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Abstract. Accurate and consistent satellite-based precipitation estimates blended with rain gauge data are important for 8 

regional precipitation monitoring and hydrological applications, especially in regions with limited rain gauges. However, the 9 

existing fusion precipitation estimates often have large uncertainties over mountainous areas with complex topography and 10 

sparse rain gauges, and most of the existing data blending algorithms are not good at removing the day by day errors. Therefore, 11 

the development of effective methods for high accuracy precipitation estimates over complex terrain and at a daily scale is of 12 

vital importance for mountainous hydrological applications. This study aims to offer a novel approach for blending daily 13 

precipitation gauge data and the Climate Hazards Group Infrared Precipitation (CHIRP; daily, 0.05°) satellite derived 14 

precipitation developed by UC Santa Barbara over the Jinsha River Basin from 1994 to 2014. This method is called the Wuhan 15 

University Satellite and Gauge precipitation Collaborated Correction (WHU-SGCC). The results show that the WHU-SGCC 16 

method is effective for liquid precipitation bias adjustments from points to surfaces as evaluated by multiple error statistics 17 

and from different perspectives. Compared with CHIRP and CHIRP with station data (CHIRPS), the precipitation adjusted by 18 

the WHU-SGCC method has greater accuracy, with overall average improvements of the Pearson’s correlation coefficient 19 

(PCC) by 0.0082-0.2232 and 0.0612-0.3243, respectively, and decreases in the root mean square error (RMSE) by 0.0922-20 

0.65 mm and 0.2249-2.9525 mm, respectively. In addition, the Nash-Sutcliffe efficiency coefficient (NSE) of the WHU-SGCC 21 

provides substantial improvements than CHIRP and CHIRPS, which reached 0.2836, 0.2944 and 0.1853 in the spring, fall and 22 

winter. Daily accuracy evaluations indicate that the WHU-SGCC method has the best ability to reduce precipitation bias, with 23 

average reductions of 21.68% and 31.44% compared to CHIRP and CHIRPS, respectively. Moreover, the accuracy of the 24 

spatial distribution of the precipitation estimates derived from the WHU-SGCC method is related to the complexity of the 25 

topography. The validation also verifies that the proposed approach is effective at detecting major precipitation events within 26 

the Jinsha River Basin. In spite of the correction, the uncertainties in the seasonal precipitation forecasts in the summer and 27 

winter are still large, which might be due to the homogenization attenuating the extreme rain events estimates. However, the 28 

WHU-SGCC approach may serve as a promising tool to monitor daily precipitation over the Jinsha River Basin, which contains 29 

complicated mountainous terrain with sparse rain gauge data, based on the spatial correlation and the historical precipitation 30 

characteristics. The daily precipitation estimations at the 0.05° resolution over the Jinsha River Basin during all four seasons 31 

from 1990 to 2014, derived from WHU-SGCC are available at the PANGAEA Data Publisher for Earth & Environmental 32 

Science portal (https://doi.pangaea.de/10.1594/PANGAEA.905376). 33 

1 Introduction 34 

Accurate and consistent estimates of precipitation are vital for hydrological modelling, flood forecasting and climatological 35 

studies in support of better planning and decision making (Agutu et al., 2017; Cattani et al., 2018; Roy et al., 2017). In general, 36 

ground-based gauge networks include a substantial number of liquid precipitation observations measured with high accuracy, 37 

high temporal resolution, and long historical records. However, the sparse distribution and point measurements limit the 38 

accurate estimation of spatially gridded rainfall (Martens et al., 2013).  39 

mailto:ZeqiangChen@whu.edu.cn
cnc@whu.edu.cn
https://doi.pangaea.de/10.1594/PANGAEA.905376


2 
 

Due to the sparseness and uneven spatial distribution of rain gauges and the high proportion of missing data, satellite- 40 

derived precipitation data are an attractive supplement offering the advantage of plentiful information with high spatio-41 

temporal resolution over widespread regions, particularly over oceans, high elevation mountainous regions, and other remote 42 

regions where gauge networks are difficult to deploy. However, satellite estimates are susceptible to systematic biases that can 43 

influence hydrological modelling and the retrieval algorithms are relatively insensitive to light rainfall events, especially in 44 

complex terrain, resulting in underestimations of the magnitudes of precipitation events (Behrangi et al., 2014; Thiemig et al., 45 

2013; Yang et al., 2017). Without adjustments, inaccurate satellite-based precipitation estimates will lead to unreliable 46 

assessments of risk and reliability (AghaKouchak et al., 2011). 47 

Accordingly, many kinds of precipitation estimates combining multiple sources and datasets are available. Table 1 shows 48 

the temporal and spatial resolution of current major satellite-based precipitation datasets. Since 1997, the Tropical Rainfall 49 

Measurement Mission (TRMM) has improved satellite-based rainfall retrievals over tropical regions (Kummerow et al., 1998; 50 

Simpson et al., 1988). High spatial and temporal resolution multi-satellite precipitation products have been developed 51 

continuously during the TRMM era (Maggioni et al., 2016), including: (1) the TRMM Multisatellite Precipitation Analysis 52 

(TMPA) products, which are derived from gauge-satellite fusing (Huffman et al., 2010; Vila et al., 2009); (2) the Climate 53 

Prediction Center (CPC) morphing technique (Joyce et al., 2004; Joyce and Xie, 2011; Xie et al., 2017), which integrates 54 

geosynchronous infrared (GEO IR) and polar-orbiting microwave (PMW) sensor data and is available three hourly on a grid 55 

with a spatial resolution of 0.25°; (3) the Precipitation Estimation from Remotely Sensed Information using Artificial Neural 56 

Networks - Climate Data Record (PERSIANN-CDR) produced by the PERSIANN algorithm, which has daily temporal and 57 

0.25° × 0.25° spatial resolutions (Ashouri et al., 2015); and (4) the Global Satellite Mapping of Precipitation (GSMaP) 58 

project, which produces global rainfall estimates in near-real time and applies the motion vector Kalman filter based on 59 

physical models (GSMaP-NRT and GSMaP-MVK, respectively) (Aonashi et al., 2009; Ushio et al., 2009; Ushio and 60 

Kachi, 2010). In 2014, the Global Precipitation Measurement (GPM) satellite was launched after the success of the TRMM 61 

satellite by a cooperation between the National Aeronautics and Space Administration (NASA) and Japan Aerospace 62 

Exploration Agency (JAXA) (Mahmoud et al., 2018; Ning et al., 2016). The main core observatory satellite (GPM) integrates 63 

advanced radar and radiometer systems to obtain the precipitation physics and takes advantages of TMPA, the Climate 64 

Prediction Center morphing technique (CMORPH), and PERSIANN algorithms to offer high spatiotemporal resolution 65 

products (0.1° × 0.1°, half hourly) of global real time precipitation estimates (Huffman et al., 2018; Skofronick-Jackson et al., 66 

2017; Hou et al., 2014). Nevertheless, the major aforementioned products have only been available since 1998, which limits 67 

long term climatological studies. Only the PERSIANN-CDR data set has temporal coverage since 1983. However, the spatial 68 

resolution of PERSIANN-CDR is relatively coarse, and the data resolution must be degraded to achieve high accuracy in 69 

precipitation monitoring. To fill the gap in high resolution and long term global multi-satellite precipitation monitoring, the 70 

Multi-Source Weighted-Ensemble Precipitation (MSWEP) product (Beck et al., 2017; Beck et al., 2019), and the Climate 71 

Hazards Group Infrared Precipitation with Station data (CHIRPS) product from UC Santa Barbara (Funk et al., 2015 a) were 72 

developed. MSWEP is a precipitation data set with global coverage available at 0.1° spatial resolution and at three hourly, 73 

daily, and monthly temporal resolutions. MSWEP is multi-source data that takes advantage of the complementary strengths of 74 

gauge-, satellite-, and reanalysis-based data. However, to provide precipitation estimates at a higher spatial resolution, the 75 

CHIRPS data set is used in this study.   76 

CHIRPS is a longer length precipitation data series with a higher spatial resolution (0.05°) that, merges three types of 77 

information: global climatology, satellite estimates and in situ observations. The CHIRPS precipitation dataset with several 78 

temporal and spatial scales has been evaluated in Brazil (Nogueira et al., 2018; Paredes-Trejo et al., 2017), Chile (Yang et al., 79 

2016; Zambrano-Bigiarini et al., 2017), China (Bai et al., 2018), Cyprus (Katsanos et al., 2016a; Katsanos et al., 2016b), India 80 

(Ali and Mishra, 2017; Prakash, 2019) and Italy (Duan et al., 2016). However, the temporal resolutions of these applications 81 
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were mainly at seasonal and monthly scales, lacking the evaluation and correction of daily precipitation. Additionally, despite 82 

the great potential of gauge-satellite fusing products for large scale environmental monitoring, there are still large discrepancies 83 

with ground observations at the sub-regional level where these data have been applied. Furthermore, the CHIRPS product’s 84 

reliability has not been analysed in detail over the Jinsha River Basin in China, particularly at a daily scale. The Jinsha River 85 

