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Dear Reviewer, 

 

Thank you for your insight comments and suggestions. We have modified the 

manuscript accordingly. We trust that all of your comments have been addressed 

accordingly in the revised manuscript. If you have further suggestions for changes, 

please let us know. The detailed corrections are listed below point by point:  

 

All changes in the manuscript are marked with red color.  

 

Minor comments  

(1)- Line 14: By mentioning the CHIRP database the University of Santa 

Barbara needs to be cited as developer. Thus, the sentence has to be changed in: the 

Climate Hazards Group InfraRed Precipitation (CHIRP, daily 0.05) satellite-derived 

precipitation developed by the UC Santa Barbara 

Answer: Thanks. Done. The University of Santa has been cited when mentioning the 

CHIRP database. 

Change: changed “the Climate Hazards Group Infrared Precipitation (CHIRP, daily, 

0.05°) satellite-derived precipitation estimates” to “the Climate Hazards Group Infrared 

Precipitation (CHIRP, daily, 0.05°) satellite-derived precipitation developed by the UC 

Santa Barbara over the Jinsha River Basin for the period of June-July-August in 2016” 

 

(2)- Line 52: When the CHIRPS dataset has been mentioned the developer (UC Santa 

Barbara et al.) has to cited as well. 

Answer: Thanks. Done. The University of Santa has been cited when mentioning the 

CHIRP database. 

Change: changed “the Climate Hazards Group Infrared Precipitation with Station data 

(CHIRPS)” to “the Climate Hazards Group Infrared Precipitation with Station data 

(CHIRPS) developed by the UC Santa Barbara” 

 

(3)- Line 109: Section 2.2 can to be compacted in only 2 subsections for a better reading: 

1) precipitation gauged observations and 2) gridded precipitation+CHIRPS 

Answer: Thanks. Done. Because the gridded precipitation used here was from China 



Meteorological Data Service, interpolated from 2472 rain gauge stations. The 

interpolated data with some errors was less accurate than the direct measurements from 

stations, for example, daily precipitation was more than 1000 mm at one interpolated 

grid point. So only the rain gauge observations were used to the new experiments. 

Change: We have only used rain gauge stations to conduct the WHU-SGCC method 

over the Jinsha River Basin during the summer seasons from 1990 to 2014. So we delete 

the relative sections (2.2.2 Gridded precipitation observations; 3.1.3 Rule 2 of the 

WHU-SGCC method). And we changed the classifications of the target pixels from “1) 

Classify all regional pixels into five types: C1 (pixel including one gauged station in its 

area), C2 (pixel including one gridded point), C3 (pixel physically similar to C1C2), 

C4 (pixel physically similar to C3) and C5 (remaining pixels).” to “Classify all regional 

pixels into four types: C1 (pixel including one gauge station in its area), C2 (pixel 

statistically similar to C1), C3 (pixel statistically similar to C2) and C4 (remaining 

pixels). ” 

 

(4)- Line 159: what’s “SICR approach”?  

Answer: Sorry. Thanks. The “SICR” approach must be clerical error. 

Change: This sentence has been changed “On this basis, the WHU-SGCC method 

identifies the geographical locations and topographical features of each pixel and 

applies the classification principles of the SICR approach, including five classification 

and blending rules.” to “On this basis, the WHU-SGCC method identifies the 

geographical locations and topographical features of each pixel and applies the four 

classification and blending rules.” 

 

(5)- Line 162 “C3 (pixel physically similar to C1C2)”. What does it mean “physically”? 

Answer: Thanks. Some studies indicate that pixels have similar precipitation features 

in certain spatial scope. And the size of spatial range can be determined by similar 

geographical location, elevation and other terrain information with the method of fuzzy 

c-means (FCM) clustering in this study. Because we deleted the gridded precipitation 

observations and changed the pixels classifications to “Classify all regional pixels into 

four types: C1 (pixel including one gauge station in its area), C2 (pixel statistically 

similar to C1), C3 (pixel statistically similar to C2) and C4 (remaining pixels).” So in 

the new experiments, we can assume that the C2 pixels have similar precipitation 

features (e.g. rainfall distribution) with C1 pixels in the same cluster, which may 

be better called statistically similar rather than physically similar. 

Change: We changed “C3 (pixel physically similar to C1C2), C4 (pixel physically 

similar to C3)” to “C2 (pixel statistically similar to C1), C3 (pixel statistically similar 

to C2)” 

 

(6)- Line 180 “: : :satellite precipitation estimations deviated from observed data : : :”. 

Really satellite precipitation even though retrieved are always measured data. Thus, it 

is better replacing the above sentence with: “satellite precipitation estimations deviated 

from ground-based measurements”  



Answer: Thanks. Done.  

Change: changed “satellite precipitation estimations deviated from observed data” to 

“satellite precipitation estimations deviated from ground-based measurements”. 

 

(7)- Section 4 – This section is too much subdivided getting quite difficult the reading. 

Please, let you group the discussion.  

Answer: Thanks. Done. 

Change: Because of the modification of the WHU-SGCC approach, the section 4 was 

adjusted accordingly. 

Now the section 4 was divided into 3 parts: 4.1 Model performance based on overall 

accuracy evaluations, 4.2 Model performance based on daily accuracy evaluations and 

4.3 Model performance on rain events predictions, which may be simpler for reading.  

 

(8)- Table 6: What’s “wet precipitation?” You mean, probably liquid precipitation, right? 

Answer: Yes. Thanks. It is a good idea to state that the paper focus is on liquid 

precipitation (rainfall) and this term would be used throughout.  

Change: changed “wet precipitation” to “liquid precipitation”. 

And we stated in the introduction “Here, we will use precipitation to name liquid 

precipitation throughout the text.” 

 

Major comments to Authors  

The proposed manuscript tries to improve the performance of the CHIRP/S datasets by 

statistically adjusting the original data over complex terrain. The general statistics 

described in table 5 reveals very light improvements even though WHU-SGCC 

performs better and CHIRPS dataset seems to be worse also respect to raw data 

(CHIRP). Skipping to the performance evaluation for rain categories, how do you 

justify the inversion of BIAS tendency from the category (5,10) to > 40 (see table 6)? 

The accuracy of WHU-SGCC method seems to be limited to low precipitation (<10, 

not >20) where the model tends to overestimate. For precipitation greater than 10 the 

WHU-SGCC starts to underestimate. Please, let u clarify this! Really, the validation of 

the WHU-SGCC method is only limited to the Jinsha River Basin in summertime 2016 

thus new and more accurate validation campaigns have to be done. On that, the 

challenging efforts to apply and validate a new method over orographically complex 

terrain have to be supported by new application on similar morphology where the rain-

gauges are typically sparse. Furthermore, since during the monsoon season 

precipitation is typically higher than 20 mm, how the WHU-SGCC will perform? Of 

course, this question needs to be exhaustively answered by a new validation using the 

same methodology described in the manuscript. 

Answer: The CHIRPS was derived from blending in-suit precipitation observations 

and the CHIRP data, with a modified inverse-distance weighting algorithm at a quasi-

global area (land only, 50° S-50° N). The blended data (CHIRPS) has an effective 

performance on a large scale region according to existing studies, such as at the national 

scale, but there are still large discrepancies with ground observations at the sub-regional 



level, especially at the river basin scale. The performance and applicability of CHIRPS 

at the sub-regional level still need to be validated. What’s more, the interpolation 

performance from the limited and sparse rain gauge stations will be affected by more 

errors which was evaluated with rain gauge stations shown in Table 5.   

As such, due to the poor performance of CHIRPS data at the sub-regional scale and the 

shortcomings of the modified inverse-distance weighting algorithm, the aim of this 

article is to offer a novel blending approach to improve the precipitation estimated 

accuracy at the river basin scale.  

The Jinsha River Basin is a typically study area, with the complex and varied terrains 

that the range of elevation is from 263 to 6575 m above sea level, which results in 

significant temporal and spatial weather variation within the basin. What’s more, the 

multi-year (1990-2014) average annual precipitation increases from north to south and 

the spatial distribution of precipitation is uneven, with an average annual precipitation 

ranging from less than 250 mm to more than 600 mm during the summer seasons over 

the Jinsha River Basin. However, the number of rain gauges stations is limited inside 

the river basin which cause precipitation estimations bias a lot.  

In the previous experiment, the rain gauge stations and gridded points were used as the 

reference precipitation data. From that data, the training samples represented 70% of 

total gauged stations and gridded points, and the remaining data were used to verify the 

model performance. And the WHU-SGCC approach was evaluated for the Jinsha River 

Basin for JJA 2016.  

However, the gridded precipitation used here was from China Meteorological Data 

Service, interpolated from 2472 rain gauge stations, which was less accurate than the 

rain gauge stations observations, for example, daily precipitation was more than 1000 

mm at one interpolated grid point. So only the 30 rain gauge stations were used in the 

new WHU-SGCC experiments. In the new experiment, selecting 30% of the stations 

for validation was not an appropriate validation method, while the leave-one-out cross 

validation was a better instead for using all the stations in WHU-SGCC correction 

algorithm. What’s more, in order to evaluate the model performance more reasonably, 

the study period was changed from summer of 2016, JJA to a longer study period during 

June-July-August from 1990 to 2014. 

In the results, the days of each class of rain events at the validation gauge station during 

the JJA from 1990 to 2014 were shown in Table 6 in the paper and the following figure. 

The major rain events inside the Jinsha River Basin were light rain (0.1-10 mm), 

accounting for 54.76% of the total days (the average percentage of rain event days in 

its total days at each gauge station), while the days with daily precipitation over the 50 

mm was least, only accounting for 0.72%. And the percentage of the daily precipitation 

of <0.1, 10-25, and 25-50 mm were 26.89%, 14.01% and 3.62% respectively. The result 

indicated that the average daily precipitation was less than 10 mm, though in the 

summer seasons during the multi-year. As well as, the spatial distribution of 

precipitation was also uneven, with an increase from north to south. In terms of 

performance with respect to different daily rain events, the WHU-SGCC approach had 

the lowest error, as indicated by RMSE, MAE and BIAS for events with total rainfall 

less than 25 mm which can represents the mainly precipitation conditions over the 



Jinsha River basin. 

 
The WHU-SGCC approach blended daily precipitation gauge data and the CHIRP 

satellite-derived precipitation, considering the spatial correlation and the historical 

precipitation characteristics. Therefore, the applicability of the WHU-SGCC method 

over the complicated mountainous terrain with sparse rain gauge data could be 

confirmed by the multi-year validation.  

It is quite a worthy advice that applying and validating the WHU-SGCC method over 

the other similar terrain area where the sparse rain-gauges layout. But during the he 

revision period, our major work was on the study period extension and the method 

modification, the validation on the other area would be carried on further research. 
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Title: WHU-SGCC: A novel approach for blending daily satellite (CHIRP) and 

precipitation observations over Jinsha River Basin 

Journal: Earth System Science Data 

Type: Article 

 

Dear Reviewer, 

 

Thank you for your insight comments and suggestions. We have modified the 

manuscript accordingly. We trust that all of your comments have been addressed 

accordingly in the revised manuscript. If you have further suggestions for changes, 

please let us know. The detailed corrections are listed below point by point:  

 

All changes in the manuscript are marked with red color.  

 

General Comments 

The manuscript describes a very interesting method to correct random and systematic 

errors from satellite infrared precipitation estimates based on gauge data and grid points 

from interpolated precipitation fields. The manuscript is well structured and present 

links to access all the data that is used in the work. However, I found that the analysis 

period (summer of 2016, JJA) is too short to make significant conclusions about this 

precipitation dataset. Also, the manuscript could have explored another ways to analyze 

and evaluate the dataset other than the very conventional use of statistical metrics, that 

are definitely needed, but the authors could have explored beyond that. Maybe using a 

case study or exploring the usefulness of the data for a particular hydrological 

application would be helpful. The dataset published with the manuscript is of good 

quality and is stored in a standard and easy to read format. I suggest that the authors 

make another English revision, especially regarding the use of articles and prepositions. 

Answer:  

Thank you for your advices on the analysis period, method, validation and the syntax 

modification. 

The WHU-SGCC approach is a promising tool to monitor the summer precipitation 

over the Jinsha River Basin, considering the spatial correlation and historical 

precipitation characteristics. 

However, in the previous experiment, the analysis period (summer of 2016, JJA) was 

too short to make significant conclusions. Therefore, in order to evaluate the model 

performance more reasonably, the study period was changed from summer of 2016, 

JJA to a longer study period during June-July-August from 1990 to 2014. 

What’s more, the rain gauge stations and gridded points were used as the reference 

precipitation data in the previous experiment. Now, due to the gridded precipitation 



interpolated from 2472 rain gauge stations, which was less accurate than the rain gauge 

stations observations, for example, daily precipitation was more than 1000 mm at one 

interpolated grid point (This data can be obtained from the China Meteorological Data 

Service). In hence, only the 30 rain gauge stations were used in the new WHU-SGCC 

experiments and the validation method was changed from “selecting 30% of the stations 

for validation” to leave-one-out cross validation for using all the rain gauge stations. 

Based on this, the WHU-SGCC was also modified for better precipitation correction. 

It is quite a worthy advice that using a case study or exploring the usefulness of the 

data for a particular hydrological application. But the monitoring data for water level 

and velocity at the gauge stations are not available online, which limits the input data 

for hydrological model. Nevertheless, we are applying to hydro-graphic office. The 

validation on a particular hydrological case would be carried on further research. 

In the new experiment, the applicability of the WHU-SGCC method over the 

complicated mountainous terrain with sparse rain gauge data could be confirmed by the 

multi-year statistical validation over the Jinsha River Basin.  

 

Specific Comments 

(1)- Line 18: It was evaluated not only by categorical indices. 

Answer: Thanks. The performance of WHU-SGCC approach was evaluated by 

multiple error statistics and from different perspectives, such as overall accuracy, daily 

accuracy and performance on different rain events. 

Change: So according to your advice, we changed “which is evaluated by categorical 

indices” to “which is evaluated by multiple error statistics and from different 

perspectives”. 

 

(2)- Line 28: The number of gauge stations is actually very limited, especially in regions 

with complex terrain and in the case of gauges that measure solid precipitation. 

Accuracy of this gauges is also not very good in the case of solid precipitation. It would 

be a good idea to state that the paper focus is on liquid precipitation (rainfall), and use 

this term throughout the text. 

Answer: Thanks. It is a good idea to state that the paper focus is on liquid precipitation 

(rainfall) and this term would be used throughout.  

Change: We changed “In general, ground-based gauge networks include a substantial 

number of precipitation observations measured with high accuracy” to “In general, 

ground-based gauge networks include a substantial number of liquid precipitation 

observations measured with high accuracy” 

Changed “As such, the aim of this article is to offer a novel approach for blending daily 

precipitation gauge data, gridded precipitation data and the Climate Hazards Group 

Infrared Precipitation (CHIRP) satellite-derived precipitation estimates developed by 

the UC Santa Barbara, over the Jinsha River Basin.” to “As such, the aim of this article 

is to offer a novel approach for blending daily liquid precipitation gauge data and the 

Climate Hazards Group Infrared Precipitation (CHIRP) satellite-derived precipitation 



estimates developed by the UC Santa Barbara, over the Jinsha River Basin.” 

Added “Here, we will use precipitation to name liquid precipitation throughout the text.” 

 

(3)- Line 35: I found this line confusing in the way it is phrased. I think this sentence 

could be phrased this way: “Satellite estimates are susceptible to systematic biases that 

can influence hydrological modelling.”  

Answer: Thanks. Done.  

Change: We changed “However, the retrieval algorithms for satellite-based 

precipitation estimates are susceptible to systematic biases in hydrologic modelling and 

are relatively insensitive to light rainfall events” to “However, satellite estimates are 

susceptible to systematic biases that can influence hydrological modelling and the 

retrieval algorithms are relatively insensitive to light rainfall events”. 

 

(4)- In the introduction, I think that a better description of what is available to estimate 

precipitation from satellites is missing. For example, GOES-R and GPM are missing in 

the description.  

Answer: Thanks. Done. The description of GEOS-R and GPM has been added into 

introduction. 

Change: 

Added the description into introduction: 

1) The Global Precipitation Measurement (GPM) satellite was launched after the 

success of the TRMM satellite by the cooperation of National Aeronautics and 

Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) 

on February 27, 2014 (Mahmoud et al., 2018;Ning et al., 2016). The main core 

observatory satellite (GPM) cooperates with the ten other satellites (partners) to 

offer the high spatiotemporal resolution products (0.1° × 0.1°- half- hourly) of the 

global real-time precipitation estimates (Mahmoud et al., 2019).  

2) 2) The Geostationary Operational Environmental Satellite (GOES)-R Series is the 

geostationary weather satellites, which significantly improves the detection and 

observation of environmental phenomena. The Advanced Baseline Imager (ABI) 

onboard the GOES-R platform will provide images in 16 spectral bands, spatial 

resolution of 0.5 to 2 km (2 km in the infrared and 1–0.5 km in the visible), and 

full-disk scanning every 5 minutes over the continental United States. The GOES-

R Series will offer the enhanced capabilities for satellite-based rainfall estimation 

and nowcasting (Behrangi et al., 2009;Schmit et al., 2005). 

Added the relevant references: 

Behrangi, A., Hsu, K. L., Imam, B., Sorooshian, S., Huffman, G. J., and Kuligowski, R. 

J.: PERSIANN-MSA: A Precipitation Estimation Method from Satellite-Based 

Multispectral Analysis, J. Hydrometeorol., 10, 1414-1429, 

10.1175/2009jhm1139.1, 2009. 

Mahmoud, M. T., Al-Zahrani, M. A., and Sharif, H. O.: Assessment of global 

precipitation measurement satellite products over Saudi Arabia, Journal of 



Hydrology, 559, 1-12, 10.1016/j.jhydrol.2018.02.015, 2018. 

Mahmoud, M. T., Hamouda, M. A., and Mohamed, M. M.: Spatiotemporal evaluation 

of the GPM satellite precipitation products over the United Arab Emirates, 

Atmospheric Research, 219, 200-212, 10.1016/j.atmosres.2018.12.029, 2019. 

Ning, S., Wang, J., Jin, J., and Ishidaira, H.: Assessment of the Latest GPM-Era High-

Resolution Satellite Precipitation Products by Comparison with Observation 

Gauge Data over the Chinese Mainland, Water, 8, 481-497, 

doi:10.3390/w8110481,2016. 

Schmit, T. J., Gunshor, M. M., Menzel, W. P., Gurka, J. J., Li, J., and Bachmeier, A. S.: 

Introducing the next-generation Advanced Baseline Imager on goes-R, Bulletin of 

the American Meteorological Society, 86, 1079-+, 10.1175/bams-86-8-1079, 2005. 

 

(5)- Line 62: That are other sources of uncertainty in the monitoring of rainfall in 

complex terrain (e.g., orographic enhancement). 

Answer: Thanks. Done. In existing studies, they found that topography, seasonality, 

and climate impacted on the satellite-based precipitation estimations performance. 

Change: We changed “estimations over mountainous areas with complex topography 

often have large uncertainties and systematic errors due to the sparseness of rain gauges 

(Zambrano-Bigiarini et al., 2017)” to “estimations over mountainous areas with 

complex topography often have large uncertainties and systematic errors due to the 

topography, seasonality, climate impact and sparseness of rain gauges (Derin et al., 

2016;Maggioni and Massari, 2018;Zambrano-Bigiarini et al., 2017)” and we added the 

relevant references. 

