
Reply to Report #1 (Anonymous Referee #7) 

 

Dear Reviewer, 

Thank you for your insight comments and suggestions. We have modified the 

manuscript accordingly. We trust that all of your comments have been addressed 

accordingly in the revised manuscript. If you have further suggestions for changes, 

please let us know. The detailed corrections are listed below point by point:  

 

All changes in the manuscript are marked with red color.  

 

Major comments  

The authors have substantially improved this version of the manuscript. They have 

taken all my suggestions into account and therefore, I recommend the publication of 

this manuscript after addressing the following points. 

Answer: Thank you for your valuable comments. In addition, we updated the DOI of 

the resulting dataset. 

The newly uploaded files are the results of precipitation bias adjustment by WHU-

SGCC method about four seasons.  

Shen, G. Y., Chen, N. C., Wang, W., and Chen, Z. Q.: Improving the Climate Hazards 

Group Infrared Precipitation (CHIRP) using WHU-SGCC method over the Jinsha River 

Basin from 1990 to 2014. PANGAEA, https://doi.org/10.1594/PANGAEA.905376, 

2019. 

 

In addition, these four files without gauge information are the results of the WHU-

SGCC method with all gauges as the input.1. Figure 5: Here the authors show Pearson's 

correlation coefficients. I believe that the legend is a bit misleading. Generally, the 

green is used to represent well performance but the authors use it in the range between 

0.2 and 0.5. It would be better to use a two-color palette (e.g., from red to blue). 

Answer: Thanks. We changed the color of legend. 

Change: 

https://doi.org/10.1594/PANGAEA.905376


 

 

Figure 5 Spatial distribution of the Pearson’s correlation coefficient of the overall agreement between observations 

and the WHU-SGCC, CHIRP and CHIRPS estimations in the four seasons from 1990 to 2014. 

 

2. There is still not clear the influence in the number of gauge stations in the approach. 

I assume that the performance of this method will decrease with a reduction in the 

number of C1 pixels. The authors need to include an evaluation of the performance of 
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the method with a varying number of rain gauge stations. 

Answer: Thank you for your valuable comments. In this study, the WHU-SGCC 

approach is to estimates the precipitation at every pixel by blending satellite estimates 

and rain gauge observations considering the terrain factors and precipitation 

characteristics. The leave-one-out cross validation step was applied to compute the out-

of-sample adjusted error with the gauge stations. The WHU-SGCC algorithm was 

repeated 30 times, each time leaving one station as the validation station. The main 

objective of this study is to present a novel approach for reblending gauge observations 

and CHIRP satellite-based estimates.  

The statistical comparisons between the different spatial distribution of observations 

and the WHU-SGCC, CHIRP and CHIRPS precipitation were conducted as shown in 

Fig. 5 and Fig. 6. The results show that, the variation in the PCC shows low correlations 

in areas with lower elevation, particularly in the southeast Jinsha River Basin, where 

there is higher precipitation and a greater density of rain gauges. The PCC is highest in 

the fall, followed by the spring and winter, and finally by summer. The higher 

correlations are located in the north-central area along the Tongtian River, Jinsha River 

and upstream part of the Yalong River, which has complex terrain and few rain gauges. 

The RMSE is lowest in the winter than in the spring, fall and summer, which can be 

attributed to the lower precipitation in the winter and the greatest in the summer. The 

spatial distribution of the RMSE shows that, the smaller errors are scattered in the 

northwest area of the river basin, with values lower than 5 mm, while the highest errors 

are located along the border between the lower reaches of the Jinsha Jiang River and 

the river basin. This is related to the climate regimes of the Jinsha River Basin, which 

includes more rainfall in the south and southeast areas than in the north, and northwest. 

Therefore, the total rainfall and spatial distribution of rain gauges (C1 pixels) and will 

influence the estimates accuracy. But we are not sure that the performance of this 

method will decrease with a reduction in the number of C1 pixels. In the future, we will 

further investigate the performance of the different number of C1 pixels on the WHU-

SGCC adjustment. 

 

3. One of my main concerns is that the main objective of this approach is to improve 

the characterization of precipitation over mountainous regions. However, ~50-60% of 

the pixels are classified as C4 and interpolated using IDW which does not account for 

the influence of elevation in the interpolation of precipitation. The authors may apply 

another interpolation method that accounts for the precipitation gradient related to 

elevation. 

Answer: Thanks. It is reasonable to assume that some pixels are statistically similar to 

the historical precipitation characteristics of the C1 pixels within a certain area. Several 

studies indicate that the geographical location, elevation and other terrain information 



influence the spatial distribution of rainfall, especially in mountainous areas with 

complex topography (Anders et al., 2006; Long and Singh, 2013). The size of the spatial 

range is an important parameter to distinguish the spatial similarity and heterogeneity. 

In the WHU-SGCC method, the fuzzy c-means (FCM) clustering approach was used to 

determine the spatial range considered for each pixel’s terrain factors, including 

longitude, latitude, elevation, slope, aspect and curvature. Therefore, the elevation was 

considered into the process of the WHU-SGCC. In Rule 4, the IDW method was used 

to interpolate the unknown pixels based on C2 and C3 pixels. IDW is based on the 

concept of the first law of geography from 1970, which was defined as everything is 

related to everything else, but near things are more related than distant things. 

Therefore, the attribute value of an unsampled point is the weighted average of the 

known values within the neighbourhood, and the distance weighting can be determined 

by means of IDW (Lu and Wong, 2008). Consider the quality of the results and the 

algorithm efficiency, the IDW method is applicable into the WHU-SGCC. 

In the future, we will further investigate another interpolation method that accounts for 

the precipitation gradient related to elevation when time is sufficient, such as 

geographically weighted regression. 

 

Minor comments  

1. Line 10: What do the authors mean with "existing fusion precipitation estimates"? 

Answer: Thanks. "Existing fusion precipitation estimates" means the existing 

precipitation products of multi-source data fusion. 

 

2. Line 27: might be due to the ... 

Answer: Thanks. Done. 

Change: changed from “which may due to the” to “which might be due to the”. 

 

3. Line 28: events. 

Answer: Thanks. Done. 

Change: changed from “rain event” to “rain events”. 

 

4. Please add a space between the references. 

Answer: Thanks. Done. 

Change: We added the space between the references. 

 

5. Line 55: Please replace "spacing" with "spatial resolution". 

Answer: Thanks. Done. 

Change: changed from “spacing” to “spatial resolution”. 

 



6. Line 89: evaluated and indicated. 

Answer: Thanks. Done. 

Change: changed from “Moreover, Bai et al. (2018) evaluates CHIRPS over mainland 

China and indicates that” to “Moreover, Bai et al. (2018) evaluated CHIRPS over 

mainland China and indicated that” 

 

7. Table 1: Some of the temporal resolutions of the products start with uppercase and 

some of them with lowercase. Also, the period of CMORPH is not complete. 

Answer: Thanks. Done. 

Changed: We changed the temporal resolutions of the products starting with lowercase 

and added the temporal resolutions of CMORPH. 

Table 1 Coverage and spatiotemporal resolutions of major satellite precipitation datasets. 

Product Temporal resolution Spatial resolution Period Coverage 

TRMM 3B42-RT 3 Hourly 0.25° 1998-present 50°S-50°N 

CMORPH 
0.5 Hourly 

/3 Hourly/Daily 
8 km/0.25° 1998- 60°S-60°N 

PERSIANN-CDR Daily 0.25° 1983-(delayed) present 60°S-60°N 

GsMaP-NRT Hourly 0.01° 2007 60°S-60°N 

GsMaP-MVK Hourly 0.01° 2000 60°S-60°N 

GPM 

0.5 Hourly/Hourly/ 

3 Hourly/Daily/3 Day/ 

7 Day/Monthly 

0.1°/0.25°/0.05°/5° 2014-present 

60°S-60°N 

70°N-70°S 

90°N-90°S 

MSWEP 3 Hourly/Daily/Monthly 0.1° 1979-2017 90°N-90°S 

CHIRPS 
Daily/Pentad/Dekad/ 

Monthly/Annual 
0.05°/0.25° 1981- present 50°S-50°N 

 

8. Line 112: probably present fits better than demonstrate. 

Answer: Thanks. Done. 

Changed: changed “demonstrate” to “present”. 

 

9. Line 121: replace the comma with "is". 

Answer: Thanks. We replaced the comma with “is”. 

Change: changed from “The Yangtze River, one of the largest and most important rivers 

in Southeast Asia, originates on the Tibetan Plateau and extends approximately 6300 

km eastward to the East China Sea.” to “The Yangtze River is one of the largest and 

most important rivers in Southeast Asia, originating on the Tibetan Plateau and 

extending approximately 6300 km eastward to the East China Sea.” 

 

10. Lines 135-136: I think that now that the research is not focused in summer, it is 

better to remove this sentence. 



Answer: Thanks. We removed this sentence about the summer precipitation. 

 

11. Line 178: Recommendation, replace "in situ" with ground-based. 

Answer: Thanks. Done. 

Change: changed from “in situ” to “ground-based”. 

 

12. Line 194: remove "is to". 

Answer: Thanks. We removed “is to”. 

Changed: changed from “the WHU-SGCC approach estimates the precipitation at 

every pixel by blending satellite estimates” to “the WHU-SGCC approach estimates the 

precipitation at every pixel by blending satellite estimates”. 

 

13. Recommendation: change "multi-year" for "multi-annual" throughout the 

manuscript 

Answer: Thanks. We changed "multi-year" for "multi-annual" throughout the 

manuscript 

 

 

 

 

 

 

 

 

 

 

 

 

 



Reply to Report #3 (Anonymous Referee #4) 

Dear Reviewer, 

Thank you for your insight comments and suggestions. We have modified the 

manuscript accordingly. We trust that all of your comments have been addressed 

accordingly in the revised manuscript. If you have further suggestions for changes, 

please let us know. The detailed corrections are listed below point by point:  

 

All changes in the manuscript are marked with red color.  

 

 

 

After the last review stage, the authors largely revised the manuscript to improve its 

quality and to show quantitatively what are the qualities of WHU-SGCC vs CHIRP and 

CHIRPS datasets. I think the manuscript has reached a fair quality and it can be subject 

to minor revisions, though a few of the comments reported below, if not seriously 

address, can definitely affect the consistency of the manuscript and contains serious 

mistakes. 

Answer: Thank you for your valuable comments. In addition, we updated the DOI of 

the resulting dataset. 

The newly uploaded files are the results of precipitation bias adjustment by WHU-

SGCC method about four seasons.  

Shen, G. Y., Chen, N. C., Wang, W., and Chen, Z. Q.: Improving the Climate Hazards 

Group Infrared Precipitation (CHIRP) using WHU-SGCC method over the Jinsha River 

Basin from 1990 to 2014. PANGAEA, https://doi.org/10.1594/PANGAEA.905376, 

2019. 

 

Major comments  

1. First of all, concepts of errors and uncertainties are still not correctly used in the 

manuscript and I have the impression the use of the word “error” is sometimes abused 

by the authors which also mention in their reply the words “more errors”, which 

definitely makes no sense.  

Error is the difference between the true value of the measurand and the measured value. 

Accuracy is an expression of the lack of error. Uncertainty characterizes the range of 

values within which the true value is asserted to lie with some level of confidence.  

Looking at the abstract I am amazed to see at line 17 the term “error adjustment”. Error 

is error and cannot be adjusted. Values of climate variables can be adjusted if the 

presence of systematic effects is detected. At line 23-24, the authors state that 

“precipitation errors” can be reduced. May be the authors are talking about the RMSE 

https://doi.org/10.1594/PANGAEA.905376


which is not the error. Going through, the text I can provide other examples. 

I recommend again to define all the quantities discussed in the manuscript in a proper 

way. This is mandatory to my opinion and the authors can also check the GUM 

(https://www.bipm.org/en/publications/guides/gum.html) to stay consistent.  

Answer: Thank you for your valuable comments. We misunderstood the concepts of 

“errors” and “bias”. 

