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Abstract. Accurate and consistent satellite-based precipitation estimates blended with rain gauge data are important for 8 

regional precipitation monitoring and hydrological applications, especially in regions with limited rain gauges. However, 9 

existing fusion precipitation estimates often have large uncertainties over mountainous areas with complex topography and 10 

sparse rain gauges, and the existing data blending algorithms are very bad at removing the day-by-day random errors. Therefore, 11 

the development of effective methods for high-accuracy precipitation estimates over complex terrain and on a daily scale is of 12 

vital importance for mountainous hydrological applications. This study aims to offer a novel approach for blending daily 13 

precipitation gauge data, gridded precipitation data and the Climate Hazards Group Infrared Precipitation (CHIRP, daily, 0.05°) 14 

satellite-derived precipitation estimates over the Jinsha River Basin for the period of June-July-August in 2016. This method 15 

is named the Wuhan University Satellite and Gauge precipitation Collaborated Correction (WHU-SGCC). The results show 16 

that the WHU-SGCC method is effective in precipitation bias adjustments from point to surface, which is evaluated by 17 

categorical indices. Moreover, the accuracy of the spatial distribution of the precipitation estimates derived from the WHU-18 

SGCC method is related to the complexity of the topography. The validation also verifies that the proposed approach is 19 

effective in the detection of precipitation events that are less than 20 mm. This study indicates that the WHU-SGCC approach 20 

is a promising tool to monitor monsoon precipitation over Jinsha River Basin, the complicated mountainous terrain with sparse 21 

rain gauge data, considering the spatial correlation and the historical precipitation characteristics. The daily precipitation 22 

estimations at 0.05° resolution over Jinsha River Basin in summer 2016, derived from WHU-SGCC are available at the 23 

PANGAEA Data Publisher for Earth & Environmental Science portal (https://doi.pangaea.de/10.1594/PANGAEA.896615) 24 

1 Introduction 25 

Accurate and consistent estimates of precipitation are vital for hydrological modelling, flood forecasting and climatological 26 

studies in support of better planning and decision making (Agutu et al., 2017;Cattani et al., 2018;Roy et al., 2017). In general, 27 

ground-based gauge networks include a substantial number of precipitation observations measured with high accuracy, high 28 

temporal resolution, and long historical records. However, sparse distribution and point measurements limit the accurate 29 

estimation of spatially gridded rainfall (Martens et al., 2013).  30 

Due to the sparseness of rain gauges and their uneven distributed and high proportion of missing data, satellite-derived 31 

precipitation data are an attractive supplement offering the advantage of plentiful information with high spatio-temporal 32 

resolution over widespread regions, particularly over oceans, high elevation mountainous regions, and other remote regions 33 

where gauge networks are difficult to deploy. However, the retrieval algorithms for satellite-based precipitation estimates are 34 

susceptible to systematic biases in hydrologic modelling and are relatively insensitive to light rainfall events, especially in 35 

complex terrain, resulting in underestimation of the magnitude of precipitation events (Behrangi et al., 2014;Thiemig et al., 36 

2013;Yang et al., 2017). Without adjustments, inaccurate satellite-based precipitation estimates without adjustment will lead 37 

to unreliable assessments of risk and reliability (AghaKouchak et al., 2011). 38 

Accordingly, there are many kinds of precipitation estimates combining multiple sources datasets. Since 1997, the Tropical 39 
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Rainfall Measurement Mission (TRMM) has improved satellite-based rainfall retrievals over tropical regions (Kummerow et 40 

al., 1998;Simpson et al., 1988), and then applies a stepwise method for blending daily TRMM Multisatellite Precipitation 41 

Analysis (TMPA) output with rain gauges in South America (Vila et al., 2009). The Global Precipitation Climatology Project 42 

(GPCP) is one of the successful projects for blending rain gauge analysis and multiple satellite-based precipitation estimates, 43 

and constructed a relatively coarse-resolution (monthly, 2.5° × 2.5°) global precipitation dataset (Adler et al., 2003;Huffman 44 

et al., 1997). To improve the resolution of this satellite-based dataset, the GPCC network data was incorporated into remote 45 

sensing information with Artificial Neural Networks (PERSIANN) rainfall estimates, which provides finer temporal and spatial 46 

resolutions (daily, 0.25° × 0.25°) (Ashouri et al., 2015). The CPC Merged Analysis of Precipitation (CMAP) product is a data 47 

blending and fusion analysis of gauge data and satellite-based precipitation estimates (Xie and Arkin, 1996). CMAP has a 48 

long-term dataset series from 1979, while the resolution is relatively coarse. Although the aforementioned products are widely 49 

used and have performed well, the data resolution cannot achieve high accuracy in precipitation monitoring.  50 

Currently, the Climate Hazards Group Infrared Precipitation with Station data (CHIRPS), which has a higher spatial 51 

resolution (0.05°), can solve the scale problem. CHIRPS is a long-term precipitation data series, which merges three types of 52 

information: global climatology, satellite estimates and in situ observations. Table 1 shows the temporal and spatial resolution 53 

of current major satellite-based precipitation datasets. The CHIRPS precipitation dataset with several temporal and spatial 54 

scales has been evaluated in Brazil (Nogueira et al., 2018;Paredes-Trejo et al., 2017), Chile (Yang et al., 2016;Zambrano-55 

Bigiarini et al., 2017), China (Bai et al., 2018), Cyprus (Katsanos et al., 2016b;Katsanos et al., 2016a), India (Ali and Mishra, 56 

2017) and Italy (Duan et al., 2016). Nevertheless, the temporal resolutions of the aforementioned applications were mainly at 57 

seasonal and monthly scales, lacking the evaluation of daily precipitation. Additionally, despite the great potential of gauge-58 

satellite fusing products for large-scale environmental monitoring, there are still large discrepancies with ground observations 59 

at the sub-regional level where these data are applied. Furthermore, the CHIRPS product reliability has not been analysed in 60 

detail for the Jinsha River Basin, China, particularly on a daily scale. The existing research indicates that estimations over 61 

mountainous areas with complex topography often have large uncertainties and systematic errors due to the sparseness of rain 62 

gauges (Zambrano-Bigiarini et al., 2017). Moreover, (Bai et al., 2018) evaluates CHIRPS over mainland China and indicates 63 

that the performance of CHIRPS is poor over the Sichuan Basin and the Northern China Plain, which have complex terrains 64 

with substantial variations in elevation. Additionally, (Trejo et al., 2016) shows that CHIRPS overestimates low monthly 65 

rainfall and underestimates high monthly rainfall using several numerical metrics, and rainfall event frequency is overestimated 66 

excluding the rainy season.  67 

Table 1 Coverage and spatiotemporal resolutions of major satellite precipitation datasets 68 
Product Temporal resolution Spatial resolution Period Coverage 