 

(6)- Line 94: I was not able to understand the average precipitation over the Yangtze 

River Basin. You could be more specific about what statistic you are presenting here. 

Usually what is presented is the spatially averaged annual accumulation of precipitation 

as an indication of precipitation climatology for the region.  

Answer: Thanks. Done. We have used the average annual precipitation as an indication 

of precipitation climatology for the study region.  

Change:  

1) We changed “The river’s catchment proximately covers an area of ~180 × 104 km2.In 

2016, the average precipitation in the Yangtze River Basin was 12053 mm and the total 

precipitation was 21478.7195 billion m3, which is 10.9% higher than the annual 

average total precipitation” to “The river’s catchment proximately covers an area of 

approximately ~180 × 104 km2 and the average annual precipitation is approximately 

1100 mm (Zhang et al., 2019).” 

2)We changed “Average annual precipitation in the Jinsha River Basin is approximately 

3433.45 mm, the total annual precipitation north of Shigu is 937.25 mm, while south 

of Shigu annual precipitation is 2496.20 mm.” to “The average annual precipitation of 

the Jinsha River Basin is approximately 710 mm, the average annual precipitation of 

the lower reaches is approximately 900-1300 mm, while the average annual 



precipitation of the middle and upper reaches is approximately 600-800 mm (Yuan et 

al., 2018).” 

 

 (7)- Line 98: I was not able to comprehend the units for the area of the basin. It should 

be presented as km2. 

Answer: Thanks. The units for watershed area (the area of the basin) are km2. 

Change: We changed “covering a watershed area of 460 × 103 km2” to “covering a 

watershed area of 460 × 103 km2”. 

 

(8)- Line 102: Topography would not exert a temporal variation in climate, since this 

is not a very dynamic feature of the Earth’s surface. It could exert a temporal variation 

in weather though. 

Answer: Thanks. It is indeed that complex and varied terrains would not exert a 

temporal variation in climate due to relatively stable feature of Earth’s surface. 

However, a temporal variation in weather would be susceptible to topography. 

Change: We changed “which results in significant temporal and spatial climate 

variation within the basin” to “which results in significant temporal and spatial weather 

variation within the basin” 

 

(9)- Lines 102 and 103: Please try be consistent with the statistics you are using here. 

Answer: Thanks. Done. We have been consistent with the statistics and used the 

average annual precipitation as an indication of precipitation climatology for the study 

region.  

Change:  

We changed “Average annual precipitation in the Jinsha River Basin is approximately 

3433.45 mm, the total annual precipitation north of Shigu is 937.25 mm, while south 

of Shigu annual precipitation is 2496.20 mm.” to “The average annual precipitation of 

the Jinsha River Basin is approximately 710 mm, the average annual precipitation of 

the lower reaches is approximately 900-1300 mm, while the average annual 

precipitation of the middle and upper reaches is approximately 600-800 mm (Yuan et 

al., 2018).” 

 

(10)- Line 134: Maybe explain better what is the CHPClim product. 

Answer: Thanks. Done. The reference (Funk, C., Verdin, A., Michaelsen, J., Peterson, 

P., Pedreros, D., and Husak, G.: A global satellite-assisted precipitation climatology, 

Earth Syst. Sci. Data, 7, 275-287, 10.5194/essd-7-275-2015, 2015) can better explain 

the CHpClim product. We have added the reference to the sentence (monthly 

precipitation from CHPClim) and make some changes. 

Change: We have changed “monthly precipitation from CHPClim” to “monthly 

precipitation from CHPClim v.1.0 (Climate Hazards Group’s Precipitation Climatology 

version 1) derived from the combination of the satellite fields, gridded physiographic 

indicators, and in situ climate normal with the geospatial modelling approach based on 



moving window regressions and inverse distance weighting interpolation (Funk et al., 

2015 b)” 

 

(11)- Line 146: Which CHIRPS data? The data from its stations? Or the blended 

product? Please make this clear here. 

Answer: Thanks. It was stated from section 2.2.2 that CHIRPS data is a blended 

product interpolating from CHIRP data and in situ precipitation observations obtained 

from a variety of sources including national and regional meteorological services (Funk 

et al., 2014).  

Change: We changed a more accurate explain for CHIRPS data used for comparisons 

of precipitation accuracy. Changed “and the corresponding daily CHIRPS data was 

used for comparisons of precipitation accuracy” to “and the corresponding daily 

CHIRPS blended data was used for comparisons of precipitation accuracy” 

 

(12)- Line 162: What do you mean about physically similar? Is this means that these 

pixels are related to others based on its physical attributes (lat, long, elevation, slope, 

aspect, and curvature)? Or this means that is similar is terms of rainfall distribution? If 

is in terms of rainfall, I think a better world would be statistically similar rather than 

physically similar, since this is based on a cluster analysis. 

Answer: Thanks. We assumed that the C2 pixels have similar precipitation features 

(e.g. rainfall distribution) with C1 pixels in the same cluster, which may be better called 

statistically similar rather than physically similar. 

Change: We changed “C3 (pixel physically similar to C1C2), C4 (pixel physically 

similar to C3)” to “C2 (pixel statistically similar to C1), C3 (pixel statistically similar 

to C2)” 

 

(13)- Line 170: Please explain why you chose 30% of the stations/grid points for 

validation. Since the stations and grid points are of limited number, it would not be 

better to do a Bootstrap validation instead? Then you are able to use all the stations/grid 

points in your correction algorithm. 

Answer: Thanks. The number of rain gauge stations over the Jinsha River Basin is 

limited. And because the gridded precipitation used here was from China 

Meteorological Data Service, interpolated from 2472 rain gauge stations, which was 

less accurate than the rain gauge stations observations, for example, daily precipitation 

was more than 1000 mm at one interpolated grid point. So only the 30 rain gauge 

stations were used to the new experiments. In the new experiment, selecting 30% of the 

stations for validation was not an appropriate validation method, while the leave-one-

out cross validation was a better instead for using all the stations in WHU-SGCC 

correction algorithm. And the analysis period was changed from (summer of 2016, JJA) 

to “during the JJA from 1990 to 2014”. 

Change: We changed the validation method from “The proposed approach was 

evaluated for the Jinsha River Basin for JJA 2016. From that data, the training samples 

represented 70% of total gauged stations and gridded points, and the remaining data 



were used to verify the model performance.” to “The proposed approach was evaluated 

over the Jinsha River Basin based on 30 gauge stations and CHIRP satellite-based 

precipitation estimations during the JJA from 1990 to 2014. The leave-one-out cross 

validation step was applied to computing the out-of-sample adjusted error with gauge 

stations.” 

 

(14)- Lines 224 and 225: Since your method relies heavily on the cluster algorithm, it 

would not be better to use some sort of statistical metric to define the number of clusters? 

Answer: Thanks. Done. The optimum number of clusters was determined by L(c) 

which was derived from the inter-distance and inner-distance of samples in the 

following equation. It is ensured that the distance between the same samples is smaller, 

while the distance between the different samples is larger. 
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In that equation, the denominator is inner-distance and the molecular is inter-distance. 

The initial value of c is 1 and the maximum value of c is the number of gauge stations 

in this study area. The optimum number of clusters was optimized to maximize the L(c). 

For this reason, c value is conducted in the range from 1 to the number of gauge stations 

with an incremental interval value of 1 in this study. This result was shown in Appendix 

B. 

Change: We added the L(c) metric to determine the optimum number of clusters and 

the Fig. B1 (The optimum number of clusters determined by the maximum L(c) with 

the iterative process) was given. Based on this, the optimum number of clusters was set 

22 in this study. 

 

Figure The optimum number of clusters determined by the maximum L(c) with the iterative process. 

 

(15)- Line 234: Pixels should also be similar regarding precipitation characteristics, is 

that right? 

Answer: Thanks. Some studies indicate that pixels have similar precipitation futures in 



certain spatial scope. And the size of spatial range can be determined by similar 

geographical location, elevation and other terrain information with the method of fuzzy 

c-means (FCM) clustering in this study. Therefore, in each cluster, pixels both have the 

similar terrain features and precipitation characteristics. 

Change: We changed “Pixels in each cluster have similar terrain features” to “Pixels 

in each cluster have similar terrain features and precipitation characteristics”. 

 

(16)- Line 244: I think you should use the word relationship or correlation instead of 

confidence in this line. 

Answer: Thanks. Done. 

Change: We changed “confidence is not only determined by the value of the correlation 

coefficient but also from the correlation test’s p value” to “correlation is not only 

determined by the value of the correlation coefficient but also from the correlation test’s 

p-value”. 

 

(17) Line 259: Why the number of decision trees was set to 500? 

Answer: Thanks. Done. The number of decision trees was set to 500, which was 

determined by out-of-bag (OOB) error (Appendix A). The OOB error reached the 

minimum value when the number of decision trees was less than 500.   

Change: We calculated the OOB-error of Random forest regression with the increase 

of the number of decision trees from 1 to 500 at each rain gauge station and the Fig. A1 

shown the change of out-of-bag (OOB) error with the number of decision trees increase 

in appendix. 

 

(18)- Line 264: Do C1 and C2 pixels included in the R pixel category? 

Answer: No. Thanks. In the previous experiment, C1 and C2 pixels were not included 

in the R pixels. Now, in the new experiment, we changed the classification of C2, C3 

and C4 pixels. Because the gridded precipitation used here was from China 

Meteorological Data Service, interpolated from 2472 rain gauge stations. The 

interpolated data with some errors was less accurate than the direct measurements from 

stations, for example, daily precipitation was more than 1000 mm at one interpolated 

grid. So only the rain gauge observations were used to the new experiments. And we 

changed the classifications of the target pixels from “1) Classify all regional pixels into 

five types: C1 (pixel including one gauged station in its area), C2 (pixel including one 

gridded point), C3 (pixel physically similar to C1C2), C4 (pixel physically similar to 

C3) and C5 (remaining pixels).” to “Classify all regional pixels into four types: C1 

(pixel including one gauge station in its area), C2 (pixel statistically similar to C1), C3 

(pixel statistically similar to C2) and C4 (remaining pixels). ” 

Change: So with the new experiment, we changed “pixels in each cluster represent 

potential C3 pixels, with exception of the C1 and C2 pixels and are called R pixels” to 

“With exception of the C1 pixels, the remaining pixels in each cluster represent 

potential C2 pixels called R pixels” 

 

(19)- Lines 267 and 280: Are you also considering only SCC values with p-value lower 



than 0.05 here? 

Answer: Yes. Thanks. The correlation coefficient value higher than 0.5 and the p-value 

lower than 0.05 were considered for C2 pixels selection. 

In the new experiment, we changed the statistical metric of SCC to Pearson’s 

correlation coefficient (PCC) because PCC measures the linear correlation between two 

series better than SCC to evaluate the adjusted precipitation accuracy. 

Change: Changed “both the data with a maximum SCC of at least 0.5 and the 

corresponding index of C1 and C2 pixels” to “both the data with a maximum PCC of 

at least 0.5 and a p-value lower than 0.05 (Zhang and Chen, 2016)” 

 

 

(20)- Line 287: Why did you choose the 10 mm value? Could you please explain the 

meaning of this constant better? 

Answer: Thanks. In Eq.(11), the relationship between C2 pixels and the corresponding 

CGURP grid cells is expressed by the ratio: 
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where λ is a positive constant to avoid the denominator value being 0 when CHIRP grid 

cell value was 0. (Sokol, 2003) tested various λ values indicated that the selected value 

was not too closely related to the calibration set.  

In Rule 3, the values of C3 pixels are derived from Eq. (12): 

3 max( ( ) ,0)as sC w Y                                 (12) 

In this equation, the 𝜆 set to 10 mm made the calculating simpler, and other values are 

also available. 

 

(21)- Line 298: Please use the actual percentage here. 

Answer: Thanks. In the previous experiment, each C5 pixel value is set to be the same 

as the CHIRP grid cell value at the corresponding position, because of the few number 

of the C5 pixels. However, in the new experiment, we abandoned the gridded 

precipitation observations and only the 30 rain gauge stations with four rules were used 

to conduct the WHU-SGCC approach. The C5 pixels were changed to C4 pixels for 

Rule 4 and the percentage of C4 pixels is around 60% of the total number of pixels over 

the study area. (Due to the leave-one-out cross validation step, the different training 

samples will have the different number of C2, C3 and C4 pixels respectively inside the 

Jinsha River Basin). So that, the Inverse Distance Weighted (IDW) method was used to 

obtain the C4 pixels values. 

Change: We added the Table 4 (The number of each class pixels adjusted by each rule 

using the WHU-SGCC method inside the Jinsha River Basin.) which lists the clearer 

number and percentage of each class pixels. And the Fig.4 in the previous paper was 

deleted. 

Table 4 The number of each class pixels adjusted by each rule using the WHU-SGCC method              

inside the Jinsha River Basin. 



Validation  

gauge station 

C1 Pixels 

(%) 

C2 Pixels 

(%) 

C3 Pixels 

(%) 

C4 Pixels 

(%) 

52908 29 (0.16%) 3066 (16.59%) 4224 (22.85%) 11163 (60.40%) 

56004 29 (0.16%) 2882 (15.59%) 4111 (22.24%) 11460 (62.01%) 

56021 29 (0.16%) 3311 (17.91%) 4510 (24.40%) 10632 (57.53%) 

56029 29 (0.16%) 3338 (18.06%) 4447 (24.06%) 10668 (57.72%) 

56034 29 (0.16%) 3300 (17.86%) 4427 (23.95%) 10726 (58.03%) 

56038 29 (0.16%) 3209 (17.36%) 4014 (21.72%) 11230 (60.76%) 

56144 29 (0.16%) 3347 (18.11%) 4442 (24.03%) 10664 (57.70%) 

56146 29 (0.16%) 3183 (17.22%) 4480 (24.24%) 10790 (58.38%) 

56152 29 (0.16%) 3173 (17.17%) 4176 (22.59%) 11104 (60.08%) 

56167 29 (0.16%) 3362 (18.19%) 4346 (23.51%) 10745 (58.14%) 

56247 29 (0.16%) 3385 (18.32%) 4416 (23.89%) 10652 (57.63%) 

56251 29 (0.16%) 3301 (17.86%) 4348 (23.53%) 10804 (58.46%) 

56257 29 (0.16%) 3313 (17.93%) 4043 (21.88%) 11097 (60.04%) 

56357 29 (0.16%) 3352 (18.14%) 4390 (23.75%) 10711 (57.95%) 

56374 29 (0.16%) 3341 (18.08%) 4294 (23.23%) 10818 (58.53%) 

56459 29 (0.16%) 3345 (18.10%) 4334 (23.45%) 10774 (58.29%) 

56462 29 (0.16%) 3380 (18.29%) 4377 (23.68%) 10696 (57.87%) 

56475 29 (0.16%) 3345 (18.10%) 4344 (23.50%) 10764 (58.24%) 

56479 29 (0.16%) 3305 (17.88%) 4212 (22.79%) 10936 (59.17%) 

56485 29 (0.16%) 3393 (18.36%) 4419 (23.91%) 10641 (57.57%) 

56543 29 (0.16%) 3373 (18.25%) 4384 (23.72%) 10696 (57.87%) 

56565 29 (0.16%) 3241 (17.54%) 4450 (24.08%) 10762 (58.23%) 

56571 29 (0.16%) 3306 (17.89%) 4263 (23.07%) 10884 (58.89%) 

56586 29 (0.16%) 3387 (18.33%) 4434 (23.99%) 10632 (57.53%) 

56651 29 (0.16%) 3340 (18.07%) 4432 (23.98%) 10681 (57.79%) 

56664 29 (0.16%) 3368 (18.22%) 4262 (23.06%) 10823 (58.56%) 

56666 29 (0.16%) 3323 (17.98%) 4431 (23.97%) 10699 (57.89%) 

56671 29 (0.16%) 3356 (18.16%) 4367 (23.63%) 10730 (58.06%) 

 

(22)Line 326: You should be clearer on what the numbers of pixels are here. Is this the 

number of pixels inside the basin multiplied by the number of days? It would be a good 

idea to describe the exact number of pixels for each class along with its actual 

percentage in the text. 

Answer: Thanks. Done.  

Change: We added the Table 4 (The number of each class pixels adjusted by each rule 

using the WHU-SGCC method inside the Jinsha River Basin.) with the exact number 

of pixels for each class along with its actual percentage. And the Fig.4 in the previous 

paper was deleted. 

The sentence was added into the paper to describe the number and the percentage of 

each class pixels inside the basin “The number of C1 pixels was the number of training 

gauge stations accounting 0.16% of the total pixels (18482) inside the basin. Due to the 

leave-one-out cross validation step, the different training samples will have the different 



number of C2, C3 and C4 pixels respectively inside the Jinsha River Basin. The number 

of C4 pixels was approximately 10822 with the percentage around 60%, the number of 

C3 pixels was approximately 4331 with the percentage ranging from 21.72% to 24.40%, 

and the number of C2 pixels was approximately 3300 with the percentage ranging from 

15.59% to 18.36%.” 

 

(23)- Line 341: It would be better to use the same x axis scale in both plots. It seems 

that the gridded data observation has similar biases as CHIRP and thus their CDFs are 

more similar, providing less improvement in the adjusted dataset.  

Answer: Thanks. According to the new experiment, we changed the Rule 1for the C1 

pixels without Adj-QM, so the CDFs were not needed. 

Change: We changed the Rule 1 from Adj-QM to establishing the regression 

relationships between each gauge historical observations and the corresponding CHIRP 

grid cell value by means of Random Forest Regression. And we deleted the relative 

sections 4.1 and 4.2 in the previous paper. So the section 4: Results and Discussion only 

include 4.1 Model performance based on overall accuracy evaluations, 4.2 Model 

performance based on daily accuracy evaluations, and 4.3 Model performance on rain 

events predictions. 

 

(24)- Line 355: It would be a good idea to explore and discuss more the statistics 

presented in Figure 7.  

Answer: Because of the multi-year period studied in the new experiment, we modified 

the WHU-SGCC method. In the new experiment, due to the leave-one-out cross 

validation step using all the stations, the performance of WHU-SGCC method would 

be evaluated on the overall accuracy, not on a certain class of pixels. So we didn’t 

evaluate the C3 pixels separately. 

Change: The evaluation of C3 pixels and Figure 7 were deleted.   

 

(25)- Line 373: NSE values have increased, but still not very good (i.e., still negative). 

Answer: Thanks. The NSE (Nash and Sutcliffe, 1970) determines the relative 

magnitude of the variance of the residuals compared to the variance of the observations, 

bounded by minus infinity to 1.  

Change: In the new experiment, the NSE of WHU-SGCC method was -0.0137 with an 

increase of 93.33% and 98.32% to CHIRP and CHIRPS, respectively. 

Although the NSE of WHU-SGCC was far less than 1, it was improved to be 0 that 

indicates the adjusted results were close to the average level of the rain gauge 

observations, while the NSEs of CHIRP and CHIRPS were much worse. 

