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Abstract. Accurate and consistent satellite-based precipitation estimates blended with rain gauge data are important for 8 

regional precipitation monitoring and hydrological applications, especially in regions with limited rain gauges. However, 9 

existing fusion precipitation estimates often have large uncertainties over mountainous areas with complex topography and 10 

sparse rain gauges, and the existing data blending algorithms are very bad at removing the day-by-day random errors. Therefore, 11 

the development of effective methods for high-accuracy precipitation estimates over complex terrain and on a daily scale is of 12 

vital importance for mountainous hydrological applications. This study aims to offer a novel approach for blending daily 13 

precipitation gauge data and the Climate Hazards Group Infrared Precipitation (CHIRP, daily, 0.05°) satellite-derived 14 

precipitation developed by the UC Santa Barbara estimates over the Jinsha River Basin for the period of June-July-August in 15 

from 1994 to 20146. This method is named the Wuhan University Satellite and Gauge precipitation Collaborated Correction 16 

(WHU-SGCC). The results show that the WHU-SGCC method is effective in liquid precipitation bias adjustments from point 17 

to surface, which is evaluated by multiple error statistics and from different perspectivescategorical indices. Moreover, the 18 

accuracy of the spatial distribution of the precipitation estimates derived from the WHU-SGCC method is related to the 19 

complexity of the topography. The validation also verifies that the proposed approach is effective in the detection of the major 20 

precipitation events inside the Jinsha River Basin with the daily precipitation less than 25 mmthat are less than 20 mm. This 21 

study indicates that the WHU-SGCC approach is a promising tool to monitor monsoon precipitation over the Jinsha River 22 

Basin, the complicated mountainous terrain with sparse rain gauge data, considering the spatial correlation and the historical 23 

precipitation characteristics. The daily precipitation estimations at 0.05° resolution over the Jinsha River Basin during the 24 

summer seasons from 1990 to 2014in summer 2016, derived from WHU-SGCC are available at the PANGAEA Data Publisher 25 

for Earth & Environmental Science portal (https://doi.pangaea.de/10.1594/PANGAEA.896615) 26 

1 Introduction 27 

Accurate and consistent estimates of precipitation are vital for hydrological modelling, flood forecasting and climatological 28 

studies in support of better planning and decision making (Agutu et al., 2017;Cattani et al., 2018;Roy et al., 2017). In general, 29 

ground-based gauge networks include a substantial number of liquid precipitation observations measured with high accuracy, 30 

high temporal resolution, and long historical records. However, sparse distribution and point measurements limit the accurate 31 

estimation of spatially gridded rainfall (Martens et al., 2013).  32 

Due to the sparseness of rain gauges and their uneven spatial distributiondistributed and high proportion of missing data, 33 

satellite-derived precipitation data are an attractive supplement offering the advantage of plentiful information with high spatio-34 

temporal resolution over widespread regions, particularly over oceans, high elevation mountainous regions, and other remote 35 

regions where gauge networks are difficult to deploy. However, the retrieval algorithms for satellite-based precipitation 36 

estimates are susceptible to systematic biases in hydrologic modelling satellite estimates are susceptible to systematic biases 37 

that can influence hydrological modelling and the retrieval algorithms are relatively insensitive to light rainfall events, 38 

especially in complex terrain, resulting in underestimation of the magnitude of precipitation events (Behrangi et al., 39 
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2014;Thiemig et al., 2013;Yang et al., 2017). Without adjustments, inaccurate satellite-based precipitation estimates without 40 

adjustment will lead to unreliable assessments of risk and reliability (AghaKouchak et al., 2011). 41 

Accordingly, there are many kinds of precipitation estimates combining multiple sources datasets. Since 1997, the Tropical 42 

Rainfall Measurement Mission (TRMM) has improved satellite-based rainfall retrievals over tropical regions (Kummerow et 43 

al., 1998;Simpson et al., 1988), and then applies a stepwise method for blending daily TRMM Multisatellite Precipitation 44 