Basin is a typical study area with complex and varied terrain, an uneven spatial distribution of precipitation, and a sparse spatial 86 

distribution of rain gauges, which limit high accuracy precipitation monitoring. The existing research indicates that estimations 87 

over mountainous areas with complex topography often have large uncertainties and bias due to the topography, seasonality, 88 

climate impact and sparseness of rain gauges (Derin et al., 2016; Maggioni and Massari, 2018; Zambrano-Bigiarini et al., 89 

2017). Moreover, Bai et al. (2018) evaluated CHIRPS over mainland China and indicated that the performance of CHIRPS is 90 

poor over the Sichuan Basin and the Northern China Plain, which have complex terrain with substantial variations in elevation. 91 

Additionally, Trejo et al. (2016) shows that CHIRPS overestimates low monthly rainfall and underestimates high monthly 92 

rainfall using several numerical metrics and that the rainfall event frequency is overestimated outside the rainy season.  93 

Table 1 Coverage and spatiotemporal resolutions of major satellite precipitation datasets. 94 
Product Temporal resolution Spatial resolution Period Coverage 

TRMM 3B42-RT 3 Hourly 0.25° 1998-present 50°S-50°N 

CMORPH 
0.5 Hourly/3 
Hourly/Daily 

8 km/0.25° 1998- 60°S-60°N 

PERSIANN-CDR daily 0.25° 1983-(delayed) present 60°S-60°N 
GsMaP-NRT Hourly 0.01° 2007 60°S-60°N 
GsMaP-MVK Hourly 0.01° 2000 60°S-60°N 

GPM 
0.5 Hourly/Hourly/ 
3 Hourly/Daily/3 Day/ 

7 Day/Monthly 

0.1°/0.25°/0.05°/5° 2014-present 
60°S-60°N 
70°N-70°S 

90°N-90°S 
MSWEP 3 Hourly/Daily/Monthly 0.1° 1979-2017 90°N-90°S 

CHIRPS 
Daily/Pentad/Dekad/ 
Monthly/Annual 

0.05°/0.25° 1981- present 50°S-50°N 

To overcome these limitations, many studies have focused on proposing effective methodologies for blending rain gauge 95 

observations, satellite-based precipitation estimates, and sometimes radar data to take advantage of each dataset. Many 96 

numerical models have been established with these datasets for high accuracy precipitation estimations, such as bias adjustment 97 

by a quantile mapping (QM) approach (Yang et al., 2016), Bayesian kriging (BK) (Verdin et al., 2015) and a conditional 98 

merging technique (Berndt et al., 2014). The QM approach is a distribution-based approach, which works with historical data 99 

for bias adjustment and is effective at reducing the systematic bias of regional climate model precipitation estimates at monthly 100 

or seasonal scales (Chen et al., 2013). However, the QM approach offers very limited improvement in removing day by day 101 

errors. The BK approach provides very good model fit with precipitation observations, but the Gaussian assumption of the BK 102 

model is invalid for daily scales. Overall, there is a lack of effective methods for high-accuracy precipitation estimates over 103 

complex terrain at a daily scale.  104 

As such, due to the poor performance at the sub-regional scale, the gauge-satellite fusing algorithms can be assumed to limit 105 

high accuracy estimations in the process of CHIRPS data production. Therefore, the aim of this article is to present a novel 106 

approach for reblending daily liquid precipitation gauge data and the Climate Hazards Group Infrared Precipitation (CHIRP) 107 

satellite-derived precipitation estimates developed by UC Santa Barbara, over the Jinsha River Basin. We use precipitation to 108 

denote liquid precipitation throughout the text. The CHIRP data are the raw data of CHIRPS before blending with the rain 109 

gauge data. The objective is to build corresponding precipitation models that consider terrain factors and precipitation 110 

characteristics to produce high quality precipitation estimates. This novel method is called the Wuhan University Satellite and 111 

Gauge precipitation Collaborated Correction (WHU-SGCC) method. We present this method by applying it to daily 112 

precipitation over the Jinsha River Basin in the different seasons from 1990 to 2014. The results support the validity of the 113 

proposed approach for producing refined satellite-gauge precipitation estimates over mountainous areas. 114 

The remainder of this paper is organized as follows: Section 2 describes the study region, rain gauges and CHIRPS dataset 115 

used in this study. Section 3 presents the principle of the WHU-SGCC approach for high accuracy daily precipitation estimates. 116 
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The results and discussion are analysed in Section 4, the data available are described in Section 5, and the conclusions and 117 

future work are presented in Section 6.  118 

2 Study Region and Data 119 

2.1 Study Region 120 

The Yangtze River is one of the largest and most important rivers in Southeast Asia, originating on the Tibetan Plateau and 121 

extending approximately 6300 km eastward to the East China Sea. The river’s catchment covers an area of approximately 122 

~180 × 104 km2 and the average annual precipitation is approximately 1100 mm (Zhang et al., 2019).The Yangtze River is 123 

divided into nine sub-basins, the upper drainage basin is the Jinsha River Basin, which flows through the provinces of Qinghai, 124 

Sichuan, and Yunnan in western China. Within the Jinsha River Basin, the total river length is 3486 km, accounting for 77% 125 

of the length of the upper Yangtze River, and covering a watershed area of 460 × 103 km2. The location of the Jinsha River 126 

Basin is shown in Fig. 1, and it covers the eastern part of the Tibetan Plateau and part of the Hengduan Mountains. The southern 127 

portion of the river basin is the Northern Yunnan Plateau and the eastern portion includes a wide area of the southwestern 128 

margin of the Sichuan Basin. Crossing complex and varied terrains, the elevation of the Jinsha River ranges from 263 to 6575 129 

m above sea level, which results in significant temporal and spatial climate and weather variations inside the basin. The average 130 

annual precipitation of the Jinsha River Basin is approximately 710 mm, the average annual precipitation of the lower reaches 131 

is approximately 900-1300 mm, and the average annual precipitation of the middle and upper reaches is approximately 600-132 

800 mm (Yuan et al., 2018). The Jinsha River Basin has four seasons: spring (March-April-May), summer (June-July-August), 133 

fall (September-October-November) and winter (December-January-February). Therefore, the blending of satellite estimations 134 

with gauge observations during the different seasons is the main focus of this research. 135 

 136 

Figure 1 Location of the study area with key topographic features. 137 

2.2 Study Data 138 

2.2.1 Precipitation gauge observations 139 

Daily rain gauge observations at 30 national standard rain stations within the Jinsha River Basin from 1 March 1990 to February 140 
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2015 were provided by the National Climate Centre (NCC) of the China Meteorological Administration (CMA) 141 

(http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html, last access: 10 December, 2018), 142 

which imposes strict quality control at the station, provincial and state levels. The process of quality control conducted by the 143 

CMA is as follows: (1) Climate threshold or allowable value check; (2) Extreme values at gauge stations check; (3) Internal 144 

consistency check between fixed value, daily average value and daily extreme value; (4) Time consistency check; and (5) 145 

Manual verification and correction. The station identification numbers and relevant geographical characteristics are shown in 146 

Appendix A, and their uneven spatial distribution is shown in Fig. 2. The selected rain gauges are located in Qinghai, Tibet, 147 

Sichuan and Yunnan Provinces but are mainly scattered in Sichuan Province, and the northern river basin contains fewer rain 148 

gauges than the southern river basin. In this study, the daily rain gauge observations were used as the reference data for the 149 

bias correction of satellite precipitation estimations.  150 

The multi-annual (1990-2014) average seasonal precipitation over the Jinsha River Basin increases from north to south (Fig. 151 

2). The dynamic and uneven distribution of precipitation is influenced distinctly by the seasonal climate. Most of the 152 

precipitation falls in the summer, with the average seasonal precipitation ranging from less than 250 mm to more than 600 mm, 153 

while the average seasonal precipitation during the winter is no more than 50 mm. The average seasonal precipitation and 154 

spatial distribution in the spring are similar with those in the fall, with values concentrated in the range of 50 mm to 200 mm.  155 

http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html
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     156 

Figure 2 The multi-annual (1990-2014) average seasonal precipitation over the Jinsha River Basin interpolated from30 rain gauges 157 
downloaded from the China Meteorological Administration stations.  158 

2.2.2 CHIRPS satellite-gauge fusion precipitation estimates 159 

The CHIRPS v.2 dataset, a satellite-based daily rainfall product, is available online at 160 