 

(26)- Line 376: Is not intuitive that the evaluation metrics are better for CHIRP than 

CHIRPS, since CHIRPS adds stations data to their dataset. Could you please clarify 

this? I am seeing here that magnitude evaluation metrics have not changed considerably, 

probably because the improvement is seem in the low magnitude events. SCC has a 

considerable increase, but still cannot explain much of the variability of rainfall in the 

region. POD values are good. 



Comments 1): Is not intuitive that the evaluation metrics are better for CHIRP than 

CHIRPS, since CHIRPS adds stations data to their dataset. Could you please clarify 

this? 

Answer: The CHIRPS was derived from blending in-suit precipitation observations 

and the CHIRP data, with a modified inverse-distance weighting algorithm at a quasi-

global area (land only, 50° S-50° N). The blended data (CHIRPS) has an effective 

performance on a large scale region, such as at the national scale, but there are still large 

discrepancies with ground observations at the sub-regional level, especially at the river 

basin scale. The performance and applicability of CHIRPS at the sub-regional level still 

need to be validated. What’s more, the interpolation performance from the limited and 

sparse rain gauge stations will be affected by more errors which was evaluated with 

rain gauge stations shown in Table 5.   

As such, due to the poor performance of CHIRPS data at the sub-regional scale and the 

shortcomings of the modified inverse-distance weighting algorithm, the aim of this 

article is to offer a novel blending approach to improve the precipitation estimated 

accuracy at the river basin scale. 

Change: We changed the sentence from “As such, the aim of this article is to offer a 

novel approach for blending daily precipitation gauge data, gridded precipitation data 

and the Climate Hazards Group Infrared Precipitation (CHIRP) satellite-derived 

precipitation estimates over Jinsha River Basin.” to “As such, due to the poor 

performance of CHIRPS data at the sub-regional scale and the shortcomings of the 

existing blending algorithms, the aim of this article is to offer a novel approach for 

blending daily liquid precipitation gauge data and the Climate Hazards Group Infrared 

Precipitation (CHIRP) satellite-derived precipitation estimates developed by the UC 

Santa Barbara, over the Jinsha River Basin.” for better explanation. 

Comments 2): I am seeing here that magnitude evaluation metrics have not changed 

considerably, probably because the improvement is seem in the low magnitude events. 

SCC has a considerable increase, but still cannot explain much of the variability of 

rainfall in the region. POD values are good. 

Answer: In the previous experiment, the training samples represented 70% of total 

gauged stations and gridded points, and the remaining data were used to test model 

performance. This validation was not able to use all the rain gauge stations and the same 

validation set may not fully explain the performance on the Jinsha River Basin. As such, 

in the presented experiment, the leave-one-out cross validation step was a better instead 

for using all the stations in WHU-SGCC correction algorithm.  

What’s more, the analysis period (summer of 2016, JJA) is too short to make significant 

conclusions about this precipitation dataset, so we changed the period during June-July-

August from 1990 to 2014, 92 days per year for 25 years totally. 

Change: We use the leave-one-out cross validation to instead the fixed training and 

testing sets. And we also changed a longer study period during June-July-August from 

1990 to 2014, to evaluate the model performance on different rainfall events.  

In the results, the days of each class of rain events at the validation gauge station during 

the JJA from 1990 to 2014 were shown in Table 6 in the paper and the following figure. 

The major rain events inside the Jinsha River Basin were light rain (0.1-10 mm), 



accounting for 54.76% of the total days (the average percentage of rain event days in 

its total days at each gauge station), while the days with daily precipitation over the 50 

mm was least, only accounting for 0.72%. And the percentage of the daily precipitation 

of <0.1, 10-25, and 25-50 mm were 26.89%, 14.01% and 3.62% respectively. The result 

indicated that the average daily precipitation was less than 10 mm, though in the 

summer seasons during the multi-year. As well as, the spatial distribution of 

precipitation was also uneven, with an increase from north to south. In terms of 

performance with respect to different daily rain events, the WHU-SGCC approach had 

the lowest error, as indicated by RMSE, MAE and BIAS for events with total rainfall 

less than 25 mm which can represents the precipitation conditions over the Jinsha River 

basin. 

 
 

 

(27)- Line 383: Could this means that because the daily precipitation in the lowland 

region of the basin is higher, the RMSE values are also higher? 

Answer:  

In terms of performance with respect to different daily rain events, the WHU-SGCC 

approach had the lowest error, as indicated by RMSE, MAE and BIAS for events with 

total rainfall lower than and 25 mm, but WHU-SGCC performance for total rainfall 

higher than 25mm did not improve compared to CHIRP and CHIRPS (Table 7), though 

it was better than that of CHIRPS. This negative performance on the total rainfall higher 

than 25 mm was probably caused by the precipitation conditions inside the Jinsha River 

Basin (Table 6). The average daily precipitation was less than 10 mm inside the basin, 

during the multi-year summer seasons, which provided a large amount of rain gauge 

stations data with the values lower than 10 mm, that caused a significantly impact on 

the statistical relationships establishment for WHU-SGCC. In hence, the approach of 

WHU-SGCC is applicable for the detection of rainfall events over the Jinsha River 

Basin, with the average daily precipitation less than 10 mm, or even than 25mm. Due 

to the 4.34% of summer days with the daily precipitation over the 25 mm, the 

performance of WHU-SGCC on these rain events was poorer than the results of CHIRP 

and CHRPS. 

 



(28)- Line 388: The fact that your method performs well in complex terrain is a very 

positive point in your manuscript, but you will need a longer study period to confirm 

this finding. 

Answer: Thanks. Done. 

Change: we changed the study period from summer of 2016, JJA to a longer study 

period during June-July-August from 1990 to 2014, to evaluate the model performance 

more reasonably. 

 

(29)- Line 402: The boxplots do not show that the higher reduction is seen in the Bias 

metric.  

Answer: We redraw the boxplots of the statistical analysis of the agreement between 

daily observations and WHU-SGCC, CHIRP and CHIRPS estimates on leave-one-out 

cross validation during the JJA from 1990 to 2014. 

And now the section 4 was divided into 3 parts: 4.1 Model performance based on 

overall accuracy evaluations, 4.2 Model performance based on daily accuracy 

evaluations and 4.3 Model performance on rain events predictions. 

Change: Redraw the boxplots. 

The slight reduction was reflected in the BIAS, with an 8% to 45% reduction compared 

to CHIRP and CHIRPS, while all the values were concentrated between -0.5 and 0.5. 

Therefore, all the precipitation estimations derived from WHU-SGCC, CHIRP, and 

CHIRPS represented well agreement with the observations in relative bias. 

 

(30)- Line 417: I am still confused about which rainfall value is presented is this figure. 

It does not seem realistic that the average daily rainfall would be ~ 200 mm. Please be 

more specific about which rainfall statistic you are using in this figure. 

Answer: Thanks. This may the error in gridded precipitation observations. 

Because the gridded precipitation used in pervious experiment was from China 

Meteorological Data Service, interpolated from 2472 rain gauge stations. The 

interpolated data with some errors was less accurate than the direct measurements from 

stations, for example, daily precipitation was more than 1000 mm at one interpolated 

grid.  

Change: We have only used 30 rain gauge stations to conduct the WHU-SGCC method 

over the Jinsha River Basin during the summer seasons from 1990 to 2014.  

 

(31)- Line 430: The evaluation metrics for the threshold values are quite similar among 

the three precipitation products. Just because the values for WHU-SGCC become 

slightly worse for precipitation higher than 20 mm/day does not mean they are 

significantly different from the other products. Since the values are very similar, I 

would suggest to test their differences statistically before making the assumption that 

WHU-SGCC works better for low magnitude events. This might also be caused by the 

limitation of the short study period. There is a tendency to use the word scale for a 

temporal dimension, better to use period instead. I think it would be interesting to add 

a map with the accumulated precipitation for the study period. The analysis period of 



92 days is too short to make conclusive assumptions about the dataset usefulness in the 

region, which are made several times throughout the text. I understand why the authors 

want to focus on the summer months to avoid the higher biases introduced by solid 

precipitation, but I did not understand why they only performed the evaluation for one 

summer season. Is there a particular reason for that? I still think that is hard to make the 

conclusions you made based on 92 days, if you add more seasons to the analysis this 

can become a very interesting manuscript and dataset. 

Answer: Thanks. In the previous experiment, the analysis period (summer of 2016, JJA) 

is too short to comment about this precipitation dataset.  

Changed:  

1) We added more summer seasons from 1990 to 2014, 92 days per year for 25 years 

totally to make a more reasonable conclusive.  

2) And we added a map with the multi-year (1990-2014) average annual precipitation 

(Fig. 2). The multi-year average annual precipitation increases from north to south and 

the spatial distribution of precipitation is uneven, with an average annual precipitation 

ranging from less than 250 mm to more than 600 mm during the summer seasons over 

the Jinsha River Basin. 

 

Figure 2 The multi-year (1990-2014) average annual precipitation during JJA over the Jinsha River Basin. 30 rain 

stations were provided by the China Meteorological Administration stations, the other 18 CHIRPS fusion stations 

were provided by the Climate Hazards Group UC Santa Barbara online at 

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/diagnostics/global_monthly_station_density/tifs/p05/ 

(last access: 10 December, 2018).  

3) The result indicated that the average daily precipitation was less than 10 mm, though 

in the summer seasons during the multi-year. As well as, the spatial distribution of 

precipitation was also uneven, with an increase from north to south. In terms of 

performance with respect to different daily rain events, the WHU-SGCC approach had 

the lowest error, as indicated by RMSE, MAE and BIAS for events with total rainfall 

less than 25 mm which can represents the precipitation conditions over the Jinsha River 

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/diagnostics/global_monthly_station_density/tifs/p05/


basin. 

According to the comparison, the WHU-SGCC approach achieves error reductions 

for the RMSE, MAE and BIAS statistics for rain events less than 25 mm. Specifically, 

compared with CHIRP, the RMSE value was reduced by approximately by 5.92%-

39.44%, the MAE value by 4.28%-12.41%, and the absolute  BIAS value by 9.15%-

44.43%; compared with CHIRPS, the RMSE and MAE values were reduced by 

11.04%-56.61%, and the absolute BIAS value by 23.77% -59.58%. 

Table 7 Accuracy assessment on liquid precipitation events during the JJA from 1990 to 2014 

 RMSE MAE BIAS 

Rain Event 
WHU- 

SGCC 
CHIRP CHIRPS 

WHU- 

SGCC 
CHIRP CHIRPS 

WHU- 

SGCC 
CHIRP CHIRPS 

<0.1 4.7253 5.0802 7.1643 2.5927 2.9562 2.9145 / / / 

[0.1,10) 4.1661 6.8684 9.6022 3.9885 4.5534 6.2462 0.8021 1.4435 1.9842 

[10,25) 10.4281 11.0848 13.4427 9.2722 9.6866 11.5909 -0.5762 0.6342 0.7559 

[25,50) 25.7494 24.5600 25.4975 24.8386 23.0967 23.4927 -0.7784 0.7250 0.7388 

50 56.6072 54.5037 52.7875 54.4168 52.1557 49.4318 -0.8861 0.8297 0.7852 

 

(32)- The dataset seems to be of good quality. A few comments about it are the 

following. For a spatial extent of this magnitude I think it would be better to use a 

geographic coordinate system, rather than a Mercator projection. There is also some 

artifacts (0 precipitation values) that appear at the same location at multiple days. I was 

wondering if this is a limitation from the negative values of Rule 4. Is there any way to 

correct this? This dataset could be very useful if its period is extended to multiple years. 

Answer: Thanks. The average annual precipitation of the Jinsha River Basin is less and 

the spatial distribution of precipitation is uneven, with an average annual precipitation 

ranging from less than 250 mm to more than 600 mm during the summer seasons. So 

there are also possible no rain in some locations at multiple days over the north of 

Jinasha River Basin. The negative values derived from Rule 3 (in the new experiment, 

the Rule 4 was changed to the Rule 3) were not too closely related to the zero 

precipitation values appearing at the same location at multiple days.  

Change: The results images of the WHU-SGCC method were changed from “Mercator 

projection” to “geographic coordinate system: WGS_84”  

 

Technical Corrections 

(1) Line 2: Change “over Jinsha” for “over the Jinsha”. 

Answer: Thanks. Done.  

Change: We changed “over Jinsha” to “over the Jinsha”. 

 

(2) Line 31: Change “distributed” for “spatial distribution”. 

Answer: Thanks. Done.  

Change: We changed “their uneven distributed” to “their uneven spatial distribution”. 

 

(3) Line 37: “without adjustment” is mentioned twice. 



Answer: Thanks. Deleted one “without adjustment”.  

Change: We changed “Without adjustments, inaccurate satellite-based precipitation 

estimates without adjustment will lead to unreliable assessments of risk and reliability” 

to “Without adjustments, inaccurate satellite-based precipitation estimates will lead to 

unreliable assessments of risk and reliability” 

 

(4) Line 68: In table 1, it should be written “PERSIANN-CDR” instead of 

“PRESSIANN-CDR”. 

Answer: Thanks. Done.  

Change: We changed “PRESSIANN-CDR” to “PERSIANN-CDR” 

 

(5) Line 84: Change “in summer 2016” for “in the summer of 2016”. 

Answer: Thanks. Done.  

Change: We added the seasons in analysis period, so we changed “in summer 2016” to 

“over the Jinsha River Basin during the summer seasons from 1990 to 2014” 

 

(6) Line 93: Change “proximately covers an area” for “covers an area of approximately”. 

Answer: Thanks. Done.  

Change: We changed “The river’s catchment proximately covers an area of ~180 × 104 

km2” to “The river’s catchment covers an area of approximately ~180 × 104 km2” 

 

(7) Line 95: Change “sub-regions” for “sub-basins”. 

Answer: Thanks. Done.  

Change: We changed “sub-regions” to “sub-basins” 

 

(8) Line 136: Change “precipitation observations” for “surface based precipitation 

observations”. 

Answer: Thanks. Done.  

Change: We changed “precipitation observations” to “surface based precipitation 

observations”. 

 

(9) Line 157: Change “other pixels” for “the remaining pixels”. 

Answer: Thanks. Done.  

Change: We changed “other pixels” to “the remaining pixels”. 

 

(10) Line 159: The acronym “SIRC” meaning was not mentioned before. 

Answer: Sorry. Thanks. The “SICR” approach must be clerical error. 

Change: This sentence has been changed “On this basis, the WHU-SGCC method 

identifies the geographical locations and topographical features of each pixel and 

applies the classification principles of the SICR approach, including five classification 

and blending rules.” to “On this basis, the WHU-SGCC method identifies the 

geographical locations and topographical features of each pixel and applies the five 

classification and blending rules.” 



 

(11) Line 169: The first sentence could be placed before the item 1. 

Answer: Thanks. Done.  

Change: We changed this sentence into the first phase in section 3.1, as the reference 

to the overview of items 1-4. And we changed the validation method from “The 

proposed approach was evaluated for the Jinsha River Basin for JJA 2016. From that 

data, the training samples represented 70% of total gauged stations and gridded points, 

and the remaining data were used to verify the model performance.” to “The proposed 

approach was evaluated for over the Jinsha River Basin based on 30 gauge stations and 

CHIRP satellite-based precipitation estimations during the JJA from 1990 to 2014. The 

leave-one-out cross validation step was applied to computing the out-of-sample 

adjusted error with gauge stations.” 

 

 

(12) Line 171: Is the same phrase that is shown in line 163. 

Answer: Thanks. Line 171 and line 163 are repeated.  

Change: We deleted the repeated phrase in line 163.  

 

(13) Line 172: The flowchart: CHIRP resolution should be 0.05 x 0.05. In the first box 

of rule 3, change “and gauged” for “with gauged”. In the last box of rule 3, change “can 

derive” for “can be derived”. In rule 4, change “ration” for “ratio” (this happens twice 

here). 

Answer: Thanks. Done. Because we changed the rules of WHU-SGCC, the flowchart 

was redrawn. 

Change: In the flowchart, we changed the CHIRP resolution from “0.5° × 0.5°” into 

“0.05° × 0.05°” 

changed “can derive” to “can be derived” 

changed “ration” to “ratio” (two modifications) 

The modified flowchart is as follows: 



Daily Gauge Observation

(30 rain gauges, JJA 1990-2014)

Daily CHIRP

(0.05°× 0.05°, JJA 1990-2014) 

Random forest regressions between gauged observations and 

the corresponding CHIRP grid cell values at C1 pixels

Determining the C2 pixels by calculating PCC between CHIRP 

grid cell values at C1 pixels and the remaining pixels 

Spatial scope determined by FCM

Determining the C3 pixels by calculating PCC between  CHIRP 

grid cell values at  C2 pixels and the remaining pixels 

The adjustment method for C2 pixels can be derived from the 

regression models of the corresponding C1 pixels

|PCC| ≥ 0.5 and p < 0.05

Calculating the precipitation ratio at C2 pixels

|PCC| ≥ 0.5 and p < 0.05

Rule 3

Rule 1

C3 pixels adjusted by the same precipitation ratio with the 

corresponding C2 pixel

Rule 2

The  remaining pixels are C4 pixels, the pixel values at C1 and 

C4 pixels are interpolated by IDW with C2 and C3 pixels
Rule 4

 
 

(14) Line 189: Change “as” for “in”. 

Answer: Thanks. Done.  

Change: We changed the “as Eq. (2)” to “in Eq. (2)”. 

 

(15) Line 246: Change “p” for “p-value”. 

Answer: Thanks. Done.  

Change: We changed the “p value” to “p-value”. 

 

(16) Line 283: The word “method” is repeated twice. 

Answer: Thanks. Done. 

Change: We deleted the repeated word “method”. Changed “a method for merging 

method the CHIRP grid cell values” to “a method for merging the CHIRP grid cell 

values” 

 

(17) Line 300: Change “for summer (JJA) 2016” for “for the summer (JJA) of 2016”. 

Answer: Thanks. Done. 

Change: We changed the “for summer (JJA) 2016” to “for the summer (JJA) of 2016”. 

 

(18) Line 315: Change “as” for “in”. 

Answer: Thanks. Done. 

Change: We changed the “All of the accuracy assessment indices are shown as Table 

3” to “All of the accuracy assessment indices are shown in Table 3”. 

 



(19) Line 326: Change “to be adjusted” for “adjusted”. 

Answer: Thanks. Done. 

Change: We changed the “There were 18482 daily pixels to be adjusted” to “There 

were 18482 daily pixels adjusted”. 

 

(20) Line 340: Change “study” for “studies”. 

Answer: Thanks. Done. 

Change: We changed the “supports further study” to “supports further studies”. 

 

(21) Line 400: Change “with especially greatly decreases compared to CHIRPS” for 

“with greater decreases when compared to CHIRPS”. 

Answer: Thanks. Done. 

Change: We changed the “with especially greatly decreases compared to CHIRPS” to 

“especially the greater decreases when compared to CHIRPS”. 

 

(22) Line 451: Change “in summer 2016” for “in the summer of 2016”. 

Answer: Thanks. Done. 

Change: We changed the “in summer 2016” to “in the summer from 1990 to 2014”. 

 

(23) Line 456: Change “over region has” for “over a region that has”. 

Answer: Thanks. Done. 

Change: We changed the “over region has” to “over a region that has”. 

 

(24) Line 465: Change “of the precipitation region” for “of precipitation events in the 

region”. 

Answer: Thanks. Done. 