Change: changed from “error adjustment” to “bias adjustment”; 

Changed from “precipitation errors” to “precipitation bias” 

 

2. It is also not clear to me why a few information reported in the reply to the reviewers 

are not provided also in the manuscript. For example, the authors could describe the 

way CMA imposes strict quality control on rain gauge observations. 

In their comments the authors say: 

“The process of quality control is as follows:  

(1) Climate threshold or allowable value check;  

(2) Extreme values at gauge stations check;  

(3) Internal consistency check between fixed value, daily average value and daily 

extreme value;  

(4) Time consistency check;  

(5) Manual verification and correction; 

this quality control approach is provided by the official document from CMA. So, the 

daily rain gauge observations were used as the “Reference dataset”.  

 

I think the information above must be provided when the CMA dataset is introduced in 

the manuscript to increase confidence in this dataset. 

Answer: Thanks. We have added the description of strict quality on rain gauge 

observations in the manuscript. 

Change: Added “The process of quality control conducted by the CMA is as follows: 

(1) Climate threshold or allowable value check; (2) Extreme values at gauge stations 

check; (3) Internal consistency check between fixed value, daily average value and 

daily extreme value; (4) Time consistency check; and (5) Manual verification and 

correction.” in to section 2.2.1. 

 

3. The authors spent an appropriate effort to improve the quality of the analysis used 

and to smooth the tone of the writing which was often too enthusiastic in the previous 

version. Issues which may affect the quality of the dataset are now better highlighted 

though this is done still in a qualitative way. Generally, this may be sufficient to allow 

the reader to properly use the WHU-SGCC dataset; nevertheless, wherever possible, I 



recommend the authors to be more quantitative.  

For example, when the authors say: “In addition, the spatial distribution of C2 and C3 

pixels also significantly impact the overall accuracy in different seasons that the most 

uniform in the fall, while the sparsest in the winter.”, it would be desirable to report a 

quantification of the impact which the authors are referring to. This happens also in 

other parts of the manuscript. 

Answer: Thank you for your valuable comments. 

Change:  

(1) This sentence is not right, so we changed from “In addition, the spatial distribution 

of C2 and C3 pixels also significantly impact the overall accuracy in different seasons 

that the most uniform in the fall, while the sparsest in the winter.” to “In addition, the 

spatial distribution of C2 and C3 pixels might slightly impact the overall accuracy in 

different seasons that the sparest in the winter, while more uniform in the summer. 

However, the performances of PCC, RMSE, MAE and NSE in the winter are better 

than those in the summer. The worst errors of forecasting performance in the summer 

may be attributed to the highest precipitation. The limited precipitation events detection 

in the winter could also be explained by the lowest precipitation (Xu et al., 2019).” 

(2) Changed from “The WHU-SGCC method provides an obvious improvement in the 

NSE relative to CHIRP and CHIRPS, though the median and average values are still 

less than 0, which may be due to the inherent uncertainty in the CHIRP” to “The WHU-

SGCC method provides an obvious improvement in the NSE, with average 

improvements of 0.1742-13.8322 and 2.0131-14.7052 relative to CHIRP and CHIRPS, 

though the median and average values are still less than 0, which may be due to the 

inherent uncertainty in the CHIRP” 

(3) Changed from “The estimates of extreme rain events might also be attenuated during 

the process of WHU-SGCC adjustment.” to “Besides the WHU-SGCC dataset has 

almost always a negative bias, while CHIRP and CHIRPS has a positive bias in the 

different rain events. After bias correction of the WHU-SGCC, some precipitation 

estimates are lower than observations. The estimates of extreme rain events might also 

be attenuated during the process of WHU-SGCC adjustment.”  

 

Other comments:  

1. I am not sure why the authors speak about "attenuating the simulation” of extreme 

rain events at line 29 and other times thereinafter; I’d simply write “attenuating extreme 

rain events”. 

Answer: Thanks. We changed the sentence. 

Change: changed from “which may due to the homogenization attenuating the 

simulation of extreme rain event.” to “which might be due to the homogenization 

attenuating the extreme rain events estimates.” 



 

2. Check if all the acronyms are reported, for example NSE is not introduced in the 

abstract 

Answer: Thanks. We added the full name of NSE in the abstract. 

Change: changed from “the NSE of the WHU-SGCC” to “the Nash-Sutcliffe efficiency 

coefficient (NSE) of the WHU-SGCC”. 

 

3. At line 235-236 the sentence could be clearer, adding the term “separately” at the 

end of the sentence. 

Answer: Thanks. Done. 

Change: changed from “Because there are 30 gauge stations in the study area, 30 

regression relationships at the C1 pixels were derived from Rule 1.” to “In the process 

of Rule 1, the regression relationships at the C1 pixels were established at 30 gauge 

stations separately.” 

 

4. At line 260, there is the assumption of “no long-held outliers”, whose impact is 

anyhow not assessed in the manuscript. A few words more to demonstrate the 

robustness of this assumption would be useful. 

Answer: Thanks. “no long-held outliers” means no abnormal values during the long 

time series. 

Change: changed from “There are no long-held outliers at one pixel in the CHIRP 

dataset” to “There are no abnormal values at one pixel in the CHIRP dataset during the 

long time series” 

 

5. Table 3 shows interesting information which if reported in a plot style would be 

much clearer and useful for the reader, otherwise is quite confusing  

Answer: Thanks. We added the spatial distribution of C1-C3 pixels in Figure D1. 

Change: Added the sentence in the first paragraph in section 4. 

 “Besides, the pixel type of the validation gauge stations is shown in Table D1 and the 

spatial distribution of C1-C3 pixels in Figure D1 with the most uniform in the fall, while 

the sparsest in the winter.” 

 

6. Line 627-632: this is one of the points where the limitations affecting the WHU-

SGCC dataset are discussed. I think that, at least for this case, the paragraph should be 

reported also in the conclusions to give the right balance to the final section of the 

manuscript. 

Answer: Thanks. We added these sentences to the conclusions. 

Change: “As for the results of the WHU-SGCC, the assessments of POD and CSI are 

the best in the summer, followed by the fall, spring, and winter, which are related to the 



seasonal rainfall pattern of more rain in the summer and less in the winter. In spite of 

the corrections, the performance of the WHU-SGCC for short intense and extreme rain 

events was poorer than those of CHIRP and CHIRPS, and the bias in the precipitation 

forecasts in the summer are still large, which may due to the homogenization 

attenuating the extreme rain events estimates.” 

 

7. Figure 8: this is the core of the presented analysis and it is not clear why the WHU-

SGCC dataset has almost always a negative bias, while CHIRP and CHIRPS has a 

positive bias. The authors should comment more on this important aspect of their 

homogenization approach. 

Answer: Thanks. The equation of BIAS is as follows: 

BIAS =
∑ (𝐶𝑖 − 𝑌𝑜𝑖)
𝑛
𝑖=1

∑ 𝑌𝑜𝑖
𝑛
𝑖=1

 

In different rain events, the WHU-SGCC dataset has almost always a negative bias, 

while CHIRP and CHIRPS has a positive bias. After bias correction of the WHU-SGCC, 

some precipitation estimates are lower than observations. The estimates of extreme rain 

events might also be attenuated during the process of WHU-SGCC adjustment. 

Change: Added more comments on this important aspect of their homogenization 

approach. “Besides the WHU-SGCC dataset has almost always a negative bias, while 

CHIRP and CHIRPS has a positive bias in the different rain events. After bias correction 

of the WHU-SGCC, some precipitation estimates are lower than observations. The 

estimates of extreme rain events might also be attenuated during the process of WHU-

SGCC adjustment.” 

 

8. In addition, Figure 8 clearly states that CHIRP and WHU-SGCC have very similar 

performance, expect for the bias (which for WHU-SGCC is slightly better in absolute 

value). This should be clearly stated in the analysis and in the conclusions.  

Answer: Thanks. As shown in Fig. 8, the WHU-SGCC approach had lower errors than 

CHIRP and CHIRPS, as indicated by the RMSE, MAE and BIAS, but the performance 

of WHU-SGCC is not promising for events with total rainfall greater than 25 mm in the 

summer. Besides, the POD and CSI results of CHIRPS are the worst, while the results 

of the WHU-SGCC are the highest, which indicate its superiority for the detection of 

precipitation events. As for the results of the WHU-SGCC, the assessments of POD and 

CSI are the best in the summer, followed by the fall, spring, and winter, which are 

related to the seasonal rainfall pattern of more rain in the summer and less in the winter. 

Therefore, the WHU-SGCC approach is applicable for the detection of rainfall events 

in the Jinsha River Basin, while in the summer it is better with rainfall less than or 

approximately equal to the average daily precipitation. Due to the homogenization of 

the WHU-SGCC method, its performance for short intense and extreme rain events was 



poorer than those of CHIRP and CHIRPS, which should be improved in a future study. 

And we have added the relevant analysis in the conclusion “The leave-one-out cross 

validation of WHU-SGCC on daily rain events confirmed that the model is effective in 

the detection of precipitation events that are less than or approximately equal to the 

average annual precipitation in the Jinsha River Basin. The WHU-SGCC approach 

achieves reductions of the RMSE, MAE and BIAS metrics, while on rain events less 

than 25 mm in the summer. Specifically, the WHU-SGCC has the best ability to reduce 

precipitation errors for daily accuracy evaluations, with average reductions of 15% and 

34% for compared to CHIRP and CHIRPS, respectively. As for the results of the WHU-

SGCC, the assessments of POD and CSI are the best in the summer, followed by the 

fall, spring, and winter, which are related to the seasonal rainfall pattern of more rain in 

the summer and less in the winter. In spite of the corrections, the performance of the 

WHU-SGCC for short intense and extreme rain events was poorer than those of CHIRP 

and CHIRPS, and the bias in the precipitation forecasts in the summer are still large, 

which may due to the homogenization attenuating the extreme rain events estimates.” 

 

9. Finally, I recommend an appropriate use of decimal places throughout the presented 

analysis. The manuscript can also benefit from a final English review (I recommend). 

Answer: Thanks. We retain four decimal. 
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WHU-SGCC: A novel approach for blending daily satellite (CHIRP) 1 

and precipitation observations over the Jinsha River Basin 2 
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Abstract. Accurate and consistent satellite-based precipitation estimates blended with rain gauge data are important for 8 

regional precipitation monitoring and hydrological applications , especially in regions with limited rain gauges. However, the 9 

existing fusion precipitation estimates often have large uncertainties over mountainous areas with complex topography and 10 

sparse rain gauges, and most of the existing data blending algorithms are not good at removing the day-by-day errors. Therefore, 11 

the development of effective methods for high-accuracy precipitation estimates over complex terrain and at a daily scale is of 12 

vital importance for mountainous hydrological applications. This study aims to offer a novel approach for blending daily 13 

precipitation gauge data and the Climate Hazards Group Infrared Precipitation (CHIRP; daily, 0.05°) satellite-derived  14 

precipitation developed by UC Santa Barbara over the Jinsha River Basin from 1994 to 2014. This method is called the Wuhan 15 

University Satellite and Gauge precipitation Collaborated Correction (WHU-SGCC). The results show that the WHU-SGCC 16 

method is effective for liquid precipitation error bias adjustments from points to surfaces as evaluated by multiple error 17 

statistics and from different perspectives. Compared with CHIRP and CHIRP with station data (CHIRPS), the precipitation 18 

adjusted by the WHU-SGCC method has greater accuracy, with overall average improvements of the Pearson’s correlation  19 

coefficient (PCC) by 0.01-0.23 and 0.06-0.32, respectively, and decreases in the root mean square error (RMSE) by 0.06–0.1 20 

mm and 0.2-3 mm, respectively. In addition, the Nash-Sutcliffe efficiency coefficient (NSE) of the WHU-SGCC provides 21 

substantial improvements than CHIRP and CHIRPS, which reached 0.2836, 0.2944 and 0.1853 in the spring, fall and winter. 22 