Analysis (TMPA) output with rain gauges in South America (Vila et al., 2009). The Global Precipitation Measurement (GPM) 45 

satellite was launched after the success of the TRMM satellite by the cooperation of National Aeronautics and Space 46 

Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) on February 27, 2014 (Mahmoud et al., 2018;Ning 47 

et al., 2016). The main core observatory satellite (GPM) cooperates with the ten other satellites (partners) to offer the high 48 

spatiotemporal resolution products (0.1° × 0.1°- half- hourly) of the global real-time precipitation estimates (Mahmoud et al., 49 

2019). The Geostationary Operational Environmental Satellite (GOES)-R Series is the geostationary weather satellites, which 50 

significantly improves the detection and observation of environmental phenomena. The Advanced Baseline Imager (ABI) 51 

onboard the GOES-R platform will provide images in 16 spectral bands, spatial resolution of 0.5 to 2 km (2 km in the infrared 52 

and 1–0.5 km in the visible), and full-disk scanning every 5 minutes over the continental United States. The GOES-R Series 53 

will offer the enhanced capabilities for satellite-based rainfall estimation and nowcasting (Behrangi et al., 2009;Schmit et al., 54 

2005). The Global Precipitation Climatology Project (GPCP) is one of the successful projects for blending rain gauge analysis 55 

and multiple satellite-based precipitation estimates, and constructed a relatively coarse-resolution (monthly, 2.5° × 2.5°) global 56 

precipitation dataset (Adler et al., 2003;Huffman et al., 1997). To improve the resolution of this satellite-based dataset, the 57 

GPCC network data was incorporated into remote sensing information with Artificial Neural Networks (PERSIANN) rainfall 58 

estimates, which provides finer temporal and spatial resolutions (daily, 0.25° × 0.25°) (Ashouri et al., 2015). The CPC Merged 59 

Analysis of Precipitation (CMAP) product is a data blending and fusion analysis of gauge data and satellite-based precipitation 60 

estimates (Xie and Arkin, 1996). CMAP has a long-term dataset series from 1979, while the resolution is relatively coarse. 61 

Although the aforementioned products are widely used and have performed well, the data resolution cannot achieve high 62 

accuracy in precipitation monitoring over the Jinsha River Basin, China.  63 

Currently, the Climate Hazards Group Infrared Precipitation with Station data (CHIRPS) developed by the UC Santa Barbara, 64 

which has a higher spatial resolution (0.05°), can solve the scale problem. CHIRPS is a long-term precipitation data series, 65 

which merges three types of information: global climatology, satellite estimates and in situ observations. Table 1 shows the 66 

temporal and spatial resolution of current major satellite-based precipitation datasets. The CHIRPS precipitation dataset with 67 

several temporal and spatial scales has been evaluated in Brazil (Nogueira et al., 2018;Paredes-Trejo et al., 2017), Chile (Yang 68 

et al., 2016;Zambrano-Bigiarini et al., 2017), China (Bai et al., 2018), Cyprus (Katsanos et al., 2016b;Katsanos et al., 2016a), 69 

India (Ali and Mishra, 2017) and Italy (Duan et al., 2016). Nevertheless, the temporal resolutions of the aforementioned 70 

applications were mainly at seasonal and monthly scales, lacking the evaluation of daily precipitation. Additionally, despite 71 

the great potential of gauge-satellite fusing products for large-scale environmental monitoring, there are still large 72 

discrepancies with ground observations at the sub-regional level where these data are applied. Furthermore, the CHIRPS 73 

product reliability has not been analysed in detail for the Jinsha River Basin, China, particularly on a daily scale. The existing 74 

research indicates that estimations over mountainous areas with complex topography often have large uncertainties and 75 

systematic errors due to the topography, seasonality, climate impact and sparseness of rain gauges (Derin et al., 2016;Maggioni 76 

and Massari, 2018;Zambrano-Bigiarini et al., 2017)(Zambrano-Bigiarini et al., 2017). Moreover, (Bai et al., 2018) evaluates 77 