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/global_daily/tifs/p05/ (last access: 10 December, 2018). It covers a 161 

quasi-global area (land only, 50° S-50° N) a several temporal scales (daily, pentad, dekad, monthly and annual temporal 162 

resolutions) and a high spatial resolution (0.05°) (Rivera et al., 2018). This dataset contains a wide variety of satellite-based 163 

rainfall products derived from a multiple data sources and incorporates five data types: (1) the monthly precipitation from 164 

CHPClim v.1.0 (Climate Hazards Group’s Precipitation Climatology version 1) derived from a combination of satellite fields, 165 

gridded physiographic indicators, and in situ climate normal with the geospatial modelling approach based on moving window 166 

regressions and inverse distance weighting interpolation (Funk et al., 2015 b); (2) quasi-global geostationary thermal infrared 167 

(IR) satellite observations; (3)the TRMM 3B42 product (Huffman et al., 2007); (4) the CFS (Climate Forecast System, version 168 

2) atmospheric model rainfall fields from NOAA; and (5) surface-based precipitation observations from various sources 169 

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/global_daily/tifs/p05/
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including national and regional meteorological services. The differences from other frequently used precipitation products are 170 

the higher resolution of 0.05° , wider coverage and longer length data series from 1981 to near-real time (Funk et al., 2015 a).  171 

CHIRPS is the blended product of a two-part process. First, IR precipitation (IRP) pentad rainfall estimates are fused with 172 

corresponding CHPClim pentad data to produce an unbiased gridded estimate, called CHIRP, which is available online at 173 

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRP/daily/ (last access: 10 December, 2018). In the second part of the process, 174 

the CHIRP data are blended with ground-based precipitation observations obtained from a variety of sources, including 175 

national and regional meteorological services by means of a modified inverse-distance weighting algorithm to create the final 176 

blended product, CHIRPS (Funk et al., 2014). The daily CHIRP satellite-based data over the Jinsha River Basin from 1990.02 177 

to 2015.02 were selected as the input for WHU-SGCC blending with rain observations, and the corresponding daily CHIRPS 178 

blended data was used for comparisons of the precipitation accuracy.  179 

The blended in situ daily precipitation observations of the CHIRPS data come from a variety of sources, such as the daily 180 

GHCN archive (Durre et al., 2010), the Global Summary of the Day dataset (GSOD) provided by NOAA’s National Climatic 181 

Data Center, the World Meteorological Organization’s Global Telecommunication System (GTS) daily archive provided by 182 

NOAA CPC, and more than a dozen national and regional meteorological services. However, the stations for daily CHIRPS 183 

data have a different spatial distribution than those downloaded from the CMA, and the precipitation values used for CHIRPS 184 

production are the monthly values available online (ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-185 

2.0/diagnostics/monthly_station_data/). For the daily precipitation adjustments over the Jinsha River Basin, the daily gauge 186 

observations from the CMA are blended with the daily CHIRP data due to the unknown spatial distribution and precipitation 187 

values of gauge stations used in the process of daily CHIRPS merging.  188 

3 Methods 189 

3.1 The WHU-SGCC approach  190 

In this study, the WHU-SGCC approach estimates the precipitation at every pixel by blending satellite estimates and rain gauge 191 

observations considering the terrain factors and precipitation characteristics. Due to the significant seasonal difference of 192 

precipitation, the WHU-SGCC method was applied in the different seasons. Four steps were used to establish the numerical 193 

relationship between the gauge stations and the corresponding satellite pixels and for the interpolation of the remaining pixels. 194 

The WHU-SGCC method identifies the geographical locations and topographical features of each pixel and applies the four 195 

classification and blending rules. A flowchart of the WHU-SGCC method is shown in Fig. 3. The proposed approach was 196 

evaluated over the Jinsha River Basin based on 30 gauge stations and CHIRP satellite-based precipitation estimations in the 197 

different seasons from 1990 to 2014. The leave-one-out cross validation step was applied to compute the out-of-sample 198 

adjusted bias with the gauge stations. The WHU-SGCC algorithm was repeated 30 times, each time leaving one station as the 199 

validation station.  200 

The basic description of the WHU-SGCC method is given below, and the details are illustrated separately in later sections: 201 

(1) Classify all regional pixels into four types: C1 (pixels including one gauge station in their area), C2 (pixels statistically 202 

similar to C1), C3 (pixels statistically similar to C2) and C4 (remaining pixels).  203 

(2) Analyze the relationships between the precipitation observations and the C1, C2, and C3 pixel types, and interpolate for 204 

the C4 pixels. These relationships are described by four rules, which are described below as Rules 1 through 4.  205 

(3) Establish statistical models and screen the target pixels based on the four rules. 206 

(4) Correct all of the precipitation pixels in the daily regional precipitation images. 207 

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRP/daily/
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 208 

Figure 3 Flowchart of the WHU-SGCC approach with the four rules applied in this study.  209 

3.1.1 Assumptions 210 

(1) Gauge observations are the most accurate, or “true”, values for reference purposes. However, the sparseness of the 211 

gauges, their uneven spatial distribution, and the high proportion of missing data may limit high accuracy estimation in rainfall 212 

monitoring. 213 

(2) No major terrain changes occurred during the twenty years (Appendix B). 214 

(3) There are no abnormal values at one pixel in the CHIRP dataset during the long time series, so Pearson’s Correlation 215 

Coefficient (PCC) can represent the statistical similarity of the rainfall characteristics among the pixels in a certain spatial area 216 

at a seasonal scale.  217 

3.1.2 Rule 1 of the WHU-SGCC method 218 

In general, the satellite precipitation estimations deviated from the ground-based measurements, which were assumed to be 219 

the true values. Rule 1 aims to establish a regression model between the historical observations at each gauge and the 220 

corresponding CHIRP grid cell values. The regression relationship was derived by random forest regression (RFR) at each 221 

gauge station. RFR is a machine-learning algorithm for a predictive model with a large set of regression trees in which each 222 

tree in the ensemble is grown from a bootstrap sample (Johnson, 1998) drawn with a replacement from the training set. In the 223 

process of establishing regression trees, a subset of variables for each node is selected to avoid overfitting. The final prediction 224 

is obtained by combining the results of the prediction methods applied to each bootstrap sample (Genuer et al., 2017). The 225 

predicted value is calculated by the average of the values from all of the decision trees. Each tree can be expressed as  226 

( , ),
sk

k RFR o YTree f Y   k=1…n                              (1) 227 

where 𝑌𝑜 denotes the historical observations at each gauge at the C1 pixels, 
sk

Y is a randomly selected vector from 𝑌𝑠 , 228 

𝑌𝑠 denotes the corresponding CHIRP grid cell values at the C1 pixels, n is the number of trees, and  𝑓
𝑅𝐹𝑅

 is constructed 229 
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from the time series 𝑌𝑜 (dependent variable) and 𝑌𝑠 (independent variable) by means of RFR. The bootstrap sample will 230 

be the training set used for growing the tree. The error rate (out-of-bag, OOB) left out of one-third of the training data is also 231 

monitored to determine the number of decision trees. In this study, the minimum OOB error rate was reached when the 232 

number of decision trees n was less than 500 (Appendix C).   233 

Rule 1 builds the statistical relationships between the gauge observations and the corresponding CHIRP grid cell values, 234 

which is the key idea in correcting the satellite-based precipitation estimations in the entire study area. In the process of Rule 235 

1, the regression relationships at the C1 pixels were established at 30 gauge stations separately. The values of the C1 pixels 236 

are not corrected in Rule 1 but are interpolated in Rule 4. 237 

3.1.3 Rule 2 of the WHU-SGCC method 238 

It is reasonable to assume that some pixels are statistically similar to the historical precipitation characteristics of the C1 pixels 239 

within a certain area. Therefore, it is feasible to adjust the satellite estimation bias of the C2 pixels by referring to the 240 

appropriate regression relationships at the corresponding C1 pixels based on Rule 1. 241 

First, the spatial area in which pixels may have highly similar characteristics is established. Several studies indicate that the 242 

geographical location, elevation and other terrain information influence the spatial distribution of rainfall, especially in 243 

mountainous areas with complex topography (Anders et al., 2006; Long and Singh, 2013). The size of the spatial range is an 244 

important parameter to distinguish the spatial similarity and heterogeneity. In the WHU-SGCC method, the fuzzy c-means 245 

(FCM) clustering approach was used to determine the spatial range considered for each pixel’s terrain factors, including 246 

longitude, latitude, elevation, slope, aspect and curvature. The FCM method was developed by J.C. Dunn in 1973 (Dunn, 247 