Daily accuracy evaluations indicate that the WHU-SGCC method has the best ability to reduce precipitation errorbias, with 23 

average reductions of 15% and 34% compared to CHIRP and CHIRPS, respectively. Moreover, the accuracy of the spatial 24 

distribution of the precipitation estimates derived from the WHU-SGCC method is related to the complexity of the topography. 25 

The validation also verifies that the proposed approach is effective at detecting major precipitation events within the Jinsha 26 

River Basin. In spite of the correction, the uncertainties in the seasonal precipitation forecasts in the summer and winter are 27 

still large, which may might be due to the homogenization attenuating the simulation of extreme rain events estimates. However, 28 

the WHU-SGCC approach may serve as a promising tool to monitor daily precipitation over the Jinsha River Basin, which 29 

contains complicated mountainous terrain with sparse rain gauge data, based on the spatial correlation and the historical 30 

precipitation characteristics. The daily precipitation estimations at the 0.05° resolution over the Jinsha River Basin during all 31 

four seasons from 1990 to 2014, derived from WHU-SGCC are available at the PANGAEA Data Publisher for Earth & 32 

Environmental Science portal (https://doi.pangaea.de/10.1594/PANGAEA.900620). 33 

1 Introduction 34 

Accurate and consistent estimates of precipitation are vital for hydrological modelling, flood forecasting and climatological 35 

studies in support of better planning and decision making (Agutu et al., 2017; Cattani et al., 2018; Roy et al., 2017). In general, 36 

ground-based gauge networks include a substantial number of liquid precipitation observations measured with high accuracy, 37 

high temporal resolution, and long historical records . However, the sparse distribution and point measurements limit the 38 

accurate estimation of spatially gridded rainfall (Martens et al., 2013).  39 
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Due to the sparseness and uneven spatial distribution of rain gauges and the high proportion of missing data, satellite-derived 40 

precipitation data are an attractive supplement offering the advantage of plentiful information with high spatio-temporal 41 

resolution over widespread regions , particularly over oceans, high elevation mountainous regions , and other remote regions 42 

where gauge networks are difficult to deploy. However, satellite estimates are susceptible to systematic biases that can 43 

influence hydrological modelling and the retrieval algorithms are relatively insensitive to light rainfall events, especially in 44 

complex terrain, resulting in underestimations of the magnitudes of precipitation events (Behrangi et al., 2014; Thiemig et al., 45 

2013; Yang et al., 2017). Without adjustments, inaccurate satellite-based precipitation estimates will lead to unreliable 46 

assessments of risk and reliability (AghaKouchak et al., 2011). 47 

Accordingly, many kinds of precipitation estimates combining multiple sources and datasets are available. Table 1 shows 48 

the temporal and spatial resolution of current major satellite-based precipitation datasets. Since 1997, the Tropical Rainfall 49 

Measurement Mission (TRMM) has improved satellite-based rainfall retrievals over tropical regions  (Kummerow et al., 1998;  50 

Simpson et al., 1988). High spatial and temporal resolution multi-satellite precipitation products have been developed 51 

continuously during the TRMM era (Maggioni et al., 2016), including: (1) the TRMM Multisatellite Precipitation Analysis 52 

(TMPA) products, which are derived from gauge-satellite fusing (Huffman et al., 2010; Vila et al., 2009); (2) the Climate 53 

Prediction Center (CPC) morphing technique (Joyce et al., 2004; Joyce and Xie, 2011; Xie et al., 2017), which integrates 54 

geosynchronous infrared (GEO IR) and polar-orbiting microwave (PMW) sensor data and is available three-hourly on a grid 55 

with a spatial resolution spacing of 0.25°; (3) the Precipitation Estimation from Remotely Sensed Information using Artificial 56 

Neural Networks - Climate Data Record (PERSIANN-CDR) produced by the PERSIANN algorithm, which has daily temporal 57 

and 0.25° × 0.25° spatial resolutions (Ashouri et al., 2015); and (4) the Global Satellite Mapping of Precipitation (GSMaP) 58 

project, which produces global rainfall estimates in near-–real time and applies the motion vector Kalman filter based 59 

on physical models (GSMaP-NRT and GSMaP-MVK, respectively) (Aonashi et al., 2009; Ushio et al., 2009; Ushio and 60 

Kachi, 2010). In 2014, the Global Precipitation Measurement (GPM) satellite was launched after the success of the TRMM 61 

satellite by a cooperation between the National Aeronautics and Space Administration (NASA) and Japan Aerospace 62 

Exploration Agency (JAXA) (Mahmoud et al., 2018; Ning et al., 2016). The main core observatory satellite (GPM) integrates 63 

advanced radar and radiometer systems to obtain the precipitation physics and takes advantages of TMPA, the Climate 64 

Prediction Center morphing technique (CMORPH), and PERSIANN algorithms to offer high spatiotemporal resolution 65 

products (0.1° × 0.1°, half-hourly) of global real-time precipitation estimates (Huffman et al., 2018; Skofronick-Jackson et al., 66 

2017; Hou et al., 2014). Nevertheless, the major aforementioned products  have only been available since 1998, which limits  67 

long-term climatological studies . Only the PERSIANN-CDR data set has temporal coverage since 1983. However, the spatial 68 

resolution of PERSIANN-CDR is relatively coarse, and the data resolution must be degraded to achieve high accuracy in 69 

precipitation monitoring. To fill the gap in high resolution and long-term global multi-satellite precipitation monitoring, the 70 

Multi-Source Weighted-Ensemble Precipitation (MSWEP) product (Beck et al., 2017; Beck et al., 2019), and the Climate 71 

Hazards Group Infrared Precipitation with Station data (CHIRPS) product from UC Santa Barbara (Funk et al., 2015 a) were 72 

developed. MSWEP is a precipitation data set with global coverage available at 0.1° spatial resolution and at three-hourly, 73 

daily, and monthly temporal resolutions. MSWEP is multi-source data that takes advantage of the complementary strengths of 74 

gauge-, satellite-, and reanalysis-based data. However, to provide precipitation estimates at a higher spatial resolution, the 75 

CHIRPS data set is used in this study.   76 

CHIRPS is a longer length precipitation data series with a higher spatial resolution (0.05°) that, merges three types of 77 

information: global climatology, satellite estimates and in situ observations. The CHIRPS precipitation dataset with several 78 

temporal and spatial scales has been evaluated in Brazil (Nogueira et al., 2018; Paredes-Trejo et al., 2017), Chile (Yang et al., 79 

2016; Zambrano-Bigiarini et al., 2017), China (Bai et al., 2018), Cyprus (Katsanos et al., 2016a; Katsanos et al., 2016b), India 80 

(Ali and Mishra, 2017; Prakash, 2019) and Italy (Duan et al., 2016). However, the temporal resolutions of these applications 81 
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were mainly at seasonal and monthly scales, lacking the evaluation and correction of daily precipitation. Additionally, despite 82 

the great potential of gauge-satellite fusing products for large-scale environmental monitoring, there are still large 83 

discrepancies with ground observations at the sub-regional level where these data have been applied. Furthermore, the CHIRPS 84 

product’s reliability has not been analysed in detail over the Jinsha River Basin in China, particularly at a daily scale. The 85 

Jinsha River Basin is a typical study area with complex and varied terrain, an uneven spatial distribution of precipitation, and 86 

a sparse spatial distribution of rain gauges, which limit high accuracy precipitation monitoring. The existing research indicates 87 

that estimations over mountainous areas with complex topography often have large uncertainties and errors bias due to the 88 

topography, seasonality, climate impact and sparseness of rain gauges (Derin et al., 2016; Maggioni and Massari, 2018;  89 

Zambrano-Bigiarini et al., 2017). Moreover, Bai et al. (2018) evaluatesd CHIRPS over mainland China and indicatesd that the 90 

performance of CHIRPS is poor over the Sichuan Basin and the Northern China Plain, which have complex terrain with 91 

substantial variations in elevation. Additionally, Trejo et al. (2016) shows that CHIRPS overestimates low monthly rainfall and 92 

underestimates high monthly rainfall using several numerical metrics and that the rainfall event frequency is overestimated 93 

outside the rainy season.  94 

Table 1 Coverage and spatiotemporal resolutions of major satellite precipitation datasets. 95 
Product Temporal resolution Spatial resolution Period Coverage 

TRMM 3B42-RT 3 hourlyHourly 0.25° 1998-present 50°S-50°N 

CMORPH 30 min/3 Hourly/Daily 8 km/0.25° 1998- 60°S-60°N 

PERSIANN-CDR Dailydaily 0.25° 
1983-(delayed) 

present 
60°S-60°N 

GsMaP-NRT hourlyHourly 0.01° 2007 60°S-60°N 

GsMaP-MVK hourlyHourly 0.01° 2000 60°S-60°N 

GPM 
30 min/Hourly/ 
3 hourlyHourly/Daily/3 Day/ 

7 Day/Monthly 

0.1°/0.25°/0.05°/5° 2014-present 
60°S-60°N 
70°N-70°S 

90°N-90°S 

MSWEP 3 hourlyHourly/Daily/Monthly 0.1° 1979-2017 90°N-90°S 

CHIRPS 

Annual/Monthly/ 

Dekad/Pentad/DailyDaily/Pentad/Dekad/ 
Monthly/Annual 

0.05°/0.25° 1981- present 50°S-50°N 

To overcome these limitations, many studies have focused on proposing effective methodologies  for blending rain gauge 96 

observations, satellite-based precipitation estimates, and sometimes radar data to take advantage of each dataset. Many 97 

numerical models have been established with these datasets for high-accuracy precipitation estimations, such as bias 98 

adjustment by a quantile mapping (QM) approach (Yang et al., 2016), Bayesian kriging (BK) (Verdin et al., 2015) and a 99 

conditional merging technique (Berndt et al., 2014). The QM approach is a distribution-based approach, which works with 100 

historical data for bias adjustment and is effective at reducing the systematic bias of regional climate model precipitation 101 

estimates at monthly or seasonal scales (Chen et al., 2013). However, the QM approach offers very limited improvement in 102 

removing day-by-day errors. The BK approach provides very good model fit with precipitation observations , but the Gaussian 103 

assumption of the BK model is invalid for daily scales. Overall, there is a lack of effective methods for high-accuracy 104 

precipitation estimates over complex terrain at a daily scale.  105 

As such, due to the poor performance at the sub-regional scale, the gauge-satellite fusing algorithms can be assumed to limit 106 

high accuracy estimations in the process of CHIRPS data production. Therefore, the aim of this article is to present a novel 107 

approach for reblending daily liquid precipitation gauge data and the Climate Hazards Group Infrared Precipitation (CHIRP) 108 

satellite-derived precipitation estimates developed by UC Santa Barbara, over the Jinsha River Basin. We use precipitation to 109 

denote liquid precipitation throughout the text. The CHIRP data are the raw data of CHIRPS before blending with the rain 110 

gauge data. The objective is to build corresponding precipitation models that consider terrain factors and precipitation 111 

characteristics to produce high-quality precipitation estimates. This novel method is called the Wuhan University Satellite and 112 

Gauge precipitation Collaborated Correction (WHU-SGCC) method. We demonstrate present this method by applying it to 113 

daily precipitation over the Jinsha River Basin in the different seasons from 1990 to 2014. The results support the validity of 114 

the proposed approach for producing refined satellite-gauge precipitation estimates over mountainous areas. 115 
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The remainder of this paper is organized as follows: Section 2 describes the study region, rain gauges and CHIRPS dataset 116 

used in this study. Section 3 presents the principle of the WHU-SGCC approach for high-accuracy daily precipitation estimates. 117 

The results and discussion are analysed in Section 4, the data available are described in Section 5, and the conclusions and 118 

future work are presented in Section 6.  119 

2 Study Region and Data 120 

2.1 Study Region 121 

The Yangtze River is, one of the largest and most important rivers in Southeast Asia, originatesing on the Tibetan Plateau and 122 

extendsing approximately 6300 km eastward to the East China Sea. The river’s catchment covers an area of approximately  123 