CHIRPS over mainland China and indicates that the performance of CHIRPS is poor over the Sichuan Basin and the Northern 78 

China Plain, which have complex terrains with substantial variations in elevation. Additionally, (Trejo et al., 2016) shows that 79 

CHIRPS overestimates low monthly rainfall and underestimates high monthly rainfall using several numerical metrics, and 80 

rainfall event frequency is overestimated excluding the rainy season.  81 
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Table 1 Coverage and spatiotemporal resolutions of major satellite precipitation datasets 82 
Product Temporal resolution Spatial resolution Period Coverage 

TRMM 3B42 3hours 0.25° 1998-present 50°S-50°N 

GPM 

30min/Hourly/ 

3hours/Daily/3Day/7 

Day/Monthly 

0.1°/0.25°/0.05°/5° 2014-present 

60°S-60°N 

70°N-70°S 

90°N-90°S 

GOES-R 5min/15min 0.5-2 km 2016-present 

the continental 

United States/ 

western 

hemisphere 

GPCP Monthly/Pentad 2.5° 1979-(delayed) present 90°S-90°N 

PRERSSIANN-CDR Daily 0.25° 1983-(delayed) present 60°S-60°N 

CMAP Monthly 2.5° 1979- present 90°S-90°N 

CHIRPS 
Annual/Monthly/ 

Dekad/Pentad/Daily 
0.05°/0.25° 1981- present 50°S-50°N 

To overcome these limitations, many studies have focused on proposing effective methodologies for blending rain gauge 83 

observations and satellite-based precipitation estimates, and sometimes radar data to take advantage of each dataset. Many 84 

numerical models are established among these datasets for high-accuracy precipitation estimations, such as bias adjustment by 85 

a quantile mapping (QM) approach (Yang et al., 2016), Bayesian kriging (BK) (Verdin et al., 2015) and a conditional merging 86 

technique (Berndt et al., 2014). Among aforementioned methods, the QM approach is a distribution-based approach, which 87 

works with historical data for bias adjustment and is effective in reducing the systematic bias of regional climate model 88 

precipitation estimates at monthly or seasonal scales (Chen et al., 2013). However, the QM approach offers very limited 89 

improvement in removing day-by-day random errors. The BK approach shows very good model fit with precipitation 90 

observations. Unfortunately, the Gaussian assumption of the BK model is invalid for daily scales. Overall, there is a lack of 91 

effective methods for high-accuracy precipitation estimates over complex terrain on a daily scale.  92 

As such, due to the poor performance of CHIRPS data at the sub-regional scale and the shortcomings of the existing blending 93 

algorithms, the aim of this article is to offer a novel approach for blending daily liquid precipitation gauge data, gridded 94 

precipitation data and the Climate Hazards Group Infrared Precipitation (CHIRP) satellite-derived precipitation estimates 95 

developed by the UC Santa Barbara, over the Jinsha River Basin. Here, we will use precipitation to name liquid precipitation 96 

throughout the text. The CHIRP is the raw data of CHIRPS before blending in rain gauge data. The objective is to build 97 

corresponding precipitation models that consider terrain factors and precipitation characteristics to produce high-quality 98 

precipitation estimates. This novel method is named the Wuhan University Satellite and Gauge precipitation Collaborated 99 

Correction (WHU-SGCC) method. We demonstrate this method by applying it to daily precipitation over the Jinsha River 100 

Basin during the summer seasons from 1990 to 2014in summer 2016. The results support the validity of the proposed approach 101 

for producing refined satellite-gauge precipitation estimates over mountainous areas. 102 