Change: We changed the “of the precipitation region” to “the large size of light 

precipitation events with short duration rainstorms in the region resulted in a limited 

improvement in accuracy”. 

 

(25) Line 466: Change “short” for “short duration”.  

Answer: Thanks. Done. 

Change: We changed the “during short rainstorms” to “with short duration rainstorms”. 

 

(26) Line 468: Change “complicated mountainous” for “complex terrain”. 

Answer: Thanks. Done. 

Change: We changed the “complicated mountainous region” to “complex terrain”. 

 

(27) Line 480: Change “topographic and long time series climatic factors” for 

“topographic factors and longer time series”. 

Answer: Thanks. Done. Due to the longer time series data has been taken into the new 

experiment, the future development was changed. 

Change: We changed the “topographic and long time series climatic factors” to “more 

climatic factors and mulit-model ensemble”. 



Reply to Reviewer 3 

Manuscript ID: essd-2018-150 

Title: WHU-SGCC: A novel approach for blending daily satellite (CHIRP) and 

precipitation observations over Jinsha River Basin 

Journal: Earth System Science Data 

Type: Article 

 

Dear Reviewer, 

 

Thank you for your insight comments and suggestions. We have modified the 

manuscript accordingly. We trust that all of your comments have been addressed 

accordingly in the revised manuscript. If you have further suggestions for changes, 

please let us know. The detailed corrections are listed below point by point:  

 

All changes in the manuscript are marked with red color.  

 

 

The manuscript presents a new method for combining high-resolution daily satellite 

precipitation estimates with rain gauge observations. The method is applied and 

evaluated over the Jinsha River Basin for the summer period in 2016 (June, July 

August). The performance of the method is compared to already existing satellite 

datasets CHIRP, which is also the base for the new dataset, and CHIRPS. The evaluation 

reveals an improvement in accuracy of precipitation estimates with rain rates of less 

than 20 mm per day compared to CHIRP and CHIRPS, however, the chosen time period 

of just 3 months seems to be rather short for this somewhat general conclusion. For 

heavy precipitation, however, no improvement could be found. The dataset and the 

blending method are described and the data is available for free. 

The manuscript fits in the scope of ESSD, but some issues need to be addressed. I 

recommend taking the following suggestions and comments into account: 

1. 

(1)- It is not quite clear to me what exactly is the reference dataset in this study. On 

page 6, line 170 the authors state that 70% of the total gauged stations and gridded 

points were used as the training dataset and the remaining 30% serve as reference 

dataset. How was decided which station / grid point was used for training and which 

station / grid point was used for evaluation? As I understand it is a mixture between 

actual station measurements and gridded, i.e. interpolated, station data. Is the ratio for 

both data types also 70% training and 30% reference data points? Is there a difference 

in performance metrics when only one of the two datasets is used for evaluation? Direct 

measurements from stations might be even more accurate than the interpolated data. 

Answer: In the previous experiment, the 30 rain gauge stations and 170 gridded points 



were used as the “true” precipitation values. However, the gridded precipitation data 

was from China Meteorological Data Service, interpolated from 2472 rain gauge 

stations, which was less accurate than the direct measurements from stations, for 

example, daily precipitation was more than 1000 mm at one interpolated grid point. So 

only the rain gauge observations were used to the new experiments. What’s more, 

selecting 30% of the stations for validation was not an appropriate validation method, 

while the leave-one-out cross validation step was a better instead for using all the 

stations in WHU-SGCC correction algorithm 

Change: We have only used 30 rain gauge stations as the reference precipitation values 

to conduct the WHU-SGCC method. We changed from “The proposed approach was 

evaluated for the Jinsha River Basin for JJA 2016. From that data, the training samples 

represented 70% of total gauged stations and gridded points, and the remaining data 

were used to verify the model performance.” to “The proposed approach was evaluated 

over the Jinsha River Basin based on 30 gauge stations and CHIRP satellite-based 

precipitation estimations during the JJA from 1990 to 2014. The leave-one-out cross 

validation step was applied to computing the out-of-sample adjusted error with gauge 

stations.” 

 

(2)- A more detailed description of the reference dataset and decision making process 

is desirable, e.g. a map with the mean or the sum of precipitation during the observation 

period at the reference grid points and stations. 

Answer: Thanks. Done.  

Changed: We added a map with the multi-year (1990-2014) average annual 

precipitation (Fig. 2). The multi-year average annual precipitation increases from north 

to south and the spatial distribution of precipitation is uneven, with an average annual 

precipitation ranging from less than 250 mm to more than 600 mm during the summer 

seasons over the Jinsha River Basin. 



 

Figure 2 The multi-year (1990-2014) average annual precipitation during JJA over the Jinsha River Basin. 30 rain 

stations were provided by the China Meteorological Administration stations, the other 18 CHIRPS fusion stations 

were provided by the Climate Hazards Group UC Santa Barbara online at 

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/diagnostics/global_monthly_station_density/tifs/p05/ 

(last access: 10 December, 2018).  

 

(3)- As far as I understand, using this evaluation dataset implies that only C1 and C2 

grid points are evaluated, because they contain either a rain gauge station or a grid point 

of the interpolated station data. Is that correct? Can the authors give an assessment on 

the quality of the method at C3 and C4 pixels? 

Does the selection of the stations and grid points for training have an influence on the 

model performance? Depending on the location of the points for adjustment the quality 

of the blended dataset may vary. An ensemble study using different compositions of the 

pool of training stations / grid points would give statistically more robust results. 

Answer: Thanks. In the new experiment, the leave-one-out cross validation step using 

all the stations was used to evaluate the performance of the WHU-SGCC algorithm. 

The training set was used to establish statically relationships when conducting the 

WHU-SGCC method, and the remaining one gauge station was used to evaluate. The 

adjusted process shown that the adjustment method for C2 pixels was derived from C1 

pixels, the adjustment method for C3 pixels was derived from C2 pixels, and the 

adjusted values for C1 and C4 pixels were interpolated by IDW with C2 and C3 pixels. 

There were statistically relationship among C1, C2, C3 and C4 pixels. Thus, the 

performance of WHU-SGCC method would be evaluated on the overall accuracy, not 

on a certain class of pixels.  

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/diagnostics/global_monthly_station_density/tifs/p05/


2. 

(1)- CHIRP data is used as basis for the WHU-SGCC dataset and it is shown that the 

blending approach leads to better (light and moderate rainfall) or similar (heavy 

precipitation) results compared to measurements. CHIRPS, however, seems to perform 

much worse than the original CHIRP dataset although it is also adjusted to rain gauges. 

Can the authors give an explanation for that?  

Answer: The CHIRPS was derived from blending in-suit precipitation observations 

and the CHIRP data, with a modified inverse-distance weighting algorithm at a quasi-

global area (land only, 50° S-50° N). The blended data (CHIRPS) has an effective 

performance on a large scale region according to existing studies, such as at the national 

scale, but there are still large discrepancies with ground observations at the sub-regional 

level, especially at the river basin scale. The performance and applicability of CHIRPS 

at the sub-regional level still need to be validated. What’s more, the interpolation 

performance from the limited and sparse rain gauge stations will be affected by more 

errors which was evaluated with rain gauge stations shown in Table 5.   

As such, due to the poor performance of CHIRPS data at the sub-regional scale and the 

shortcomings of the modified inverse-distance weighting algorithm, the aim of this 

article is to offer a novel blending approach to improve the precipitation estimated 

accuracy at the river basin scale. 

Change: We changed the sentence from “As such, the aim of this article is to offer a 

novel approach for blending daily precipitation gauge data, gridded precipitation data 

and the Climate Hazards Group Infrared Precipitation (CHIRP) satellite-derived 

precipitation estimates over Jinsha River Basin.” to “As such, due to the poor 

performance of CHIRPS data at the sub-regional scale and the shortcomings of the 

existing blending algorithms, the aim of this article is to offer a novel approach for 

blending daily liquid precipitation gauge data, gridded precipitation data and the 

Climate Hazards Group Infrared Precipitation (CHIRP) satellite-derived precipitation 

estimates developed by the UC Santa Barbara, over the Jinsha River Basin.” for better 

explanation. 

 

(2)- It would also be desirable to expand the investigated period to get more robust 

results, e.g. add more summer seasons from other years. 

Answer: Thanks. Done. 

Change: we changed the study period from summer of 2016, JJA to a longer study 

period during June-July-August from 1990 to 2014, to evaluate the model performance 

more reasonably. 

 

 

 

 

 

 

 

 



Specific comments 

(1) - P.1, L.37: There is twice “without adjustment” in the sentence 

Answer: Thanks. Deleted one “without adjustment”.  

Change: We changed “Without adjustments, inaccurate satellite-based precipitation 

estimates without adjustment will lead to unreliable assessments of risk and reliability” 

to “Without adjustments, inaccurate satellite-based precipitation estimates will lead to 

unreliable assessments of risk and reliability”. 

 

(2) - P.2, L.63 and 65: Remove the brackets at Bai et al. and Trejo et al. 

Answer: Thanks. Done.  

Change: We removed the brackets at Bai et al. and Trejo et al. 

 

(3) - P.3, L.89: Section 5 is about data availability. Section 6 presents conclusions 

Answer: Thanks. Done.  

Change: changed from “The results and discussion are analysed in Section 4, and 

conclusions and future work are presented in Section 5.” to “The results and discussion 

are analysed in Section 4, the data available is described in Section 5, and conclusions 

and future work are presented in Section 6.” 

 

(4) - P.3, L.102-103: I’m a bit confused here. Does “average annual precipitation”, 

“annual precipitation” and “total annual precipitation” mean the same thing? Or is the 

total (for me this refers to the sum) of the precipitation north of Shigu almost four times 

smaller than the mean annual precipitation in the whole Jinsha River Basin? 

Answer: Thanks. Done. We have used the spatially averaged annual accumulation of 

precipitation as an indication of precipitation climatology for the study region. The 

reference (Yuan, Z., Xu, J. J., and Wang, Y. Q.: Projection of Future Extreme 

Precipitation and Flood Changes of the Jinsha River Basin in China Based on CMIP5 

Climate Models, Int. J. Environ. Res. Public Health, 15, 17, 10.3390/ijerph15112491, 

2018.) can support the average annual precipitation statistic. 

Change: We changed “Average annual precipitation in the Jinsha River Basin is 

approximately 3433.45 mm, the total annual precipitation north of Shigu is 937.25 mm, 

while south of Shigu annual precipitation is 2496.20 mm.” to “The average annual 

precipitation of the Jinsha River Basin is approximately 710 mm, the average annual 

precipitation of the lower reaches is approximately 900-1300 mm, while the average 

annual precipitation of the middle and upper reaches is approximately 600-800 mm 

(Yuan et al., 2018).” 

 

(5) - P.6, L169: I would remove the numbering here, as it doesn’t seem to be another 

part of the method, but refers to the overview of steps 1-4. 

Answer: Thanks. Done.  

Change: We added this sentence into the first phase in section 3.1, as the reference to 

the overview of steps 1-4. 

 

(6) - P.11, L.309: Nash and Sutcliffe(1970) is missing in the references 



Answer: Thanks. Done.  

Change: We have added the Nash and Sutcliffe (1970) in the references. 

(Nash, J. E., Sutcliffe, J. V.: River flow forecasting through conceptual models, Part I - 

A discussion of principles, Journal of Hydrology, 10, 282–290, 

doi.org/10.1016/0022-1694(70)90255-6, 1970.) 

 

(7) - P.14, Table 4: How is the accuracy assessment of C3 pixels done? What is the 

reference here? Why is SCC < 0.5? 

Answer: Thanks. In the previous experiment, the number of C3 pixels accounted for 

62.18% of the total pixels inside the river basin and the major of the C3 pixels had the 

same location with the 30% testing data. So we evaluated the C3 pixels with part of 

testing set (rain gauge stations and gridded points). While, in the new experiment, due 

to the leave-one-out cross validation step using all the stations, the performance of 

WHU-SGCC method would be evaluated on the overall accuracy, not on a certain class 

of pixels. So we didn’t evaluate the C3 pixels separately. 

Change: Deleted the statistical analysis about the C3 pixels. 

 

(8) - P.17, Fig.10: It might be helpful to present the percentage deviation from the 

observations for clarification of the model performance. It seems that at some days, all 

three datasets deviate more than 70% from the observations. 

Answer: Thanks. Because the daily precipitation of rain stations may be no rain, the 

percentage deviation from the observations cannot be obtained (the denominator is 0). 

The statistical analysis of the agreement between daily observations and WHU-SGCC, 

CHIRP and CHIRPS estimates on leave-one-out cross validation: a) Pearson’s 

correlation coefficient b) root mean square error c) mean absolute error d) relative bias 

e) Nash-Sutcliffe efficiency coefficient f) probability of detection g) false alarm ratio, 

and h) critical success index was shown in Fig. 5. 

Change: We redraw the boxplots of the statistical analysis of the agreement between 

daily observations and WHU-SGCC, CHIRP and CHIRPS estimates on leave-one-out 

cross validation. 

And now the section 4 was divided into 3 parts: 4.1 Model performance based on 

overall accuracy evaluations, 4.2 Model performance based on daily accuracy 

evaluations and 4.3 Model performance on rain events predictions.  
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and precipitation observations over the Jinsha River Basin 2 
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Abstract. Accurate and consistent satellite-based precipitation estimates blended with rain gauge data are important for 8 

regional precipitation monitoring and hydrological applications, especially in regions with limited rain gauges. However, 9 

existing fusion precipitation estimates often have large uncertainties over mountainous areas with complex topography and 10 

sparse rain gauges, and the existing data blending algorithms are very bad at removing the day-by-day random errors. Therefore, 11 

the development of effective methods for high-accuracy precipitation estimates over complex terrain and on a daily scale is of 12 

vital importance for mountainous hydrological applications. This study aims to offer a novel approach for blending daily 13 

precipitation gauge data and the Climate Hazards Group Infrared Precipitation (CHIRP, daily, 0.05°) satellite-derived 14 

precipitation developed by the UC Santa Barbara estimates over the Jinsha River Basin for the period of June-July-August in 15 

from 1994 to 20146. This method is named the Wuhan University Satellite and Gauge precipitation Collaborated Correction 16 

(WHU-SGCC). The results show that the WHU-SGCC method is effective in liquid precipitation bias adjustments from point 17 

to surface, which is evaluated by multiple error statistics and from different perspectivescategorical indices. Moreover, the 18 

accuracy of the spatial distribution of the precipitation estimates derived from the WHU-SGCC method is related to the 19 

complexity of the topography. The validation also verifies that the proposed approach is effective in the detection of the major 20 

precipitation events inside the Jinsha River Basin with the daily precipitation less than 25 mmthat are less than 20 mm. This 21 

study indicates that the WHU-SGCC approach is a promising tool to monitor monsoon precipitation over the Jinsha River 22 

Basin, the complicated mountainous terrain with sparse rain gauge data, considering the spatial correlation and the historical 23 

precipitation characteristics. The daily precipitation estimations at 0.05° resolution over the Jinsha River Basin during the 24 

summer seasons from 1990 to 2014in summer 2016, derived from WHU-SGCC are available at the PANGAEA Data Publisher 25 

for Earth & Environmental Science portal 26 

(https://doi.pangaea.de/10.1594/PANGAEA.900620)https://doi.pangaea.de/10.1594/PANGAEA.896615) 27 

1 Introduction 28 

Accurate and consistent estimates of precipitation are vital for hydrological modelling, flood forecasting and climatological 29 

studies in support of better planning and decision making (Agutu et al., 2017;Cattani et al., 2018;Roy et al., 2017). In general, 30 

ground-based gauge networks include a substantial number of liquid precipitation observations measured with high accuracy, 31 

high temporal resolution, and long historical records. However, sparse distribution and point measurements limit the accurate 32 

estimation of spatially gridded rainfall (Martens et al., 2013).  33 

Due to the sparseness of rain gauges and their uneven spatial distributiondistributed and high proportion of missing data, 34 

satellite-derived precipitation data are an attractive supplement offering the advantage of plentiful information with high spatio-35 

temporal resolution over widespread regions, particularly over oceans, high elevation mountainous regions, and other remote 36 

regions where gauge networks are difficult to deploy. However, the retrieval algorithms for satellite-based precipitation 37 

estimates are susceptible to systematic biases in hydrologic modelling satellite estimates are susceptible to systematic biases 38 

that can influence hydrological modelling and the retrieval algorithms are relatively insensitive to light rainfall events, 39 
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especially in complex terrain, resulting in underestimation of the magnitude of precipitation events (Behrangi et al., 40 

2014;Thiemig et al., 2013;Yang et al., 2017). Without adjustments, inaccurate satellite-based precipitation estimates without 41 

adjustment will lead to unreliable assessments of risk and reliability (AghaKouchak et al., 2011). 42 

Accordingly, there are many kinds of precipitation estimates combining multiple sources datasets. Since 1997, the Tropical 43 

Rainfall Measurement Mission (TRMM) has improved satellite-based rainfall retrievals over tropical regions (Kummerow et 44 

al., 1998;Simpson et al., 1988), and then applies a stepwise method for blending daily TRMM Multisatellite Precipitation 45 

Analysis (TMPA) output with rain gauges in South America (Vila et al., 2009). The Global Precipitation Measurement (GPM) 46 

satellite was launched after the success of the TRMM satellite by the cooperation of National Aeronautics and Space 47 

Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) on February 27, 2014 (Mahmoud et al., 2018;Ning 48 

et al., 2016). The main core observatory satellite (GPM) cooperates with the ten other satellites (partners) to offer the high 49 

spatiotemporal resolution products (0.1° × 0.1°- half- hourly) of the global real-time precipitation estimates (Mahmoud et al., 50 

2019). The Geostationary Operational Environmental Satellite (GOES)-R Series is the geostationary weather satellites, which 51 

significantly improves the detection and observation of environmental phenomena. The Advanced Baseline Imager (ABI) 52 

onboard the GOES-R platform will provide images in 16 spectral bands, spatial resolution of 0.5 to 2 km (2 km in the infrared 53 

and 1–0.5 km in the visible), and full-disk scanning every 5 minutes over the continental United States. The GOES-R Series 54 

will offer the enhanced capabilities for satellite-based rainfall estimation and nowcasting (Behrangi et al., 2009;Schmit et al., 55 

2005). The Global Precipitation Climatology Project (GPCP) is one of the successful projects for blending rain gauge analysis 56 

and multiple satellite-based precipitation estimates, and constructed a relatively coarse-resolution (monthly, 2.5° × 2.5°) global 57 

precipitation dataset (Adler et al., 2003;Huffman et al., 1997). To improve the resolution of this satellite-based dataset, the 58 

GPCC network data was incorporated into remote sensing information with Artificial Neural Networks (PERSIANN) rainfall 59 

estimates, which provides finer temporal and spatial resolutions (daily, 0.25° × 0.25°) (Ashouri et al., 2015). The CPC Merged 60 

Analysis of Precipitation (CMAP) product is a data blending and fusion analysis of gauge data and satellite-based precipitation 61 

estimates (Xie and Arkin, 1996). CMAP has a long-term dataset series from 1979, while the resolution is relatively coarse. 62 