TRMM 3B42 3h 0.25° 1998-present 50°S-50°N 

GPCP Monthly/Pentad 2.5° 1979-(delayed) present 90°S-90°N 

PRESSIANN-CDR Daily 0.25° 1983-(delayed) present 60°S-60°N 

CMAP Monthly 2.5° 1979- present 90°S-90°N 

CHIRPS 
Annual/Monthly/ 

Dekad/Pentad/Daily 
0.05°/0.25° 1981- present 50°S-50°N 

To overcome these limitations, many studies have focused on proposing effective methodologies for blending rain gauge 69 

observations and satellite-based precipitation estimates, and sometimes radar data to take advantage of each dataset. Many 70 

numerical models are established among these datasets for high-accuracy precipitation estimations, such as bias adjustment by 71 

a quantile mapping (QM) approach (Yang et al., 2016), Bayesian kriging (BK) (Verdin et al., 2015) and a conditional merging 72 

technique (Berndt et al., 2014). Among aforementioned methods, the QM approach is a distribution-based approach, which 73 

works with historical data for bias adjustment and is effective in reducing the systematic bias of regional climate model 74 

precipitation estimates at monthly or seasonal scales (Chen et al., 2013). However, the QM approach offers very limited 75 

improvement in removing day-by-day random errors. The BK approach shows very good model fit with precipitation 76 

observations. Unfortunately, the Gaussian assumption of the BK model is invalid for daily scales. Overall, there is a lack of 77 
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effective methods for high-accuracy precipitation estimates over complex terrain on a daily scale.  78 

As such, the aim of this article is to offer a novel approach for blending daily precipitation gauge data, gridded precipitation 79 

data and the Climate Hazards Group Infrared Precipitation (CHIRP) satellite-derived precipitation estimates over Jinsha River 80 

Basin. The CHIRP is the raw data of CHIRPS before blending in rain gauge data. The objective is to build corresponding 81 

precipitation models that consider terrain factors and precipitation characteristics to produce high-quality precipitation 82 

estimates. This novel method is named the Wuhan University Satellite and Gauge precipitation Collaborated Correction 83 

(WHU-SGCC) method. We demonstrate this method by applying it to daily precipitation in summer 2016. The results support 84 

the validity of the proposed approach for producing refined satellite-gauge precipitation estimates over mountainous areas. 85 

The remainder of this paper is organized as follows: Section 2 describes the study region and precipitation gauges, gridded 86 

observations and CHIRPS dataset used in this study. Section 3 presents the principle of the WHU-SGCC approach for high-87 

accuracy precipitation estimates. The results and discussion are analysed in Section 4, and conclusions and future work are 88 

presented in Section 5.  89 

2 Study Region and Data 90 

2.1 Study Region 91 

The Yangtze River, one of the largest and most important rivers in Southeast Asia, originates on the Tibetan Plateau and 92 

extends approximately 6300 km eastward to the East China Sea. The river’s catchment proximately covers an area of ~180 × 93 

104 km2. In 2016, the average precipitation in the Yangtze River Basin was 12053 mm and the total precipitation was 21478.71 94 

billion m3, which is 10.9% higher than the annual average total precipitation. Yangtze River is divided into nine sub-regions, 95 

the upper drainage basin is the Jinsha River Basin, which flows through the provinces of Qinghai, Sichuan, and Yunnan in 96 

western China. The total river length is 3486 km, accounting for 77% of the length of the upper Yangtze River, and covering 97 

a watershed area of 460 × 103 km2. The location of the Jinsha River Basin is shown in Fig. 1, and covers the eastern part of 98 

the Tibetan Plateau and the part of the Hengduan Mountains. The southern portion of the river basin is the Northern Yunnan 99 

Plateau and the eastern portion includes a wide area of the southwestern margin of the Sichuan basin. Crossing complex and 100 

varied terrains, the elevation of the Jinsha River ranges from 263 to 6575 m above sea level, which results in significant 101 

temporal and spatial climate variation within the basin. Average annual precipitation in the Jinsha River Basin is approximately 102 

3433.45 mm, the total annual precipitation north of Shigu is 937.25 mm, while south of Shigu annual precipitation is 2496.20 103 

mm. The climate of the Jinsha River Basin has more precipitation during the warm season (June-July-August, JJA), which is 104 

affected by oceanic southwest and southeast monsoons and is drier in cold season (December to February). Therefore, the 105 

blending of satellite estimations with gauged observations during the summer (JJA) is the main focus of this research.  106 
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  107 

Figure 1 Location of the study area with key topographic features. 108 

2.2 Study Data 109 

2.2.1 Precipitation gauged observations 110 

Daily rain gauge observations at 30 national standard rain stations in the Jinsha River Basin for JJA 2016 were provided by 111 

the National Climate Centre (NCC) of the China Meteorological Administration (CMA)112 

（http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html, last access: 10 December, 2018）, 113 

which imposes a strict quality control at station-provincial-state levels. Station identification numbers and relevant 114 

geographical characteristics are shown in Table 2, and their uneven spatial distribution is shown in Fig. 2. The selected rain 115 

gauges are located in Qinghai, Tibet, Sichuan and Yunnan Provinces but are mainly scattered in Sichuan Province, and the 116 

number of rain gauges in the northern river basin is less than in the southern river basin. In this study, the gauge observations 117 

were used as the reference data in bias adjustment of satellite precipitation estimations.  118 

Table 2 Geographical characteristics of rain stations. 119 
Station number Province Lat (°N) Lon (°E) Elevation (m) 

52908 Qinghai 35.13 93.05 4823 

56004 Qinghai 34.13 92.26 4744 

56021 Qinghai 34.07 95.48 5049 

56029 Qinghai 33.00 96.58 4510 

56034 Qinghai 33.48 97.08 4503 

56144 Tibet 31.48 98.35 4743 

56038 Sichuan 32.59 98.06 4285 

56146 Sichuan 31.37 100.00 4703 

56152 Sichuan 32.17 100.20 4401 

56167 Sichuan 30.59 101.07 3374 

56247 Sichuan 30.00 99.06 2948 

56251 Sichuan 30.56 100.19 4284 

56257 Sichuan 30.00 100.16 3971 

56357 Sichuan 29.03 100.18 4280 

56374 Sichuan 30.03 101.58 3902 

56459 Sichuan 27.56 101.16 3002 

56462 Sichuan 29.00 101.30 4019 

56475 Sichuan 28.39 102.31 1850 
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56479 Sichuan 28.00 102.51 2470 

56485 Sichuan 28.16 103.35 2060 

56565 Sichuan 27.26 101.31 2578 

56571 Sichuan 27.54 102.16 1503 

56666 Sichuan 26.35 101.43 1567 

56671 Sichuan 26.39 102.15 1125 

56543 Yunnan 27.50 99.42 3216 

56586 Yunnan 27.21 103.43 2349 

56651 Yunnan 26.51 100.13 2449 

56664 Yunnan 26.38 101.16 1540 

56684 Yunnan 26.24 103.15 2184 

56778 Yunnan 25.00 102.39 1975 

 120 

Figure 2 Jinsha River Basin with 18 CHIRPS fusion stations, 30 gauge stations and 170 grid points provided by the China Meteorological 121 
Administration stations. 122 

