e.g. slope. When transforming the water erosion values to 

logit, we set 12 t ha-1 year-1 as the midpoint value of the function. Here the corresponding mapping approach was 

to assume increased probability of CA practices in cells which report water erosion values exceeding 12 t ha-1 355 
year-1 as the upper bound of the soil loss tolerance value (T-values) defined by the USDA (Montgomery, 2007).  

The midpoint of aridity’s logit regression curve is chosen at 0.65 resulting in higher probabilities of CA area 

occurrence for grid cells reporting arid (values smaller than 0.65) than humid (values larger than 0.65) growing 

conditions. We interpolated missing aridity values in grid cells where SPAM2005 reports cropland, except for 

one island near Madagascar, which we set to the logit-neutral value of 0.65, because we assumed very special 360 
climatic conditions there. 

 

We tested for (Pearson) correlation among the four spatial predictor variables with the R ‘base’ package (R 

Development Core Team, 2013), in order to prevent autocorrelation effects (Table 3).  

 (Table 3) 365 

Generally correlation coefficients (r) among the datasets are low and mostly negative, except for field size and 

crop mix.  

Those four cropping system indicators are used as explanatory variables in the regression to get the probability 

of cropland in a grid cell to be CA area as a value between 0 and 1. The probability of CA in a grid cell is 

derived via the following Eq. (1): 370 

𝐶𝐶𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 1
1+exp (−∑ 𝑘𝑘𝑖𝑖 (𝑣𝑣𝑣𝑣𝑖𝑖−𝑣𝑣𝑥𝑥𝐺𝐺𝐺𝐺𝑖𝑖)) 4

𝑖𝑖=1
         (1) 

where, i represents the input datasets of water erosion, aridity, crop mix, and field size (proxy for farm size), ki 

refers to the slope value, xmidi to the central points of each of the logit curves, and vxi to grid cell values of the 

referring input dataset.  

A sensitivity analysis has been conducted to assess the explanatory power of each of the four input variables and 375 
the uncertainty of our parameter set and combination (Fig. S5). First step was to vary our chosen reference slope 

(ki) of each of the input dataset values by factors of 2 and 0.5 (+100%, -50%), as a next step each of the variables 

is dropped, and finally each of the variables is used single in the logit model. The sensitivity test was conducted 

at the global scale and also for each of the 54 CA reporting countries. 
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2.4.3 Mapping CA area per country 380 

The downscaling of total national CA area values comprised subsetting all grid cells with CA-suitable area per 

CA area reporting country (FAO, 2016). Then these grid cells were sorted in decreasing order according to their 

CA probability values derived with the logit equation. As a next step, grid cells with the highest logit model 

results were selected step wise while adding up the corresponding potential CA area until the reported national 

CA area threshold was reached. We received a heterogeneous pattern of allocated CA area at 5 arc-minutes 385 
resolution grid within a CA reporting country, according to the likelihood of CA area occurrence based on the 

logit results, statistical data, and literature findings.  

2.4.4 Scenario CA area  

Similar to the ‘bottom-up scenario’ of Prestele et al. (2018), we deduced ‘scenario CA area’ indicating the 

maximum area extent of CA adoption, under assessed current socio-economic and biophysical conditions. We 390 
add the subset of 22 annual rainfed crop-specific areas in grid cells with large field sizes in low income and all 

field sizes in high income countries from reduced tillage to the potential CA area to calculate scenario CA area 

per grid cell. 

3 Spatial pattern of six tillage systems 

We allocated global cropland of SPAM2005 to the six tillage systems at a spatial resolution of 5 arc-minutes 395 
according to a set of rules (Table 4). In terms of area, conventional (Fig. 2) and traditional annual tillage (Fig.3) 

globally constitute the most widespread tillage practices. Both systems are applied for annual crops, which are 

globally growing on the largest cropland fraction, are traded, and consumed most. Large parts of the cropland 

under traditional annual tillage for rainfed and irrigated annuals, is located in South East Asia, with especially 

high cropland area shares in India followed by Sub-Saharan Africa, and then South America (Table S9 for 400 
aggregated tillage system areas to country scale). Conservation Agriculture globally constitutes the third largest 

tillage system area (Table 4 and following Sect. 3.1). Rotational tillage (Fig. 4) is on the fourth position in the 

ranking of tillage system areas followed by traditional rotational tillage area (Fig. 5). Most traditional rotational 

tillage system area can be found across the tropical region of South-Eastern Asia and West Africa. Reduced 

tillage has the smallest area extent (Table 4) which we find mostly in a narrow band between 10° and 20° 405 
Northern latitude (Fig. 6). It occurs in Mexico, South of the Sahel region but mostly is found on cropland in 

India (Table S8 for further metrics across tillage system areas; Table S9).  