Although the aforementioned products are widely used and have performed well, the data resolution cannot achieve high 63 

accuracy in precipitation monitoring over the Jinsha River Basin, China.  64 

Currently, the Climate Hazards Group Infrared Precipitation with Station data (CHIRPS) developed by the UC Santa Barbara, 65 

which has a higher spatial resolution (0.05°), can solve the scale problem. CHIRPS is a long-term precipitation data series, 66 

which merges three types of information: global climatology, satellite estimates and in situ observations. Table 1 shows the 67 

temporal and spatial resolution of current major satellite-based precipitation datasets. The CHIRPS precipitation dataset with 68 

several temporal and spatial scales has been evaluated in Brazil (Nogueira et al., 2018;Paredes-Trejo et al., 2017), Chile (Yang 69 

et al., 2016;Zambrano-Bigiarini et al., 2017), China (Bai et al., 2018), Cyprus (Katsanos et al., 2016b;Katsanos et al., 2016a), 70 

India (Ali and Mishra, 2017) and Italy (Duan et al., 2016). Nevertheless, the temporal resolutions of the aforementioned 71 

applications were mainly at seasonal and monthly scales, lacking the evaluation of daily precipitation. Additionally, despite 72 

the great potential of gauge-satellite fusing products for large-scale environmental monitoring, there are still large 73 

discrepancies with ground observations at the sub-regional level where these data are applied. Furthermore, the CHIRPS 74 

product reliability has not been analysed in detail for over the Jinsha River Basin, China, particularly on a daily scale. The 75 

existing research indicates that estimations over mountainous areas with complex topography often have large uncertainties 76 

and systematic errors due to the topography, seasonality, climate impact and sparseness of rain gauges (Derin et al., 77 

2016;Maggioni and Massari, 2018;Zambrano-Bigiarini et al., 2017)(Zambrano-Bigiarini et al., 2017). Moreover, (Bai et al., 78 

2018) evaluates CHIRPS over mainland China and indicates that the performance of CHIRPS is poor over the Sichuan Basin 79 

and the Northern China Plain, which have complex terrains with substantial variations in elevation. Additionally, (Trejo et al., 80 

2016) shows that CHIRPS overestimates low monthly rainfall and underestimates high monthly rainfall using several 81 

numerical metrics, and rainfall event frequency is overestimated excluding the rainy season.  82 
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Table 1 Coverage and spatiotemporal resolutions of major satellite precipitation datasets 83 
Product Temporal resolution Spatial resolution Period Coverage 

TRMM 3B42 3hours 0.25° 1998-present 50°S-50°N 

GPM 

30min/Hourly/ 

3hours/Daily/3Day/7 

Day/Monthly 

0.1°/0.25°/0.05°/5° 2014-present 

60°S-60°N 

70°N-70°S 

90°N-90°S 

GOES-R 5min/15min 0.5-2 km 2016-present 

the continental 

United States/ 

western 

hemisphere 

GPCP Monthly/Pentad 2.5° 1979-(delayed) present 90°S-90°N 

PRERSSIANN-CDR Daily 0.25° 1983-(delayed) present 60°S-60°N 

CMAP Monthly 2.5° 1979- present 90°S-90°N 

CHIRPS 
Annual/Monthly/ 

Dekad/Pentad/Daily 
0.05°/0.25° 1981- present 50°S-50°N 

To overcome these limitations, many studies have focused on proposing effective methodologies for blending rain gauge 84 

observations and satellite-based precipitation estimates, and sometimes radar data to take advantage of each dataset. Many 85 

numerical models are established among these datasets for high-accuracy precipitation estimations, such as bias adjustment by 86 

a quantile mapping (QM) approach (Yang et al., 2016), Bayesian kriging (BK) (Verdin et al., 2015) and a conditional merging 87 

technique (Berndt et al., 2014). Among aforementioned methods, the QM approach is a distribution-based approach, which 88 

works with historical data for bias adjustment and is effective in reducing the systematic bias of regional climate model 89 

precipitation estimates at monthly or seasonal scales (Chen et al., 2013). However, the QM approach offers very limited 90 

improvement in removing day-by-day random errors. The BK approach shows very good model fit with precipitation 91 

observations. Unfortunately, the Gaussian assumption of the BK model is invalid for daily scales. Overall, there is a lack of 92 

effective methods for high-accuracy precipitation estimates over complex terrain on a daily scale.  93 

As such, due to the poor performance of CHIRPS data at the sub-regional scale and the shortcomings of the existing blending 94 

algorithms, the aim of this article is to offer a novel approach for blending daily liquid precipitation gauge data, gridded 95 

precipitation data and the Climate Hazards Group Infrared Precipitation (CHIRP) satellite-derived precipitation estimates 96 

developed by the UC Santa Barbara, over the Jinsha River Basin. Here, we will use precipitation to name liquid precipitation 97 

throughout the text. The CHIRP is the raw data of CHIRPS before blending in rain gauge data. The objective is to build 98 

corresponding precipitation models that consider terrain factors and precipitation characteristics to produce high-quality 99 

precipitation estimates. This novel method is named the Wuhan University Satellite and Gauge precipitation Collaborated 100 

Correction (WHU-SGCC) method. We demonstrate this method by applying it to daily precipitation over the Jinsha River 101 

Basin during the summer seasons from 1990 to 2014in summer 2016. The results support the validity of the proposed approach 102 

for producing refined satellite-gauge precipitation estimates over mountainous areas. 103 

The remainder of this paper is organized as follows: Section 2 describes the study region and precipitation rain gauges, 104 

gridded observations and CHIRPS dataset used in this study. Section 3 presents the principle of the WHU-SGCC approach for 105 

high-accuracy precipitation estimates. The results and discussion are analysed in Section 4, the data available is described in 106 

Section 5, and conclusions and future work are presented in Section 56.  107 

2 Study Region and Data 108 

2.1 Study Region 109 

The Yangtze River, one of the largest and most important rivers in Southeast Asia, originates on the Tibetan Plateau and extends 110 

approximately 6300 km eastward to the East China Sea. The river’s catchment proximately covers an area of approximately 111 

~180 × 104 km2 and the average annual precipitation is approximately 1100 mm (Zhang et al., 2019).. In 2016, the average 112 

precipitation in the Yangtze River Basin was 12053 mm and the total precipitation was 21478.71 billion m3, which is 10.9% 113 

higher than the annual average total precipitation. Yangtze River is divided into nine sub-regionsbasins, the upper drainage 114 
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basin is the Jinsha River Basin, which flows through the provinces of Qinghai, Sichuan, and Yunnan in western China. The 115 

total river length is 3486 km, accounting for 77% of the length of the upper Yangtze River, and covering a watershed area of 116 

460 × 103 km2. The location of the Jinsha River Basin is shown in Fig. 1, and covers the eastern part of the Tibetan Plateau 117 

and the part of the Hengduan Mountains. The southern portion of the river basin is the Northern Yunnan Plateau and the eastern 118 

portion includes a wide area of the southwestern margin of the Sichuan basin. Crossing complex and varied terrains, the 119 

elevation of the Jinsha River ranges from 263 to 6575 m above sea level, which results in significant temporal and spatial 120 

climate weather variation within the basin. The average annual precipitation of the Jinsha River Basin is approximately 710 121 

mm, the average annual precipitation of the lower reaches is approximately 900-1300 mm, while the average annual 122 

precipitation of the middle and upper reaches is approximately 600-800 mm (Yuan et al., 2018). Average annual precipitation 123 

in the Jinsha River Basin is approximately 3433.45 mm, the total annual precipitation north of Shigu is 937.25 mm, while 124 

south of Shigu annual precipitation is 2496.20 mm. The climate of the Jinsha River Basin has more precipitation during the 125 

warm summer season (June-July-August, JJA), which is affected by oceanic southwest and southeast monsoons and is drier in 126 

cold season (December to February). Therefore, the blending of satellite estimations with gauged observations during the 127 

summer (JJA) is the main focus of this research.  128 

  129 

Figure 1 Location of the study area with key topographic features. 130 

 131 

2.2 Study Data 132 

2.2.1 Precipitation gauged observations 133 

Daily rain gauge observations at 30 national standard rain stations in the Jinsha River Basin for during the JJA from 1990 to 134 

20146 were provided by the National Climate Centre (NCC) of the China Meteorological Administration (CMA)135 

（http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html, last access: 10 December, 2018）, 136 

which imposes a strict quality control at station-provincial-state levels. Station identification numbers and relevant 137 

geographical characteristics are shown in Table 2, and their uneven spatial distribution is shown in Fig. 2. The selected rain 138 

gauges are located in Qinghai, Tibet, Sichuan and Yunnan Provinces but are mainly scattered in Sichuan Province, and the 139 

带格式的: 上标

http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html
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number of rain gauges in the northern river basin is less than in the southern river basin. In this study, the gauge observations 140 

were used as the reference data in bias adjustment of satellite precipitation estimations.  141 

Table 2 Geographical characteristics of rain stations. 142 
Station number Province Lat (°N) Lon (°E) Elevation (m) 

52908 Qinghai 35.13 93.05 4823 

56004 Qinghai 34.13 92.26 4744 

56021 Qinghai 34.07 95.48 5049 

56029 Qinghai 33.00 96.58 4510 

56034 Qinghai 33.48 97.08 4503 

56144 Tibet 31.48 98.35 4743 

56038 Sichuan 32.59 98.06 4285 

56146 Sichuan 31.37 100.00 4703 

56152 Sichuan 32.17 100.20 4401 

56167 Sichuan 30.59 101.07 3374 

56247 Sichuan 30.00 99.06 2948 

56251 Sichuan 30.56 100.19 4284 

56257 Sichuan 30.00 100.16 3971 

56357 Sichuan 29.03 100.18 4280 

56374 Sichuan 30.03 101.58 3902 

56459 Sichuan 27.56 101.16 3002 

56462 Sichuan 29.00 101.30 4019 

56475 Sichuan 28.39 102.31 1850 

56479 Sichuan 28.00 102.51 2470 

56485 Sichuan 28.16 103.35 2060 

56565 Sichuan 27.26 101.31 2578 

56571 Sichuan 27.54 102.16 1503 

56666 Sichuan 26.35 101.43 1567 

56671 Sichuan 26.39 102.15 1125 

56543 Yunnan 27.50 99.42 3216 

56586 Yunnan 27.21 103.43 2349 

56651 Yunnan 26.51 100.13 2449 

56664 Yunnan 26.38 101.16 1540 

56684 Yunnan 26.24 103.15 2184 

56778 Yunnan 25.00 102.39 1975 

 143 

The multi-year (1990-2014) average annual precipitation during the JJA over the Jinsha River Basin increases from north 144 

to south (Fig. 2). The spatial distribution of precipitation is uneven, with an average annual precipitation ranging from less 145 
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than 250 mm to more than 600 mm during the summer seasons. Figure. 2 also shows the multi-year average daily precipitation 146 

during the JJA is no more than 10mm. 147 

 148 

Figure 2 Jinsha River Basin with 18 CHIRPS fusion stations, 30 gauge stations and 170 grid points provided by the China Meteorological 149 
Administration stations. 150 

Figure 2 The multi-year (1990-2014) average annual precipitation during JJA over the Jinsha River Basin. Jinsha River Basin with 30 rain 151 
stations were provided by the China Meteorological Administration stations, the other 1818 CHIRPS fusion stations were provided by the 152 
Climate Hazards Group UC Santa Barbara online at ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-153 
2.0/diagnostics/global_monthly_station_density/tifs/p05/ (last access: 10 December, 2018).  154 

, 30 gauge stations and 170 grid points provided by the China Meteorological Administration stations. 155 

2.2.2 Gridded precipitation observations 156 

The gridded precipitation data developed by CMA with 0.5°× 0.5° resolution on a daily scale, was interpolated from 2472 157 

gauge observations with a thin plate spline algorithm from 1961 to the present. Over the Jinsha River Basin, a total of 170 158 

gridded points were selected as the supplementary data for observations in JJA 2016, due to the 2472 gauged station data that 159 

were not shared on CMA (http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_PRE_DAY_GRID_0.5.html, last 160 

access: 10 December, 2018). The even distribution of daily gridded precipitation observations is shown in Fig. 2.  161 

2.2.3 2 CHIRPS satellite-gauge fusion precipitation estimates 162 

The CHIRPS v.2 dataset, a satellite-based daily rainfall product, is available online at 163 

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/global_daily/tifs/p05/ (last access: 10 December, 2018). It covers a 164 

quasi-global area (land only, 50° S-50° N) with several temporal scales (daily, 3-day, 6-day or monthly time steps) and high 165 

spatial resolution (0.05°) (Rivera et al., 2018). This dataset contains a wide variety of satellite-based rainfall products derived 166 

from multiple data sources and incorporates four data types: monthly precipitation from CHPClim v.1.0 (Climate Hazards 167 

Group’s Precipitation Climatology version 1) derived from the combination of the satellite fields, gridded physiographic 168 

indicators, and in situ climate normal with the geospatial modelling approach based on moving window regressions and inverse 169 

distance weighting interpolation (Funk et al., 2015 b), quasi-global geostationary thermal infrared satellite observations 170 

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/diagnostics/global_monthly_station_density/tifs/p05/
ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/diagnostics/global_monthly_station_density/tifs/p05/
ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/global_daily/tifs/p05/
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(TRMM 3B42 version 7), atmospheric model rainfall fields CFS (Climate Forecast System) from NOAA, and surface based 171 

precipitation observations from various sources including national or regional meteorological services. The differences from 172 

other frequently used precipitation products are the higher resolution of 0.05° and the longer-term data series from 1981 to the 173 

present (Funk et al., 2015 a).  174 

CHIRPS is the blended product of a two-part process. First, IR precipitation (IRP) pentad rainfall estimates are fused with 175 

corresponding CHPClim pentad data to produce an unbiased gridded estimate, called the Climate Hazards Group IR 176 

Precipitation (CHIRP), which is available online at ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRP/daily/ (last access: 10 177 

December, 2018). In the second part of the process, CHIRP data is blended with in situ precipitation observations obtained 178 

from a variety of sources including national and regional meteorological services by means of a modified inverse-distance 179 

weighting algorithm to create the final blended product, CHIRPS (Funk et al., 2014). The daily CHIRP satellite-based data 180 

over the Jinsha River Basin during the summer seasons from 1990 to 2014over Jinsha River Basin in JJA 2016 was selected 181 

as the input for WHU-SGCC blending with rain observations, and the corresponding daily CHIRPS blended data was used for 182 

comparisons of precipitation accuracy.  183 

The blended in situ daily precipitation observations come from a variety of sources such as: the daily GHCN archive (Durre 184 

et al., 2010), the Global Summary of the Day dataset (GSOD) provided by NOAA’s National Climatic Data Center, the World 185 

Meteorological Organization’s Global Telecommunication System (GTS) daily archive provided by NOAA CPC, and over a 186 

dozen national and regional meteorological services. The number of daily CHIRP observation stations used for CHIRPS data 187 

inover the Jinsha River Basin was only 18, compared to the 30 rain gauge stations and 170 grid points provided by CMA; 188 

hence, the number of CHIRP stations limited the accuracy of spatial rainfall estimates (Fig. 2). 189 

3 Methods 190 

3.1 The WHU-SGCC approach  191 

In this study, the approach of the WHU-SGCC is to estimate the precipitation for every pixel by blending satellite estimates 192 

and rain gauge observations considering the terrain factors and precipitation characteristics. There were five four steps to 193 

establish the numerical relationship between gauged stations and the corresponding satellite pixels, and interpolation for the 194 

remaining pixelsother pixels. On this basis, the WHU-SGCC method identifies the geographical locations and topographical 195 

features of each pixel and applies the four classification and blending rules. A flowchart of the WHU-SGCC method is shown 196 

in Fig. 3. The proposed approach was evaluated over the Jinsha River Basin based on 30 gauge stations and CHIRP satellite-197 

based precipitation estimations during the JJA from 1990 to 2014. The leave-one-out cross validation step was applied to 198 

computing the out-of-sample adjusted error with gauge stations. 199 

 On this basis, the WHU-SGCC method identifies the geographical locations and topographical features of each pixel and 200 

applies the classification principles of the SICR approach, including five classification and blending rules. The basic 201 

description of the WHU-SGCC method is given below, with details illustrated separately in later sections:. 202 

1) A flowchart of the WHU-SGCC method is shown in Fig. 3. The proposed approach was evaluated for the Jinsha River 203 

Basin for JJA 2016. From that data, the training samples represented 70% of total gauged stations and gridded points, and the 204 

remaining data were used to verify the model performance. The proposed approach was evaluated for the Jinsha River Basin 205 

for  theJJA 2016. Classify all regional pixels into five four types: C1 (pixel including one gauged station in its area), C2 (pixel 206 

including one gridded point), C3 C2 (pixel statistically physically similar to C1C2), C4 C3 (pixel statistically physically similar 207 

to C3C2) and C5 C4 (remaining pixels).  208 

2) Analyse the relationships between precipitation observations and the C1, C2, and C3 pixel types, and interpolated for 209 

with the C4 and C5 pixels. These relationships are described by five four rules, detailed below as Rules 1 through 54.  210 

3) Bias-adjust, establish Establish regression models and screen target pixels based on the five four aforementioned rules. 211 

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRP/daily/


8 

 

4) Correct all precipitation pixels in daily regional precipitation images. 212 

5) A flowchart of the WHU-SGCC method is shown in Fig. 3. The proposed approach was evaluated for the Jinsha River 213 

Basin for JJA 2016. From that data, the training samples represented 70% of total gauged stations and gridded points, and the 214 

remaining data were used to verify the model performance. 215 

Daily Gauged 

Observation

(30 gauges, JJA 2016)

Daily CHIRP

(0.05°× 0.05°, JJA 2016) 

Daily Gridded Observation

(170 gridded points,  JJA 2016) 

Satellite precipitation estimates adjusted by Adj-QM

(C1 and C2 pixels values output)

Rule 1 Rule 2

Calculating SCC for each C1 and C2 with their values after 

adjustment with gauged observations

Spatial scope determined by FCM

The regression relationship between values before and 

after Rule 1 and Rule 2 adjustment, established by RFR 

Selecting C1 and C2 with well adjustment

|SCC| ≥ 0.5 and p < 0.05

Calculating SCC for each C1 and C2 with their values 

before and after Rule 1 and Rule 2 adjustment

Determining the C3 pixels by calculating SCC 

between C1, C2 and other raster pixels 

The adjustment method for C3 pixels can be derived from 

the regression model of corresponding C1 and C2 pixels

|SCC| ≥ 0.5 and p < 0.05

|SCC| ≥ 0.5 and p < 0.05

Rule 3

Determining the C4 pixels by calculating SCC between 

adjusted C3 pixels and the remaining raster pixels 

Calculating the precipitation ratio at C3 pixels

Systematic 

Error

The  remaining pixels are C5 pixels and the pixel 

value is same to the corresponding CHIRP 

(less than 10% of total pixels)

Rule 4

Rule 5

Random Error

C4 pixels adjusted by the same precipitation ratio with 

the corresponding C3 pixel

 216 

Daily Gauge Observation

(30 rain gauges, JJA 1990-2014)

Daily CHIRP

(0.05°× 0.05°, JJA 1990-2014) 