~180 × 104 km2 and the average annual precipitation is approximately 1100 mm (Zhang et al., 2019).The Yangtze River is 124 

divided into nine sub-basins, the upper drainage basin is the Jinsha River Basin, which flows through the provinces of Qinghai, 125 

Sichuan, and Yunnan in western China. Within the Jinsha River Basin, the total river length is 3486 km, accounting for 77% 126 

of the length of the upper Yangtze River, and covering a watershed area of 460 × 103 km2. The location of the Jinsha River 127 

Basin is shown in Fig. 1, and it covers the eastern part of the Tibetan Plateau and part of the Hengduan Mountains. The southern 128 

portion of the river basin is the Northern Yunnan Plateau and the eastern portion includes a wide area of the southwestern 129 

margin of the Sichuan Basin. Crossing complex and varied terrains, the elevation of the Jinsha River ranges from 263 to 6575 130 

m above sea level, which results in significant temporal and spatial climate and weather variations inside the basin. The average 131 

annual precipitation of the Jinsha River Basin is approximately 710 mm, the average annual precipitation of the lower reaches 132 

is approximately 900-1300 mm, and the average annual precipitation of the middle and upper reaches is approximately 600 -133 

800 mm (Yuan et al., 2018). The Jinsha River Basin has four seasons : spring (March-April-May), summer (June-July-August), 134 

fall (September-October-November) and winter (December-January-February). The climate of the Jinsha River Basin is 135 

affected by oceanic southwest and southeast mons oons, resulting in more precipitation during the summer. Therefore, the 136 

blending of satellite estimations with gauge observations during the different seasons is the main focus of this research. 137 

  138 

Figure 1 Location of the study area with key topographic features. 139 
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2.2 Study Data 140 

2.2.1 Precipitation gauge observations 141 

Daily rain gauge observations  at 30 national standard rain stations within the Jinsha River Basin from 1 March 1990 to February 142 

2015 were provided by the National Climate Centre (NCC) of the China Meteorological Administration (CMA) 143 

(http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html, last access: 10 December, 2018), 144 

which imposes strict quality control at the station, provincial and state levels. The process of quality control conducted by the 145 

CMA is as follows: (1) Climate threshold or allowable value check; (2) Extreme values at gauge stations check; (3) Internal 146 

consistency check between fixed value, daily average value and daily extreme value;  (4) Time consistency check; and (5) 147 

Manual verification and correction. The station identification numbers and relevant geographical characteristics are shown in 148 

Appendix A, and their uneven spatial distribution is shown in Fig. 2. The selected rain gauges are located in Qinghai, Tibet, 149 

Sichuan and Yunnan Provinces  but are mainly scattered in Sichuan Province, and the northern river basin contains fewer rain 150 

gauges than the southern river basin. In this study, the daily rain gauge observations were used as the reference data for the 151 

error bias adjustment correction of satellite precipitation estimations .  152 

The multi-year annual (1990-2014) average seasonal precipitation over the Jinsha River Basin increases from north to south 153 

(Fig. 2). The dynamic and uneven distribution of precipitation is influenced distinctly by the seasonal climate. Most of the 154 

precipitation falls in the summer, with the average seasonal precipitation ranging from less than 250 mm to more than 600 mm, 155 

while the average seasonal precipitation during the winter is no more than 50 mm. The average seasonal precipitation and 156 

spatial distribution in the spring are similar with those in the fall, with values concentrated in the range of 50 mm to 200 mm.  157 

     158 

 159 

(a) Spring                                       (b) Summer 160 

http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html
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  161 

(c) Fall                                       (d) Winter 162 

 163 
Figure 2 The multi-year annual (1990-2014) average seasonal precipitation over the Jinsha River Basin interpolated from30 rain gauges  164 
downloaded from the China Meteorological Administration stations.  165 

2.2.2 CHIRPS satellite-gauge fusion precipitation estimates  166 

The CHIRPS v.2 dataset, a satellite-based daily rainfall product, is available online at 167 

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/global_daily/tifs/p05/ (last access: 10 December, 2018). It covers a 168 

quasi-global area (land only, 50° S-50° N) a several temporal scales (daily, pentad, dekad, monthly and annual temporal 169 

resolutions) and a high spatial resolution (0.05°) (Rivera et al., 2018). This dataset contains a wide variety of satellite-based 170 

rainfall products derived from a multiple data sources and incorporates five data types: (1) the monthly precipitation from 171 

CHPClim v.1.0 (Climate Hazards Group’s Precipitation Climatology version 1) derived from a combination of satellite fields, 172 

gridded physiographic indicators, and in situ climate normal with the geospatial modelling approach based on moving window 173 

regressions and inverse distance weighting interpolation (Funk et al., 2015 b); (2) quasi-global geostationary thermal infrared  174 

(IR) satellite observations; (3)the TRMM 3B42 product (Huffman et al., 2007); (4) the CFS (Climate Forecast System, version 175 

2) atmospheric model rainfall fields from NOAA; and (5) surface-based precipitation observations from various sources 176 

including national and regional meteorological services. The differences from other frequently used precipitation products are 177 

the higher resolution of 0.05° , wider coverage and longer length data series from 1981 to near-real time (Funk et al., 2015 a).  178 

CHIRPS is the blended product of a two-part process. First, IR precipitation (IRP) pentad rainfall estimates are fused with 179 

corresponding CHPClim pentad data to produce an unbiased gridded estimate, called CHIRP, which is available online at 180 

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRP/daily/  (last access: 10 December, 2018). In the second part of the process, 181 

the CHIRP data are blended with in situground-based precipitation observations obtained from a variety of sources, including 182 

national and regional meteorological services by means of a modified inverse-distance weighting algorithm to create the final 183 

blended product, CHIRPS (Funk et al., 2014). The daily CHIRP satellite-based data over the Jinsha River Basin from 1990.02 184 

to 2015.02 were selected as the input for WHU-SGCC blending with rain observations, and the corresponding daily CHIRPS 185 

blended data was used for comparisons of the precipitation accuracy.  186 

The blended in situ daily precipitation observations of the CHIRPS data come from a variety of sources, such as the daily 187 

GHCN archive (Durre et al., 2010), the Global Summary of the Day dataset (GSOD) provided by NOAA’s National Climat ic 188 

Data Center, the World Meteorological Organization’s Global Telecommunication System (GTS) daily archive provided by 189 

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/global_daily/tifs/p05/
ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRP/daily/
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NOAA CPC, and more than a dozen national and regional meteorological services. However, the stations for daily CHIRPS 190 

data have a different spatial distribution than those downloaded from the CMA, and the precipitation values used for CHIRPS 191 

production are the monthly values available online (ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-192 

2.0/diagnostics/monthly_station_data/). For the daily precipitation adjustments over the Jinsha River Basin, the daily gauge 193 

observations from the CMA are blended with the daily CHIRP data due to the unknown spatial distribution and precipitation 194 

values of gauge stations used in the process of daily CHIRPS merging.  195 

3 Methods 196 

3.1 The WHU-SGCC approach  197 

In this study, the WHU-SGCC approach is to estimates the precipitation at every pixel by blending satellite estimates and rain 198 

gauge observations considering the terrain factors and precipitation characteristics . Due to the significant seasonal difference 199 

of precipitation, the WHU-SGCC method was applied in the different seasons. Four steps were used to establish the numerical 200 

relationship between the gauge stations and the corresponding satellite pixels and for the interpolation of the remaining pixels. 201 

The WHU-SGCC method identifies the geographical locations and topographical features of each pixel and applies the four 202 

classification and blending rules. A flowchart of the WHU-SGCC method is shown in Fig. 3. The proposed approach was 203 

evaluated over the Jinsha River Basin based on 30 gauge stations and CHIRP satellite -based precipitation estimations in the 204 

different seasons from 1990 to 2014. The leave-one-out cross validation step was applied to compute the out-of-sample 205 

adjusted error bias with the gauge stations. The WHU-SGCC algorithm was repeated 30 times , each time leaving one station 206 

as the validation station.  207 

The basic description of the WHU-SGCC method is given below, and the details are illustrated separately in later sections: 208 

(1) Classify all regional pixels into four types: C1 (pixels including one gauge station in their area), C2 (pixels statistically 209 

similar to C1), C3 (pixels statistically similar to C2) and C4 (remaining pixels).  210 

(2) Analyze the relationships between the precipitation observations and the C1, C2, and C3 pixel types, and interpolate for 211 

the C4 pixels. These relationships are described by four rules, which are described below as Rules 1 through 4.  212 

(3) Establish statistical models and screen the target pixels based on the four rules. 213 

(4) Correct all of the precipitation pixels in the daily regional precipitation images. 214 
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Daily Gauge Observation

(30 rain gauges, each season 1990-2014)

Daily CHIRP

(0.05°× 0.05°, each season 1990-2014) 

Random forest regressions between gauge observations and the 

corresponding CHIRP grid cell values at C1 pixels

Determine the C2 pixels by calculating the PCC between the 

CHIRP grid cell values at the C1 pixels and the remaining pixels 

Spatial scope determined by FCM

Determine the C3 pixels by calculating the PCC between  the 

CHIRP grid cell values at  the C2 pixels and the remaining pixels 

The adjustment method for C2 pixels can be derived from the 

regression models of the corresponding C1 pixels

|PCC| ≥ 0.5 and p < 0.05

Calculating the precipitation ratio at the C2 pixels

|PCC| ≥ 0.5 and p < 0.05

Rule 3

Rule 1

Adjust C3 pixels by the same precipitation ratio with the 

corresponding C2 pixel

Rule 2

The  remaining pixels are C4 pixels; the pixel values at C1 and C4 

pixels are interpolated by IDW with the C2 and C3 pixels
Rule 4

 215 

Figure 3 Flowchart of the WHU-SGCC approach with the four rules applied in this study.  216 

3.1.1 Assumptions 217 

(1) Gauge observations are the most accurate, or “true”, values for reference purposes. However, the sparseness of the 218 

gauges, their uneven spatial distribution, and the high proportion of missing data may limit high accuracy estimation in rainfall 219 

monitoring. 220 

(2) No major terrain changes occurred during the twenty years  (Appendix B). 221 

(3) There are no long-held outliers at one pixel in the CHIRP dataset, so Pearson’s Correlation Coefficient (PCC) can 222 

represent the statistical similarity of the rainfall characteristics among the pixels in a certain spatial area at a seasonal scale.  223 

3.1.2 Rule 1 of the WHU-SGCC method 224 

In general, the satellite precipitation estimations deviated from the ground-based measurements, which were assumed to be 225 

the true values. Rule 1 aims to establish a regression model between the historical observations at each gauge and the 226 

corresponding CHIRP grid cell values. The regression relationship was derived by random forest  regression (RFR) at each 227 

gauge station. RFR is a machine-learning algorithm for a predictive model with a large set of regression trees in which each 228 

tree in the ensemble is grown from a bootstrap sample (Johnson, 1998) drawn with a replacement from the training set. In the 229 

process of establishing regression trees, a subset of variables for each node is selected to avoid overfitting. The final prediction 230 

is obtained by combining the results of the prediction methods applied to each bootstrap sample (Genuer et al., 2017). The 231 

predicted value is calculated by the average of the values from all of the decision trees. Each tree can be expressed as  232 

( , ),
sk

k RFR o YTree f Y   k=1…n                              (1) 233 

where 𝑌𝑜  denotes the historical observations at each gauge at the C1 pixels , 
sk

Y is a randomly selected vector from 𝑌𝑠 , 234 

𝑌𝑠 denotes the corresponding CHIRP grid cell values at the C1 pixels, n is the number of trees , and  𝑓
𝑅𝐹𝑅

 is constructed 235 

from the time series 𝑌𝑜  (dependent variable) and 𝑌𝑠 (independent variable) by means of RFR. The bootstrap sample will 236 
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be the training set used for growing the tree. The error rate (out-of-bag, OOB) left out of one-third of the training data is also 237 

monitored to determine the number of decision trees . In this study, the minimum OOB error rate was reached when the 238 

number of decision trees  n was less than 500 (Appendix C).   239 

Rule 1 builds the statistical relationships between the gauge observations and the corresponding CHIRP grid cell values, 240 

which is the key idea in correcting the satellite-based precipitation estimations in the entire study area. In the process of Rule 241 