1973), and improved in 1983 (Wang, 1983). It is an unsupervised fuzzy clustering method and its steps are as follows (Pessoa 248 

et al., 2018): 249 

1) Choose the number of clusters c. The optimum number of clusters is determined by L(c), which is derived from the inter-250 

distance and inner distance of the samples in Eq. (2). It is ensured that the distance between similar samples is smaller, while 251 

the distance between different samples is larger. 252 
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In Eq. (2), the denominator is the inner-distance, and the numerator is the inter-distance. The initial value of c is 1 and the 254 

maximum value of c is the number of gauge stations in the study area. The optimum number of clusters was optimized to 255 

maximize L(c). For this reason, the value of c is varied from 1 to the number of gauge stations with an increment of 1 in this 256 

study. 257 

2) Assign coefficients randomly to each data point ix  for the degree to which it belongs in the i-th cluster ( )ij iw x : 258 
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where x is a finite collection of n elements that will be partitioned into a collection of c fuzzy clusters, ic  is the centre of 260 

each cluster, m is the hyper-parameter that controls the level of cluster fuzziness, ijw  is the degree to which element ix  261 

belongs to ic , and x  is the centre vector of the collection. In Eq. (3), 
( )t

jc  represents the cluster centre in iteration t. If the 262 
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minimum improvement in the objective function between two consecutive iterations satisfies the following equation, the 263 

algorithm terminates in iteration t (Eq. (6)): 264 

( ) ( +1)|| - ||<t t

i ic c                                         (6) 265 

3) Minimize the objective function cF  to achieve data partitioning. 266 

2

1 1

|| ||
n c

m

c ij j i

j i

F w x c
 

                                      (7) 267 

The results of the FCM are the degree of membership of each pixel to the cluster centre as represented by numerical values. 268 

The pixels in each cluster have similar terrain features and precipitation characteristics. 269 

Second, as mentioned above, the aim of Rule 2 is to derive an adjustment method for the C2 pixels based on learning from 270 

Rule 1. With the establishment of a regression relationship between the gauge observations and the corresponding CHIRP grid 271 

cell values of the C1 pixels by the RFR method, the determination of the C2 pixels follows a complicated procedure. With the 272 

exception of the C1 pixels, the remaining pixels in each cluster represent potential C2 pixels, which are called R pixels. The 273 

Pearson’s correlation coefficient (PCC) and p-values between the satellite estimations (multi-annual daily CHIRP grid cell 274 

values) at the R pixels and the C1 pixels are the criteria for the final determination of the C2 pixels. The PCC is defined as 275 

follows: 276 
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where n is the number of samples, ix  and iy  are individual samples (CHIRP grid cell values at the C1 and C2 pixels, 278 

respectively), x is the arithmetic mean of x calculated by 
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 , and y  is the arithmetic mean of y calculated by 279 
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The PCC ranges between -1 and +1. If there are no repeated data values, a perfect PCC of +1 or −1 occurs when each of the 281 

variables is a perfect monotonic function of the other. However, if the value is close to zero, there is zero correlation. In 282 

addition, the correlation is not only determined by the value of the correlation coefficient but also by the correlation test’s p-283 

value. The critical values for the PCC and p-value are 0.5 and 0.05, respectively; thus, a PCC value higher than 0.5 and a p-284 

value lower than 0.05 indicate that the data are significantly correlated (Zhang and Chen, 2016). Therefore, the final 285 

determination of the C2 pixels must meet the following criteria: 286 

PCC 0.5 0.05and p                                    (9) 287 

Each R pixel has m PCC and p-values (the number of C1 pixels in the cluster), and the subset of C2 pixels is identified by 288 

excluding the data that failed the correlation test and retaining both the data with a maximum PCC of at least 0.5 and a p-value 289 

lower than 0.05, and the corresponding index of C1 pixels. The selected C2 pixels can then be considered statistically similar 290 

to the precipitation characteristics of the corresponding C1 pixels in their defined spatial area. 291 

After identifying the C2 pixels and their corresponding C1 pixels, the adjustment method for the C2 pixels is derived from 292 

the regression model for the C1 pixels: 293 
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                                    (10) 294 

where 
1CkTree is the decision tree derived from the RFR algorithm at the corresponding C1 pixel, 

2CsY  is the CHIRP grid cell 295 
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value at the C2 pixels, and 2asC  is the adjusted satellite precipitation estimate calculated by the average of the values from 296 

the RFR decision trees. 297 

3.1.4 Rule 3 of the WHU-SGCC method 298 

Recognizing that precipitation has a spatial distribution, the assumption that the C3 pixels are statistically similar to the 299 

precipitation characteristics of the C2 pixels is adopted to establish the adjustment method for the C3 pixels.  300 

First, the determination of the C3 pixels in each spatial cluster is based on the selection of C2 pixels. The satellite-based 301 

estimation values at the pixels other than the C1 and C2 pixels are used to calculate the PCC and p-value with the satellite-302 

based estimation values at the C2 pixels in the same cluster. The results of each pixel’s k PCC and p-value (the number of C2 303 

pixels in the cluster) are evaluated based on the correlation test (Eq. (9)) that the pixels have a maximum PCC of at least 0.5 304 

and a p-value is of no more than 0.05, and the corresponding index of C2 pixels is retained. The selected pixels are called C3 305 

pixels, which are statistically similar to the precipitation characteristics of the corresponding C2 pixels in the defined spatial 306 

area. 307 

After identifying the C3 pixels, a method for merging the CHIRP grid cell values at the C3 pixels (𝑌𝑠) and the target reference 308 

values of 2asC  at the corresponding C2 pixels is applied to estimate the adjusted precipitation values at the C3 pixels. This 309 

method combines the 𝑌𝑠 and 2asC  values into one variable, as shown in Eq. (11): 310 
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  i=1,…, n                                   (11) 311 

where 𝜆 is a positive constant set to 10 mm (Sokol, 2003), 2asC  is the adjusted precipitation values at the C2 pixels, 
isY is 312 

extracted from the CHIRP grid cell values at the corresponding location of the C2 pixels, and n is the number of C2 pixels in 313 

each spatial cluster.  314 

Each w of the C3 pixels is assigned the same value as the corresponding C2 pixel. Therefore, the values of the C3 pixels are 315 

derived from Eq. (12): 316 

3 max( ( ) ,0)as sC w Y                                      (12) 317 

where 3asC is the adjusted target precipitation value at one C3 pixel, and 
sY  is the corresponding CHIRP grid cell value. To 318 

avoid precipitation estimates below 0, Eq. (12) sets negative values to 0. 319 

3.1.5 Rule 4 of the WHU-SGCC method 320 

The pixels other than the C1, C2 and C3 pixels are called C4 pixels and they are adjusted by inverse distance weighting (IDW). 321 

IDW is based on the concept of the first law of geography from 1970, which was defined as everything is related to everything 322 

else, but near things are more related than distant things. Therefore, the attribute value of an unsampled point is the weighted 323 

average of the known values within the neighbourhood, and the distance weighting can be determined by means of IDW (Lu 324 

and Wong, 2008). In Rule 4, IDW is used to interpolate the unknown spatial precipitation data from the adjusted precipitation 325 

values at the C2 and C3 pixels. The IDW formulas are given as Eq. (13) and Eq. (14). 326 
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where 
asR is the unknown spatial precipitation data, 

iR  is the adjusted precipitation values at the C2 and C3 pixels, n is the 329 

number of C2 and C3 pixels, 
id  is the distance from each C2 or C3 pixel to the unknown grid cell, and  is the power which 330 

is generally specified as a geometric form for the weight. Several studies (Simanton and Osborn 1980; Tung 1983) have 331 

experimented with variations in the power; a the small   tends to estimate values with the averages of sampled grids in the 332 

neighbourhood, while a large   tends to give larger weights to the nearest points and increasingly down-weights points 333 

farther away (Chen and Liu, 2012; Lu and Wong, 2008). The value of  has an influence on the spatial distribution of the 334 

information from precipitation observations. For this reason,   is varied in the range of 0.1 to three (0.1, 0.3, 0.5, 1.0, 1.5, 335 

2.0, 2.5 and 3.0) in this study. 336 

Note that the unknown spatial precipitation data include C1 and C4 pixels because the C1 pixels values were not adjusted 337 

in Rule 1.  338 

After applying these four rules, we obtained complete daily adjusted regional precipitation maps for the four seasons over 339 

the Jinsha River basin.  340 

3.2 Accuracy assessment 341 

The performance of the WHU-SGCC adjusted precipitation estimates was evaluated by eight mathematic metrics: the 342 

Pearson’s correlation coefficient (PCC), root mean square error (RMSE), mean absolute error (MAE), relative bias (BIAS), 343 

Nash-Sutcliffe efficiency coefficient (NSE), probability of detection (POD), false alarm ratio (FAR) and critical success index 344 