Random forest regressions between gauged observations and 

the corresponding CHIRP grid cell values at C1 pixels

Determining the C2 pixels by calculating PCC between CHIRP 

grid cell values at C1 pixels and the remaining pixels 

Spatial scope determined by FCM

Determining the C3 pixels by calculating PCC between  CHIRP 

grid cell values at  C2 pixels and the remaining pixels 

The adjustment method for C2 pixels can be derived from the 

regression models of the corresponding C1 pixels

|PCC| ≥ 0.5 and p < 0.05

Calculating the precipitation ratio at C2 pixels

|PCC| ≥ 0.5 and p < 0.05

Rule 3

Rule 1

C3 pixels adjusted by the same precipitation ratio with the 

corresponding C2 pixel

Rule 2

The  remaining pixels are C4 pixels, the pixel values at C1 and 

C4 pixels are interpolated by IDW with C2 and C3 pixels
Rule 4

 217 

Figure 3 Flowchart of the WHU-SGCC approach with the five four rules applied in this study.  218 

3.1.1 Assumptions 219 

域代码已更改
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1) Gauge and gridded point observations are the most accurate, or “true”, values for reference purposes. 220 

2) No major terrain change occurred during the twenty years. 221 

3) Spearman’s Pearson’s Correlation Coefficient (SCCPCC) can indicate the statistically similarity of rainfall characteristics 222 

among pixels over a seasonal scale.  223 

3.1.2 Rule 1 of the WHU-SGCC method 224 

In general, satellite precipitation estimations deviated from ground-based measurements, which were assumed to be the true 225 

values. Rule 1 adjusts the biases in the satellite estimations. For every C1, its precipitation value was derived from a quantile 226 

mapping (QM) approach. It has been shown that the QM method is the best for reducing systematic biases of regional satellite 227 

precipitation estimates because of its independence from predetermined functions (Themessl et al., 2011;Chen et al., 2013). 228 

QM is a nonparametric empirical approach that considers a time-dependent correction function. This approach is designed 229 

to transform the cumulative distribution function (CDF) of satellite data into the CDF of data at each station. 230 

𝑌𝑜 = h(𝑌𝑠)                                           (1) 231 

where the variable 𝑌𝑠 is the distribution of the observed variable 𝑌𝑜. In this study 𝑌𝑜 denotes each gauge or gridded 232 

precipitation data point location from CMA and 𝑌𝑠 denotes the corresponding CHIRP grid cell value. The objective of QM 233 

is to correct the daily precipitation amount from a climate simulation and the transformation h is defined in Eq. (2): 234 

𝑌𝑜 = 𝐻𝑜
−1(𝐻𝑠(𝑌𝑠))                                       (2) 235 

where the 𝐻𝑠 is the CDF of 𝑌𝑠 and 𝐻𝑜
−1 is the inverse CDF (or quantile function) corresponding to 𝑌𝑜 (Gudmundsson 236 

et al., 2012). 237 

Notably, we separately calculate CDFs at each gauge and gridded pixel using the historical daily rainfall from the JJA in 238 

2016.  239 

The result of a QM adjustment is 𝑌𝑄𝑚, which is approximately the same as the CDF of the gauge observations on a seasonal 240 

scale, which is distinct from daily data. The suitable scale of the CDF is seasonal because the QM cannot effectively remove 241 

the day-by-day random errors in CHIRP estimates. Therefore, on the basis of 𝑌𝑄𝑚, the adjustment result, 1asC , for each C1 242 

pixel is derived from the minimum absolute value of the difference between the gauge observations and satellite estimations 243 

before and after applying the QM adjustment, referred to as the adjusted QM (Adj-QM) method, as shown in Eq. (3) - Eq. (5). 244 

𝐷𝑄𝑀 = |𝑌̅𝑄𝑀 − 𝑌𝑜|                                        (3) 245 

𝐷𝑠 = |𝑌𝑠 − 𝑌𝑜|                                          (4) 246 

1asC = {
𝑌̅𝑄𝑀 ,   𝐷𝑄𝑀 ≤ 𝐷𝑠

𝑌𝑠,   𝐷𝑠 ≤ 𝐷𝑄𝑀
                                   (5) 247 

where 𝐷𝑄𝑀  is the absolute value of the difference between 𝑌𝑄𝑚  and 𝑌𝑜, and 𝐷𝑠  is the absolute value of difference 248 

between 𝑌𝑠 and 𝑌𝑜.  249 

 250 

In general, satellite precipitation estimations deviated from ground-based measurementsobserved data, which were assumed 251 

to be the true values. Rule 1 aims to establish a regression model between each gauge historical observations and the 252 

corresponding CHIRP grid cell values. The regression relationship was derived by random forest regression (RFR) at each 253 

gauge station. RFR is a machine-learning algorithm for a predictive model with a large set of regression trees in which each 254 

tree in the ensemble is grown from a bootstrap (Johnson, 1998) sample drawn with replacement from the training set. The final 255 

prediction is obtained by combining the results of the prediction methods applied to each bootstrap sample (Genuer et al., 256 

2017). The predicted value is calculated by the mean of all trees. 257 

𝑌𝑜 = 𝑓
𝑅𝐹𝑅

(𝑌𝑠)                                          (1) 258 
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where 𝑌𝑜 denotes each gauge historical observations and 𝑌𝑠 denotes the corresponding CHIRP grid cell values at C1 259 

pixels, 𝑓
𝑅𝐹𝑅

 is constructed from the time series 𝑌𝑜 (dependent variable) and 𝑌𝑠 (independent variable) by means of RFR. 260 

The number of decision trees was set to 500, which was determined by out-of-bag (OOB) error (Appendix A). The OOB error 261 

reached the minimum value when the number of decision trees was less than 500.   262 

The Rule 1 builds the statistical relationships between gauge observations and the corresponding CHIRP grid cell values, 263 

which is the key idea in correcting the satellite-based precipitation estimations in the whole study area. As there are 30 gauge 264 

stations in the study area, 30 regression relationships at C1 pixels were derived from Rule1. The values of C1 pixels are not 265 

corrected in Rule 1, but interpolated in Rule 4.  266 

3.1.3 Rule 2 of the WHU-SGCC method 267 

Commonly, a few of the national standard stations have free access, and these stations are unevenly distributed and do not 268 

satisfied the accuracy needed for regional precipitation estimation. Under these circumstances, the gridded precipitation data 269 

developed by CMA are applied as the supplementary data for observations with uniform spatial distribution. Therefore, Rule 270 

2 is same as Rule 1 with different input data. 2asC is the adjusted target precipitation of one C2 pixel. 271 

3.1.4 3 Rule 32 of the WHU-SGCC method 272 

It is reasonable to assume that there are some pixels that are statistically physically similar to the precipitation characteristics 273 

of C1 pixels in a certain spatial scope. Therefore, it is feasible to adjust the satellite estimation bias of C3 C2 pixels by referring 274 

to the appropriate regression relationships at corresponding C1 pixels based on Rule 1. 275 

First, the spatial scope in which pixels may have highly similar characteristics is established. Some studies indicate that 276 

geographical location, elevation and other terrain information influences the spatial distribution of rainfall, especially in 277 

mountainous areas with complex topography (Anders et al., 2006;Long and Singh, 2013). The size of the spatial range is an 278 

important parameter to distinguish spatial similarity and heterogeneity. In the WHU-SGCC method, the approach of fuzzy c-279 

means (FCM) clustering was explored to determine the spatial range considered as each pixel’s terrain factors including 280 

longitude, latitude, elevation, slope, aspect and curvature. FCM method was developed by J.C. Dunn in 1973 (Dunn, 1973), 281 

and improved in 1983 (Wang, 1983). It is an unsupervised fuzzy clustering method and the steps are as follows (Pessoa et al., 282 

2018): 283 

1) Choose the number of clusters tc. The optimum number of clusters was determined by L(c) which was derived from the 284 

inter-distance and inner-distance of elementssamples in Eq. (2). It is ensured that the distance between the same samples is 285 

smaller, while the distance between the different samples is larger. 286 

2

1 1

2

1 1
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 



 




                                (2) 287 

In Eq. (2), the denominator is inner-distance and the molecular is inter-distance. The initial value of c is 1 and the maximum 288 

value of c is the number of gauge stations in this study area. The optimum number of clusters was optimized to maximize the 289 

L(c). For this reason, c value is conducted in the range of 1 to the number of gauge stations with an incremental interval value 290 

of 1 in this study. 291 

 292 

2) Assign coefficients randomly to each data point ix  for the degree to which it belongs in the ji th cluster ( )ij iw x : 293 
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       (5) 294 

 295 

where x is a finite collection of n elements that will be partitioned into a collection of c fuzzy clusters, ic is the centre of 296 

each cluster, m is the hyper-parameter that controls the level of cluster fuzziness and ijw  is the degree to which element ix  297 

belongs to ic  and x  is the centre vector of collection. In Eq. (63), 
( )t

jc  represents the cluster centre in iteration t. If the 298 

minimum improvement in objective function between two consecutive iterations satisfies the following equation, the algorithm 299 

terminates in iteration t (Eq. (6)): 300 

( ) ( +1)|| - ||<t t

i ic c                                         (6) 301 

 302 

1)3) Minimize the objective function cF  to achieve data partitioning. 303 

2

1 1

|| ||
n c

m

c ij j i

j i

F w x c
 

                                      (87) 304 

The results of FCM are the degree of membership of each pixel to the cluster centre as represented by numerical value. 305 

Pixels in each cluster have similar terrain features and precipitation characteristics. 306 

Second, the adjusted C1 and C2 are employed. SCC was used as the evaluation index for each C1 and C2 with their values 307 

after adjustment and gauge observations in JJA: 308 

1
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                              (9) 309 

Spearman’s correlation coefficient is defined as Pearson’s correlation coefficient between the ranked variables, and it 310 

assesses monotonic relationships (whether linear or not) where n is the number of data points in each set, which was the number 311 

of each C1 or C2 in the historical JJA dataset. ix  is the ith data value in the first data set (satellite estimations after Rule 1 312 

and Rule 2 adjustment, 1asC  and 2asC ), ix  is converted to its rank irgx , and rgx  is its average value. Similar 313 

definitions exist for irgy  and rgy  (gauge and gridded observations at C1 and C2 pixels, 𝑌𝑜). The value range of the SCC 314 

is between -1 and +1. If there are no repeated data values, a perfect SCC of +1 or −1 occurs when each of the variables is a 315 

perfect monotone function of the other. However, if the value is close to zero, there is zero correlation. In addition, correlation 316 

is not only determined by the value of the correlation coefficient but also from the correlation test’s p-value. The critical value 317 

is 0.05, thus a p lower than 0.05 indicates the data are significantly correlated. Therefore, the C1 and C2 pixels selected for 318 

Rule 3 must meet the following criteria: 319 

0.5 0.05SCC and p                                   (10) 320 

Third, the filtered C1 and C2 pixels after adjustment is used to establish a regression model between the historical 1asC , 321 

2asC  and 𝑌𝑠. To ensure high accuracy, it is necessary to calculate the SCC and p values between 1asC , 2asC  and 𝑌𝑠, and 322 

complete the filtering criteria described above in Eq. (7) before building the regression model. The regression relationship was 323 

域代码已更改
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derived by random forest regression (RFR). RFR is a machine-learning algorithm for a predictive model with a large set of 324 

regression trees in which each tree in the ensemble is grown from a bootstrap (Johnson, 1998) sample drawn with replacement 325 

from the training set. The final prediction is obtained by combining the results of the prediction methods applied to each 326 

bootstrap sample (Genuer et al., 2017). The predicted value is calculated by the mean of all trees. 327 

1asC or 2asC = 𝑓𝑅𝐹𝑅(𝑌𝑠)
                                    (11) 328 

where 𝑓
𝑅𝐹𝑅

 is constructed from the time series 1asC  or 2asC  (dependent variable) and the corresponding 𝑌𝑠  data 329 

(independent variable) at filtered C1 and C2 pixels in JJA by means of RFR. The number of decision trees was set at the default 330 

value of 500. 331 

Fourth, as mentioned above, the aim of Rule 3 is to derive an adjustment method for C3 pixels based on learning from Rule 332 

1 and Rule 2. With the establishment of a regression relationship between values before and after adjustment of the C1 and C2 333 

pixels by RFR method, the determination of C3 pixels follows a considerable procedure. Pixels in each cluster represent 334 

potential C3 pixels, with exception of the C1 and C2 pixels and are called R pixels. Spearman’s r and p values between the 335 

satellite estimations (CHIRP grid cell values) at R pixels and the C1 and C2 pixels are the criteria for final determination of 336 

C3 pixels. Each R pixel has m SCC and p values (the number of C1 and C2 pixels in the cluster), and the subset of C3 pixels 337 

is identified by excluding the data that failed the correlation test and retaining both the data with a maximum SCC of at least 338 

0.5 and the corresponding index of C1 and C2 pixels. The selected C3 pixels are statistically similar to the precipitation 339 

characteristics of corresponding C1 and C2 pixels in their defined spatial scope. 340 

After identifying the C3 pixels and their corresponding C1 and C2 pixels, the adjustment method for C3 pixels is derived 341 

from the regression model for the C1 and C2 pixels. 342 

3asC = 𝑓𝑅𝐹𝑅𝑐(𝑌𝑠)                                       (12) 343 

where 3asC  is the adjusted satellite precipitation estimate and 𝑌𝑠 is the CHIRP grid cell value for the C3 pixels, and 𝑓
𝑅𝐹𝑅𝑐

 344 

is the 𝑓
𝑅𝐹𝑅

 of corresponding C1 and C2 pixels. 345 

Second, as mentioned above, the aim of Rule 2 is to derive an adjustment method for C2 pixels based on learning from Rule 346 

1. With the establishment of a regression relationship between gauge observations and the corresponding CHIRP grid cell 347 

values of the C1 pixels by RFR method, the determination of C2 pixels follows a considerable procedure. With exception of 348 

the C1 pixels, the remaining pixels in each cluster represent potential C2 pixels called R pixels. Pearson’s correlation 349 

coefficient (PCC) and p-values between the satellite estimations (CHIRP grid cell values) at R pixels and the C1 pixels are the 350 

criteria for final determination of C2 pixels. The PCC is defined as follows: 351 
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                                    (8) 352 

where n is the number of samples, ix  and iy  are individual samples (CHIRP grid cell values at C1 and C2 pixels), x is 353 

the arithmetic mean of x calculated by 

1

1
=

n

i

i

x x
n 

 , y  is the arithmetic mean of y calculated by 

1

1
y=

n

i

i

y
n 

 . 354 

The value range of the PCC is between -1 and +1. If there are no repeated data values, a perfect PCC of +1 or −1 occurs 355 

when each of the variables is a perfect monotone function of the other. However, if the value is close to zero, there is zero 356 

correlation. In addition, correlation is not only determined by the value of the correlation coefficient but also from the 357 

correlation test’s p-value. The critical values for PCC and p-value are 0.5 and 0.05, thus a PCC value higher than 0.5 and a p-358 

value lower than 0.05 indicate the data are significantly correlated (Zhang and Chen, 2016). Therefore, the final determination 359 
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of C2 pixels must meet the following criteria: 360 

PCC 0.5 0.05and p                                   (9) 361 

Each R pixel has m PCC and p-values (the number of C1 pixels in the cluster), and the subset of C2 pixels is identified by 362 

excluding the data that failed the correlation test and retaining both the data with a maximum PCC of at least 0.5 and a p-value 363 

lower than 0.05, and the corresponding index of C1 pixels. The selected C2 pixels are statistically similar to the precipitation 364 

characteristics of corresponding C1 pixels in their defined spatial scope. 365 

After identifying the C2 pixels and their corresponding C1 pixels, the adjustment method for C2 pixels is derived from the 366 

regression model for the C1 pixels. 367 

2asC = 𝑓𝑅𝐹𝑅𝑐(𝑌𝑠)
                                       (10) 368 

where 2asC  is the adjusted satellite precipitation estimate and 𝑌𝑠 is the CHIRP grid cell value at the C2 pixels, and 𝑓𝑅𝐹𝑅𝑐 369 

is the 𝑓𝑅𝐹𝑅 of corresponding C1 pixel. 370 

3.1.5 4 Rule 4 3 of the WHU-SGCC method 371 

Recognizing that precipitation has a spatial distribution, the assumption that C4 C3 pixels are statistically physically similar 372 

to the precipitation characteristics of C3 C2 pixels was is adopted to establish the adjustment method for C4 C3 pixels.  373 

First, the determination of C4 C3 pixels in each spatial cluster is based on the selection of C3 C2 pixels. The satellite-based 374 

estimation values for at the remaining regional pixels with exception of the C1and , C2 pixels are used to calculate the SCC 375 

PCC and p- values with the satellite-based estimation values𝑌𝑠 for at the C3 C2 pixels in the same cluster of the JJA dataset. 376 

The results of each pixel’s k SCC PCC and p- value (the number of C3 C2 pixels in the cluster) are evaluated based on the 377 

correlation test (Eq. (9)), and that the pixels with a maximum SCC PCC of is at least 0.5 and the p-value is no more than 0.05, 378 

as well asand then  the corresponding index of C3 C2 pixels , are retained. The selected pixels called C4 C3 pixels, which are 379 

statistically physically similar to the precipitation characteristics of the corresponding C3 C2 pixels in the defined spatial scope. 380 

After identifying the C4 C3 pixels, a method for merging method themerging the CHIRP grid cell values at C4 C3 pixels 381 

(𝑌𝑠) and the target reference values of 3asC 2asC  at the corresponding C3 C2 pixels was is applied to estimate the adjusted 382 

precipitation values for at C4 C3 pixels. This method combines 𝑌𝑠 and 3asC 2asC  values in one variable, as shown in Eq. 383 

(1311): 384 

2
i

i

as

i

s

C
w

Y









  i=1,…, n                                   (1311) 385 

where 𝜆 is a positive constant set to 10 mm (Sokol, 2003), 3asC  2asC is the adjusted precipitation values for at the C3 C2 386 

pixels, 
isY is extracted from the CHIRP grid cell values atfor the pixel corresponding location of with the C3 C2 pixel, and n 387 

is the number of C3 C2 pixels in each spatial cluster.  388 

Each w of the C4 C3 pixels is assigned the same value as the corresponding C3 C2 pixel. Therefore, the values of C4 C3 389 

pixels areis derived from Eq. (1412): 390 

3 max( ( ) ,0)as sC w Y                                      (1412) 391 

where 4asC  3asC is the adjusted target precipitation value at one C4 C3 pixel and sY  is the corresponding CHIRP grid 392 

cell value. To avoid precipitation estimates below 0, Eq. (1412) sets these negative values to 0. 393 

If there is no C3 pixels in a spatial cluster, the C4 pixels are assumed to be physically similar to the precipitation 394 

characteristics of the C1 and C2 pixels and adjusted by the above method in Rule 4. 395 
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3.1.6 Rule 5 of the WHU-SGCC method 396 

Excluding the C1, C2, C3 and C4 pixels, the number of remaining pixels, called C5 pixels, is less than 10% of the total number 397 

of pixels, and each C5 pixel value ( 5asC ) is set to be the same as the CHIRP grid cell value at the corresponding position.  398 

In the end, after applying these five rules, we obtained complete daily adjusted regional precipitation maps for the summer 399 

(JJA) 2016.  400 

3.1.6 5 Rule 5 4 of the WHU-SGCC method 401 

Excluding the C1, C2, C3 and C4 C3 pixels, the number of remaining pixels, called C5 C4 pixels which are adjusted by Inverse 402 