2.2.2 Gridded precipitation observations 123 

The gridded precipitation data developed by CMA with 0.5°× 0.5° resolution on a daily scale, was interpolated from 2472 124 

gauge observations with a thin plate spline algorithm from 1961 to the present. Over the Jinsha River Basin, a total of 170 125 

gridded points were selected as the supplementary data for observations in JJA 2016, due to the 2472 gauged station data that 126 

were not shared on CMA (http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_PRE_DAY_GRID_0.5.html, last 127 

access: 10 December, 2018). The even distribution of daily gridded precipitation observations is shown in Fig. 2.  128 

2.2.3 CHIRPS satellite-gauge fusion precipitation estimates 129 

The CHIRPS v.2 dataset, a satellite-based daily rainfall product, is available online at 130 

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/global_daily/tifs/p05/ (last access: 10 December, 2018). It covers a 131 

quasi-global area (land only, 50° S-50° N) with several temporal scales (daily, 3-day, 6-day or monthly time steps) and high 132 

spatial resolution (0.05°) (Rivera et al., 2018). This dataset contains a wide variety of satellite-based rainfall products derived 133 

from multiple data sources and incorporates four data types: monthly precipitation from CHPClim (Climate Hazards Group 134 

Precipitation Climatology), quasi-global geostationary thermal infrared satellite observations (TRMM 3B42 version 7), 135 

atmospheric model rainfall fields CFS (Climate Forecast System) from NOAA, and precipitation observations from various 136 
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sources including national or regional meteorological services. The differences from other frequently used precipitation 137 

products are the higher resolution of 0.05° and the longer-term data series from 1981 to the present (Funk et al., 2015).  138 

CHIRPS is the product of a two-part process. First, IR precipitation (IRP) pentad rainfall estimates are fused with 139 

corresponding CHPClim pentad data to produce an unbiased gridded estimate, called the Climate Hazards Group IR 140 

Precipitation (CHIRP), which is available online at ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRP/daily/ (last access: 10 141 

December, 2018). In the second part of the process, CHIRP data is blended with in situ precipitation observations obtained 142 

from a variety of sources including national and regional meteorological services by means of a modified inverse-distance 143 

weighting algorithm to create the final blended product, CHIRPS (Funk et al., 2014). The daily CHIRP satellite-based data 144 

over Jinsha River Basin in JJA 2016 was selected as the input for WHU-SGCC blending with rain observations, and the 145 

corresponding daily CHIRPS data was used for comparisons of precipitation accuracy.  146 

The blended in situ daily precipitation observations come from a variety of sources such as: the daily GHCN archive (Durre 147 

et al., 2010), the Global Summary of the Day dataset (GSOD) provided by NOAA’s National Climatic Data Center, the World 148 

Meteorological Organization’s Global Telecommunication System (GTS) daily archive provided by NOAA CPC, and over a 149 

dozen national and regional meteorological services. The number of daily CHIRP observation stations in the Jinsha River 150 

Basin was only 18, compared to the 30 rain gauge stations and 170 grid points provided by CMA; hence, the number of CHIRP 151 

stations limited the accuracy of spatial rainfall estimates (Fig. 2). 152 

3 Methods 153 

3.1 The WHU-SGCC approach  154 

In this study, the approach of the WHU-SGCC is to estimate precipitation for every pixel by blending satellite estimates and 155 

rain gauge observations considering terrain factors and precipitation characteristics. There were five steps to establish the 156 

numerical relationship between gauged stations and corresponding satellite pixels and other pixels. On this basis, the WHU-157 

SGCC method identifies the geographical locations and topographical features of each pixel and applies the classification 158 

principles of the SICR approach, including five classification and blending rules. The basic description of the WHU-SGCC 159 

method is given below, with details illustrated separately in later sections. 160 

1) Classify all regional pixels into five types: C1 (pixel including one gauged station in its area), C2 (pixel including one 161 

gridded point), C3 (pixel physically similar to C1C2), C4 (pixel physically similar to C3) and C5 (remaining pixels). The 162 

training samples represented 70% of total gauged stations and gridded points, and the remaining data were used to test model 163 

performance. 164 

2) Analyse the relationships between precipitation observations and the C1, C2, and C3 pixel types, and with the C4 and C5 165 

pixels. These relationships are described by five rules, detailed below as Rules 1 through 5.  166 

3) Bias-adjust, establish regression models and screen target pixels based on the five aforementioned rules. 167 

4) Correct all precipitation pixels in daily regional precipitation images. 168 

5) A flowchart of the WHU-SGCC method is shown in Fig. 3. The proposed approach was evaluated for the Jinsha River 169 

Basin for JJA 2016. From that data, the training samples represented 70% of total gauged stations and gridded points, and the 170 

remaining data were used to verify the model performance. 171 
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Daily Gauged 

Observation

(30 gauges, JJA 2016)

Daily CHIRP

(0.5°× 0.5°, JJA 2016) 

Daily Gridded Observation

(170 gridded points,  JJA 2016) 

Satellite precipitation estimates adjusted by Adj-QM

(C1 and C2 pixels values output)

Rule 1 Rule 2

Calculating SCC for each C1 and C2 with their values after 

adjustment and gauged observations

Spatial scope determined by FCM

The regression relationship between values before and 

after Rule 1 and Rule 2 adjustment, established by RFR 

Selecting C1 and C2 with well adjustment

|SCC| ≥ 0.5 and p < 0.05

Calculating SCC for each C1 and C2 with their values 

before and after Rule 1 and Rule 2 adjustment

Determining the C3 pixels by calculating SCC 

between C1, C2 and other raster pixels 

The adjustment method for C3 pixels can derive from 

the regression model of corresponding C1 and C2 pixels

|SCC| ≥ 0.5 and p < 0.05

|SCC| ≥ 0.5 and p < 0.05

Rule 3

Determining the C4 pixels by calculating SCC between 

adjusted C3 pixels and the remaining raster pixels 

Calculating the precipitation ration at C3 pixels

Systematic 

Error

The  remaining pixels are C5 pixels and the pixel 

value is same to the corresponding CHIRP 

(less than 10% of total pixels)

Rule 4

Rule 5

Random Error

C4 pixels adjusted by the same precipitation ration with 

the corresponding C3 pixel

 172 

Figure 3 Flowchart of the WHU-SGCC approach with the five rules applied in this study.  173 