(CSI). The results of accuracy assessment are the average values validated by the leave-one-out cross method. Each validated 345 

pixel will probably be a C2, C3 or C4 pixel in the process of the WHU-SGCC algorithm. The PCC, RMSE, MAE and BIAS 346 

were used to evaluate how well the WHU-SGCC method adjusted the satellite estimation bias, while POD, FAR and CSI were 347 

used to evaluate the performance of precipitation forecasting (Su et al., 2011). The PCC measures the strength of the correlation 348 

relationship between the satellite estimations and observations. The RMSE is an absolute measurement used to compare the 349 

difference between the satellite estimations and observations, and the MAE represents the average magnitude of error 350 

estimations considering both systematic and random errors. The NSE (Nash and Sutcliffe, 1970) determines the relative 351 

magnitude of the variance of the residuals compared to the variance of the observations, bounded by minus infinity and 1; a 352 

negative value indicates a poor precipitation estimate, and a value of1 indicates an optimal estimate. The BIAS measures the 353 

mean tendency of the estimated precipitation to be larger (positive values) or smaller (negative values) than the observed 354 

precipitation and has an optimal value of 0. The POD, also known as the hit rate, represents the probability of rainfall detection, 355 

and the FAR is defined as the ratio of the false alarm of rainfall to the total number of rainfall events. All of the accuracy 356 

assessment metrics are shown in Table 2. 357 

Table 2 Accuracy assessment metrics. 358 
Accuracy assessment Index Unit Formula Range Optimal value 

Pearson’s Correlation Coefficient (PCC) NA 
PCC =

∑ (𝑌𝑜𝑖 − �̅�𝑜)(𝐶𝑖 − 𝐶̅)𝑛
𝑖=1

√∑ (𝑌𝑜𝑖 − �̅�𝑜)2𝑛
𝑖=1 . √∑ (𝐶𝑖 − 𝐶̅)2𝑛

𝑖=1

 
[-1,1] 1 

Root Mean Square Error (RMSE) mm RMSE = √
1

𝑛
∑(𝐶𝑖 − 𝑌𝑜𝑖)2

𝑛

𝑖=1

 [0,+∞） 0 

Mean Absolute Error (MAE) mm MAE =
1

𝑛
∑ |𝐶𝑖 − 𝑌𝑜𝑖|

𝑛

𝑖=1

 [0, +∞) 0 

Relative Bias (BIAS) NA BIAS =
∑ (𝐶𝑖 − 𝑌𝑜𝑖)𝑛

𝑖=1

∑ 𝑌𝑜𝑖
𝑛
𝑖=1

 (-∞, +∞) 0 

Nash-Sutcliffe Efficiency Coefficient (NSE) NA NSE = 1 −
∑ (𝐶𝑖 − 𝑌𝑜𝑖)2𝑁

𝑖=1

∑ (𝐶𝑖 − �̅�𝑜)2𝑁
𝑖=1

 (-∞,1] 1 

Probability of Detection (POD) NA POD=H/(H+M) [0,1] 1 
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False Alarm Ratio (FAR) NA FAR=F/(H+F) [0,1] 0 
Critical Success Index (CSI) NA CSI=H/(H+M+F) [0,1] 1 

Note: 𝑌𝑜𝑖 is the observation data; 𝐶𝑖 is the adjusted value using the WHU-SGCC method for the test sample pixel; �̅�𝑜 is 359 

the arithmetic mean of 𝑌𝑜 and is given by 

1

1 n

o oi

i

Y Y
n 

  ; C  is the arithmetic mean of C and is given by

1

1 n

i

i

C C
n 

  ; H 360 

represents the number of both observed and estimated precipitation events (successfully forecasted); F is the number of false 361 

alarms when the observed precipitation was below the threshold and estimated precipitation was above threshold (false alarms; 362 

and. M is the number of events in which the estimated precipitation was below the threshold and observed precipitation was 363 

above the threshold (missed forecasts). The POD and FAR values are dimensionless numbers ranging from 0 to 1. The 364 

precipitation threshold (event/no event) was set to 0.1 mm/day. 365 

4 Results and Discussion 366 

A total of 18,482 daily pixels were adjusted by blending the satellite estimations (CHIRP) and observations (rain gauge stations) 367 

using the WHU-SGCC approach over the Jinsha River Basin from 1990 to 2014. The percentage of pixels adjusted by each 368 

rule in the WHU-SGCC method is shown in Table 3. The number of C1 pixels was the number of training gauge stations, 369 

which accounted for 0.16% of the total pixels (18,482) within the basin. Due to the leave-one-out cross validation step, the 370 

different training samples will have different numbers of C2, C3 and C4 pixels within the Jinsha River Basin. The percentage 371 

of C2 and C3 pixels are highest in fall, followed by summer, spring and winter. In the spring, the average percentage of C2 372 

pixels was approximately 21.27%, the average percentage of C3 pixels was approximately 17.12%, and the percentage of C4 373 

pixels was approximately 61.46%. In the summer, the percentage of C2 pixels was approximately 17.86%, the percentage of 374 

C3 pixels was approximately 23.43%, and the percentage of C4 pixels was approximately 58.55%. In the full, the average 375 

percentage of C2 pixels was approximately 31.40%, the average percentage of C3 pixels was approximately 21.77%, and the 376 

average percentage of C4 pixels was approximately 46.68%. In the winter, the average percentage of C2 pixels was 377 

approximately 15.60%, the average percentage of C3 pixels was approximately 19.23%, and the average percentage of C4 378 

pixels was approximately 65.01%. Besides, the pixel type of the validation gauge station is shown in Table D1 and the spatial 379 

distribution of C1-C3 pixels in Figure D1 with the most uniform in the fall and, while the sparsest in the winter. Each validation 380 

gauge station could be identified as either C2, C3 or C4 pixels to evaluate the performances of all the rules in the WHU-SGCC 381 

method. 382 

Table 3 The percentage of each class pixels adjusted by each rule using the WHU-SGCC method within the Jinsha River Basin. 383 

Validation 
gauge 
station 

C2 Pixels (%) C3 Pixels (%) C4 Pixels (%) 

Spring Summer Fall Winter Spring Summer Fall Winter Spring Summer Fall Winter 

52908 20.80% 16.59% 29.15% 15.52% 17.76% 22.85% 20.82% 18.16% 61.29% 60.40% 49.87% 66.16% 

56004 20.89% 15.59% 29.40% 15.65% 16.29% 22.24% 20.64% 18.83% 62.66% 62.01% 49.81% 65.36% 

56021 21.38% 17.91% 32.46% 15.65% 17.55% 24.40% 21.85% 19.91% 60.91% 57.53% 45.53% 64.28% 

56029 21.77% 18.06% 32.60% 16.03% 17.31% 24.06% 21.61% 19.64% 60.76% 57.72% 45.63% 64.18% 

56034 21.09% 17.86% 31.22% 14.86% 17.78% 23.95% 23.07% 20.19% 60.97% 58.03% 45.55% 64.79% 

56038 20.48% 17.36% 30.72% 15.56% 16.12% 21.72% 23.74% 17.63% 63.23% 60.76% 45.39% 66.65% 

56144 21.42% 18.11% 31.97% 16.00% 16.46% 24.03% 21.78% 19.38% 61.96% 57.70% 46.09% 64.46% 

56146 21.33% 17.22% 31.77% 15.70% 17.12% 24.24% 21.42% 18.34% 61.39% 58.38% 46.65% 65.81% 

56152 21.32% 17.17% 31.27% 15.57% 17.56% 22.59% 22.32% 18.94% 60.96% 60.08% 46.26% 65.34% 

56167 21.46% 18.19% 32.36% 15.84% 16.90% 23.51% 21.72% 19.03% 61.48% 58.14% 45.76% 64.98% 

56247 21.66% 18.32% 31.44% 16.10% 17.16% 23.89% 22.19% 19.55% 61.03% 57.63% 46.21% 64.20% 

56251 21.09% 17.86% 31.28% 15.73% 17.39% 23.53% 22.88% 18.50% 61.36% 58.46% 45.68% 65.62% 

56257 21.17% 17.93% 30.99% 15.95% 16.15% 21.88% 23.55% 19.13% 62.53% 60.04% 45.30% 64.77% 
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56357 21.62% 18.14% 31.59% 15.64% 17.12% 23.75% 22.54% 19.52% 61.10% 57.95% 45.71% 64.68% 

56374 21.52% 18.08% 31.92% 14.32% 17.38% 23.23% 21.90% 19.20% 60.95% 58.53% 46.02% 66.32% 

56459 21.30% 18.10% 32.14% 15.64% 16.92% 23.45% 21.16% 19.17% 61.62% 58.29% 46.54% 65.03% 

56462 21.67% 18.29% 32.68% 15.92% 17.28% 23.68% 21.55% 19.14% 60.90% 57.87% 45.61% 64.78% 

56475 21.49% 18.10% 32.49% 15.98% 16.36% 23.50% 22.08% 19.53% 62.00% 58.24% 45.28% 64.33% 

56479 20.42% 17.88% 31.34% 15.69% 16.35% 22.79% 19.36% 18.74% 63.07% 59.17% 49.14% 65.41% 

56485 21.44% 18.36% 32.78% 15.64% 17.43% 23.91% 21.82% 19.85% 60.97% 57.57% 45.24% 64.35% 