Distance Weighted (IDW). IDW is based on the concept of the first law of geography from 1970. It was defined as everything 403 

is related to everything else, but near things are more related than distant things. Therefore, the attribute value of an unsampled 404 

point is the weighted average of known values within the neighbourhood, and the distance weighting can be determined by 405 

IDW (Lu and Wong, 2008). In Rule 4, IDW is used to interpolate the unknown spatial precipitation data from the adjusted 406 

precipitation values at the C2 and C3 pixels. The IDW formulas are given as Eq. (13) and Eq. (14). 407 

1

n

as i i
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R w R


                                         (13) 408 
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

                                  (14) 409 

 410 

where 
asR is the unknown spatial precipitation data, 

iR  is the adjusted precipitation values at C2 and C3 pixels, n is the 411 

number of C2 and C3 pixels, 
id  is the distance from each C2 or C3 pixel to be unknown grid cell,   is the power which is 412 

generally specified as a geometric form for the weight. Several researches (Simanton and Osborn 1980; Tung 1983) have 413 

experimented with variations in a power, the small   tends to estimate values with the averages of sampled grids in the 414 

neighbourhood, while large   tends to give larger weights to the nearest points and increasingly down-weights points farther 415 

away (Chen and Liu, 2012;Lu and Wong, 2008). The value of  has an influence on the spatial distribution of information 416 

from precipitation observations. For this reason,   value is conducted in the range of 0.1 to three (0.1, 0.3, 0.5, 1.0, 1.5, 2.0, 417 

2.5 and 3.0) in this study. 418 

It is noted that the unknown spatial precipitation data including C1 and C4 pixels, because C1 pixels values were not adjusted 419 

in Rule 1.  420 

, is less than 10% of the total number of pixels, and each C5 pixel value ( 5asC ) is set to be the same as the CHIRP grid cell 421 

value at the corresponding position.  422 

In the end, after applying these five four rules, we obtained complete daily adjusted regional precipitation maps for the 423 

summer (JJA) 2016over the Jinsha River basin.  424 

 425 

3.2 Accuracy assessment 426 

The performance of the WHU-SGCC adjusted precipitation estimates was evaluated by eight statistical indicatorsmetrics: 427 

Spearman’s correlation coefficient (SCC) Pearson’s correlation coefficient (PCC), root mean square error (RMSE), mean 428 

absolute error (MAE), relative bias (BIAS), the Nash-Sutcliffe efficiency coefficient (NSE), probability of detection (POD) 429 

and false alarm ratio (FAR) and critical success index (CSI). SCCPCC, RMSE, MAE and BIAS were used to evaluate how 430 

well the WHU-SGCC method adjusted satellite estimation bias, while POD, FAR and CSI were used to evaluate the 431 
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precipitation event predictions (Su et al., 2011). SPCC measures strength of the nonlinear correlation relationship between the 432 

satellite estimations and observations. RMSE is an absolute measurement used to compare the difference between the satellite 433 

estimations and observations. MAE represents the average magnitude of error estimations, considering both systematic and 434 

random errors. The NSE (Nash and Sutcliffe, 1970) determines the relative magnitude of the variance of the residuals compared 435 

to the variance of the observations, bounded by minus infinity to 1. A negative value indicates a poor precipitation estimate 436 

and the value of an optimal estimate is equal to 1. BIAS measures the mean tendency of the estimated precipitation to be larger 437 

(positive values) or smaller (negative values) than the observed precipitation, with an optimal value of 0. POD, also known as 438 

the hit rate, represents the probability of rainfall detection. FAR is defined as the ratio of the false alarm detection of rainfall 439 

to the total number of rainfall events. All of the accuracy assessment metrics indices are shown as in Table 3. 440 

Table 3 Accuracy assessment metricsindices. 441 
Accuracy assessment Index Unit Formula Range Optimal value 

Spearman’s Pearson’s Correlation 

Coefficient (SCC) 

NA 
PSCC =

∑ (𝑌𝑜𝑖 − 𝑌̅𝑜)(𝐶𝑖 − 𝐶̅)𝑛
𝑖=1

√∑ (𝑌𝑜𝑖 − 𝑌̅𝑜)2𝑛
𝑖=1 . √∑ (𝐶𝑖 − 𝐶̅)2𝑛

𝑖=1

 
[-1,1] 1 

Root Mean Square Error (RMSE) mMm 

RMSE = √
1

𝑛 − 1
∑(𝐶𝑖 − 𝑌𝑜𝑖)2

𝑛

𝑖=1

 

[0,+∞） 0 

Mean Absolute Error (MAE) mMm 
MAE =

1

𝑛
∑ |𝐶𝑖 − 𝑌𝑜𝑖|

𝑛

𝑖=1

 
[0, +∞) 0 

Relative Bias (BIAS) NA 
BIAS =

∑ (𝐶𝑖 − 𝑌𝑜𝑖)𝑛
𝑖=1

∑ 𝑌𝑜𝑖
𝑛
𝑖=1

 
(-∞, +∞) 0 

Nash-Sutcliffe Efficiency Coefficient (NSE) NA 
NSE = 1 −

∑ (𝐶𝑖 − 𝑌𝑜𝑖)2𝑁
𝑖=1

∑ (𝐶𝑖 − 𝑌̅𝑜)2𝑁
𝑖=1

 
(-∞,1] 1 

Probability of Detection (POD) NA POD=H/(H+M) [0,1] 1 

False Alarm Ratio (FAR) NA FAR=F/(H+F) [0,1] 0 

Critical Success Index (CSI) NA CSI=H/(H+M+F) [0,1] 1 

Note: 𝑌𝑜𝑖 is the observation data and 𝐶𝑖  is the adjusted value using the WHU-SGCC method for test sample pixel; 𝑌̅𝑜 is 442 

the arithmetic mean of 𝑌𝑜 and is given by 

1

1 n

o oi

i

Y Y
n 

  ; C  is the arithmetic mean of C and is given by

1

1 n

i

i

C C
n 

  ; 443 

H represents the number of both observed and estimated precipitation events (successfully forecasted), and F is the number of 444 

false alarms when observed precipitation was below the threshold and estimated precipitation was above threshold (false 445 

alarms). M is the number of events in which the estimated precipitation was below the threshold and observed precipitation 446 

was above the threshold (missed forecasts). POD and FAR values are dimensionless numbers ranging from 0 to 1. The 447 

precipitation threshold (event/no event) was set to 0.1 mm/day. 448 

 449 

4 Results and Discussion 450 

There were 18482 daily pixels to be adjusted by blending satellite estimations (CHIRP) and observations (rain gauge stations 451 

and gridded points) using the WHU-SGCC approach over the Jinsha River Basin during thefor the 92 days of JJA from 1990 452 

to 20142016. The number of pixelsof pixels adjusted by each rule in the WHU-SGCC method is shown in FigTable. 4. The 453 

number of C1 pixels was the number of training gauge stations accounting 0.16% of the total pixels (18482) inside the basin. 454 

Due to the leave-one-out cross validation step, the different training samples will have the different number of C2, C3 and C4 455 

pixels respectively inside the Jinsha River Basin. The number of C4 pixels was approximately 10822 with the percentage 456 

around 60%, the number of C3 pixels was approximately 4331 with the percentage ranging from 21.72% to 24.40%, and the 457 
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number of C2 pixels was approximately 3300 with the percentage ranging from 15.59% to 18.36%. 458 

The number of C1 and C2 was nearly 140, as well as 11493 C3 pixels, approximately 6344 C4 pixels, and the number of 459 

remaining C5 pixels was no more than 5%. 460 

Table 4 The number of each class pixels adjusted by each rule using the WHU-SGCC method inside the Jinsha River Basin. 461 
Validation  

gauge station 

C1 Pixels 

(%) 

C2 Pixels 

(%) 

C3 Pixels 

(%) 

C4 Pixels 

(%) 

52908 29 (0.16%) 3066 (16.59%) 4224 (22.85%) 11163 (60.40%) 

56004 29 (0.16%) 2882 (15.59%) 4111 (22.24%) 11460 (62.01%) 

56021 29 (0.16%) 3311 (17.91%) 4510 (24.40%) 10632 (57.53%) 

56029 29 (0.16%) 3338 (18.06%) 4447 (24.06%) 10668 (57.72%) 

56034 29 (0.16%) 3300 (17.86%) 4427 (23.95%) 10726 (58.03%) 

56038 29 (0.16%) 3209 (17.36%) 4014 (21.72%) 11230 (60.76%) 

56144 29 (0.16%) 3347 (18.11%) 4442 (24.03%) 10664 (57.70%) 

56146 29 (0.16%) 3183 (17.22%) 4480 (24.24%) 10790 (58.38%) 

56152 29 (0.16%) 3173 (17.17%) 4176 (22.59%) 11104 (60.08%) 

56167 29 (0.16%) 3362 (18.19%) 4346 (23.51%) 10745 (58.14%) 

56247 29 (0.16%) 3385 (18.32%) 4416 (23.89%) 10652 (57.63%) 

56251 29 (0.16%) 3301 (17.86%) 4348 (23.53%) 10804 (58.46%) 

56257 29 (0.16%) 3313 (17.93%) 4043 (21.88%) 11097 (60.04%) 

56357 29 (0.16%) 3352 (18.14%) 4390 (23.75%) 10711 (57.95%) 

56374 29 (0.16%) 3341 (18.08%) 4294 (23.23%) 10818 (58.53%) 

56459 29 (0.16%) 3345 (18.10%) 4334 (23.45%) 10774 (58.29%) 

56462 29 (0.16%) 3380 (18.29%) 4377 (23.68%) 10696 (57.87%) 

56475 29 (0.16%) 3345 (18.10%) 4344 (23.50%) 10764 (58.24%) 

56479 29 (0.16%) 3305 (17.88%) 4212 (22.79%) 10936 (59.17%) 

56485 29 (0.16%) 3393 (18.36%) 4419 (23.91%) 10641 (57.57%) 

56543 29 (0.16%) 3373 (18.25%) 4384 (23.72%) 10696 (57.87%) 

56565 29 (0.16%) 3241 (17.54%) 4450 (24.08%) 10762 (58.23%) 

56571 29 (0.16%) 3306 (17.89%) 4263 (23.07%) 10884 (58.89%) 

56586 29 (0.16%) 3387 (18.33%) 4434 (23.99%) 10632 (57.53%) 

56651 29 (0.16%) 3340 (18.07%) 4432 (23.98%) 10681 (57.79%) 

56664 29 (0.16%) 3368 (18.22%) 4262 (23.06%) 10823 (58.56%) 

56666 29 (0.16%) 3323 (17.98%) 4431 (23.97%) 10699 (57.89%) 

56671 29 (0.16%) 3356 (18.16%) 4367 (23.63%) 10730 (58.06%) 

56684 29 (0.16%) 3335 (18.04%) 4278 (23.15%) 10840 (58.65%) 

56778 29 (0.16%) 3347 (18.11%) 4277 (23.14%) 10829 (58.59%) 

 462 

 463 
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 464 

Figure 4 The number of pixels adjusted by each rule using the WHU-SGCC method. 465 

4.1 CDFs of Rule 1 and Rule 2 results 466 

Figure 5 shows the daily average precipitation for observations, CHIRP, C1 (Fig. 5 (a)) and C2 (Fig. 5 (b)) in JJA 2016. 467 

Compared to the gauge or grid observations, CHIRP estimations deviated from the observations in Jinsha River Basin. 468 

However, the adjusted values for the C1 and C2 pixels improved the estimates and approximated the observations with 469 

application of Rule 1 and Rule 2 of the WHU-SGCC method. This result demonstrates that Rule 1 and Rule 2 of WHU-SGCC 470 

method are effective in correcting consistent biases and considerably reduce the systematic biases of CHIRP. These 471 

improvements not only adjust the bias of satellite estimations but also preserve the original CHIRP pixel values which are 472 

close to the corresponding observed data. These adjustments provide reliable precipitation estimates for the C1 and C2 pixels, 473 

which supports further study using the WHU-SGCC method, especially for areas in which rain gauges are limited. 474 

   475 

 476 

(a)                                               (b) 477 

Figure 5 CDFs of seasonal mean daily observations, CHIRP, C1 and C2 estimations for the Jinsha River Basin in JJA 2016 478 
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 479 

4.2 Spatial Clustering of Rule 3 results 480 

To adjust the pixels other than for the gauged and gridded points, the pixels physically similar to the C1 and C2 pixels were 481 

selected. According to Rule 3, C3 pixels were identified in a spatial scope defined by the FCM method. Figure 6 shows the 482 

twenty spatial clusters with consideration of the terrain factors. Overall, the spatial results of FCM have many of the same 483 

characteristics as spatial areas defined by terrain changes, especially with respect to slope and runoff directions, which may 484 

influence regional rainfall to some extent. 485 

 486 

Figure 6 Spatial clustering as defined by FCM for the Jinsha River Basin. 487 

After Rule 3, each C3 pixel has a good SCC with a C1 or C2 pixel in its cluster; the statistical analysis is shown in Fig. 7. It 488 

was found that the average SCC value was 0.6. Therefore, the regression model established in Rule 3 for C1 and C2 before 489 

and after adjustment is applicable for each corresponding C3 pixel. 490 
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 491 

Figure 7 Frequency distribution histogram for Spearman’s correlation coefficient (SCC) for C3 pixels and their corresponding C1 and C2 492 
pixels using Rule 3. 493 

It is important to note that 62.18% of the pixels satellite precipitation estimates were adjusted by Rule 3 of the WHU-SGCC 494 

method. The accuracy assessment of C3 pixels is shown in Table 4. Validation statistics indicate that compared with the CHIRP 495 

and CHIRPS satellite estimations, the WHU-SGCC approach provides best adjustments based on all the statistical indicators 496 

at C3 pixels. With the improvement of precipitation accuracy by WHU-SGCC of C3 pixels, the adjustments of C4 pixels, 497 

which mainly rely on C3 pixel corrections, are reasonable. 498 

Table 4 Accuracy assessment of C3 pixels for JJA 2016. 499 

Statistic WHU-SGCC CHIRP CHIRPS 

SCC 0.3518 0.3176 0.2476 

RMSE 5.1776 5.6686 7.0311 

MAE 3.5226 3.7353 4.6909 

BIAS -0.0831 -0.2366 -0.2404 

NSE -0.0590 -0.2693 -0.9528 

POD 1.0000 0.8900 0.3396 

FAR 0.0687 0.0749 0.0763 

CSI 0.9313 0.8302 0.3304 

4.3 1 Model performance based on overall accuracy evaluations  500 

To test the performance of the WHU-SGCC method for precipitation estimates, the statistical analyses of SCCPCC, RMSE, 501 

BAE, BIAS, NSE, POD, FAR, and CSI were calculated and are presented in Table 5 (The results were derived from the 22 502 

clusters for FCM in Rule 2 shown in Appendix B, and  =0.1 for IDW in Rule 4 after the comparison of RMSEs). Compared 503 

with the satellite images of CHIRP and CHIRPS, the results of the WHU-SGCC provide the greatest improvements for regional 504 

daily precipitation estimates over the Jinsha River Basin during thein JJA from 1990 to 20164. After bias adjustment of the 505 

WHU-SGCC, SCC PCC was improved by 17.383.34% and 39.6231.81% compared to CHIRP and CHIRPS, respectively. 506 

Meanwhile, the RMSE and, MAE and BIAS of the WHU-SGCC was decreased by 4.206.91% and, 6.236.59% and 11.83% 507 

compared to CHIRP, and by 19.1022.71% and, 24.4722.15% and 41.93% compared to CHIRPS. Although, the absolute value 508 

of BIAS of WHU-SGCC was no significant improvement than CHIRP and slightly higher than CHIRPS, all of the values were 509 
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approximately to 0. This results of BIAS indicates that all the three kinds of data were much the same on the performance of 510 

relative bias. Nevertheless, Tthe NSE of the WHU-SGCC reached -0.01370.0864, an increase of 0.10 93.33% and 0.6098.32% 511 

compared to CHIRP and CHIRPS, respectively. The NSE of WHU-SGCC was still negative, but it was improved to be zero 512 

that indicates the adjusted results are close to the average level of the rain gauge observations, while the NSEs of CHIRP and 513 

CHIRPS were much worse. It is noted that the POD of WHU-SGCC was approximate to 1, better than CHIRP and CHIRPS, 514 

and the FAR of WHU-SGCC was 0.11, lower than CHIRP and CHIRPS, which represents the better ability on precipitation 515 

event predictions of the WHU-SGCC.  516 

not only was the POD improved to over 0.95, but the CSI was also improved to over 0.85, and all the FARs were  517 

approximately 0.11. 518 

Table 5 Overall accuracy assessment during the JJA from 1990 to 2014Overall accuracy assessment in JJA 2016. 519 

Statistic WHU-SGCC CHIRP CHIRPS 

SCC 0.3006 0.2561 0.2153 

RMSE 8.3349 8.7003 10.3026 

MAE 4.4671 4.7641 5.9146 

BIAS -0.0529 -0.0600 -0.0911 

NSE -0.0864 -0.1838 -0.6599 

POD 0.9822 0.9230 0.3686 

FAR 0.1023 0.1122 0.1125 

CSI 0.8833 0.8266 0.3522 

 520 

Statistic WHU-SGCC CHIRP CHIRPS 

PCC 0.2536 0.2454 0.1924 

RMSE 8.7608 9.4108 11.3354 

MAE 5.4564 5.8415 7.0088 

BIAS -0.0167 -0.0443 -0.0134 

NSE -0.0139 -0.2083 -0.8293 

POD 0.9932 0.9578 0.4351 

FAR 0.1146 0.2323 0.1601 

CSI 0.8799 0.7405 0.4010 

The spatial distributions of the statistical comparisons between observations and WHU-SGCC precipitation estimations are 521 

shown in Fig. 84. The variation of SCC PCC as seen in Fig. 84 (a) shows that low correlations are observed in areas with lower 522 

elevation, particularly in the southern Jinsha River Basin where there is higher precipitation and a greater density of rain gauges. 523 

This result is in contrast to the result in (Rivera et al., 2018), because of the few days for heavy rains in this study area. However, 524 

tThe higher correlations noted over the north central area of the river basin are in a drier region with complex terrain and sparse 525 

rain gauges. With respect to the spatial distribution of RMSE, Fig. 8 4 (b) indicates that smaller errors are scattered in the 526 

northwest area of the river basin, with values lower than 5 mm, while the highest errors, which are over 20 10 mm, are located 527 

over the border between the lower reaches of the Jinsha Jiang River and the river basin. All the values of MAE are below 102 528 

mm and the spatial behaviour is similar to that of the RMSE. Fig. 8 4 (c) shows that the lower MAE values are were located 529 

over the mountainous region southwest of Qinghai and west of Sichuan, with values below 6 mm. The spatial distribution of 530 

the BIAS (Fig. 4 (d)) indicates that the WHU-SGCC has good agreement with the observations, with the most values ranging 531 

from -10-0.1%-0.110%. All the spatial distribution statistics indicate that the statistical relationships established during the 532 

process of the WHU-SGCC method is susceptible to the mode values of the rain gauge stations data. Although the average 533 

annual precipitation in the southern Jinsha River Basin was more than 600 mm (Fig.2), the days of light rain were still in the 534 

great percentage that caused the large biases and limited the performance over the south area, while there were sufficient data 535 