3.1.1 Assumptions 174 

1) Gauge and gridded point observations are the most accurate, or “true”, values for reference purposes. 175 

2) No major terrain change occurred during the twenty years. 176 

3) Spearman’s Correlation Coefficient (SCC) can indicate the similarity of rainfall characteristics among pixels over a 177 

seasonal scale.  178 

3.1.2 Rule 1 of the WHU-SGCC method 179 

In general, satellite precipitation estimations deviated from observed data, which were assumed to be the true values. Rule 1 180 

adjusts the biases in the satellite estimations. For every C1, its precipitation value was derived from a quantile mapping (QM) 181 

approach. It has been shown that the QM method is the best for reducing systematic biases of regional satellite precipitation 182 

estimates because of its independence from predetermined functions (Themessl et al., 2011;Chen et al., 2013). 183 

QM is a nonparametric empirical approach that considers a time-dependent correction function. This approach is designed 184 

to transform the cumulative distribution function (CDF) of satellite data into the CDF of data at each station. 185 

𝑌𝑜 = h(𝑌𝑠)                                           (1) 186 

where the variable 𝑌𝑠  is the distribution of the observed variable 𝑌𝑜 . In this study 𝑌𝑜  denotes each gauge or gridded 187 

precipitation data point location from CMA and 𝑌𝑠 denotes the corresponding CHIRP grid cell value. The objective of QM is 188 

to correct the daily precipitation amount from a climate simulation and the transformation h is defined as Eq. (2): 189 

𝑌𝑜 = 𝐻𝑜
−1(𝐻𝑠(𝑌𝑠))                                       (2) 190 

where the 𝐻𝑠 is the CDF of 𝑌𝑠 and 𝐻𝑜
−1 is the inverse CDF (or quantile function) corresponding to 𝑌𝑜 (Gudmundsson 191 

et al., 2012). 192 

Notably, we separately calculate CDFs at each gauge and gridded pixel using the historical daily rainfall from the JJA in 193 

2016.  194 

The result of a QM adjustment is 𝑌̅𝑄𝑚, which is approximately the same as the CDF of the gauge observations on a seasonal 195 

scale, which is distinct from daily data. The suitable scale of the CDF is seasonal because the QM cannot effectively remove 196 
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the day-by-day random errors in CHIRP estimates. Therefore, on the basis of 𝑌̅𝑄𝑚, the adjustment result, 1asC , for each C1 197 

pixel is derived from the minimum absolute value of the difference between the gauge observations and satellite estimations 198 

before and after applying the QM adjustment, referred to as the adjusted QM (Adj-QM) method, as shown in Eq. (3) - Eq. (5). 199 

𝐷𝑄𝑀 = |𝑌̅𝑄𝑀 − 𝑌𝑜|                                        (3) 200 

𝐷𝑠 = |𝑌𝑠 − 𝑌𝑜|                                          (4) 201 

1asC = {
𝑌̅𝑄𝑀 ,   𝐷𝑄𝑀 ≤ 𝐷𝑠

𝑌𝑠,   𝐷𝑠 ≤ 𝐷𝑄𝑀
                                   (5) 202 

where 𝐷𝑄𝑀  is the absolute value of the difference between 𝑌̅𝑄𝑚  and 𝑌𝑜 , and 𝐷𝑠  is the absolute value of difference 203 

between 𝑌̅𝑠 and 𝑌𝑜.  204 

3.1.3 Rule 2 of the WHU-SGCC method 205 

Commonly, a few of the national standard stations have free access, and these stations are unevenly distributed and do not 206 

satisfied the accuracy needed for regional precipitation estimation. Under these circumstances, the gridded precipitation data 207 

developed by CMA are applied as the supplementary data for observations with uniform spatial distribution. Therefore, Rule 208 

2 is same as Rule 1 with different input data. 2asC is the adjusted target precipitation of one C2 pixel. 209 

3.1.4 Rule 3 of the WHU-SGCC method 210 

The aforementioned methods improve the accuracy of satellite precipitation estimations based on historical observations data 211 

for C1 and C2 pixels. It is reasonable to assume that there are some pixels that are physically similar to the precipitation 212 

characteristics of C1 and C2 pixels in a certain spatial scope. Therefore, it is feasible to adjust the satellite estimation bias of 213 

C3 pixels by building numerical relationships between C1 and C2 pixels before and after adjustments based on Rule 1 and 214 

Rule 2. 215 

First, the spatial scope in which pixels may have highly similar characteristics is established. Some studies indicate that 216 

geographical location, elevation and other terrain information influences the spatial distribution of rainfall, especially in 217 

mountainous areas with complex topography (Anders et al., 2006;Long and Singh, 2013). The size of the spatial range is an 218 

important parameter to distinguish spatial similarity and heterogeneity. In the WHU-SGCC method, the approach of fuzzy c-219 

means (FCM) clustering was explored to determine the spatial range considered as each pixel’s terrain factors including 220 

longitude, latitude, elevation, slope, aspect and curvature. FCM method was developed by J.C. Dunn in 1973 (Dunn, 1973), 221 

and improved in 1983 (Wang, 1983). It is an unsupervised fuzzy clustering method and the steps are as follows (Pessoa et al., 222 

2018): 223 

1) Choose the number of clusters t. The number of clusters was set as the default value of 20 considering the algorithm 224 

efficiency and clustering results. 225 

2) Assign coefficients randomly to each data point ix  for the degree to which it belongs in the j th cluster ( )ij iw x : 226 

( ) 1

1

( )

( )

n
m

ij i i
t i

j n
m

ij i

i

w x x

c

w x









   (6),   2

1

1

|| ||
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|| ||
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i j m

k i k

w
x c

x c








   (7) 227 

where x is a finite collection of n elements that will be partitioned into a collection of c fuzzy clusters, jc is the centre of 228 

each cluster, m is the hyper-parameter that controls the level of cluster fuzziness and ijw  is the degree to which element ix  229 
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belongs to 
jc . In Eq. (6), 

( )t

jc  represents the cluster centre in iteration t. 230 

3) Minimize the objective function cF  to achieve data partitioning. 231 

2

1 1

|| ||
n c

m

c ij i j

i j

F w x c
 

                                      (8) 232 

The results of FCM are the degree of membership of each pixel to the cluster centre as represented by numerical value. 233 

Pixels in each cluster have similar terrain features. 234 

Second, the adjusted C1 and C2 are employed. SCC was used as the evaluation index for each C1 and C2 with their values 235 

after adjustment and gauge observations in JJA: 236 

1

2 2

1 1

( )( )

( ) ( )

n

i i

i

n n

i i

i i

rgx rgx rgy rgy

SCC

rgx rgx rgy rgy



 

 



 



 