56543 21.52% 18.25% 32.51% 15.87% 16.97% 23.72% 21.78% 18.90% 61.35% 57.87% 45.56% 65.06% 

56565 21.21% 17.54% 30.93% 15.52% 17.81% 24.08% 23.55% 19.96% 60.83% 58.23% 45.36% 64.37% 

56571 21.62% 17.89% 31.31% 14.94% 17.03% 23.07% 20.83% 18.94% 61.19% 58.89% 47.70% 65.97% 

56586 21.73% 18.33% 21.73% 15.49% 17.35% 23.99% 17.35% 19.59% 60.76% 57.53% 60.76% 64.77% 

56651 20.90% 18.07% 32.46% 15.38% 17.78% 23.98% 22.13% 19.95% 61.16% 57.79% 45.25% 64.51% 

56664 20.94% 18.22% 32.43% 15.50% 16.64% 23.06% 21.00% 18.70% 62.26% 58.56% 46.42% 65.64% 

56666 21.06% 17.98% 31.59% 15.39% 18.03% 23.97% 22.41% 19.64% 60.76% 57.89% 45.84% 64.82% 

56671 20.71% 18.16% 32.55% 15.67% 16.53% 23.63% 21.89% 20.03% 62.61% 58.06% 45.41% 64.14% 

56684 21.36% 18.04% 32.65% 15.46% 17.72% 23.15% 21.95% 19.28% 60.76% 58.65% 45.24% 65.10% 

56778 21.63% 18.11% 32.25% 15.91% 17.31% 23.14% 22.11% 19.52% 60.90% 58.59% 45.48% 64.41% 

384 
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4.1 Model performance based on overall accuracy evaluations  

The multi-annual (1990-2014) average seasonal precipitation over the Jinsha River Basin interpolated from WHU-SGCC, 

CHIRP and CHIRPS is shown in Fig. 4. There exist some differences in the spatial pattern of precipitation estimates. Overall, 

the WHU-SGCC method exhibits the similar spatial distribution of precipitation to the CHIRP and CHIRPS, while the WHU- 

SGCC method attenuated the intense rain in the central area. The statistical accuracy evaluations are needed to further analyze 

the performance of the WHU-SGCC method. 
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Figure 4 The multi-annual (1990-2014) average seasonal precipitation over the Jinsha River Basin interpolated from WHU-SGCC, CHIRP 

and CHIRPS. 

To test the performance of the WHU-SGCC method for precipitation estimates, the PCC, RMSE, BAE, BIAS, NSE, POD, 

FAR, and CSI were calculated and are presented in Table 4 (the results were derived from the 22 clusters for the FCM in Rule 

2, as shown in Appendix E, and  =0.1 for the IDW in Rule 4 after the comparison of the RMSE). After the correction, the 

PCC in the WHU-SGCC method shows an improvement relative to the CHIRP and CHIRPS estimates. The spring and fall 
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have better correlations than the summer and winter. In addition, the NSE of the WHU-SGCC provides substantial 

improvements over CHIRP and CHIRPS, especially in the spring and fall which were better than the summer and winter. The 

RMSE and MAE are the largest in the summer, followed by the fall, spring, and winter; however, the performances of the 

BIAS in the summer and fall are better than those in the spring and winter, which might be influenced by the greater 

precipitation in the summer and fall than in the spring and winter. The assessments of the POD and CSI are lowest, and the 

FAR is largest in the winter due to the overestimation of no rain events estimated by the satellite-based data set.  

Compared with the estimates of CHIRP and CHIRPS, the PCCs of the WHU-SGCC method are improved to more than 0.5 

in the spring and fall and to approximately to 0.5 in the winter, with overall average improvements of the Pearson’s correlation 

coefficient (PCC) by 0.0082-0.2232 and 0.0612-0.3243, respectively. In addition, the RMSE and MAE of the WHU-SGCC 

were all lower than those of CHIRP and CHIRPS, with overall average decreases in the root mean square error (RMSE) by 

0.0922-0.65 mm and 0.2249-2.9525 mm, respectively. The absolute values of the BIAS of the WHU-SGCC are substantial 

improved in the spring, followed by the summer, winter and fall. Although the absolute value of the BIAS of the WHU-SGCC 

in fall are not significantly better than those of CHIRP and CHIRPS, all of the values are approximately 0. The NSEs of the 

WHU-SGCC reached 0.2836, 0.2944 and 0.1853 in the spring, fall and winter, respectively, which are substantially better than 

the negative or zero values of CHIRP and CHIRPS. In the summer, the NSE of the WHU-SGCC is still negative, but it is 

improved to be nearly zero, which indicates that the adjusted results are similar to the average level of the rain gauge 

observations. It is worth noting that in the spring, summer and fall, the POD values of the WHU-SGCC are in the range of 

0.95 to 1, better than CHIRP and CHIRPS, and the FAR values of the WHU-SGCC are no more than 0.3, lower than CHIRP 

and CHIRPS; these results represent the better ability of the WHU-SGCC method to predict precipitation events. The rainfall 

detection ability is the worst in the winter compared to the other seasons. This can be explained by the seasonal distribution of 

precipitation in the Jinsha River Basin, in which the most rainfall occurs in the summer, followed by the fall, spring and winter. 

In addition, the spatial distribution of C2 and C3 pixels might slightly impact the overall accuracy in different seasons that the 

sparsest in the winter, while more uniform in the summer. However, the performances of PCC, RMSE, MAE and NSE in the 

winter are better than those in the summer. The worst errors of forecasting performance in the summer may be attributed to 

the highest precipitation. The limited precipitation events detection in the winter could also be explained by the lowest 

precipitation (Xu et al., 2019). 

Table 4 Overall accuracy assessments for the four seasons from 1990 to 2014. 

Statistic 

Spring Summer Fall Winter 

WHU-

SGCC 
CHIRP CHIRPS 

WHU-

SGCC 
CHIRP CHIRPS 

WHU-

SGCC 
CHIRP CHIRPS 

WHU-

SGCC 
CHIRP CHIRPS 

PCC 0.5376 0.3644 0.2132 0.2536 0.2454 0.1924 0.5508 0.3889 0.2661 0.4722 0.2490 0.1716 

RMSE 2.9526 3.4332 5.1926 8.7608 9.4108 11.3354 4.7981 4.9038 7.7506 0.8120 0.9042 1.0569 

MAE 1.3380 1.5426 1.9948 5.4564 5.8415 7.0088 2.0973 2.2943 2.9925 0.2093 0.7398 0.6905 
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BIAS -0.1148 -0.2490 -0.1783 -0.0167 -0.0443 -0.0134 -0.0566 -0.0563 -0.0231 -0.1775 -0.2083 -0.3093 

NSE 0.2836 0.0745 -1.0817 -0.0139 -0.2083 -0.8293 0.2944 0.0168 -1.4692 0.1853 0.0161 -0.3098 

POD 0.9605 0.8572 0.2918 0.9932 0.9578 0.4351 0.9612 0.9047 0.2326 0.6988 0.5786 0.2076 

FAR 0.2416 0.4515 0.3888 0.1146 0.2323 0.1601 0.2386 0.4301 0.2638 0.5242 0.7082 0.6381 

CSI 0.6928 0.5001 0.2335 0.8799 0.7405 0.401 0.7089 0.5303 0.2144 0.3668 0.2210 0.1352 

The spatial distributions of the statistical comparisons between the observations and the WHU-SGCC precipitation 

estimations are shown in Fig. 5 and Fig. 6. Overall, the variation in the PCC shows low correlations in areas with lower 

elevation, particularly in the southeast Jinsha River Basin, where there is higher precipitation and a greater density of rain 

gauges. The PCC is highest in the fall, followed by the spring and winter, and finally by summer. The higher correlations are 

located in the north-central area along the Tongtian River, Jinsha River and upstream part of the Yalong River, which has 

complex terrain and few rain gauges. The RMSE is lowest in the winter than in the spring, fall and summer, which can be 

attributed to the lower precipitation in the winter and the greatest in the summer. The spatial distribution of the RMSE shows 

that, the smaller errors are scattered in the northwest area of the river basin, with values lower than 5 mm, while the highest 

errors are located along the border between the lower reaches of the Jinsha Jiang River and the river basin. This is related to 

the climate regimes of the Jinsha River Basin, which includes more rainfall in the south and southeast areas than in the north, 

and northwest. 