21 

 

with similar precipitation features for WHU-SGCC over the north area. Nevertheless, the WHU-SGCC approach is stillAll the 536 

spatial distribution statistics indicate that the WHU-SGCC is  effective in adjusting the satellite biases by blending with the 537 

observations, particularly in the complicated mountainous region where there are were higher SCC PCC corresponding to 538 

lower values of RMSE, MAE and BIAS. The lower SCC and higher errors located over the area southeast of the river basin 539 

showed very limited improvement in precipitation estimates.  540 

541 

(a)                                         (b) 542 

543 

(c)                                         (d) 544 
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 545 

(a)                                         (b) 546 

 547 

(c)                                         (d) 548 

Figure 8 4 Spatial distribution of the statistical analyses of the overall agreement between observations and the WHU-SGCC estimations on 549 
leave-one-out cross validation 30% validation for during the JJA from 1990 to 2014 2016: a) Spearman’s Pearson’s correlation coefficient, 550 
b) root mean square error c) mean absolute error, and d) relative bias. 551 

4.4 Model performance based on daily accuracy evaluations  552 

After overall accuracy evaluations for JJA were conducted, further evaluations of daily accuracy were undertaken and the 553 

results are shown in Fig. 9. The evaluation of daily accuracy indicates that the WHU-SGCC reduces errors and biases compared 554 

to CHIRP and CHIRPS, with especially greatly decreases compared to CHIRPS. The RMSE and MAE derived from the WHU-555 

SFCC were reduced by approximately 5% and 30% compared to CHIRP and CHIRPS, respectively. However, the greatest 556 

reduction was reflected in the BIAS, with at least an 18% and 30% reduction compared to CHIRP and CHIRPS, respectively. 557 

Therefore, the WHU-SGCC approach is effective for adjustments of daily precipitation estimates, and improves estimate 558 

performance.  559 
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  560 

 561 

Figure 9 The statistical analysis of the agreement between daily observations and WHU-SGCC, CHIRP and CHIRPS estimates on 30% 562 
validation: a) root mean square error b) mean absolute error, and c) relative bias. 563 

The series of daily precipitation differences between WHU-SGCC, CHIRP, CHIRPS and observations is presented in Fig. 564 

10. In this comparison, the WHU-SGCC has the best agreement with the observations, and provides a certain improvement 565 

compared to CHIRP, while CHIRPS shows the greatest inconsistencies with the observations.indicates that short heavy 566 

rainstorms (Katsanos et al., 2016b;Herold et al., 2017). In general, the precipitation estimated using the WHU-SGCC method 567 

are superior to other products. 568 

 Furthermore, it is noted that differences in precipitation estimates and observations are reduced gradually as the season 569 

progresses, especially in August when rainfall is decreased. But at days 36 and 56, short heavy rain events occurred in 570 

conjunction with the largest differences in observed WHU-SGCC values. This However, in general, the precipitation estimated 571 

using the WHU-SGCC method are superior to other products. 572 
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 573 

 574 

Figure 10 The daily precipitation difference between WHU-SGCC, CHIRP, CHIRPS and observations; D-CHIRP is the difference between 575 
CHIRP and observations, D-CHIRPS is the difference between CHIRPS and observations, and D-WHU-SGCC is the difference between 576 
WHU-SGCC and observations. 577 

4.2 Model performance based on daily accuracy evaluations 578 

After overall accuracy evaluations for JJA were conducted, further evaluations of daily accuracy were investigated and the 579 

results were shown in Fig. 5. The evaluation of daily accuracy indicates that the PCCs of WHU-SGCC, CHIRP and CHIRPS 580 

were roughly the same, while WHU-SGCC has the reduction of errors and biases compared to CHIRP and CHIRPS, especially 581 

the greater decreases when compared to CHIRPS. Figure. 5 indicates that there was no significant increase in PCC, however, 582 

PCC is a relative metric about the magnitude of the association between paired variables, and a relative consistency may not 583 

mean absolute proximity. Thus, the absolute measure indicated by RMSE may be more reasonable. In this study, the RMSE 584 

and MAE derived from the WHU-SGCC were reduced by approximately 15% and 30% compared to CHIRP and CHIRPS, 585 

respectively. The slight reduction was reflected in the BIAS, with an 8% to 45% reduction compared to CHIRP and CHIRPS, 586 

while all the values were concentrated between -0.5 and 0.5. All the precipitation estimations derived from WHU-SGCC, 587 

CHIRP, and CHIRPS represented well agreement with the observations in relative bias. The WHU-SGCC method shown 588 

obvious improvement in the NSE relative to CHIRP and CHIRPS, while the values were still less than 0 which may be due to 589 

the inherent uncertainty in the CHIRP. Moreover, in terms of POD, FAR and CSI, the WHU-SGCC method seems to be more 590 

promising in detecting precipitation than CHIRP and CHIRPS, although it performs poorly on FAR relative to CHIRPS in 591 

some days. However, the POD and CSI of WHU-SGCC were closest to 1. Overall, the WHU-SGCC approach is effective for 592 

adjustments of daily precipitation estimates, and improves estimate performance.  593 
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 597 
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Figure 5 The statistical analysis of the agreement between daily observations and WHU-SGCC, CHIRP and CHIRPS estimates on leave-598 
one-out cross validation: a) Pearson’s correlation coefficient b) root mean square error c) mean absolute error d) relative bias e) Nash-599 
Sutcliffe efficiency coefficient f) probability of detection g) false alarm ratio, and h) critical success index. 600 

4.5 3 Model performance on rain events predictionsModel performance for rain events 601 

To measure the WHU-SGCC performance for on different rain events predictions, the daily precipitation thresholds of 0.1, 10, 602 

25, and 505, 10, 20, and 40 mm were considered, and the result is was shown in Table 6 and Table 67 and Fig. 11. The days 603 

of each class of rain events at the validation gauge station during the JJA from 1990 to 2014 were shown in Table 5. The major 604 

rain events inside the Jinsha River Basin were light rain (0.1-10 mm), accounting for 54.76% of the total days (the average 605 

percentage of rain event days in its total days at each gauge station), while the days with daily precipitation over the 50 mm 606 

was least, only accounting for 0.72%. And the percentage of the daily precipitation of <0.1, 10-25, and 25-50 mm were 26.89%, 607 

14.01% and 3.62% respectively. The result indicated that the average daily precipitation was less than 10 mm, though in the 608 

summer seasons during the multi-year. As well as, the spatial distribution of precipitation was also uneven, with an increase 609 

from north to south. 610 

In terms of performance with respect to different daily rain events, the WHU-SGCC approach had the lowest error, as indicated 611 

by RMSE, MAE and BIAS for events with total rainfall between 1 and 20 mm, but WHU-SGCC performance for heavy rain 612 

(20-40 mm) events did not improve compared to CHIRP, though it was better than that of CHIRPS. Although the WHU-SGCC 613 

approach improved accuracy for light rain events, its behaviour for heavy rain ( 40 mm) events was not as good as CHIRP 614 

and CHIRPS, as shown in Fig. 11. These results indicate that WHU-SGCC is applicable for the detection of rainfall events 615 

with less than 20 mm precipitation, while there is insufficient observational data for the validation of WHU-SGCC performance 616 

during heavy rain events, which represented less than 4% of all observational data and were not sufficient to fully test 617 

performance of the model. 618 

Table 6 The days of each class of rain events at the validation gauge station during the JJA from 1990 to 2014 inside the Jinsha River 619 

Rain event 

 (mm) 

Validation gauge station 

<0.1 [0.1,10) [10,25) [25,50) >=50 Total days 

52908 637 1186 134 9 0 1966 

56004 628 1243 128 3 0 2002 

56021 535 1305 166 9 0 2015 

56029 556 1328 190 5 0 2079 

56034 558 1351 185 17 0 2111 

56038 459 1329 222 16 0 2026 

56144 562 1153 321 25 0 2061 

56146 467 1278 267 19 0 2031 

56152 466 1255 307 35 1 2064 

56167 565 1234 278 20 0 2097 

56247 591 1089 246 34 0 1960 

56251 466 1247 320 30 0 2063 

56257 336 1212 429 59 0 2036 

56357 313 1247 373 63 1 1997 

56374 393 1191 351 47 0 1982 

56459 487 1080 377 102 13 2059 

56462 185 1315 430 86 2 2018 

56475 544 983 352 148 20 2047 

56479 667 931 298 156 28 2080 

56485 588 905 232 100 37 1862 

56543 332 1200 289 41 1 1863 
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56565 526 1020 349 120 13 2028 

56571 674 819 301 159 49 2002 

56586 730 950 223 79 9 1991 

56651 402 1056 391 137 31 2017 

56664 727 797 306 166 56 2052 

56666 858 791 226 128 44 2047 

56671 616 886 289 148 70 2009 

56684 768 899 246 114 19 2046 

56778 682 930 274 119 43 2048 

In terms of performance with respect to different daily rain events, the WHU-SGCC approach had the lowest error, as 620 

indicated by RMSE, MAE and BIAS for events with total rainfall between 1lower than  and 2025 mm, but the performance 621 

of WHU-SGCC performance for total rainfall higher than 25mm heavy rain (20-40 mm) events did not improve compared to 622 

CHIRP and CHIRPS (Table 6), though it was better than that of CHIRPS. This negative performance on the total rainfall 623 

higher than 25 mm was probably caused by the precipitation conditions inside the Jinsha River Basin (Table 6). The average 624 

daily precipitation was less than 10 mm inside the basin, during the multi-year summer seasons, which provided a large amount 625 

of rain gauge stations data with the values lower than 10 mm, that caused a significantly impact on the statistical relationships 626 

establishment for WHU-SGCC. In hence, the approach of WHU-SGCC is applicable for the detection of rainfall events over 627 

the Jinsha River Basin, with the average daily precipitation less than 10 mm, or even than 25mm. Due to the 4.34% of summer 628 

days with the daily precipitation over the 25 mm, the performance of WHU-SGCC on these rain events was poorer than the 629 

results of CHIRP and CHRPS. 630 

Although the WHU-SGCC approach improved accuracy for light rain events, its behaviour for heavy rain (  40 mm) events 631 

was not as good as CHIRP and CHIRPS, as shown in Fig. 9. These results indicate that WHU-SGCC is applicable for the 632 

detection of rainfall events with less than 20 mm precipitation, while there is insufficient observational data for the validation 633 

of WHU-SGCC performance during heavy rain events, which represented less than 4% of all observational data and were not 634 

sufficient to fully test performance of the model. 635 

 636 

Table 6 Accuracy assessment on wet precipitation events for JJA 2016 637 
 RMSE MAE BIAS 

Rain Event 
WHU- 

SGCC 
CHIRP CHIRPS 

WHU- 

SGCC 
CHIRP CHIRPS 

WHU- 

SGCC 
CHIRP CHIRPS 

[0.1,1) 4.1609 4.5077 5.2762 2.3569 2.2940 2.2187 4.8423 4.9153 4.7541 

[1 , 2) 4.2658 4.7385 6.2943 2.4820 2.5563 3.3707 1.3491 1.8199 2.3996 

[2 , 5) 4.8378 5.2392 7.7315 3.2026 3.4011 5.2681 0.2808 1.0023 1.5525 

[5 , 10) 4.8765 5.5616 8.4619 4.0646 4.5505 6.8346 -0.2292 0.6315 0.9485 

[10,20) 8.8240 9.5254 11.5381 7.5957 8.3153 10.0287 -0.4627 0.6142 0.7408 

[20,40) 17.3305 17.0107 18.8758 15.5649 15.2646 16.4080 -0.6035 0.6011 0.6461 

40 95.8157 95.5185 95.2107 64.6789 64.1252 64.6337 -0.8850 0.8774 0.8844 

 638 

Table 7 Accuracy assessment on liquid precipitation events during the JJA from 1990 to 2014 639 

 RMSE MAE BIAS 

Rain Event 
WHU- 

SGCC 
CHIRP CHIRPS 

WHU- 

SGCC 
CHIRP CHIRPS 

WHU- 

SGCC 
CHIRP CHIRPS 

<0.1 4.7253 5.0802 7.1643 2.5927 2.9562 2.9145 / / / 

[0.1,10) 4.1661 6.8684 9.6022 3.9885 4.5534 6.2462 0.8021 1.4435 1.9842 

[10,25) 10.4281 11.0848 13.4427 9.2722 9.6866 11.5909 -0.5762 0.6342 0.7559 

[25,50) 25.7494 24.5600 25.4975 24.8386 23.0967 23.4927 -0.7784 0.7250 0.7388 
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50 56.6072 54.5037 52.7875 54.4168 52.1557 49.4318 -0.8861 0.8297 0.7852 

 640 

 641 

 642 

 643 

 644 

 645 

 646 

 647 

 648 

 649 

 650 

 651 

Figure 11 Accuracy assessment based on daily observations for the estimations of WHU-SGCC, CHIRP and CHIRPS for wet precipitation 652 
events in JJA 2016: a) root mean square error b) mean absolute error, and c) relative bias. 653 

5 Data availability 654 

All the resulting dataset derived from the WHU-SGCC approach is available on PANGAEA, with the following DOI: 655 

https://doi.pangaea.de/10.1594/PANGAEA.896615 (Shen et al., 2018). The high-resolution (0.05°) daily precipitation 656 

estimation data over Jinsha River Basin in summer 2016 can be downloaded in TIFF format.  657 

5 Data availability 658 

All the resulting dataset derived from the WHU-SGCC approach is available on PANGAEA, with the following DOI: 659 

https://doi.pangaea.de/10.1594/PANGAEA.896615 (Shen et al., 2018). The high-resolution (0.05°) daily precipitation 660 

estimation data over the Jinsha River Basin in the summer from 1990 to 2014 can be downloaded in TIFF format.  661 

6 Conclusions 662 

This study providesd a novel approach in the WHU-SGCC method for merging daily satellite-based precipitation estimates 663 

with observations. A case study of Jinsha River Basin was conducted to verify the effectiveness of the WHU-SGCC approach 664 

during the in JJA from 1990 to 20142016, and the adjusted precipitation estimates were compared to CHIRP and CHIRPS. 665 

批注 [S1]: This figure was same to the table 7, so we 
deleted it. 

https://doi.pangaea.de/10.1594/PANGAEA.896615
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WHU-SGCC aims to reduce systematic and random errors in CHIRP over the a region that has complicated mountainous 666 

terrain and sparse rain gauges. To the best of the authors’ knowledge, this study is the first to use daily CHIRP and CHIRPS 667 

data in this area. 668 

According to our findings, the following conclusions can be drawn: (1) The WHU-SGCC method is effective for the 669 

adjustment of precipitation biases from point to surface. The precipitation estimated by the WHU-SGCC method can achieve 670 

greater accuracy, which was evaluated with SCCPCC, RMSE, MAE, BIAS, NSE, POD, FAR and CSI. Particularly, the SCC 671 

NSE statistic was improved by 17.3893.33% and 39.6298.32% compared to CHIRP and CHIRPS, respectively, and all 672 

measured errors were reduced except the BIAS with no significant improvement, but approximately to 0. The results show 673 

that compared to CHIRPS, the WHU-SGCC approach can achieve substantial improvements in precipitation estimate accuracy. 674 

(2) Moreover, the spatial distribution of precipitation estimate accuracy derived from the WHU-SGCC method is related to 675 

the complexity of the topography. These random errors over the lower evaluations and the large size of the light precipitation 676 

events with short duration rainstorms in the region resulted in a limited improvement in accuracy, with SCC PCC values less 677 

than 0.3, especially during short rainstorms. However, higher SCC PCC and lower errors were observed over the north central 678 

area of the river basin, which is a drier region with complex terrain and sparse rain gauges. All the spatial distribution statistics 679 

indicate that the WHU-SGCC method is promising superior for adjustment of satellite biases by blending with the observations 680 

over the complex terraincomplicated mountainous region. (3) The leave-one-out cross validation of WHU-SGCC on daily rain 681 

events confirmedThe WHU-SGCC validations for daily rain events confirmed that the model was effective in the detection of 682 

precipitation events less than 20 25 mm due to the less average annual precipitation inside the Jinsha River Basin. According 683 

to the comparison, the WHU-SGCC approach achieves error reductions for the RMSE, MAE and BIAS statistics for rain 684 

events within the range of 1-20 25 mm. Specifically, compared with CHIRP, the RMSE value was reduced by approximately 685 

by 5.92%-39.44%9%, the MAE value by 2.914.28% ~ - 10.6812.41%, and the absoulte  BIAS value by 1.499.15% ~ - 686 

175.3344.43%; compared with CHIRPS, the RMSE and MAE values were reduced by 2011.04% ~ - 4056.61%, and the 687 

absolute BIAS value by 43.7823.77% ~ - 162.4659.58%. 688 

In conclusionTherefore, the WHU-SGCC approach can help adjust the biases of daily satellite-based precipitation estimates 689 

over the Jinsha River Basin, the complicated mountainous terrains with sparse rain gauges, particularly on the dailyf or 690 

precipitation events with less than 20 25 mm in the summer. This approach is a promising tool to monitor monsoon 691 

precipitation over the Jinsha River Basin, considering the spatial correlation and historical precipitation characteristics between 692 

raster pixels located in regions with similar topographic features. Future development of the WHU-SGCC approach will focus 693 

on the following three aspects: (1) improvement of the adjusted precipitation quality by blending in different rain reducing 694 

random errorsevents and applying in all seasons; (2) introduction of more climatic factors and mulit-model ensemble 695 

introduction of more topographic and long time series climatic factors to achieve a more accurate spatial distribution of 696 

precipitation; and (3) investigation of the performance over the other areas and on the particular hydrological case to validate 697 

the WHU-SGCC approach.  698 

 699 

Appendix A: The selection of decision trees for random forest regression 700 
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714 

 715 

Figure A1 The change of out-of-bag (OOB) error with the number of decision trees increase by means of random forest regression at each 716 
gauge station. 717 

Appendix B: Spatial Clustering from the FCM method 718 
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 719 

Figure B1 The optimum number of clusters determined by the maximum L(c) with the iterative process. 720 

 721 

Figure B2 Spatial clustering as defined by FCM for the Jinsha River Basin. 722 

This appendix demonstrates how to set the number of clusters in the FCM method.  723 

To adjust the pixels other than for the gauged stations, the pixels statistically similar to the C1 were selected. According to 724 

Rule 2, C2 pixels were identified in a spatial scope defined by the FCM method. In the following experiments of Rule 2, we 725 

set the parameters 2, =0.00001m   and the maximum number of iterations was set 1000 (an enough large value with the 726 

consideration of the algorithm efficiency). In order to determine the optimal numbers of clusters, c value was conducted in the 727 

range from 1 to 30 with an incremental interval value of 1 in this study. During the running of FCM approach, the values of 728 

L(c) were shown in Fig B1. The optimum number of clusters was 22, with the number of iterations was 690 less than the 729 

maximum number of iterations. 730 

Therefore, the number of clusters was set to 22 and the number of iterations was still set to 1000 for fully operations by 731 

means of FCM. The spatial clusters results with consideration of the terrain factors was shown in Fig. B2. Overall, the spatial 732 

域代码已更改
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results of FCM have many of the same characteristics as spatial areas defined by terrain changes, especially with respect to 733 

slope and runoff directions, which may influence regional rainfall to some extent. 734 
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