The remainder of this paper is organized as follows: Section 2 describes the study region and precipitation rain gauges, 103 

gridded observations and CHIRPS dataset used in this study. Section 3 presents the principle of the WHU-SGCC approach for 104 

high-accuracy precipitation estimates. The results and discussion are analysed in Section 4, and conclusions and future work 105 

are presented in Section 5.  106 

2 Study Region and Data 107 

2.1 Study Region 108 

The Yangtze River, one of the largest and most important rivers in Southeast Asia, originates on the Tibetan Plateau and extends 109 

approximately 6300 km eastward to the East China Sea. The river’s catchment proximately covers an area of approximately 110 

~180 × 104 km2 and the average annual precipitation is approximately 1100 mm (Zhang et al., 2019).. In 2016, the average 111 

precipitation in the Yangtze River Basin was 12053 mm and the total precipitation was 21478.71 billion m3, which is 10.9% 112 

higher than the annual average total precipitation. Yangtze River is divided into nine sub-regionsbasins, the upper drainage 113 
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basin is the Jinsha River Basin, which flows through the provinces of Qinghai, Sichuan, and Yunnan in western China. The 114 

total river length is 3486 km, accounting for 77% of the length of the upper Yangtze River, and covering a watershed area of 115 

460 × 103 km2. The location of the Jinsha River Basin is shown in Fig. 1, and covers the eastern part of the Tibetan Plateau 116 

and the part of the Hengduan Mountains. The southern portion of the river basin is the Northern Yunnan Plateau and the eastern 117 

portion includes a wide area of the southwestern margin of the Sichuan basin. Crossing complex and varied terrains, the 118 

elevation of the Jinsha River ranges from 263 to 6575 m above sea level, which results in significant temporal and spatial 119 

climate weather variation within the basin. The average annual precipitation of the Jinsha River Basin is approximately 710 120 

mm, the average annual precipitation of the lower reaches is approximately 900-1300 mm, while the average annual 121 

precipitation of the middle and upper reaches is approximately 600-800 mm (Yuan et al., 2018). Average annual precipitation 122 

in the Jinsha River Basin is approximately 3433.45 mm, the total annual precipitation north of Shigu is 937.25 mm, while 123 

south of Shigu annual precipitation is 2496.20 mm. The climate of the Jinsha River Basin has more precipitation during the 124 

warm summer season (June-July-August, JJA), which is affected by oceanic southwest and southeast monsoons and is drier in 125 

cold season (December to February). Therefore, the blending of satellite estimations with gauged observations during the 126 

summer (JJA) is the main focus of this research.  127 

  128 

Figure 1 Location of the study area with key topographic features. 129 

 130 

2.2 Study Data 131 

2.2.1 Precipitation gauged observations 132 

Daily rain gauge observations at 30 national standard rain stations in the Jinsha River Basin for during the JJA from 1990 to 133 

20146 were provided by the National Climate Centre (NCC) of the China Meteorological Administration (CMA)134 

（http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html, last access: 10 December, 2018）, 135 

which imposes a strict quality control at station-provincial-state levels. Station identification numbers and relevant 136 

geographical characteristics are shown in Table 2, and their uneven spatial distribution is shown in Fig. 2. The selected rain 137 

gauges are located in Qinghai, Tibet, Sichuan and Yunnan Provinces but are mainly scattered in Sichuan Province, and the 138 
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number of rain gauges in the northern river basin is less than in the southern river basin. In this study, the gauge observations 139 

were used as the reference data in bias adjustment of satellite precipitation estimations.  140 

Table 2 Geographical characteristics of rain stations. 141 
Station number Province Lat (°N) Lon (°E) Elevation (m) 