The results show that the WHU-SGCC method improves the correlation relative to CHIRP and CHIRPS, especially in 

central and southeast river basin during the spring, fall and winter, with most of the PCC values falling between 0.4 and 0.8 

(Fig. 5). As shown by the RMSE (Fig. 6), the WHU-SGCC can also correct the precipitation bias in the central and southeast 

river basin, especially along the downstream part of the Yalong River. In addition, the WHU-SGCC slightly improved the 

RMSE around the convergence of the rivers, where it is less than 5 mm in the spring and fall, and most of RMSE values are 

less than 1 mm in the winter. In spite of the correction, the RMSE values in the summer are still substantial.  
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Figure 5 Spatial distribution of the Pearson’s correlation coefficient of the overall agreement between observations and the WHU-SGCC, 

CHIRP and CHIRPS estimations in the four seasons from 1990 to 2014. 

All of the spatial distribution statistics indicate that the statistical relationships established during the process of the WHU-

SGCC method are susceptible to the mode values of the rain gauge stations data, especially in the summer. Although the 

average summer precipitation in the southern Jinsha River Basin was more than 600 mm (Fig. 2), days of light rain still 

represent a large percentage, which causes large biases and limits the performance over the south, while there are sufficient 
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data with similar precipitation features for the WHU-SGCC in the north. Nevertheless, the WHU-SGCC approach is still 

effective at adjusting the satellite biases by blending the data with the observations, particularly in the complicated 

mountainous regions, where higher PCCs correspond to lower RMSEs.  

 

Figure 6 Spatial distribution of the root mean square errors of the overall agreement between observations and the WHU-SGCC, CHIRP 

and CHIRPS estimations in the four seasons from 1990 to 2014. 
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4.2 Model performance based on daily accuracy evaluations 

After the overall accuracy evaluations were conducted, further evaluations of the daily accuracy in the four seasons were 

conducted, and the results are shown in Fig. 7. The evaluation of the daily accuracy indicates that the PCCs of the WHU-

SGCC were slightly better than those of CHIRP and CHIRPS in the spring, fall and winter but were not as good in the summer 

and winter. The WHU-SGCC had lower RMSEs and MAEs than CHIRP and CHIRPS, especially compared to CHIRPS. The 

daily RMSE and MAE in the summer are the highest, although the WHU-SGCC still corrects the bias. Figure 7 indicates that 

there is a slight increase in the PCC, with average improvements of 0.0249-0.0405 and 0.0456-0.1355, respectively; however, 

the PCC is a relative metric of the magnitude of the association between paired variables, and a relative consistency may not 

indicate absolute proximity. Thus, the absolute measure indicated by the RMSE may be more reasonable. In this study, the 

RMSE and MAE derived from the WHU-SGCC are reduced by approximately 14.47% and 33.87% on average compared to 

CHIRP and CHIRPS, respectively. As for BIAS, WHU-SGCC method can correct the CHIRP precipitation bias in the spring, 

fall and winter, but the results are not as good compared with CHIRPS. The larger BIAS values and higher PCCs in the spring 

and fall may be attributed to the seasonal variations, when the CHIRP is highly consistent with the observations but subject to 

large biases. After the correction, a substantial decrease in BIAS occurs in the winter, and there is no significant reduction in 

the summer; all of the median and average adjusted values are approximately 0. The WHU-SGCC method provides an obvious 

improvement in the NSE, with average improvements of 0.1742-13.8322 and 2.0131-14.7052 relative to CHIRP and CHIRPS, 

though the median and average values are still less than 0, which may be due to the inherent uncertainty in the CHIRP. 

Moreover, in terms of the POD, FAR and CSI, except for the results in winter, the WHU-SGCC method appears to be better 

at detecting precipitation than CHIRP and CHIRPS; the results of POD and CSI are closest to 1, although FAR is worse than 

CHIRPS on some days. However, the overall result of FAR is the best in the WHU-SGCC. The POD and FAR results are the 

worst in the winter, and the CSI is slightly higher, which may be attributed to the overestimation of no-rain events and the 

inherent uncertainty in the CHIRP. 

Overall, the WHU-SGCC approach can be regarded as an effective tool for daily precipitation adjustments.  
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Figure 7 Statistical analysis of the agreement between the daily observations and the WHU-SGCC, CHIRP and CHIRPS estimates with the 

leave-one-out cross validation: a) Pearson’s correlation coefficient, b) root mean square error, c) mean absolute error, d) relative bias, e) 

Nash-Sutcliffe efficiency coefficient, f) probability of detection, g) false alarm ratio, and h) critical success index. 

4.3 Model performance on rain events predictions 

To measure the WHU-SGCC performance on predicting rain events, daily precipitation thresholds of 0.1, 10, 25, and 50 mm 

were considered, and the results are shown in Table 5 and Table 6. The average percentage of each class of rain events at the 

validation gauge station during the four seasons from 1990 to 2014 are shown in Table 5. The major rain events within the 

Jinsha River Basin were no rain (<0.1 mm) and light rain (0.1-10 mm), which accounted for more than 80% of the total days 

(the average percentage of rain event days of the total days at each gauge station), while the number of days with daily 

precipitation greater than the 50 mm was the smallest (no more than 1% of the total days) and fewer than 5% of the days had 
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daily precipitation in the range of 25 mm to 50 mm. In the spring, fall and summer, significantly more no-rain days occurred 

than rainy days, and approximately 5% of the days had daily precipitation of 10-50 mm. The seasonal distribution of rainfall 

was concentrated in the summer, and 54.76%, 14.01% and 3.62% of the days had daily precipitation of 0.1-10, 10-25, and 25-

50 mm, respectively. The results indicated that the average daily precipitation was less than 10 mm throughout the years of 

the study. 

Table 5 The average percentage of each class of rain events at the validation gauge station during the four seasons from 1990 to 2014 within 

the Jinsha River Basin. 

Rain event 

(mm) 

Season 

<0.1 [0.1,10) [10,25) [25,50) >=50 

Spring 57.87% 38.43% 3.29% 0.39% 0.02% 

Summer 26.89% 54.76% 14.01% 3.62% 0.72% 

Fall 57.32% 36.62% 4.99% 0.93% 0.14% 

Winter 85.78% 13.99% 0.21% 0.01% 0.00% 

The WHU-SGCC approach had lower errors than CHIRP and CHIRPS, as indicated by the RMSE, MAE and BIAS, but the 

performance of WHU-SGCC is not promising for events with total rainfall greater than 25 mm in the summer (Fig. 8). This 

negative performance for total rainfall higher than 25 mm in the summer might be attributed to the overestimation of rainfall 

by CHIRP and CHIRPS. For the seasonal distribution of precipitation (Table 5), the average daily precipitation within the 

basin less than 10 mm over the study period, which results in numerous rain gauge station data with values lower than 10 mm, 

which had a significant impact on the establishment of statistical relationships for the WHU-SGCC. Besides the WHU-SGCC 

dataset has almost always a negative bias, while CHIRP and CHIRPS has a positive bias in the different rain events. After bias 

correction of the WHU-SGCC, some precipitation estimates are lower than observations. The estimates of extreme rain events 

might also be attenuated during the process of WHU-SGCC adjustment. 

Besides, the POD and CSI results of CHIRPS are the worst, while the results of the WHU-SGCC are the highest, which 

indicate its superiority for the detection of precipitation events. As for the results of the WHU-SGCC, the assessments of POD 

and CSI are the best in the summer, followed by the fall, spring, and winter, which are related to the seasonal rainfall pattern 

of more rain in the summer and less in the winter. 

Therefore, the WHU-SGCC approach is applicable for the detection of rainfall events in the Jinsha River Basin, while in 

the summer it is better with rainfall less than or approximately equal to the average daily precipitation. Due to the 

homogenization of the WHU-SGCC method, its performance for short intense and extreme rain events was poorer than those 

of CHIRP and CHIRPS, which should be improved in a future study. 
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Figure 8 Accuracy assessment of liquid precipitation events from 1990 to 2014. 

5 Data availability 

All the resulting dataset derived from the WHU-SGCC approach is available on PANGAEA, with the following DOI: 

https://doi.pangaea.de/10.1594/PANGAEA.905376 (Shen et al., 2019). The high-resolution (0.05°) daily precipitation 

https://doi.pangaea.de/10.1594/PANGAEA.905376
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estimation data over the Jinsha River Basin from 1990 to 2014 can be downloaded in TIFF format.  

6 Conclusions 

This study provides a novel approach, the WHU-SGCC method, for merging daily satellite-based precipitation estimates with 

observations. A case study of the Jinsha River Basin was conducted to verify the effectiveness of the WHU-SGCC approach 

during all four seasons from 1990 to 2014, and the adjusted precipitation estimates were compared to CHIRP and CHIRPS. 

The WHU-SGCC method aims to reduce the bias and uncertainties in CHIRP data over regions with complicated mountainous 

terrain and sparse rain gauges. To the best of the authors’ knowledge, this study is the first to use daily CHIRP and CHIRPS 

data in this area. 