 (Table 4) 
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Figure 2: Conventional annual tillage area, which has been allocated to the majority of global physical cropland area. 410 

 
Figure 3: Traditional annual tillage area as sums over 29 annual crop types’ areas in grid cell reporting dominant 
field size smaller than 2 ha and in countries classified as low income in this study.  
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Figure 4: Rotational tillage area on cropland area of 13 perennial crop types in grid cells with dominating field sizes of 415 
minimum 2 ha or larger in low income or all field sizes in high income countries.  

 
Figure 5: Traditional rotational tillage area as cropland of 13 perennial crop types in grid cells characterized by field 
sizes smaller than 2 ha in countries considered as low income in this study.  

 420 
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Figure 6: Reduced tillage area where soil depth to bedrock is limiting the depth of tillage.  

3.1 Conservation Agriculture area 

3.1.1 The results of the logit model 425 

We deduced the likelihood of CA area in a grid cell via the logit model approach according to the indicators crop 

mix, field size, water erosion, and aridity (Fig. 7). The geographical pattern of the logit results (further referred 

as ref-logit) exhibits higher probabilities for cropland in grid cells outside the tropical climate zone and in rather 

continental regions. Probability of CA is higher for cropland in grid cells reporting large field sizes which are 

mostly found in developed and land-rich countries, i.e. in the USA, Australia, and large parts of Europe. Grid 430 
cells in the tropics receive rather low logit results due to their humid conditions, smaller field sizes, lower 

income levels, and crop types cultivated. In India, China, and Pakistan the majority of cropland showed very low 

CA likelihood. 
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Figure 7: Probabilities of Conservation Agriculture area per grid cell with high values as green to yellow and low ones 435 
in blue to purple colors (white color indicates the absence of cropland, and grey the cropland (IFPRI/IIASA, 2017b) 
which is excluded from the potential CA area due to soil depth, crop type, irrigation, field size, or income level). 

3.1.2 Results of the sensitivity analysis of the logit model 

The sensitivity analysis of the logit model shows mixed responses to the perturbations of slope or variable 

combination (Table 5, Fig. S5). Rank correlation (r) to the ref-logit is much lower when taking one variable only 440 
compared to each of the other drop-variable settings or slope modifications. Regarding modifications of the 

slope parameters of the input variables, we calculated the lowest rank correlation coefficient for increasing the 

slope of aridity by +100 % and for decreasing the slope of crop mix by -50 % compared to changing the slopes 

of the other three variables respectively.  

Erosion has lowest explanatory power as can be interpreted from the very high correlation coefficient to ref-logit 445 
when dropping it - but even negative correlation when taking it into the logit equation only. This finding is in 

line with the findings of the sensitivity tests performed by Prestele et al. (2018) who find erosion as the variable 

with the smallest explanatory power as well.  

Crop mix has the largest explanatory power in the logit equation as shown by the lowest correlation coefficient 

value when dropping it but highest when taking that variable only (Table 5). We additionally report on the 450 
sensitivity results for the 54 CA reporting countries, where the effects of slope and variable perturbation show 

very different patterns per country (Table S6). However, as national CA areas are allocated within individual 

countries, the sensitivity of ranking within countries is of greater importance than the global rank correlation.  

 (Table 5) 

3.1.3 Downscaled CA area 455 

Total downscaled CA area (1,101,899 km2, Fig. 8) is slightly lower than FAO reported total CA area  for these 

countries (1,102,900 km2). This difference occurs because of our algorithm, which assigned the entire CA-



17 
 

suitable cropland area per grid cell to CA, taking the cropland of the following grid cell in or out of consideration 

striving for least deviation from the threshold per country (Table S7 for comparison of reported and downscaled 

country values). A further difference is due to the insufficient potential CA area in North Korea and New 460 
Zealand, resulting in the fact that only part of the national reported CA area could be allocated to. 