52908 Qinghai 35.13 93.05 4823 

56004 Qinghai 34.13 92.26 4744 

56021 Qinghai 34.07 95.48 5049 

56029 Qinghai 33.00 96.58 4510 

56034 Qinghai 33.48 97.08 4503 

56144 Tibet 31.48 98.35 4743 

56038 Sichuan 32.59 98.06 4285 

56146 Sichuan 31.37 100.00 4703 

56152 Sichuan 32.17 100.20 4401 

56167 Sichuan 30.59 101.07 3374 

56247 Sichuan 30.00 99.06 2948 

56251 Sichuan 30.56 100.19 4284 

56257 Sichuan 30.00 100.16 3971 

56357 Sichuan 29.03 100.18 4280 

56374 Sichuan 30.03 101.58 3902 

56459 Sichuan 27.56 101.16 3002 

56462 Sichuan 29.00 101.30 4019 

56475 Sichuan 28.39 102.31 1850 

56479 Sichuan 28.00 102.51 2470 

56485 Sichuan 28.16 103.35 2060 

56565 Sichuan 27.26 101.31 2578 

56571 Sichuan 27.54 102.16 1503 

56666 Sichuan 26.35 101.43 1567 

56671 Sichuan 26.39 102.15 1125 

56543 Yunnan 27.50 99.42 3216 

56586 Yunnan 27.21 103.43 2349 

56651 Yunnan 26.51 100.13 2449 

56664 Yunnan 26.38 101.16 1540 

56684 Yunnan 26.24 103.15 2184 

56778 Yunnan 25.00 102.39 1975 

 142 

The multi-year (1990-2014) average annual precipitation during the JJA over the Jinsha River Basin increases from north 143 

to south (Fig. 2). The spatial distribution of precipitation is uneven, with an average annual precipitation ranging from less 144 
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than 250 mm to more than 600 mm during the summer seasons. 145 

 146 

Figure 2 Jinsha River Basin with 18 CHIRPS fusion stations, 30 gauge stations and 170 grid points provided by the China Meteorological 147 
Administration stations. 148 

Figure 2 The multi-year (1990-2014) average annual precipitation during JJA over the Jinsha River Basin. Jinsha River Basin with 30 rain 149 
stations were provided by the China Meteorological Administration stations, the other 1818 CHIRPS fusion stations were provided by the 150 
Climate Hazards Group UC Santa Barbara online at ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-151 
2.0/diagnostics/global_monthly_station_density/tifs/p05/ (last access: 10 December, 2018).  152 

, 30 gauge stations and 170 grid points provided by the China Meteorological Administration stations. 153 

2.2.2 Gridded precipitation observations 154 

The gridded precipitation data developed by CMA with 0.5°× 0.5° resolution on a daily scale, was interpolated from 2472 155 

gauge observations with a thin plate spline algorithm from 1961 to the present. Over the Jinsha River Basin, a total of 170 156 

gridded points were selected as the supplementary data for observations in JJA 2016, due to the 2472 gauged station data that 157 

were not shared on CMA (http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_PRE_DAY_GRID_0.5.html, last 158 

access: 10 December, 2018). The even distribution of daily gridded precipitation observations is shown in Fig. 2.  159 

2.2.3 2 CHIRPS satellite-gauge fusion precipitation estimates 160 

The CHIRPS v.2 dataset, a satellite-based daily rainfall product, is available online at 161 

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/global_daily/tifs/p05/ (last access: 10 December, 2018). It covers a 162 

quasi-global area (land only, 50° S-50° N) with several temporal scales (daily, 3-day, 6-day or monthly time steps) and high 163 

spatial resolution (0.05°) (Rivera et al., 2018). This dataset contains a wide variety of satellite-based rainfall products derived 164 

from multiple data sources and incorporates four data types: monthly precipitation from CHPClim v.1.0 (Climate Hazards 165 

Group’s Precipitation Climatology version 1) derived from the combination of the satellite fields, gridded physiographic 166 

indicators, and in situ climate normal with the geospatial modelling approach based on moving window regressions and inverse 167 

distance weighting interpolation (Funk et al., 2015 b), quasi-global geostationary thermal infrared satellite observations 168 