1, the regression relationships at the C1 pixels were established at 30 gauge stations separately. Because there are 30 gauge 242 

stations in the study area, 30 regression relationships at the C1 pixels were derived from Rule 1. The values of the C1 pixels  243 

are not corrected in Rule 1 but are interpolated in Rule 4. 244 

3.1.3 Rule 2 of the WHU-SGCC method 245 

It is reasonable to assume that some pixels are statistically similar to the historical precipitation characteristics of the C1 pixels  246 

within a certain area. Therefore, it is feasible to adjust the satellite estimation bias of the C2 pixels by referring to the 247 

appropriate regression relationships at the corresponding C1 pixels based on Rule 1. 248 

First, the spatial area in which pixels may have highly similar characteristics  is established. Several studies indicate that the 249 

geographical location, elevation and other terrain information influence the spatial distribution of rainfall, especially in 250 

mountainous areas with complex topography (Anders et al., 2006; Long and Singh, 2013). The size of the spatial range is an 251 

important parameter to distinguish the spatial similarity and heterogeneity. In the WHU-SGCC method, the fuzzy c-means 252 

(FCM) clustering approach was used to determine the spatial range considered for each pixel’s terrain factors, including 253 

longitude, latitude, elevation, slope, aspect and curvature. The FCM method was developed by J.C. Dunn in 1973 (Dunn, 254 

1973), and improved in 1983 (Wang, 1983). It is an unsupervised fuzzy clustering method and its steps are as follows (Pessoa 255 

et al., 2018): 256 

1) Choose the number of clusters c. The optimum number of clusters is determined by L(c), which is derived from the inter-257 

distance and inner distance of the samples in Eq. (2). It is ensured that the distance between similar samples is smaller, while 258 

the distance between different samples is larger. 259 

2

1 1

2

1 1

|| || /( 1)

( )

|| || /( )

c n
m

ij i

i j

c n
m

ij j i

i j

w c x c

L c

w x c n c

 

 

 



 




                                (2) 260 

In Eq. (2), the denominator is the inner-distance, and the numerator is the inter-distance. The initial value of c is 1 and the 261 

maximum value of c is the number of gauge stations in the study area. The optimum number of clusters was optimized to 262 

maximize L(c). For this reason, the value of c is varied from 1 to the number of gauge stations with an increment of 1 in this 263 

study. 264 

2) Assign coefficients randomly to each data point ix  for the degree to which it belongs in the i-th cluster ( )ij iw x : 265 
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       (5) 266 

where x is a finite collection of n elements that will be partitioned into a collection of c fuzzy clusters, ic  is the centre of 267 

each cluster, m is the hyper-parameter that controls the level of cluster fuzziness, ijw  is the degree to which element ix  268 

belongs to ic , and x  is the centre vector of the collection. In Eq. (3), 
( )t

jc  represents the cluster centre in iteration t. If the 269 
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minimum improvement in the objective function between two consecutive iterations  satisfies the following equation, the 270 

algorithm terminates in iteration t (Eq. (6)): 271 

( ) ( +1)|| - ||<t t

i ic c                                         (6) 272 

3) Minimize the objective function cF  to achieve data partitioning. 273 

2

1 1

|| ||
n c

m

c ij j i

j i

F w x c
 

                                      (7) 274 

The results of the FCM are the degree of membership of each pixel to the cluster centre as represented by numerical values. 275 

The pixels in each cluster have similar terrain features  and precipitation characteristics. 276 

Second, as mentioned above, the aim of Rule 2 is to derive an adjustment method for the C2 pixels based on learning from 277 

Rule 1. With the establishment of a regression relationship between the gauge observations and the corresponding CHIRP grid 278 

cell values of the C1 pixels by the RFR method, the determination of the C2 pixels follows a complicated procedure. With the 279 

exception of the C1 pixels, the remaining pixels in each cluster represent potential C2 pixels , which are called R pixels. The 280 

Pearson’s correlation coefficient (PCC) and p-values  between the satellite estimations (multi-year annual daily CHIRP grid 281 

cell values) at the R pixels and the C1 pixels are the criteria for the final determination of the C2 pixels. The PCC is defined 282 

as follows: 283 
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                                (8) 284 

where n is the number of samples, ix  and iy  are individual samples (CHIRP grid cell values at the C1 and C2 pixels, 285 

respectively), x is the arithmetic mean of x calculated by 

1

1
=

n

i

i

x x
n 

 , and y  is the arithmetic mean of y calculated by 286 

1

1
y=

n

i

i

y
n 

 . 287 

The PCC ranges between -1 and +1. If there are no repeated data values, a perfect PCC of +1 or −1 occurs when each of the 288 

variables is a perfect monotonic function of the other. However, if the value is close to zero, there is zero correlation. In 289 

addition, the correlation is not only determined by the value of the correlation coefficient but also by the correlation test’s p-290 

value. The critical values for the PCC and p-value are 0.5 and 0.05, respectively; thus, a PCC value higher than 0.5 and a p-291 

value lower than 0.05 indicate that the data are significantly correlated (Zhang and Chen, 2016). Therefore, the final 292 

determination of the C2 pixels must meet the following criteria: 293 

PCC 0.5 0.05and p                                    (9) 294 

Each R pixel has m PCC and p-values (the number of C1 pixels in the cluster), and the subset of C2 pixels is identified by 295 

excluding the data that failed the correlation test and retaining both the data with a maximum PCC of at least 0.5 and a p-value 296 

lower than 0.05, and the corresponding index of C1 pixels. The selected C2 pixels can then be considered statistically similar 297 

to the precipitation characteristics of the corresponding C1 pixels in their defined spatial area. 298 

After identifying the C2 pixels and their corresponding C1 pixels, the adjustment method for the C2 pixels is derived from 299 

the regression model for the C1 pixels : 300 
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                                    (10) 301 

where 
1CkTree is the decision tree derived from the RFR algorithm at the corresponding C1 pixel, 

2CsY  is the CHIRP grid cell 302 
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value at the C2 pixels, and 2asC  is the adjusted satellite precipitation estimate calculated by the average of the values from 303 

the RFR decision trees. 304 

 305 

3.1.4 Rule 3 of the WHU-SGCC method 306 

Recognizing that precipitation has a spatial distribution, the assumption that the C3 pixels are statistically similar to the 307 

precipitation characteristics of the C2 pixels is adopted to establish the adjustment method for the C3 pixels.  308 

First, the determination of the C3 pixels in each spatial cluster is based on the selection of C2 pixels. The satellite-based 309 

estimation values at the pixels other than the C1 and C2 pixels are used to calculate the PCC and p-value with the satellite-310 

based estimation values  at the C2 pixels in the same cluster. The results of each pixel’s k  PCC and p-value (the number of C2 311 

pixels in the cluster) are evaluated based on the correlation test (Eq. (9)) that the pixels have a maximum PCC of at least 0.5 312 

and a p-value is of no more than 0.05, and the corresponding index of C2 pixels is retained. The selected pixels are called C3 313 

pixels, which are statistically similar to the precipitation characteristics of the corresponding C2 pixels in the defined spatial 314 

area. 315 

After identifying the C3 pixels, a method for merging the CHIRP grid cell values at the C3 pixels (𝑌𝑠) and the target reference 316 

values of 2asC  at the corresponding C2 pixels is applied to estimate the adjusted precipitation values at the C3 pixels. This 317 

method combines the 𝑌𝑠 and 2asC  values into one variable, as shown in Eq. (11): 318 

2
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
  i=1,…, n                                   (11) 319 

where 𝜆 is a positive constant set to 10 mm (Sokol, 2003), 2asC  is the adjusted precipitation values at the C2 pixels, 
isY is 320 

extracted from the CHIRP grid cell values at the corresponding location of the C2 pixels, and n is the number of C2 pixels in 321 

each spatial cluster.  322 

Each w of the C3 pixels is assigned the same value as the corresponding C2 pixel. Therefore, the values of the C3 pixels are 323 

derived from Eq. (12): 324 

3 max( ( ) ,0)as sC w Y                                      (12) 325 

where 3asC is the adjusted target precipitation value at one C3 pixel, and 
sY  is the corresponding CHIRP grid cell value. To 326 

avoid precipitation estimates below 0, Eq. (12) sets negative values to 0. 327 

3.1.5 Rule 4 of the WHU-SGCC method 328 

The pixels other than the C1, C2 and C3 pixels are called C4 pixels and they are adjusted by inverse distance weighting (IDW). 329 

IDW is based on the concept of the first law of geography from 1970, which was defined as everything is related to everything 330 

else, but near things are more related than distant things. Therefore, the attribute value of an unsampled point is the weighted 331 

average of the known values within the neighbourhood, and the distance weighting can be determined by means of IDW (Lu  332 

and Wong, 2008). In Rule 4, IDW is used to interpolate the unknown spatial precipitation data from the adjusted precipitation 333 

values at the C2 and C3 pixels. The IDW formulas are given as Eq. (13) and Eq. (14). 334 
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where 
asR is the unknown spatial precipitation data, 

iR  is the adjusted precipitation values at the C2 and C3 pixels, n is the 337 

number of C2 and C3 pixels, 
id  is the distance from each C2 or C3 pixel to the unknown grid cell, and  is the power which 338 

is generally specified as a geometric form for the weight. Several studies (Simanton and Osborn 1980; Tung 1983) have 339 

experimented with variations in the power; a the small   tends to estimate values with the averages of sampled grids in the 340 

neighbourhood, while a large   tends to give larger weights to the nearest points and increasingly down -weights points 341 

farther away (Chen and Liu, 2012; Lu and Wong, 2008). The value of  has an influence on the spatial distribution of the 342 

information from precipitation observations. For this reason,   is varied in the range of 0.1 to three (0.1, 0.3, 0.5, 1.0, 1.5, 343 

2.0, 2.5 and 3.0) in this study. 344 

Note that the unknown spatial precipitation data include C1 and C4 pixels because the C1 pixels values were not adjusted 345 

in Rule 1.  346 

After applying these four rules, we obtained complete daily adjusted regional precipitation maps for the four seasons over 347 

the Jinsha River basin.  348 

3.2 Accuracy assessment 349 

The performance of the WHU-SGCC adjusted precipitation estimates was evaluated by eight mathematic metrics: the 350 

Pearson’s correlation coefficient (PCC), root mean square error (RMSE), mean absolute error (MAE), relative bias (BIAS), 351 

Nash-Sutcliffe efficiency coefficient (NSE), probability of detection (POD), false alarm ratio (FAR) and critical success index 352 

(CSI). The results of accuracy assessment are the average values validated by the leave-one-out cross method. Each validated 353 

pixel will probably be a C2, C3 or C4 pixel in the process of the WHU-SGCC algorithm. The PCC, RMSE, MAE and BIAS 354 

were used to evaluate how well the WHU-SGCC method adjusted the satellite estimation bias, while POD, FAR and CSI were 355 

used to evaluate the performance of precipitation forecasting (Su et al., 2011). The PCC measures the strength of the correlation 356 

relationship between the satellite estimations and observations. The RMSE is an absolute measurement used to compare the 357 

difference between the satellite estimations and observations , and the MAE represents the average magnitude of error 358 

estimations considering both systematic and random errors. The NSE (Nash and Sutcliffe, 1970) determines the relative 359 

magnitude of the variance of the residuals compared to the variance of the observations, bounded by minus infinity and 1; a 360 

negative value indicates a poor precipitation estimate, and a value of1 indicates an optimal estimate. The BIAS measures the 361 

mean tendency of the estimated precipitation to be larger (positive values) or smaller (negative values) than the observed 362 

precipitation and has an optimal value of 0. The POD, also known as the hit rate, represents the probability of rainfall detection , 363 

and the FAR is defined as the ratio of the false alarm of rainfall to the total number of rainfall events. All of the accuracy 364 

assessment metrics are shown in Table 2. 365 

Table 2 Accuracy assessment metrics. 366 
Accuracy assessment Index Unit Formula Range Optimal value 