  

 
Figure 8: Downscaled Conservation Agriculture area (km2) (colored) on total cropland (grey) per grid cell for 54 
reporting countries around the year 2005. 465 

Aggregated crop-specific CA area values reveal that most downscaled CA area was allocated to  area cultivated 

with soybean, followed by wheat, and then maize (Table 6). These three crops are among the most important 

produced, traded, and consumed agricultural goods, making their production highly competitive and therefore 

the incentive to reduce operational costs (e.g. regarding tillage) is high. Another reason for soybean and maize 

being among the crops mostly produced under CA, may be the usage of high yielding, or genetically modified 470 
crops, coming along with improved pesticide resistances, which make them more suitable for possible herbicide 

applications (Giller et al., 2015) replacing tillage operations on-field. In Argentina, soybeans are found to be the 

most common plant cultivated under CA with usually lower residue coverage than required for being a CA 

system (Pac, 2018). Subsistence farming crops, e.g. peas and millet, were contributing only few cropland to the 

downscaled CA area (Table 6), because they are more drought resistant (Jodha, 1977), and of rather regional 475 
importance in terms of food security while being traded less on the international markets (Andrews and Kumar, 

1992).  

 (Table 6) 

3.1.4 Scenario CA area 

We deduced the total global potential CA area of 4.65 Mkm² (see above). Additionally, we identified 0.02 Mkm² 480 
of 22 rainfed annual crop types’ areas on large fields in low income countries and all field sizes or in high 
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income countries from the reduced tillage system area, which potentially could be converted to CA area as well. 

We calculated a total scenario CA area of 4.67 Mkm², where perceived driving forces, e.g. CA adoption 

supporting agricultural policies, targeted mechanization efforts, and knowledge dissemination approaches could 

lead to an area expansion of CA practices.  485 

 
Figure 9: Scenario Conservation Agriculture area (km2) (colored) on total cropland (grey) per grid cell. 

4 Discussion 

4.1 Comparison of results to other studies 

In the absence of alternative tillage area datasets for validation at the global scale we here want to discuss the 490 
way our tillage system area results relate to other studies’ findings. 

We compare the spatial pattern of our added traditional tillage system area to the one reported by the cropland 

subsets of SPAM2005 for low input and subsistence production. According to You et al. (2014), both production 

levels are characterized by a low level of mechanization or rather manual labor and low input usage. The sum of 

our traditional tillage systems’ (rotational and annual) areas (4.63 Mkm²) is slightly higher than the sum of 495 
SPAM2005 subsistence and low input technological level cropland (4.55 Mkm²). We deduced more traditional 

tillage system area in South-East Asia, Sub-Saharan Africa, and Peru than SPAM2005 reported under low and 

subsistence farming (see difference map in Fig. S10). Further comparison reveals a moderately lower amount of 

area under traditional tillage in our dataset for Europe, the Near East, South America, and Australia, i.e. in 

countries which are regarded as emerging or developed economies. The spatial difference may be due to the fact 500 
that SPAM2005 is a product of a sub-cell cross-entropy optimization approach to distribute cropland of the same 

crop species into several production levels per grid cell. Contrary to this, we used the field size and gross-

national income as spatial indicators for un-mechanized tillage systems by masking out cropland either per entire 

grid cell or country-wise according to our derived thresholds. We calculated the spatial correlation via a 

regression of the added area values of our traditional tillage system and of the sum of low input and subsistence 505 
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production level cropland reported by SPAM2005. We found a regression factor (r2) of 0.54 (p < 0.001, slope of 

1.139) among both datasets’ values.  

Our estimate of traditional tillage system area in turn is lower than the finding by Lowder et al. (2016), stating 

5.87 Mkm² to be under management of farms smaller than 2 ha size (~12 % of their arable cropland assumption).  

In order to compare our results to the findings of Erb et al. (2016) on tillage intensity areas, we added up our 510 
reduced, both rotational tillage system areas, and the downscaled CA area to represent the ‘low intensity’ tillage 

area, whereas conventional and traditional annual tillage are summed up to the ‘high intensity’ tillage area. Since 

the description of what is included in their ‘low intensity’ area is inconsistent within their main text, tables, and 

supplementary information, we state two different estimates of our results - both exhibiting different absolute 

values and shares compared to the findings of Erb et al. (2016) (Table 7).  515 
 (Table 7) 