                              (9) 237 

Spearman’s correlation coefficient is defined as Pearson’s correlation coefficient between the ranked variables, and it 238 

assesses monotonic relationships (whether linear or not) where n is the number of data points in each set, which was the number 239 

of each C1 or C2 in the historical JJA dataset. ix  is the ith data value in the first data set (satellite estimations after Rule 1 240 

and Rule 2 adjustment, 1asC  and 2asC ), ix  is converted to its rank, irgx , and rgx  is its average value. Similar 241 

definitions exist for irgy  and rgy  (gauge and gridded observations at C1 and C2 pixels, 𝑌𝑜). The value range of the SCC 242 

is between -1 and +1. If there are no repeated data values, a perfect SCC of +1 or −1 occurs when each of the variables is a 243 

perfect monotone function of the other. However, if the value is close to zero, there is zero correlation. In addition, confidence 244 

is not only determined by the value of the correlation coefficient but also from the correlation test’s p value. The critical value 245 

is 0.05, thus a p lower than 0.05 indicates the data are significantly correlated. Therefore, the C1 and C2 pixels selected for 246 

Rule 3 must meet the following criteria: 247 

0.5 0.05SCC and p                                   (10) 248 

Third, the filtered C1 and C2 pixels after adjustment is used to establish a regression model between the historical 1asC , 249 

2asC  and 𝑌𝑠. To ensure high accuracy, it is necessary to calculate the SCC and p values between 1asC , 2asC  and 𝑌𝑠, and 250 

complete the filtering criteria described above in Eq. (7) before building the regression model. The regression relationship was 251 

derived by random forest regression (RFR). RFR is a machine-learning algorithm for a predictive model with a large set of 252 

regression trees in which each tree in the ensemble is grown from a bootstrap (Johnson, 1998) sample drawn with replacement 253 

from the training set. The final prediction is obtained by combining the results of the prediction methods applied to each 254 

bootstrap sample (Genuer et al., 2017). The predicted value is calculated by the mean of all trees. 255 

1asC or 2asC  = 𝑓𝑅𝐹𝑅(𝑌𝑠)
                                    (11) 256 

where 𝑓𝑅𝐹𝑅  is constructed from the time series 1asC  or 2asC  (dependent variable) and the corresponding 𝑌𝑠  data 257 

(independent variable) at filtered C1 and C2 pixels in JJA by means of RFR. The number of decision trees was set at the default 258 

value of 500. 259 

Fourth, as mentioned above, the aim of Rule 3 is to derive an adjustment method for C3 pixels based on learning from Rule 260 

1 and Rule 2. With the establishment of a regression relationship between values before and after adjustment of the C1 and C2 261 

pixels by RFR method, the determination of C3 pixels follows a considerable procedure. Pixels in each cluster represent 262 
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potential C3 pixels, with exception of the C1 and C2 pixels and are called R pixels. Spearman’s r and p values between the 263 

satellite estimations (CHIRP grid cell values) at R pixels and the C1 and C2 pixels are the criteria for final determination of 264 

C3 pixels. Each R pixel has m SCC and p values (the number of C1 and C2 pixels in the cluster), and the subset of C3 pixels 265 

is identified by excluding the data that failed the correlation test and retaining both the data with a maximum SCC of at least 266 

0.5 and the corresponding index of C1 and C2 pixels. The selected C3 pixels are physically similar to the precipitation 267 

characteristics of corresponding C1 and C2 pixels in their defined spatial scope. 268 

After identifying the C3 pixels and their corresponding C1 and C2 pixels, the adjustment method for C3 pixels is derived 269 

from the regression model for the C1 and C2 pixels. 270 

3asC = 𝑓𝑅𝐹𝑅𝑐(𝑌𝑠)                                       (12) 271 

where 3asC  is the adjusted satellite precipitation estimate and 𝑌𝑠 is the CHIRP grid cell value for the C3 pixels, and 𝑓𝑅𝐹𝑅𝑐  272 

is the 𝑓𝑅𝐹𝑅 of corresponding C1 and C2 pixels. 273 

3.1.5 Rule 4 of the WHU-SGCC method 274 

Recognizing that precipitation has a spatial distribution, the assumption that C4 pixels are physically similar to the precipitation 275 

characteristics of C3 pixels was adopted to establish the adjustment method for C4 pixels.  276 

First, the determination of C4 pixels in each spatial cluster is based on the selection of C3 pixels. The satellite estimation 277 

values for regional pixels with exception of the C1, C2 and C3 pixels are used to calculate the SCC and p values with 𝑌𝑠 for 278 

the C3 pixels in the same cluster of the JJA dataset. The results of each pixel’s k SCC and p value (the number of C3 pixels in 279 

the cluster) are evaluated based on the correlation test, and the pixels with a maximum SCC of at least 0.5, as well as the 280 

corresponding index of C3 pixels, are retained. The selected pixels called C4 pixels, which are physically similar to the 281 

precipitation characteristics of the corresponding C3 pixels in the defined spatial scope. 282 

After identifying the C4 pixels, a method for merging method the CHIRP grid cell values at C4 pixels (𝑌𝑠) and the target 283 

reference values of 3asC  at the corresponding C3 pixels was applied to estimate the adjusted precipitation values for C4 284 

pixels. This method combines 𝑌𝑠 and 3asC  values in one variable, as shown in Eq. (13): 285 

3
i

i

as

i

s

C
w

Y









  i=1,…, n                                   (13) 286 

where 𝜆 is a positive constant set to 10 mm (Sokol, 2003), 3asC  is the adjusted precipitation values for the C3 pixels, 287 

isY is extracted from the CHIRP values for the pixel corresponding with the C3 pixel, and n is the number of C3 pixels in each 288 

spatial cluster.  289 

Each w of the C4 pixels is assigned the same value as the corresponding C3 pixel. Therefore, the value of C4 pixels is 290 

derived from Eq. (14): 291 

4 max( ( ) ,0)as sC w Y                                      (14) 292 

where 4asC  is the adjusted target precipitation value at one C4 pixel and sY  is the corresponding CHIRP grid cell value. 293 

To avoid precipitation estimates below 0, Eq. (14) sets these negative values to 0. 294 

If there is no C3 pixels in a spatial cluster, the C4 pixels are assumed to be physically similar to the precipitation 295 

characteristics of the C1 and C2 pixels and adjusted by the above method in Rule 4. 296 

3.1.6 Rule 5 of the WHU-SGCC method 297 

Excluding the C1, C2, C3 and C4 pixels, the number of remaining pixels, called C5 pixels, is less than 10% of the total number 298 
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of pixels, and each C5 pixel value ( 5asC ) is set to be the same as the CHIRP grid cell value at the corresponding position.  299 

In the end, after applying these five rules, we obtained complete daily adjusted regional precipitation maps for summer (JJA) 300 