(TRMM 3B42 version 7), atmospheric model rainfall fields CFS (Climate Forecast System) from NOAA, and surface based 169 
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precipitation observations from various sources including national or regional meteorological services. The differences from 170 

other frequently used precipitation products are the higher resolution of 0.05° and the longer-term data series from 1981 to the 171 

present (Funk et al., 2015 a).  172 

CHIRPS is the blended product of a two-part process. First, IR precipitation (IRP) pentad rainfall estimates are fused with 173 

corresponding CHPClim pentad data to produce an unbiased gridded estimate, called the Climate Hazards Group IR 174 

Precipitation (CHIRP), which is available online at ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRP/daily/ (last access: 10 175 

December, 2018). In the second part of the process, CHIRP data is blended with in situ precipitation observations obtained 176 

from a variety of sources including national and regional meteorological services by means of a modified inverse-distance 177 

weighting algorithm to create the final blended product, CHIRPS (Funk et al., 2014). The daily CHIRP satellite-based data 178 

over the Jinsha River Basin during the summer seasons from 1990 to 2014over Jinsha River Basin in JJA 2016 was selected 179 

as the input for WHU-SGCC blending with rain observations, and the corresponding daily CHIRPS blended data was used for 180 

comparisons of precipitation accuracy.  181 

The blended in situ daily precipitation observations come from a variety of sources such as: the daily GHCN archive (Durre 182 

et al., 2010), the Global Summary of the Day dataset (GSOD) provided by NOAA’s National Climatic Data Center, the World 183 

Meteorological Organization’s Global Telecommunication System (GTS) daily archive provided by NOAA CPC, and over a 184 

dozen national and regional meteorological services. The number of daily CHIRP observation stations in the Jinsha River 185 

Basin was only 18, compared to the 30 rain gauge stations and 170 grid points provided by CMA; hence, the number of CHIRP 186 

stations limited the accuracy of spatial rainfall estimates (Fig. 2). 187 

3 Methods 188 

3.1 The WHU-SGCC approach  189 

In this study, the approach of the WHU-SGCC is to estimate the precipitation for every pixel by blending satellite estimates 190 

and rain gauge observations considering the terrain factors and precipitation characteristics. There were five four steps to 191 

establish the numerical relationship between gauged stations and the corresponding satellite pixels, and interpolation for the 192 

remaining pixelsother pixels. On this basis, the WHU-SGCC method identifies the geographical locations and topographical 193 

features of each pixel and applies the four classification and blending rules. A flowchart of the WHU-SGCC method is shown 194 

in Fig. 3. The proposed approach was evaluated over the Jinsha River Basin based on 30 gauge stations and CHIRP satellite-195 

based precipitation estimations during the JJA from 1990 to 2014. The leave-one-out cross validation step was applied to 196 

computing the out-of-sample adjusted error with gauge stations. 197 

 On this basis, the WHU-SGCC method identifies the geographical locations and topographical features of each pixel and 198 

applies the classification principles of the SICR approach, including five classification and blending rules. The basic 199 

description of the WHU-SGCC method is given below, with details illustrated separately in later sections:. 200 

1) A flowchart of the WHU-SGCC method is shown in Fig. 3. The proposed approach was evaluated for the Jinsha River 201 

Basin for JJA 2016. From that data, the training samples represented 70% of total gauged stations and gridded points, and the 202 

remaining data were used to verify the model performance. The proposed approach was evaluated for the Jinsha River Basin 203 

for  theJJA 2016. Classify all regional pixels into five four types: C1 (pixel including one gauged station in its area), C2 (pixel 204 

including one gridded point), C3 C2 (pixel statistically physically similar to C1C2), C4 C3 (pixel statistically physically similar 205 

to C3C2) and C5 C4 (remaining pixels).  206 

2) Analyse the relationships between precipitation observations and the C1, C2, and C3 pixel types, and with the C4 and C5 207 

pixels. These relationships are described by five four rules, detailed below as Rules 1 through 54.  208 