We additionally pursued a provincial and state level comparison between our downscaled CA area to reported 

no-tillage area values for Canada, Brazil, and Australia (Fig. and Tables S11), because these countries are among 

the top four adopters of CA (see Table S7). CA area values from AQUASTAT (FAO, 2016) for these three 

countries were dated 2006, 2005, and 2006 and compared to reference reporting years of 2006, 2007-08, and 520 
2006 respectively. Although this provides a comparison to independent data, it cannot be considered as a 

validation because of the temporal mismatch among compared datasets and aggregation uncertainty when using 

Global Administrative Areas (2015) for aggregating tillage areas to sub-national scale. For each of the selected 

countries our downscale algorithm can quite well reproduced the main no-tillage area but tends to too strongly 

concentrate CA area in some regions instead of a more homogenous spread, as observed in the associated 525 
reference maps.  

Prestele et al. (2018) analyzed CA area time series data by FAOSTAT and have found an increasing trend of CA 

adoption within countries and to more countries since the 1970s. This trend is likely going to continue as farm 

holdings increase in size while decreasing in number in upper middle and high income countries (Lowder et al., 

2016). At the same time, the adoption rate of CA in smallholder farming systems in low income countries (e.g. 530 
in Sub-Saharan Africa) may persist low, where average farm size reveals a decreasing trend (Jones, 2017). 

Adoption of CA practices by smallholder farmers is hampered by competition for residue use (Scopel et al., 

2013), missing knowledge, as well as restricted access to inputs and financial capital (Kassam et al., 2009) 

making them more risk-averse towards adoption of new technology than large-scale farmers (Schmitz et al, 

2015).  535 
Prestele et al. (2018) state their potential CA area to be 11.3 Mkm² in their ‘Bottom–up’ and 5.33 Mkm² in their 

‘Top-down’ scenarios until the year 2050. Our estimate of scenario CA area of 4.66 Mkm² is lower but of the 

same magnitude as of their ‘Top-down’ scenario. Prestele et al. (2018) used another cropland product, targeted 

another time period, pursued a slightly different CA mapping approach, and had different assumptions on the 

scenario design which might be causing the main area differences compared to our derived scenario CA area. In 540 
order to take into account, that other modelling groups may applying other cropland inputs than SPAM2005 as 

presented here, we produced the tillage dataset and source code flexible in the way that each modeling group 

may adjust it according to their individual crop mix per grid cell.  
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4.2 Potentials, limitations, and implications for applications of the dataset 

A limitation to our presented mapping approach is that the input datasets applied cover different time periods, 545 
e.g. GLADIS reports water erosion values for approximately the year 2000, SPAM2005 and the field size dataset 

for the year 2005, the aridity spans to the reference climate data of the period from year 1961 to1990, and for 

some countries we extracted the only CA reporting year by FAO (2016) from years 2002 up to 2013. By using 

SPAM2005, field size for 2005, and setting the objected year for the produced tillage dataset to 2005 as well, we 

tried to minimize inconsistencies in time coverage at least for the cropland extent. GLADIS uses the Global 550 
Land Cover dataset (GLC2000, Bartholomé and Belward (2005)) as land-use information thus reporting water 

erosion values as an average over the different ecosystem and land-use types per grid cell. Land use as well as 

land management are results of dynamic socio-economic and environmental processes. Local mismatches in the 

cropland extents between these datasets might be on the one hand due to abandonment as a result of shifting 

cultivation or on the other hand due to extension of cropland to converted other land-use types between the years 555 
2000 and 2005. Further mismatches might exist due to different assumptions on crop types and area between 

different data products. The choice of crop to be cultivated is usually taken under consideration of rotations for 

weed and pest management, household demand, and market conditions together leading to different cropping 

patterns between the year 2000 and 2005. The aridity dataset does not consider any land-use information but 

relies on averages of climatic data and parameters. Another source of uncertainty is the used rule-based approach 560 
for mapping the tillage system areas. We statistically proved the relation between national average farm size and 

CA adoption (S3). Whereas statistical relations between field and farm size can be found in the literature, the 

mapping rules of distinguishing traditional from mechanical tillage, the suitability of CA for erosion and aridity 

prone agricultural production environments are based on qualitative literature findings, and warrant further 

research and scrutiny if new data become available. 565 
The tillage dataset presented here can be employed in various applications, depending on the type of model, 

context, and objective of the user. Agricultural land management practices are not only determined by 

environmental factors, but are embedded in local to regional systems of culture, traditions, and markets. This 

mosaic of farming conditions can only be taken into account at high spatial resolution. The developed tillage 

dataset is an effort to better account for heterogeneous patterns of agricultural soil management across and 570 
within countries by using socio-economic and biophysical data in conjunction. The resolution of the generated 

dataset with 5 arc-minutes is quite high. Global ecosystem models are currently mostly run at a coarser 

resolution than our dataset’s resolution and the tillage data may have to be aggregated in such cases. This could 

introduce further uncertainty to the area under a certain tillage system.  