2016.  301 

3.2 Accuracy assessment 302 

The performance of the WHU-SGCC adjusted precipitation estimates was evaluated by nine statistical indicators: Spearman’s 303 

correlation coefficient (SCC), root mean square error (RMSE), mean absolute error (MAE), relative bias (BIAS), the Nash-304 

Sutcliffe efficiency coefficient (NSE), probability of detection (POD) and false alarm ratio (FAR) and critical success index 305 

(CSI). SCC, RMSE, MAE and BIAS were used to evaluate how well the SGCC method adjusted satellite estimation bias, 306 

while POD, FAR and CSI were used to evaluate precipitation event predictions (Su et al., 2011). SCC measures strength of 307 

the nonlinear relationship between the satellite estimations and observations. MAE represents the average magnitude of error 308 

estimations, considering both systematic and random errors. The NSE (Nash and Sutcliffe, 1970) determines the relative 309 

magnitude of the variance of the residuals compared to the variance of the observations, bounded by minus infinity to 1. A 310 

negative value indicates a poor precipitation estimate and the value of an optimal estimate is equal to 1. BIAS measures the 311 

mean tendency of the estimated precipitation to be larger (positive values) or smaller (negative values) than the observed 312 

precipitation, with an optimal value of 0.   313 

POD, also known as the hit rate, represents the probability of rainfall detection. FAR is defined as the ratio of the false 314 

detection of rainfall to the total number of rainfall events. All of the accuracy assessment indices are shown as Table 3. 315 

Table 3 Accuracy assessment indices. 316 
Accuracy assessment Index Unit Formula Range Optimal value 

Spearman’s Correlation Coefficient (SCC) NA 
SCC =

∑ (𝑌𝑜𝑖 − 𝑌̅𝑜)(𝐶𝑖 − 𝐶̅)𝑛
𝑖=1

√∑ (𝑌𝑜𝑖 − 𝑌̅𝑜)2𝑛
𝑖=1 . √∑ (𝐶𝑖 − 𝐶̅)2𝑛

𝑖=1

 
[-1,1] 1 

Root Mean Square Error (RMSE) Mm 

RMSE = √
1

𝑛 − 1
∑(𝐶𝑖 − 𝑌𝑜𝑖)2

𝑛

𝑖=1

 

[0,+∞） 0 

Mean Absolute Error (MAE) Mm 
MAE =

1

𝑛
∑ |𝐶𝑖 − 𝑌𝑜𝑖|

𝑛

𝑖=1

 
[0, +∞) 0 

Relative Bias (BIAS) NA 
BIAS =

∑ (𝐶𝑖 − 𝑌𝑜𝑖)𝑛
𝑖=1

∑ 𝑌𝑜𝑖
𝑛
𝑖=1

 
(-∞, +∞) 0 

Nash-Sutcliffe Efficiency Coefficient (NSE) NA 
NSE = 1 −

∑ (𝐶𝑖 − 𝑌𝑜𝑖)2𝑁
𝑖=1

∑ (𝐶𝑖 − 𝑌̅𝑜)2𝑁
𝑖=1

 
(-∞,1] 1 

Probability of Detection (POD) NA POD=H/(H+M) [0,1] 1 

False Alarm Ratio (FAR) NA FAR=F/(H+F) [0,1] 0 

Critical Success Index (CSI) NA CSI=H/(H+M+F) [0,1] 1 

Note: 𝑌𝑜𝑖  is the observation data and 𝐶𝑖 is the adjusted value using the WHU-SGCC method for test sample pixel; 𝑌̅𝑜 is 317 

the arithmetic mean of 𝑌𝑜 and is given by 

1

1 n

o oi

i

Y Y
n 

  ; C  is the arithmetic mean of C and is given by

1

1 n

i

i

C C
n 

  ; 318 

H represents the number of both observed and estimated precipitation events (successfully forecasted), and F is the number of 319 

false alarms when observed precipitation was below the threshold and estimated precipitation was above threshold (false 320 

alarms). M is the number of events in which the estimated precipitation was below the threshold and observed precipitation 321 

was above the threshold (missed forecasts). POD and FAR values are dimensionless numbers ranging from 0 to 1. The 322 

precipitation threshold (event/no event) was set to 0.1 mm/day. 323 

 324 
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4 Results and Discussion 325 

There were 18482 daily pixels to be adjusted by blending satellite estimations (CHIRP) and observations (gauge stations and 326 

gridded points) using the WHU-SGCC approach for the 92 days of JJA 2016. The number of pixels adjusted by each rule in 327 

the WHU-SGCC method is shown in Fig. 4. The number of C1 and C2 was nearly 140, as well as 11493 C3 pixels, 328 

approximately 6344 C4 pixels, and the number of remaining C5 pixels was no more than 5%. 329 

 330 

Figure 4 The number of pixels adjusted by each rule using the WHU-SGCC method. 331 

4.1 CDFs of Rule 1 and Rule 2 results 332 

Figure 5 shows the daily average precipitation for observations, CHIRP, C1 (Fig. 5 (a)) and C2 (Fig. 5 (b)) in JJA 2016. 333 

Compared to the gauge or grid observations, CHIRP estimations deviated from the observations in Jinsha River Basin. 334 

However, the adjusted values for the C1 and C2 pixels improved the estimates and approximated the observations with 335 

application of Rule 1 and Rule 2 of the WHU-SGCC method. This result demonstrates that Rule 1 and Rule 2 of WHU-SGCC 336 

method are effective in correcting consistent biases and considerably reduce the systematic biases of CHIRP. These 337 

improvements not only adjust the bias of satellite estimations but also preserve the original CHIRP pixel values which are 338 

close to the corresponding observed data. These adjustments provide reliable precipitation estimates for the C1 and C2 pixels, 339 

which supports further study using the WHU-SGCC method, especially for areas in which rain gauges are limited. 340 
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   341 

 342 

(a)                                               (b) 343 

Figure 5 CDFs of seasonal mean daily observations, CHIRP, C1 and C2 estimations for the Jinsha River Basin in JJA 2016 344 

 345 

4.2 Spatial Clustering of Rule 3 results 346 

To adjust the pixels other than for the gauged and gridded points, the pixels physically similar to the C1 and C2 pixels were 347 

selected. According to Rule 3, C3 pixels were identified in a spatial scope defined by the FCM method. Figure 6 shows the 348 

twenty spatial clusters with consideration of the terrain factors. Overall, the spatial results of FCM have many of the same 349 

characteristics as spatial areas defined by terrain changes, especially with respect to slope and runoff directions, which may 350 

influence regional rainfall to some extent. 351 

 352 

Figure 6 Spatial clustering as defined by FCM for the Jinsha River Basin. 353 
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After Rule 3, each C3 pixel has a good SCC with a C1 or C2 pixel in its cluster; the statistical analysis is shown in Fig. 7. It 354 

was found that the average SCC value was 0.6. Therefore, the regression model established in Rule 3 for C1 and C2 before 355 

and after adjustment is applicable for each corresponding C3 pixel. 356 

 357 

Figure 7 Frequency distribution histogram for Spearman’s correlation coefficient (SCC) for C3 pixels and their corresponding C1 and C2 358 
pixels using Rule 3. 359 