Pearson’s Correlation Coefficient (PCC) NA 
PCC =

∑ (𝑌𝑜𝑖 − 𝑌̅𝑜)(𝐶𝑖 − 𝐶̅)𝑛
𝑖=1

√∑ (𝑌𝑜𝑖 − 𝑌̅𝑜)2𝑛
𝑖=1 . √∑ (𝐶𝑖 − 𝐶̅)2𝑛

𝑖=1

 
[-1,1] 1 

Root Mean Square Error (RMSE) mm RMSE = √
1

𝑛
∑(𝐶𝑖 − 𝑌𝑜𝑖)

2

𝑛

𝑖=1

 [0,+∞） 0 

Mean Absolute Error (MAE) mm MAE =
1

𝑛
∑ |𝐶𝑖 − 𝑌𝑜𝑖|

𝑛

𝑖=1

 [0, +∞) 0 

Relative Bias (BIAS) NA BIAS =
∑ (𝐶𝑖 − 𝑌𝑜𝑖)

𝑛
𝑖=1

∑ 𝑌𝑜𝑖
𝑛
𝑖=1

 (-∞, +∞) 0 

Nash-Sutcliffe Efficiency Coefficient (NSE) NA NSE = 1 −
∑ (𝐶𝑖 − 𝑌𝑜𝑖)2𝑁

𝑖=1

∑ (𝐶𝑖 − 𝑌̅𝑜)2𝑁
𝑖=1

 (-∞,1] 1 

Probability of Detection (POD) NA POD=H/(H+M) [0,1] 1 
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False Alarm Ratio (FAR) NA FAR=F/(H+F) [0,1] 0 

Critical Success Index (CSI) NA CSI=H/(H+M+F) [0,1] 1 

Note: 𝑌𝑜𝑖 is the observation data; 𝐶𝑖 is the adjusted value using the WHU-SGCC method for the test sample pixel; 𝑌̅𝑜 is 367 

the arithmetic mean of 𝑌𝑜 and is given by 

1

1 n

o oi

i

Y Y
n 

  ; C  is the arithmetic mean of C and is given by

1

1 n

i

i

C C
n 

  ; H 368 

represents the number of both observed and estimated precipitation events  (successfully forecasted); F is the number of false 369 

alarms when the observed precipitation was below the threshold and estimated precipitation was above threshold (false alarms ;  370 

and. M is the number of events in which the estimated precipitation was below the threshold and observed precipitation was 371 

above the threshold (missed forecasts). The POD and FAR values are dimensionless numbers ranging from 0 to 1. The 372 

precipitation threshold (event/no event) was set to 0.1 mm/day. 373 

4 Results and Discussion 374 

A total of 18,482 daily pixels were adjusted by blending the satellite estimations (CHIRP) and observations (rain gauge stations) 375 

using the WHU-SGCC approach over the Jinsha River Basin from 1990 to 2014. The percentage of pixels adjusted by each 376 

rule in the WHU-SGCC method is shown in Table 3. The number of C1 pixels was the number of training gauge stations, 377 

which accounted for 0.16% of the total pixels (18,482) within the basin. Due to the leave-one-out cross validation step, the 378 

different training samples will have different numbers of C2, C3 and C4 pixels within the Jinsha River Basin. The percentage 379 

of C2 and C3 pixels are highest in fall, followed by summer, spring and winter. In the spring, the average percentage of C2 380 

pixels was approximately 21%, the average percentage of C3 pixels was approximately 17%, and the percentage of C4 pixels  381 

was approximately 61%. In the summer, the percentage of C2 pixels was ranging from 15.59% to 18.36%, the percentage of 382 

C3 pixels was ranging from 21.72% to 24.40%, and the percentage of C4 pixels was approximately 60%. In the full, the 383 

average percentage of C2 pixels was approximately 31%, the average percentage of C3 pixels was approximately 22%, and 384 

the average percentage of C4 pixels was approximately 47%. In the winter, the average percentage of C2 pixels was 385 

approximately 16%, the average percentage of C3 pixels was approximately 19%, and the average percentage of C4 pixels  386 

was approximately 65%. Besides, the pixel type of the validation gauge station is shown in Table D1 and the spatial distribution 387 

of C1-C3 pixels in Figure D1 with the most uniform in the fall and, while the sparsest in the winter. Each validation gauge 388 

station could be identified as either C2, C3 or C4 pixels to evaluate the performances of all the rules in the WHU-SGCC 389 

method. 390 

Table 3 The percentage of each class pixels adjusted by each rule using the WHU-SGCC method within the Jinsha River Basin. 391 

Validation 

gauge 

station 

C2 Pixels (%) C3 Pixels (%) C4 Pixels (%) 

Spring Summer Fall Winter Spring Summer Fall Winter Spring Summer Fall Winter 

52908 20.80% 16.59% 29.15% 15.52% 17.76% 22.85% 20.82% 18.16% 61.29% 60.40% 49.87% 66.16% 

56004 20.89% 15.59% 29.40% 15.65% 16.29% 22.24% 20.64% 18.83% 62.66% 62.01% 49.81% 65.36% 

56021 21.38% 17.91% 32.46% 15.65% 17.55% 24.40% 21.85% 19.91% 60.91% 57.53% 45.53% 64.28% 

56029 21.77% 18.06% 32.60% 16.03% 17.31% 24.06% 21.61% 19.64% 60.76% 57.72% 45.63% 64.18% 

56034 21.09% 17.86% 31.22% 14.86% 17.78% 23.95% 23.07% 20.19% 60.97% 58.03% 45.55% 64.79% 

56038 20.48% 17.36% 30.72% 15.56% 16.12% 21.72% 23.74% 17.63% 63.23% 60.76% 45.39% 66.65% 

56144 21.42% 18.11% 31.97% 16.00% 16.46% 24.03% 21.78% 19.38% 61.96% 57.70% 46.09% 64.46% 

56146 21.33% 17.22% 31.77% 15.70% 17.12% 24.24% 21.42% 18.34% 61.39% 58.38% 46.65% 65.81% 

56152 21.32% 17.17% 31.27% 15.57% 17.56% 22.59% 22.32% 18.94% 60.96% 60.08% 46.26% 65.34% 

56167 21.46% 18.19% 32.36% 15.84% 16.90% 23.51% 21.72% 19.03% 61.48% 58.14% 45.76% 64.98% 

56247 21.66% 18.32% 31.44% 16.10% 17.16% 23.89% 22.19% 19.55% 61.03% 57.63% 46.21% 64.20% 

56251 21.09% 17.86% 31.28% 15.73% 17.39% 23.53% 22.88% 18.50% 61.36% 58.46% 45.68% 65.62% 
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56257 21.17% 17.93% 30.99% 15.95% 16.15% 21.88% 23.55% 19.13% 62.53% 60.04% 45.30% 64.77% 

56357 21.62% 18.14% 31.59% 15.64% 17.12% 23.75% 22.54% 19.52% 61.10% 57.95% 45.71% 64.68% 

56374 21.52% 18.08% 31.92% 14.32% 17.38% 23.23% 21.90% 19.20% 60.95% 58.53% 46.02% 66.32% 

56459 21.30% 18.10% 32.14% 15.64% 16.92% 23.45% 21.16% 19.17% 61.62% 58.29% 46.54% 65.03% 

56462 21.67% 18.29% 32.68% 15.92% 17.28% 23.68% 21.55% 19.14% 60.90% 57.87% 45.61% 64.78% 

56475 21.49% 18.10% 32.49% 15.98% 16.36% 23.50% 22.08% 19.53% 62.00% 58.24% 45.28% 64.33% 

56479 20.42% 17.88% 31.34% 15.69% 16.35% 22.79% 19.36% 18.74% 63.07% 59.17% 49.14% 65.41% 

56485 21.44% 18.36% 32.78% 15.64% 17.43% 23.91% 21.82% 19.85% 60.97% 57.57% 45.24% 64.35% 

56543 21.52% 18.25% 32.51% 15.87% 16.97% 23.72% 21.78% 18.90% 61.35% 57.87% 45.56% 65.06% 

56565 21.21% 17.54% 30.93% 15.52% 17.81% 24.08% 23.55% 19.96% 60.83% 58.23% 45.36% 64.37% 

56571 21.62% 17.89% 31.31% 14.94% 17.03% 23.07% 20.83% 18.94% 61.19% 58.89% 47.70% 65.97% 

56586 21.73% 18.33% 21.73% 15.49% 17.35% 23.99% 17.35% 19.59% 60.76% 57.53% 60.76% 64.77% 

56651 20.90% 18.07% 32.46% 15.38% 17.78% 23.98% 22.13% 19.95% 61.16% 57.79% 45.25% 64.51% 

56664 20.94% 18.22% 32.43% 15.50% 16.64% 23.06% 21.00% 18.70% 62.26% 58.56% 46.42% 65.64% 

56666 21.06% 17.98% 31.59% 15.39% 18.03% 23.97% 22.41% 19.64% 60.76% 57.89% 45.84% 64.82% 

56671 20.71% 18.16% 32.55% 15.67% 16.53% 23.63% 21.89% 20.03% 62.61% 58.06% 45.41% 64.14% 

56684 21.36% 18.04% 32.65% 15.46% 17.72% 23.15% 21.95% 19.28% 60.76% 58.65% 45.24% 65.10% 

56778 21.63% 18.11% 32.25% 15.91% 17.31% 23.14% 22.11% 19.52% 60.90% 58.59% 45.48% 64.41% 

392 
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4.1 Model performance based on overall accuracy evaluations  393 

The multi-year annual (1990-2014) average seasonal precipitation over the Jinsha River Basin interpolated from WHU-SGCC, 394 

CHIRP and CHIRPS is shown in Fig. 4. There exist some differences in the spatial pattern of precipitation estimates. Overall, 395 

the WHU-SGCC method exhibits the similar spatial distribution of precipitation to the CHIRP and CHIRPS, while the WHU- 396 

SGCC method attenuated the intense rain in the central area. The statistical accuracy evaluations are needed to further analyze 397 

the performance of the WHU-SGCC method. 398 

Spring 

 

Summer 

 
Fall 

 
Winter 

 
 WHU-SGCC                       CHIRP                          CHIRPS 

 399 
Figure 4 The multi-year annual (1990-2014) average seasonal precipitation over the Jinsha River Basin interpolated from WHU-SGCC, 400 
CHIRP and CHIRPS. 401 

To test the performance of the WHU-SGCC method for precipitation estimates, the PCC, RMSE, BAE, BIAS, NSE, POD, 402 
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FAR, and CSI were calculated and are presented in Table 4 (the results were derived from the 22 clusters for the FCM in Rule 403 

2, as shown in Appendix E, and  =0.1 for the IDW in Rule 4 after the comparison of the RMSE). After the correction, the 404 

PCC in the WHU-SGCC method shows an improvement relative to the CHIRP and CHIRPS estimates. The spring and fall 405 

have better correlations than the summer and winter. In addition, the NSE of the WHU-SGCC provides substantial 406 

improvements over CHIRP and CHIRPS, especially in the spring and fall which were better than the summer and winter. The 407 

RMSE and MAE are the largest in the summer, followed by the fall, spring, and winter; however, the performances of the 408 

BIAS in the summer and fall are better than those in the spring and winter, which might be influenced by the greater 409 

precipitation in the summer and fall than in the spring and winter. The assessments of the POD and CSI are lowest, and the 410 

FAR is largest in the winter due to the overestimation of no rain events estimated by the satellite-based data set.  411 