A challenge to the full usage of this dataset is the limited implementation of the 42 crop types reported in 575 
SPAM2005 in global ecosystem models. Especially perennial crop types are hardly ever parameterized in 

ecosystem models or if so are rather addressing regional-scale applications (Fader et al., 2015). One reason for 

the missing implementation may be their relatively small cultivation areas globally (~10% of global cropland 

(Erb et al., 2016)). Woody and other perennial plant species entail potential in the aspect of sustainable 

agricultural practices because they keep the soil covered for longer periods and thus better protect it from erosive 580 
and radiative forces, promote soil organic carbon accumulation (Smith et al., 2008), and stabilize soils more than 

annually planted crop types. 

Another challenge for the application of our tillage dataset in model simulations is the differentiation of soil 

depth affected by the tillage operation. Some models may be able to differentiate between 20 or 30 cm depth 
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affected by the tillage operation mostly when having a site-based background and therefore a very detailed 585 
representation of agricultural management practices (White et al., 2010). The global dynamic ecosystem model 

LPJ-GUESS and the Community Land Model (CLM) have implemented the tillage routines as a tillage factor 

accelerating the decomposition rate of the different soil carbon pools (Levis et al., 2014; Olin et al., 2015), so 

that implementations of spatial variability in depth or mixing efficiency are not straight forward.  

White et al. (2010) elaborate on the problem of generally implementing a three dimensional aspect as “surface 590 
affected” by the tillage practice, which would be the case for simulating reduced tillage practices as strip-, 

mulch-, or ridge-till, weed management during the growing period of the main crop, or for preparing the seedbed 

for inter-cropping cultures. The reduction relates to depth, surface affected or both, for which White et al. (2010) 

recommend an intermediate model implementation mode which distinguishes two zones, as one share of the soil 

being affected and the other one not. 595 

Some authors mention partial adoption of CA as referring to the minimal soil disturbance practice only (Giller et 

al., 2015; Scopel et al., 2013) where residues are not always retained (Pittelkow et al., 2015). This no-tillage 

practice tries to benefit from saving energy, work hours, machine wearing, and field passes when skipping 

tillage. No-tillage without a sufficient biological mulch is reliant on the application of increased amounts of 

herbicides to comply with weeds (McConkey et al., 2012; Mitchell et al., 2012) compared to conventional tillage 600 
systems. Leaving the soil unprotected, exposes the soil surface to erosive forces, and enhances nutrient leakage 

especially under high rainfall intensities. Crusting and compaction of the soil can only be addressed by tilling 

these fields rotationally, as has been discussed in Erb et al. (2016). This rotational tillage may lead to a decrease 

of soil organic matter (SOM) due to increased mineralization under aerated conditions and the advantages of not-

tilling during the other years disappears (Powlson et al., 2014). The effects of SOM increase under no-tillage 605 
only in conjunction with a certain amount of residue inputs, may appear relevant after a transition time of about 

10 to 20 years of continuous practice until a new equilibrium state of SOM dynamics is re-established (Sá et al., 

2012). The other often missing aspect to the full implementation of the CA practice is the rotation of diverse 

crop types, inter-cropping, or other green manuring practices. It remains unclear to what extent countries 

reporting CA area to FAO may rather refer to partial adopted practice of CA, i.e. no-tillage only.  610 
Applying the presented tillage system dataset in global assessment is a major step forward compared to globally 

rather homogeneous assumptions on tillage systems (Hirsch et al., 2017; Levis et al., 2014) or a total ignorance 

of soil management practices (Folberth et al., 2016; Rosenzweig et al., 2014). The rule-based approach and the 

publication of the underlying data processing scripts allow for extensions of this work, if further relationships 

can be identified or improved data become available. It also allows for constructing future scenarios, consistent 615 
with other scenario frameworks on climate, economic development, and land-use change (e.g. Popp et al. 