It is important to note that 62.18% of the pixels satellite precipitation estimates were adjusted by Rule 3 of the WHU-SGCC 360 

method. The accuracy assessment of C3 pixels is shown in Table 4. Validation statistics indicate that compared with the CHIRP 361 

and CHIRPS satellite estimations, the WHU-SGCC approach provides best adjustments based on all the statistical indicators 362 

at C3 pixels. With the improvement of precipitation accuracy by WHU-SGCC of C3 pixels, the adjustments of C4 pixels, 363 

which mainly rely on C3 pixel corrections, are reasonable. 364 

Table 4 Accuracy assessment of C3 pixels for JJA 2016. 365 

Statistic WHU-SGCC CHIRP CHIRPS 

SCC 0.3518 0.3176 0.2476 

RMSE 5.1776 5.6686 7.0311 

MAE 3.5226 3.7353 4.6909 

BIAS -0.0831 -0.2366 -0.2404 

NSE -0.0590 -0.2693 -0.9528 

POD 1.0000 0.8900 0.3396 

FAR 0.0687 0.0749 0.0763 

CSI 0.9313 0.8302 0.3304 

4.3 Model performance based on overall accuracy evaluations  366 

To test the performance of the WHU-SGCC method for precipitation estimates, the statistical analyses of SCC, RMSE, BAE, 367 

BIAS, NSE, POD, FAR, and CSI were calculated and are presented in Table 5. Compared with the satellite images of CHIRP 368 

and CHIRPS, the results of the WHU-SGCC provide the greatest improvements for regional daily precipitation estimates over 369 

the Jinsha River Basin in JJA 2016. After bias adjustment of the WHU-SGCC, SCC was improved by 17.38% and 39.62% 370 

compared to CHIRP and CHIRPS, respectively. Meanwhile, the RMSE, MAE and BIAS of the WHU-SGCC decreased by 371 

4.20%, 6.23% and 11.83% compared to CHIRP, and by 19.10%, 24.47% and 41.93% compared to CHIRPS. The NSE of the 372 
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WHU-SGCC reached -0.0864, an increase of 0.10 and 0.60 compared to CHIRP and CHIRPS, respectively. It is noted that 373 

not only was the POD improved to over 0.95, but the CSI was also improved to over 0.85, and all the FARs were  374 

approximately 0.11. 375 

Table 5 Overall accuracy assessment in JJA 2016. 376 

Statistic WHU-SGCC CHIRP CHIRPS 

SCC 0.3006 0.2561 0.2153 

RMSE 8.3349 8.7003 10.3026 

MAE 4.4671 4.7641 5.9146 

BIAS -0.0529 -0.0600 -0.0911 

NSE -0.0864 -0.1838 -0.6599 

POD 0.9822 0.9230 0.3686 

FAR 0.1023 0.1122 0.1125 

CSI 0.8833 0.8266 0.3522 

The spatial distributions of the statistical comparisons between observations and WHU-SGCC precipitation estimations are 377 

shown in Fig. 8. The variation of SCC as seen in Fig. 8 (a) shows that low correlations are observed in areas with lower 378 

elevation, particularly in the southern Jinsha River Basin where there is higher precipitation and a greater density of rain gauges. 379 

This result is in contrast to the result in (Rivera et al., 2018). However, the higher correlations noted over the north central area 380 

of the river basin are in a drier region with complex terrain and sparse rain gauges. With respect to the spatial distribution of 381 

RMSE, Fig. 8 (b) indicates that smaller errors are scattered in the northwest area of the river basin, with values lower than 5 382 

mm, while the highest errors, which are over 20 mm, are located over the border between the lower reaches of the Jinsha Jiang 383 

River and the river basin. All the values of MAE are below 12 mm and the spatial behaviour is similar to that of the RMSE. 384 

Fig. 8 (c) shows that the lower MAE values are located over the mountainous region southwest of Qinghai and west of Sichuan, 385 

with values below 6 mm. The spatial distribution of the BIAS indicates that the WHU-SGCC has good agreement with the 386 

observations, with the most values ranging from -10%~10%. All the spatial distribution statistics indicate that the WHU-SGCC 387 

is effective in adjusting the satellite biases by blending with the observations, particularly in the complicated mountainous 388 

region where there are higher SCC corresponding to lower values of RMSE, MAE and BIAS. The lower SCC and higher errors 389 

located over the area southeast of the river basin showed very limited improvement in precipitation estimates.  390 

391 
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(a)                                         (b) 392 

393 

(c)                                         (d) 394 

Figure 8 Spatial distribution of the statistical analyses of the overall agreement between observations and the WHU-SGCC estimations on 395 
30% validation for JJA 2016: a) Spearman’s correlation coefficient, b) root mean square error c) mean absolute error, and d) relative bias. 396 

4.4 Model performance based on daily accuracy evaluations  397 

After overall accuracy evaluations for JJA were conducted, further evaluations of daily accuracy were undertaken and the 398 

results are shown in Fig. 9. The evaluation of daily accuracy indicates that the WHU-SGCC reduces errors and biases compared 399 

to CHIRP and CHIRPS, with especially greatly decreases compared to CHIRPS. The RMSE and MAE derived from the WHU-400 

SFCC were reduced by approximately 5% and 30% compared to CHIRP and CHIRPS, respectively. However, the greatest 401 

reduction was reflected in the BIAS, with at least an 18% and 30% reduction compared to CHIRP and CHIRPS, respectively. 402 

Therefore, the WHU-SGCC approach is effective for adjustments of daily precipitation estimates, and improves estimate 403 

performance.  404 

  405 
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 406 

Figure 9 The statistical analysis of the agreement between daily observations and WHU-SGCC, CHIRP and CHIRPS estimates on 30% 407 
validation: a) root mean square error b) mean absolute error, and c) relative bias. 408 

The series of daily precipitation differences between WHU-SGCC, CHIRP, CHIRPS and observations is presented in Fig. 409 