According to our findings, the following conclusions can be drawn: (1) The WHU-SGCC method is effective for the 

adjustment of precipitation biases from points to surfaces. The precipitation adjusted by the WHU-SGCC method can achieve 

greater accuracy compared with CHIRP and CHIRPS, with average improvements of Pearson’s correlation coefficient (PCC) 

of 0.0082-0.2232 and 0.0612-0.3243, respectively. The PCCs were improved to more than 0.5 in the spring and fall and to 

approximately 0.5 in the winter, and they were the worst in the summer, which may be attributed to the greater precipitation 

in the summer and lower precipitation in the winter. In addition, the NSE of the WHU-SGCC provides substantial 

improvements over CHIRP and CHIRPS, which reached 0.2836, 0.2944 and 0.1853 in the spring, fall and winter, respectively. 

In the summer, the NSE of the WHU-SGCC is still negative, but it is improved to be nearly zero, which indicates that the 

adjusted results are similar to the average level of the rain gauge observations. All of the measured errors were reduced except 

for the BIAS, which showed no significant improvement in the summer but was approximately 0. Overall, the WHU-SGCC 

approach achieves good performance in error correction of CHIRP and CHIRPS. (2) The spatial distribution of the precipitation 

estimate accuracy derived from the WHU-SGCC method is related to the topographic complexity. These errors over the lower 

elevation regions and the large size of light precipitation events with short durations resulted in a limited improvement in 

accuracy, with PCC values less than 0.3. However, higher PCCs and lower errors were observed over the north-central part of 

the river basin, which is a drier region with complex terrain and sparse rain gauges. The spatial distribution statistics indicate 

that the WHU-SGCC method is promising for the adjustment of satellite biases by blending with the observations over regions 

of complex terrain. (3) The leave-one-out cross validation of WHU-SGCC on daily rain events confirmed that the model is 

effective in the detection of precipitation events that are less than or approximately equal to the average annual precipitation 

in the Jinsha River Basin.The WHU-SGCC approach achieves reductions of the RMSE, MAE and BIAS metrics, while on 

rain events less than 25 mm in the summer. Specifically, the WHU-SGCC has the best ability to reduce precipitation bias for 

daily accuracy evaluations, with average reductions of 21.68% and 31.44% for compared to CHIRP and CHIRPS, respectively. 

As for the results of the WHU-SGCC, the assessments of POD and CSI are the best in the summer, followed by the fall, spring, 
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and winter, which are related to the seasonal rainfall pattern of more rain in the summer and less in the winter. In spite of the 

corrections, the performance of the WHU-SGCC for short intense and extreme rain events was poorer than those of CHIRP 

and CHIRPS, and the bias in the precipitation forecasts in the summer are still large, which may due to the homogenization 

attenuating the extreme rain events estimates. 

In conclusion, the WHU-SGCC approach can help adjust the biases of daily satellite-based precipitation estimates over the 

Jinsha River Basin, which contains complicated mountainous terrain with sparse rain gauges. This approach is a promising 

tool to monitor daily precipitation over the Jinsha River Basin, considering the spatial correlation and historical precipitation 

characteristics between raster pixels in regions with similar topographic features. Future development of the WHU-SGCC 

approach will focus on the following three aspects: (1) the improvement of the adjusted precipitation quality to better monitor 

extreme rainfall events by blending multiple data sources for different rain events; (2) the introduction of more climatic factors 

and multi-model ensembles to achieve more accurate spatial distributions of precipitation; and (3) investigations of the 

performance over other areas and for particular hydrological cases to validate the applicability of WHU-SGCC approach.  

Appendix A: Geographical characteristics of rain stations 

The station identification numbers and relevant geographical characteristics are shown in Table A1. 

Table A1 Geographical characteristics of the rain stations. 

Station number Province Lat (°N) Lon (°E) Elevation (m) 

52908 Qinghai 35.13 93.05 4823 

56004 Qinghai 34.13 92.26 4744 

56021 Qinghai 34.07 95.48 5049 

56029 Qinghai 33.00 96.58 4510 

56034 Qinghai 33.48 97.08 4503 

56144 Tibet 31.48 98.35 4743 

56038 Sichuan 32.59 98.06 4285 

56146 Sichuan 31.37 100.00 4703 

56152 Sichuan 32.17 100.20 4401 

56167 Sichuan 30.59 101.07 3374 

56247 Sichuan 30.00 99.06 2948 

56251 Sichuan 30.56 100.19 4284 

56257 Sichuan 30.00 100.16 3971 

56357 Sichuan 29.03 100.18 4280 

56374 Sichuan 30.03 101.58 3902 

56459 Sichuan 27.56 101.16 3002 

56462 Sichuan 29.00 101.30 4019 

56475 Sichuan 28.39 102.31 1850 

56479 Sichuan 28.00 102.51 2470 

56485 Sichuan 28.16 103.35 2060 

56565 Sichuan 27.26 101.31 2578 
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56571 Sichuan 27.54 102.16 1503 

56666 Sichuan 26.35 101.43 1567 

56671 Sichuan 26.39 102.15 1125 

56543 Yunnan 27.50 99.42 3216 

56586 Yunnan 27.21 103.43 2349 

56651 Yunnan 26.51 100.13 2449 

56664 Yunnan 26.38 101.16 1540 

56684 Yunnan 26.24 103.15 2184 

56778 Yunnan 25.00 102.39 1975 

Appendix B: Multi-annual land cover type 

The multi-annual land cover types in the Jinsha River Basin from 2001 to 2013 are shown in Fig. B1. All of the land cover 

type maps were derived from the MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid V051 data set, 

which is available online at https://search.earthdata.nasa.gov/search/granules?p=C200106111-

LPDAAC_ECS&q=MCD12&ok=MCD12 (last access: 23 July 2019). Fig. B1 shows that the land use had no obvious changes 

over the study period. In addition, the upstream area of the Jinsha River is an untraversed region that has not been affected 

significantly by human activities. Thus, the land use in the study area has hardly changed.  
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Figure B1 Land cover types over the Jinsha River Basin from 2001 to 2013.  



30 
 

Appendix C: Selection of decision trees for random forest regression 
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Figure C1 Changes in the out-of-bag (OOB) error with increasing number of decision trees by means of random forest regression at each 

gauge station. 

Appendix D: Spatial distribution of C1, C2 and C3 pixels 

Table D1 Pixel type of the validation gauge station. 

Pixel type 

Validation  

gauge station 

Spring Summer Fall Winter 

52908 C4 C4 C4 C4 

56004 C4 C4 C4 C4 

56021 C2 C2 C2 C3 

56029 C2 C3 C2 C3 

56034 C2 C3 C2 C3 

56038 C4 C4 C4 C4 

56144 C4 C4 C4 C4 

56146 C4 C4 C4 C4 

56152 C2 C3 C3 C4 

56167 C4 C2 C2 C4 

56247 C4 C4 C4 C4 

56251 C2 C2 C3 C3 

56257 C4 C4 C4 C4 

56357 C4 C4 C4 C4 
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56374 C4 C4 C3 C4 

56459 C4 C4 C4 C4 

56462 C4 C4 C4 C4 

56475 C4 C3 C3 C3 

56479 C4 C4 C4 C4 

56485 C3 C2 C2 C3 

56543 C3 C3 C4 C4 

56565 C2 C2 C3 C3 

56571 C2 C4 C4 C4 

56586 C2 C3 C2 C3 

56651 C3 C2 C2 C3 

56664 C4 C4 C4 C4 

56666 C3 C3 C3 C3 

56671 C3 C2 C2 C3 

56684 C2 C2 C2 C4 

56778 C4 C3 C3 C4 
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Figure D1 Spatial distribution of each class of pixels adjusted by each rule using the WHU-SGCC method in the Jinsha River Basin. 

Appendix E: Spatial Clustering from the FCM method 
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Figure E1 Optimum number of clusters determined by the maximum L(c) with the iterative process. 

 

Figure E2 Spatial clustering as defined by the FCM method in the Jinsha River Basin. 

This appendix shows how to set the number of clusters in the FCM method.  

To adjust the pixels other than those of the gauge stations, the pixels that are statistically similar to the C1 pixels were 

selected. According to Rule 2, the C2 pixels were identified in a spatial area defined by the FCM method. In the following 

experiments of Rule 2, we set the parameters 2, =0.00001m  , and the maximum number of iterations was set 1000 (  a 

sufficiently large value considering the algorithm efficiency). To determine the optimal numbers of clusters, the value of c was  

varied from 1 to 30 with an increment of 1.The values of L(c) during the running of the FCM are shown in Fig E1. The optimum 

number of clusters was 22, and the number of iterations was 690 less than the maximum number of iterations. 
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Therefore, the number of clusters was set to 22, and the number of iterations was set to 1000 for full operation by means of 

the FCM. The spatial clustering results considering the terrain factors are shown in Fig. E2. In general, the spatial results of 

the FCM have many of the same characteristics as the areas defined by the terrain variations, especially with respect to the 

slope and runoff directions, which may influence the regional rainfall. 
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