Compared with the estimates of CHIRP and CHIRPS, the PCCs of the WHU-SGCC method are improved to more than 0.5 412 

in the spring and fall and to approximately to 0.5 in the winter. In addition, the RMSE and MAE of the WHU-SGCC were all 413 

lower than those of CHIRP and CHIRPS. The absolute values of the BIAS of the WHU-SGCC are substantial improved in the 414 

spring, followed by the summer, winter and fall. Although the absolute value of the BIAS of the WHU-SGCC in fall are not 415 

significantly better than those of CHIRP and CHIRPS, all of the values are approximately 0. The NSEs of the WHU-SGCC 416 

reached 0.2836, 0.2944 and 0.1853 in the spring, fall and winter, respectively, which are substantially better than the negative 417 

or zero values of CHIRP and CHIRPS. In the summer, the NSE of the WHU-SGCC is still negative, but it is improved to be 418 

nearly zero, which indicates that the adjusted results are similar to the average level of the rain gauge observations. It is worth 419 

noting that in the spring, summer and fall, the POD values of the WHU-SGCC are in the range of 0.95 to 1, better than CHIRP 420 

and CHIRPS, and the FAR values of the WHU-SGCC are no more than 0.3, lower than CHIRP and CHIRPS; these results 421 

represent the better ability of the WHU-SGCC method to predict precipitation events. The rainfall detection ability is the worst 422 

in the winter compared to the other seasons . This can be explained by the seasonal distribution of precipitation in the Jinsha 423 

River Basin, in which the most rainfall occurs in the summer, followed by the fall, spring and winter. In addition, the spatial 424 

distribution of C2 and C3 pixels might slightlyalso significantly impact the overall accuracy in different seasons that the 425 

sparsest in the wintermost uniform in the fall, while  more uniform in the summerthe sparsest in the winter. However, the 426 

performances of PCC, RMSE, MAE and NSE in the winter are better than those in the summer. The worst errors of forecasting 427 

performance in the summer may be attributed to the highest precipitation. The limited precipitation events detection in the 428 

winter could also be explained by the lowest precipitation (Xu et al., 2019). 429 

Table 4 Overall accuracy assessments for the four seasons from 1990 to 2014. 430 

Statistic 

Spring Summer Fall Winter 

WHU-

SGCC 
CHIRP CHIRPS 

WHU-

SGCC 
CHIRP CHIRPS 

WHU-

SGCC 
CHIRP CHIRPS 

WHU-

SGCC 
CHIRP CHIRPS 

PCC 0.5376 0.3644 0.2132 0.2536 0.2454 0.1924 0.5508 0.3889 0.2661 0.4722 0.2490 0.1716 

RMSE 2.9526 3.4332 5.1926 8.7608 9.4108 11.3354 4.7981 4.9038 7.7506 0.8120 0.9042 1.0569 

MAE 1.3380 1.5426 1.9948 5.4564 5.8415 7.0088 2.0973 2.2943 2.9925 0.2093 0.7398 0.6905 

BIAS -0.1148 -0.2490 -0.1783 -0.0167 -0.0443 -0.0134 -0.0566 -0.0563 -0.0231 -0.1775 -0.2083 -0.3093 

NSE 0.2836 0.0745 -1.0817 -0.0139 -0.2083 -0.8293 0.2944 0.0168 -1.4692 0.1853 0.0161 -0.3098 

POD 0.9605 0.8572 0.2918 0.9932 0.9578 0.4351 0.9612 0.9047 0.2326 0.6988 0.5786 0.2076 

FAR 0.2416 0.4515 0.3888 0.1146 0.2323 0.1601 0.2386 0.4301 0.2638 0.5242 0.7082 0.6381 

CSI 0.6928 0.5001 0.2335 0.8799 0.7405 0.401 0.7089 0.5303 0.2144 0.3668 0.2210 0.1352 

The spatial distributions of the statistical comparisons between the observations and the WHU-SGCC precipitation 431 

estimations are shown in Fig. 5 and Fig. 6. Overall, the variation in the PCC shows low correlations in areas with lower 432 

elevation, particularly in the southeast Jinsha River Basin, where there is higher precipitation and a greater density of rain 433 

gauges. The PCC is highest in the fall, followed by the spring and winter, and finally by summer. The higher correlations are 434 

located in the north-central area along the Tongtian River, Jinsha River and upstream part of the Yalong River, which has 435 
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complex terrain and few rain gauges. The RMSE is lowest in the winter than in the spring, fall and summer, which can be 436 

attributed to the lower precipitation in the winter and the greatest in the summer. The spatial distribution of the RMSE shows 437 

that, the smaller errors are scattered in the northwest area of the river basin, with values lower than 5 mm, while the highest 438 

errors are located along the border between the lower reaches of the Jinsha Jiang River and the river basin. This is related to 439 

the climate regimes of the Jinsha River Basin, which includes more rainfall in the south and southeast areas than in the north, 440 

and northwest. 441 

The results show that the WHU-SGCC method improves the correlation relative to CHIRP and CHIRPS, especially in 442 

central and southeast river basin during the spring, fall and winter, with most of the PCC values falling between 0.4 and 0.8 443 

(Fig. 5). As shown by the RMSE (Fig. 6), the WHU-SGCC can also correct the precipitation errors bias in the central and 444 

southeast river basin, especially along the downstream part of the Yalong River. In addition, the WHU-SGCC slightly 445 

improved the RMSE around the convergence of the rivers, where it is less than 5 mm in the spring and fall, and most of RMSE 446 

values are less than 1 mm in the winter. In spite of the correction, the RMSE values in the summer are s till substantial.  447 

 

Spring 

 
 

Summer 

 
 

Fall 
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 448 
Figure 5 Spatial distribution of the Pearson’s correlation coefficient of the overall agreement between observations and the WHU-SGCC, 449 
CHIRP and CHIRPS estimations in the four seasons from 1990 to 2014. 450 

All of the spatial distribution statistics indicate that the statistical relationships established during the process of the WHU-451 

SGCC method are susceptible to the mode values of the rain gauge stations data, especially in the summer. A lthough the 452 

average summer precipitation in the southern Jinsha River Basin was more than 600 mm (Fig. 2), days of light rain still 453 

represent a large percentage, which causes large biases and limits the performance over the south, while there are sufficien t 454 

data with similar precipitation features for the WHU-SGCC in the north. Nevertheless, the WHU-SGCC approach is still 455 

effective at adjusting the satellite biases by blending the data with the observations, particularly in the complicated 456 

mountainous regions, where higher PCCs correspond to lower RMSEs.  457 
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Fall 

 
 
Winter 

 
 WHU-SGCC                        CHIRP                           CHIRPS 

  458 

Figure 6 Spatial distribution of the root mean square errors of the overall agreement between observations and the WHU-SGCC, CHIRP 459 
and CHIRPS estimations in the four seasons from 1990 to 2014. 460 

4.2 Model performance based on daily accuracy evaluations  461 

After the overall accuracy evaluations were conducted, further evaluations of the daily accuracy in the four seasons were 462 

conducted, and the results are shown in Fig. 7. The evaluation of the daily accuracy indicates that the PCCs of the WHU-463 

SGCC were slightly better than those of CHIRP and CHIRPS in the spring, fall and winter but were not as good in the summer 464 

and winter. The WHU-SGCC had lower RMSEs and MAEs than CHIRP and CHIRPS, especially compared to CHIRPS. The 465 

daily RMSE and MAE in the summer are the highest, although the WHU-SGCC still corrects the errorsbias. Figure 7 indicates 466 

that there is a slight increase in the PCC, with average improvements of 0.02-0.04 and 0.04-0.14, respectively; however, the 467 

PCC is a relative metric of the magnitude of the association between paired variables, and a relative consistency may not 468 

indicate absolute proximity. Thus, the absolute measure indicated by the RMSE may be more reasonable. In this study, the 469 

RMSE and MAE derived from the WHU-SGCC are reduced by approximately 15% and 34% on average compared to CHIRP 470 

and CHIRPS, respectively. As for BIAS, WHU-SGCC method can correct the CHIRP precipitation bias in the spring, fall and 471 

winter, but the results are not as good compared with CHIRPS. The larger BIAS values and higher PCCs in the spring and fall 472 

may be attributed to the seasonal variations, when the CHIRP is highly consistent with the observations but subject to large 473 

biases. After the correction, a substantial decrease in BIAS occurs in the winter, and there is no significant reduction in t he 474 

summer; all of the median and average adjusted values are approximately 0. The WHU-SGCC method provides an obvious 475 

improvement in the NSE, with average improvements of 0.20-3.00 and 0.25-4.00  relative to CHIRP and CHIRPS, though 476 

the median and average values are still less than 0, which may be due to the inherent uncertainty in the CHIRP. Moreover, in 477 

terms of the POD, FAR and CSI, except for the results in winter, the WHU-SGCC method appears to be better at detecting 478 

precipitation than CHIRP and CHIRPS; the results of POD and CSI are closest to 1, although FAR is worse than CHIRPS on 479 

some days. However, the overall result of FAR is the best in the WHU-SGCC. The POD and FAR results are the worst in the 480 
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winter, and the CSI is slightly higher, which may be attributed to the overestimation of no -rain events and the inherent 481 

uncertainty in the CHIRP. 482 

Overall, the WHU-SGCC approach can be regarded as an effective tool for daily precipitation adjustments.  483 

 484 

 485 

 486 

 487 
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 488 

 489 

 490 

 491 
Figure 7 Statistical analysis of the agreement between the daily observations and the WHU-SGCC, CHIRP and CHIRPS estimates with the 492 
leave-one-out cross validation: a) Pearson’s correlation coefficient, b) root mean square error, c) mean absolute error, d) relative bias, e) 493 
Nash-Sutcliffe efficiency coefficient, f) probability of detection, g) false alarm ratio, and h) critical success index. 494 

4.3 Model performance on rain events predictions 495 

To measure the WHU-SGCC performance on predicting rain events, daily precipitation thresholds of 0.1, 10, 25, and 50 mm 496 

were considered, and the results are shown in Table 5 and Table 6. The average percentage of each class of rain events at the 497 



22 

 

validation gauge station during the four seasons from 1990 to 2014 are shown in Table 5. The major rain events within the 498 

Jinsha River Basin were no rain (<0.1 mm) and light rain (0.1-10 mm), which accounted for more than 80% of the total days 499 

(the average percentage of rain event days of the total days at each gauge station), while the number of days with daily 500 

precipitation greater than the 50 mm was the smallest (no more than 1% of the total days) and fewer than 5% of the days had 501 

daily precipitation in the range of 25 mm to 50 mm. In the spring, fall and summer, significantly more no-rain days occurred 502 

than rainy days, and approximately 5% of the days had daily precipitation of 10-50 mm. The seasonal distribution of rainfall 503 

was concentrated in the summer, and 54.76%, 14.01% and 3.62% of the days had  daily precipitation of 0.1-10, 10-25, and 25-504 

50 mm, respectively. The results indicated that the average daily precipitation was less than 10 mm throughout the years of 505 

the study. 506 

Table 5 The average percentage of each class of rain events at the validation gauge station during the four seasons from 1990 to 2014 within 507 
the Jinsha River Basin. 508 

Rain event 

(mm) 