10. In this comparison, the WHU-SGCC has the best agreement with the observations, and provides a certain improvement 410 

compared to CHIRP, while CHIRPS shows the greatest inconsistencies with the observations. Furthermore, it is noted that 411 

differences in precipitation estimates and observations are reduced gradually as the season progresses, especially in August 412 

when rainfall is decreased. But at days 36 and 56, short heavy rain events occurred in conjunction with the largest differences 413 

in observed WHU-SGCC values. This indicates that short heavy rainstorms may affect the accuracy of precipitation estimates, 414 

which deserves further study (Katsanos et al., 2016b;Herold et al., 2017). However, in general, the precipitation estimated 415 

using the WHU-SGCC method are superior to other products. 416 

 417 

Figure 10 The daily precipitation difference between WHU-SGCC, CHIRP, CHIRPS and observations; D-CHIRP is the difference between 418 
CHIRP and observations, D-CHIRPS is the difference between CHIRPS and observations, and D-WHU-SGCC is the difference between 419 
WHU-SGCC and observations. 420 

 421 

 422 
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4.5 Model performance for rain events 423 

To measure the WHU-SGCC performance for different rain events, the daily precipitation thresholds of 0.1, 1, 2, 5, 10, 20, 424 

and 40 mm were considered, and the result is shown in Table 6 and Fig. 11. In terms of performance with respect to different 425 

daily rain events, the WHU-SGCC approach had the lowest error, as indicated by RMSE, MAE and BIAS for events with total 426 

rainfall between 1 and 20 mm, but WHU-SGCC performance for heavy rain (20-40 mm) events did not improve compared to 427 

CHIRP, though it was better than that of CHIRPS. Although the WHU-SGCC approach improved accuracy for light rain 428 

events, its behaviour for heavy rain ( 40 mm) events was not as good as CHIRP and CHIRPS, as shown in Fig. 11. These 429 

results indicate that WHU-SGCC is applicable for the detection of rainfall events with less than 20 mm precipitation, while 430 

there is insufficient observational data for the validation of WHU-SGCC performance during heavy rain events, which 431 

represented less than 4% of all observational data and were not sufficient to fully test performance of the model. 432 

Table 6 Accuracy assessment on wet precipitation events for JJA 2016 433 
 RMSE MAE BIAS 

Rain Event 
WHU- 

SGCC 
CHIRP CHIRPS 

WHU- 

SGCC 
CHIRP CHIRPS 

WHU- 

SGCC 
CHIRP CHIRPS 

[0.1,1) 4.1609 4.5077 5.2762 2.3569 2.2940 2.2187 4.8423 4.9153 4.7541 

[1 , 2) 4.2658 4.7385 6.2943 2.4820 2.5563 3.3707 1.3491 1.8199 2.3996 

[2 , 5) 4.8378 5.2392 7.7315 3.2026 3.4011 5.2681 0.2808 1.0023 1.5525 

[5 , 10) 4.8765 5.5616 8.4619 4.0646 4.5505 6.8346 -0.2292 0.6315 0.9485 

[10,20) 8.8240 9.5254 11.5381 7.5957 8.3153 10.0287 -0.4627 0.6142 0.7408 

[20,40) 17.3305 17.0107 18.8758 15.5649 15.2646 16.4080 -0.6035 0.6011 0.6461 

40 95.8157 95.5185 95.2107 64.6789 64.1252 64.6337 -0.8850 0.8774 0.8844 

 434 

 435 
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 443 

 444 

 445 

Figure 11 Accuracy assessment based on daily observations for the estimations of WHU-SGCC, CHIRP and CHIRPS for wet precipitation 446 
events in JJA 2016: a) root mean square error b) mean absolute error, and c) relative bias. 447 

5 Data availability 448 

All the resulting dataset derived from the WHU-SGCC approach is available on PANGAEA, with the following DOI: 449 

https://doi.pangaea.de/10.1594/PANGAEA.896615 (Shen et al., 2018). The high-resolution (0.05°) daily precipitation 450 

estimation data over Jinsha River Basin in summer 2016 can be downloaded in TIFF format.  451 

6 Conclusions 452 

This study provided a novel approach in the WHU-SGCC method for merging daily satellite-based precipitation estimates 453 

with observations. A case study of Jinsha River Basin was conducted to verify the effectiveness of the WHU-SGCC approach 454 

in JJA 2016, and the adjusted precipitation estimates were compared to CHIRP and CHIRPS. WHU-SGCC aims to reduce 455 

systematic and random errors in CHIRP over the region has complicated mountainous terrain and sparse rain gauges. To the 456 

best of the authors’ knowledge, this study is the first to use daily CHIRP and CHIRPS data in this area. 457 

According to our findings, the following conclusions can be drawn: (1) The WHU-SGCC method is effective for the 458 

adjustment of precipitation biases from point to surface. The precipitation estimated by the WHU-SGCC method can achieve 459 

greater accuracy, which was evaluated with SCC, RMSE, MAE, BIAS, NSE, POD, FAR and CSI. Particularly, the SCC 460 

statistic was improved by 17.38% and 39.62% compared to CHIRP and CHIRPS, respectively, and all measured errors were 461 

reduced. The results show that compared to CHIRPS, the WHU-SGCC approach can achieve substantial improvements in 462 

precipitation estimate accuracy. (2) Moreover, the spatial distribution of precipitation estimate accuracy derived from the 463 

WHU-SGCC method is related to the complexity of the topography. These random errors over the lower evaluations and the 464 

large size of the precipitation region resulted in a limited improvement in accuracy, with SCC values less than 0.3, especially 465 

during short rainstorms. However, higher SCC and lower errors were observed over the north central area of the river basin, 466 

which is a drier region with complex terrain and sparse rain gauges. All the spatial distribution statistics indicate that the WHU-467 

SGCC method is superior for adjustment of satellite biases by blending with the observations over the complicated 468 

mountainous region. (3) The WHU-SGCC validations for daily rain events confirmed that the model was effective in the 469 

detection of precipitation events less than 20 mm. According to the comparison, the WHU-SGCC approach achieves error 470 

reductions for the RMSE, MAE and BIAS statistics for rain events within the range of 1-20 mm. Specifically, compared with 471 

CHIRP, the RMSE value was reduced by approximately 9%, the MAE value by 2.91% ~ 10.68%, and the BIAS value by 1.49% 472 

~ 175.33%; compared with CHIRPS, the RMSE and MAE values were reduced by 20% ~ 40%, and the BIAS value by 43.78% 473 
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~ 162.46%. 474 

Therefore, the WHU-SGCC approach can help adjust the biases of daily satellite-based precipitation estimates over Jinsha 475 

River Basin, the complicated mountainous terrains with sparse rain gauges, particularly for precipitation events with less than 476 

20 mm in summer. This approach is a promising tool to monitor monsoon precipitation over the Jinsha River Basin, considering 477 

the spatial correlation and historical precipitation characteristics between raster pixels located in regions with similar 478 

topographic features. Future development of the WHU-SGCC approach will focus on the following three aspects: 1) 479 

improvement of the adjusted precipitation quality by reducing random errors in all seasons; 2) introduction of more topographic 480 

and long time series climatic factors to achieve a more accurate spatial distribution of precipitation; and 3) investigation of the 481 

performance over other areas.  482 
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