(2017)). Further research is needed to generate global land management datasets with high resolution on crop 

rotations, residue management, and multiple cropping, so that the full set of CA principles can be simulated and 

biophysically assessed in comparison to further sustainable land practices.  

5 Data availability 620 

The presented tillage system dataset and source code are available under the ODBL (data) and MIT (source 

code) licenses. The tillage dataset can be downloaded from: http://doi.org/10.5880/PIK.2019.009 and the 

corresponding R-code from: http://doi.org/10.5880/PIK.2019.010. The dataset is provided in netCDF format 

http://doi.org/10.5880/PIK.2019.009
http://doi.org/10.5880/PIK.2019.010
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(version 4) and consists of 42 layers each reporting crop-specific tillage systems per grid cell. Additionally, we 

provide a layer indicating area, where adoption of Conservation Agriculture could be facilitated (scenario CA 625 
area). The dataset can be used as a direct input, be applied as a mask or overlay for identifying tillage area. The 

R-code is provided to increase transparency of our methods but also to enable other modelling groups to adjust 

our tillage area mapping algorithm to their needs, e.g. for different input data or scenarios.  

Supplementary information (SI) is available in the online version of this article. 
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Table 1 Six tillage systems and suggested parametrization for model applications (note that: a) several values 

per tillage system refer to each single tillage event within each tillage system in the same order as mentioned 870 
under the frequency per year, and b) for reduced tillage the inversion and mixing efficiency is depending on the 

specific form of practice as mentioned above). 

Tillage  

system 

Conventional 

annual  

tillage 

Rotational 

tillage 

Conservation 

Agriculture 

Traditional 

annual  

tillage 

Traditional 

rotational 

tillage 

Reduced 

tillage 

Soil 

management 

components 

Tillage for 

seedbed 

preparation, 

cultivation, 

post-harvest 

tillage 

Tillage for 

seedbed 

preparation, 

cultivation, 

post-harvest 

tillage 

Minimum 

mechanical soil 

disturbance 

with direct 

seeding 

Hoe or cutlass 

for seedbed 

preparation, 

cultivation,  

post-harvest 

tillage 

Hoe or 

cutlass for 

seedbed 

preparation, 

cultivation, 

post-harvest 

tillage 

Tillage for 

seedbed 

preparation, 

cultivation, 

post-harvest 

tillage 

Soil layer 

inversion  

Yes, no, yes Yes, no, yes No Yes, no, yes Yes, no, yes (Yes), no, 

(yes) 

Frequency 

and timing 

per year 

1 before 

seeding, 

1 to 2 

cultivation (10 

days to 2 weeks 

after 

establishment), 

1 after harvest 

1 before 

seeding, 

1 to 2 

cultivation,  

1 after 

removal 

1 at seeding 1 before 

seeding, 

1 to 2 

cultivation (10 

days to 2 weeks 

after 

establishment), 

1 after harvest 

1 before 

seeding, 1 to 

2 cultivation, 

1 after 

removal 

1 before 

seeding, 

1 to 2 

cultivation 

(10 days to 2 

weeks after 

establish-

ment), 1 after 

harvest 

Depth (cm) 20, 5, 20 20, 5, 20 5 10,  5, 10 10, 5, 10 <20, 5, <20 

Mixing 

efficiency (%) 

90, 20, 90 90, 20, 90 5 50, 20, 50 50, 20, 50 90, 20, 90 

Soil surface 

affected (%) 

100, 33, 100 100, 33, 100 20 to 25 100, 33, 100 100, 33, 100 100, 33, 100 

Soil surface 

covered by 

residues after 

planting (%) 

<15 <15 >30 <15 <15 15-30 
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Table 2 Gridded and national scale datasets used for mapping tillage. 875 

Global gridded dataset Resolution           

(arc-minutes) 

Temporal 

coverage (year) 

Source 

Crop-specific cropland  5 2005 SPAM2005: IFPRI/IIASA (2017b) 

Soil depth to bedrock 6 1990-2014 SoilGrids: Hengl et al. (2014) 

Field size 0.5 2005 Fritz et al. (2015) 

Water erosion 5 1990-2011 (~2000) GLADIS: Nachtergaele et al. (2011) 

Aridity 10 1961-1990 FAO (2015) 

National data    

Conservation Agriculture 

(CA) area 

country 2002-2013 FAO (2016) 

Income level country 2005 World Bank (2017) 
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Table 3 Correlation coefficients (r) according to ‘Pearson’ between spatial predictor variables (crop mix, field 

size, erosion, and aridity) across all grid cells containing potential CA cropland globally. 880 

(r) Field size Erosion Aridity 

Crop mix 0.322 -0.104 -0.241 

Field size  -0.356 -0.141 

Erosion   -0.002 

 

  



30 
 

Table 4 Global aggregated tillage system areas and shares on total cropland (IFPRI/IIASA, 2017b). 