Season 

<0.1 [0.1,10) [10,25) [25,50) >=50 

Spring 57.87% 38.43% 3.29% 0.39% 0.02% 

Summer 26.89% 54.76% 14.01% 3.62% 0.72% 

Fall 57.32% 36.62% 4.99% 0.93% 0.14% 

Winter 85.78% 13.99% 0.21% 0.01% 0.00% 

The WHU-SGCC approach had lower errors than CHIRP and CHIRPS, as indicated by the RMSE, MAE and BIAS, but the 509 

performance of WHU-SGCC is not promising for events with total rainfall greater than 25 mm in the summer (Fig. 8). This 510 

negative performance for total rainfall higher than 25 mm in the summer might be attributed to the overestimation of rainfall 511 

by CHIRP and CHIRPS. For the seasonal distribution of precipitation (Table 5), the average daily precipitation within the 512 

basin less than 10 mm over the study period, which results in numerous rain gauge station data with values lower than 10 mm, 513 

which had a significant impact on the establishment of statistical relationships for the WHU-SGCC. Besides the WHU-SGCC 514 

dataset has almost always a negative bias, while CHIRP and CHIRPS has a positive bias  in the different rain events . After bias 515 

correction of the WHU-SGCC, some precipitation estimates are lower than observations. The estimates of extreme rain events 516 

might also be attenuated during the process of WHU-SGCC adjustment. 517 

Besides, the POD and CSI results of CHIRPS are the worst, while the results of the WHU-SGCC are the highest, which 518 

indicate its superiority for the detection of precipitation events. As for the results of the WHU-SGCC, the assessments of POD 519 

and CSI are the best in the summer, followed by the fall, spring, and winter, which are related to the seasonal rainfall pattern 520 

of more rain in the summer and less in the winter. 521 

Therefore, the WHU-SGCC approach is applicable for the detection of rainfall events in the Jinsha River Basin, while in 522 

the summer it is better with rainfall less than or approximately equal to the average daily precipitation. Due to the 523 

homogenization of the WHU-SGCC method, its performance for short intense and extreme rain events was poorer than those 524 

of CHIRP and CHIRPS, which should be improved in a future study. 525 

 526 
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 527 
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 529 

 530 
Figure 8 Accuracy assessment of liquid precipitation events from 1990 to 2014. 531 

5 Data availability 532 

All the resulting dataset derived from the WHU-SGCC approach is available on PANGAEA, with the following DOI: 533 

https://doi.pangaea.de/10.1594/PANGAEA.900620 (Shen et al., 2019). The high-resolution (0.05°) daily precipitation 534 

estimation data over the Jinsha River Basin from 1990 to 2014 can be downloaded in TIFF format.  535 

6 Conclusions 536 

This study provides a novel approach, the WHU-SGCC method, for merging daily satellite-based precipitation estimates with 537 

observations. A case study of the Jinsha River Basin was conducted to verify the effectiveness of the WHU-SGCC approach 538 

during all four seasons from 1990 to 2014, and the adjusted precipitation estimates were compared to CHIRP and CHIRPS. 539 

The WHU-SGCC method aims to reduce the errors bias and uncertainties in CHIRP data over regions with complicated  540 

mountainous terrain and sparse rain gauges. To the best of the authors’ knowledge, this study is the first to use daily CHIRP 541 

and CHIRPS data in this area. 542 

According to our findings, the following conclusions can be drawn: (1) The WHU-SGCC method is effective for the 543 

https://doi.pangaea.de/10.1594/PANGAEA.900620
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adjustment of precipitation biases from points to surfaces. The precipitation adjusted by the WHU-SGCC method can achieve 544 

greater accuracy compared with CHIRP and CHIRPS, with average improvements of Pearson’s correlation coefficient (PCC) 545 

of 0.01-0.23 and 0.06-0.32, respectively. The PCCs were improved to more than 0.5 in the spring and fall and to approximately  546 

0.5 in the winter, and they were the worst in the summer, which may be attributed to the greater precipitation in the summer 547 

and lower precipitation in the winter. In addition, the NSE of the WHU-SGCC provides substantial improvements over CHIRP 548 

and CHIRPS, which reached 0.2836, 0.2944 and 0.1853 in the spring, fall and winter, respectively. In the summer, the NSE 549 

of the WHU-SGCC is still negative, but it is improved to be nearly zero, which indicates that the adjusted results are similar 550 

to the average level of the rain gauge observations. All of the measured errors were reduced except for the BIAS, which showed 551 

no significant improvement in the summer but was approximately 0. Overall, the WHU-SGCC approach achieves good 552 

performance in error correction of CHIRP and CHIRPS. (2) The spatial distribution of the precipitation estimate accuracy 553 

derived from the WHU-SGCC method is related to the topographic complexity. These errors over the lower elevation regions 554 

and the large size of light precipitation events with short durations resulted in a limited improvement in accuracy, with PCC 555 

values less than 0.3. However, higher PCCs and lower errors were observed over the north-central part of the river basin, which 556 

is a drier region with complex terrain and sparse rain gauges. The spatial distribution statistics indicate that the WHU-SGCC 557 

method is promising for the adjustment of satellite biases by blending with the observations over regions of complex terrain. 558 

(3) The leave-one-out cross validation of WHU-SGCC on daily rain events confirmed that the model is effective in the 559 

detection of precipitation events that are less than or approximately equal to the average annual precipitation in the Jinsha 560 

River Basin.The WHU-SGCC approach achieves reductions of the RMSE, MAE and BIAS metrics, while on rain events less 561 

than 25 mm in the summer. Specifically, the WHU-SGCC has the best ability to reduce precipitation errors bias for daily 562 

accuracy evaluations, with average reductions of 15% and 34% for compared to CHIRP and CHIRPS, respectively. As for the 563 

results of the WHU-SGCC, the assessments of POD and CSI are the best in the summer, followed by the fall, spring, and 564 

winter, which are related to the seasonal rainfall pattern of more rain in the summer and less in the winter. In spite of the 565 

corrections, the uncertainties in the precipitation forecasts in the summer are still largeperformance of the WHU-SGCC for 566 

short intense and extreme rain events was poorer than those of CHIRP and CHIRPS, and the bias in the precipitation forecasts 567 

in the summer are still large, which may due to the homogenization attenuating the simulation of extreme rain events estimates. 568 

In conclusion, the WHU-SGCC approach can help adjust the biases of daily satellite-based precipitation estimates over the 569 

Jinsha River Basin, which contains complicated mountainous terrain with sparse rain gauges. This approach is a promising  570 

tool to monitor daily precipitation over the Jinsha River Basin, considering the spatial correlation and historical precipitation 571 

characteristics between raster pixels in regions with similar topographic features . Future development of the WHU-SGCC 572 

approach will focus on the following three aspects: (1) the improvement of the adjusted precipitation quality to better monitor 573 

extreme rainfall events by blending multiple data sources for different rain events; (2) the introduction of more climatic factors 574 

and multi-model ensembles to achieve more accurate spatial distributions of precipitation; and (3) investigations of the 575 

performance over other areas  and for particular hydrological cases to validate the applicability of WHU-SGCC approach.  576 

Appendix A: Geographical characteristics of rain stations  577 

The station identification numbers and relevant geographical characteristics are shown in Table A1. 578 

Table A1 Geographical characteristics of the rain stations. 579 
Station number Province Lat (°N) Lon (°E) Elevation (m) 

52908 Qinghai 35.13 93.05 4823 

56004 Qinghai 34.13 92.26 4744 

56021 Qinghai 34.07 95.48 5049 

56029 Qinghai 33.00 96.58 4510 
56034 Qinghai 33.48 97.08 4503 

56144 Tibet 31.48 98.35 4743 
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56038 Sichuan 32.59 98.06 4285 

56146 Sichuan 31.37 100.00 4703 

56152 Sichuan 32.17 100.20 4401 

56167 Sichuan 30.59 101.07 3374 
56247 Sichuan 30.00 99.06 2948 

56251 Sichuan 30.56 100.19 4284 

56257 Sichuan 30.00 100.16 3971 

56357 Sichuan 29.03 100.18 4280 

56374 Sichuan 30.03 101.58 3902 
56459 Sichuan 27.56 101.16 3002 

56462 Sichuan 29.00 101.30 4019 

56475 Sichuan 28.39 102.31 1850 

56479 Sichuan 28.00 102.51 2470 

56485 Sichuan 28.16 103.35 2060 
56565 Sichuan 27.26 101.31 2578 

56571 Sichuan 27.54 102.16 1503 

56666 Sichuan 26.35 101.43 1567 

56671 Sichuan 26.39 102.15 1125 

56543 Yunnan 27.50 99.42 3216 
56586 Yunnan 27.21 103.43 2349 

56651 Yunnan 26.51 100.13 2449 

56664 Yunnan 26.38 101.16 1540 

56684 Yunnan 26.24 103.15 2184 

56778 Yunnan 25.00 102.39 1975 

Appendix B: Multi-year annual land cover type 580 

The multi-year annual land cover types in the Jinsha River Basin from 2001 to 2013 are shown in Fig. B1. All of the land 581 

cover type maps were derived from the MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid V051 data 582 

set, which is available online at https://search.earthdata.nasa.gov/search/granules?p=C200106111-583 

LPDAAC_ECS&q=MCD12&ok=MCD12 (last access: 23 July 2019). Fig. B1 shows that the land use had no obvious changes 584 

over the study period. In addition, the upstream area of the Jinsha River is  an untraversed region that has not been affected 585 

significantly by human activities. Thus, the land use in the study area has hardly changed.  586 

 587 

 588 
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 590 

 591 

Figure B1 Land cover types over the Jinsha River Basin from 2001 to 2013.  592 

Appendix C: Selection of decision trees for random forest regression 593 
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Figure C1 Changes in the out-of-bag (OOB) error with increasing number of decision trees by means of random forest regression at each 594 
gauge station. 595 
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Appendix D: Spatial distribution of C1, C2 and C3 pixels 604 

Table D1 Pixel type of the validation gauge station. 605 

Pixel type 

Validation  

gauge station 

Spring Summer Fall Winter 

52908 C4 C4 C4 C4 

56004 C4 C4 C4 C4 

56021 C2 C2 C2 C3 

56029 C2 C3 C2 C3 

56034 C2 C3 C2 C3 

56038 C4 C4 C4 C4 

56144 C4 C4 C4 C4 

56146 C4 C4 C4 C4 

56152 C2 C3 C3 C4 

56167 C4 C2 C2 C4 

56247 C4 C4 C4 C4 

56251 C2 C2 C3 C3 

56257 C4 C4 C4 C4 

56357 C4 C4 C4 C4 

56374 C4 C4 C3 C4 

56459 C4 C4 C4 C4 

56462 C4 C4 C4 C4 

56475 C4 C3 C3 C3 

56479 C4 C4 C4 C4 

56485 C3 C2 C2 C3 

56543 C3 C3 C4 C4 

56565 C2 C2 C3 C3 

56571 C2 C4 C4 C4 

56586 C2 C3 C2 C3 

56651 C3 C2 C2 C3 

56664 C4 C4 C4 C4 

56666 C3 C3 C3 C3 

56671 C3 C2 C2 C3 

56684 C2 C2 C2 C4 

56778 C4 C3 C3 C4 

 606 
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 608 

 609 
Figure D1 Spatial distribution of each class of pixels adjusted by each rule using the WHU-SGCC method in the Jinsha River Basin. 610 

 611 

Appendix E: Spatial Clustering from the FCM method 612 
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 613 
Figure E1 Optimum number of clusters determined by the maximum L(c) with the iterative process. 614 

 615 
Figure E2 Spatial clustering as defined by the FCM method in the Jinsha River Basin. 616 

This appendix shows how to set the number of clusters in the FCM method.  617 

To adjust the pixels other than those of the gauge stations, the pixels that are statistically similar to the C1 pixels were 618 

selected. According to Rule 2, the C2 pixels were identified in a spatial area defined by the FCM method. In the following  619 

experiments of Rule 2, we set the parameters 2, =0.00001m  , and the maximum number of iterations was set 1000 (  a 620 

sufficiently large value considering the algorithm efficiency). To determine the optimal numbers of clusters, the value of c was  621 

varied from 1 to 30 with an increment of 1.The values of L(c) during the running of the FCM are shown in Fig E1. The optimum 622 

number of clusters was 22, and the number of iterations was 690 less than the maximum number of iterations. 623 

Therefore, the number of clusters was set to 22, and the number of iterations was set to 1000 for full operation by means of 624 

the FCM. The spatial clustering results considering the terrain factors are shown in Fig. E2. In general, the spatial results of 625 

the FCM have many of the same characteristics as the areas defined by the terrain variations, especially with respect to the 626 

slope and runoff directions, which may influence the regional rainfall. 627 
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