Tillage system Tillage system area       

sum (km2) 

Share of tillage system area on 

total cropland (%) 

Conventional annual tillage 4,650,498 41.10 

Traditional annual tillage 4,015,279 35.49 

Conservation Agriculture 1,101,899 9.74 

Rotational tillage 741,798 6.56 

Traditional rotational tillage 650,509 5.75 

Reduced tillage 154,403 1.36 

World 11,314,386 100 

 

885 
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Table 5 Logit model input parameters, as midpoint (xmid) and slope (k) of the four logit model input datasets 

(columns 1 and 2), which are altered per sensitivity setting. Correlation coefficients (r) for ranks according to 

‘Spearman’ between the reference case (Logit-ref) and the perturbed slope and variable combinations of the logit 890 
model results are given, illustrating the sensitivity of the grid cell likelihood of potential CA area (columns 3 to 

6). 

Variable Logit-ref 

(xmid) 

Logit-ref 

(k) 

Logit-ref/ 

and k+100 % 

(r) 

Logit-ref/ 

and k-50 % 

(r) 

Logit-ref/ and 

drop one 

variable  (r) 

Logit-ref/ and 

one variable 

only (r) 

Field size 20 0.25 0.975 0.988 0.944 0.555 

Erosion 12 0.017 0.992 0.997 0.989 -0.119 

Aridity 0.65 -5 0.966 0.982 0.901 0.607 

Crop mix 0.50 10 0.981 0.971 0.773 0.826 
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Table 6 Global sums over 22 CA suitable crop type areas, sorted decreasing shares of downscaled CA area 895 
values on the identified potential CA area, and crop-specific downscaled CA areas. 

 

Crop type Potential  

CA area  

(km2) 

Share of 

downscaled 

on potential 

CA (%) 

Downscaled 

CA area 

(km2) 

Soybean 740,797 48 359,205 

Wheat 1,341,590 24 321,305 

Maize 762,415 19 143,432 

Barley 485,428 12 57,959 

Rapeseed 144,601 31 45,363 

Sunflower 186,310 20 36,716 

Sorghum 97,918 24 23,816 

Bean 119,902 20 23,535 

Other cereals 231,384 10 22,109 

Cotton 84,069 25 21,121 

Other pulses 76,869 21 15,932 

Lentils 19,015 45 8,565 

Pearl millet 56,062 11 5,938 

Rest 82,063 5 4,081 

Groundnut 47,208 7 3,308 

Chicpea 28,489 11 3,227 

Small millet 13,419 21 2,859 

Vegetables 90,535 2 1,834 

Tobacco 13,678 7 916 

Sesameseed 17,940 3 502 

Pigeonpea 6,411 2 129 

Cowpea 6,317 1 48 

World 4,652,419 24 1,101,899 

 

 900 
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Table 7 Tillage system area results compared to estimates of Erb et al. (2016) on tillage intensity areas. The first 

two columns show our aggregated tillage system area values, columns three and four additionally include the 

young and temporal fallow cropland area by Siebert et al. (2010), a cropland area not represented in SPAM2005 

and therefore added to our total cropland as well as to the ‘low intensity’ category as described in Erb et al. 905 
(2016). Note that Siebert et al. (2010) state, that about 4.4 Mkm² of cropland were young and temporal fallow (< 

5 years) around the year 2000. 

Tillage 

system  

Tillage area 

this study 

(km²) 

Tillage area 

this study 

(%) 

Tillage area 

this study + 

fallow (km²) 

Tillage area 

this study + 

fallow (%) 

Tillage area 

(km²) (Erb et 

al., 2016) 

Tillage share 

(%) (Erb et 

al., 2016) 

Low 

intensity 

2,648,610 23.4 7,048,610 44.9 4,730,000 38.9 

High 

intensity 

8,665,776 76.6 8,665,776 55.1 7,430,000 61.1 

World 11,314,386 100 15,714,386 100 12,160,000 100 
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