3) Bias-adjust, establish Establish regression models and screen target pixels based on the five aforementioned rules. 209 

4) Correct all precipitation pixels in daily regional precipitation images. 210 
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5) A flowchart of the WHU-SGCC method is shown in Fig. 3. The proposed approach was evaluated for the Jinsha River 211 

Basin for JJA 2016. From that data, the training samples represented 70% of total gauged stations and gridded points, and the 212 

remaining data were used to verify the model performance. 213 

Daily Gauged 

Observation

(30 gauges, JJA 2016)

Daily CHIRP

(0.05°× 0.05°, JJA 2016) 

Daily Gridded Observation

(170 gridded points,  JJA 2016) 

Satellite precipitation estimates adjusted by Adj-QM

(C1 and C2 pixels values output)

Rule 1 Rule 2

Calculating SCC for each C1 and C2 with their values after 

adjustment with gauged observations

Spatial scope determined by FCM

The regression relationship between values before and 

after Rule 1 and Rule 2 adjustment, established by RFR 

Selecting C1 and C2 with well adjustment

|SCC| ≥ 0.5 and p < 0.05

Calculating SCC for each C1 and C2 with their values 

before and after Rule 1 and Rule 2 adjustment

Determining the C3 pixels by calculating SCC 

between C1, C2 and other raster pixels 

The adjustment method for C3 pixels can be derived from 

the regression model of corresponding C1 and C2 pixels

|SCC| ≥ 0.5 and p < 0.05

|SCC| ≥ 0.5 and p < 0.05

Rule 3

Determining the C4 pixels by calculating SCC between 

adjusted C3 pixels and the remaining raster pixels 

Calculating the precipitation ratio at C3 pixels

Systematic 

Error

The  remaining pixels are C5 pixels and the pixel 

value is same to the corresponding CHIRP 

(less than 10% of total pixels)

Rule 4

Rule 5

Random Error

C4 pixels adjusted by the same precipitation ratio with 

the corresponding C3 pixel

 214 

Daily Gauge Observation

(30 rain gauges, JJA 1990-2014)

Daily CHIRP

(0.05°× 0.05°, JJA 1990-2014) 

Random forest regressions between gauged observations and 

the corresponding CHIRP grid cell values at C1 pixels

Determining the C2 pixels by calculating PCC between CHIRP 

grid cell values at C1 pixels and the remaining pixels 

Spatial scope determined by FCM

Determining the C3 pixels by calculating PCC between  CHIRP 

grid cell values at  C2 pixels and the remaining pixels 

The adjustment method for C2 pixels can be derived from the 

regression models of the corresponding C1 pixels

|PCC| ≥ 0.5 and p < 0.05

Calculating the precipitation ratio at C2 pixels

|PCC| ≥ 0.5 and p < 0.05

Rule 3

Rule 1

C3 pixels adjusted by the same precipitation ratio with the 

corresponding C2 pixel

Rule 2

The  remaining pixels are C4 pixels, the pixel values at C1 and 

C4 pixels are interpolated by IDW with C2 and C3 pixels
Rule 4

 215 

Figure 3 Flowchart of the WHU-SGCC approach with the five four rules applied in this study.  216 

3.1.1 Assumptions 217 

1) Gauge and gridded point observations are the most accurate, or “true”, values for reference purposes. 218 

2) No major terrain change occurred during the twenty years. 219 

3) Spearman’s Pearson’s Correlation Coefficient (SCCPCC) can indicate the statistically similarity of rainfall characteristics 220 
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among pixels over a seasonal scale.  221 

3.1.2 Rule 1 of the WHU-SGCC method 222 

In general, satellite precipitation estimations deviated from ground-based measurements, which were assumed to be the true 223 

values. Rule 1 adjusts the biases in the satellite estimations. For every C1, its precipitation value was derived from a quantile 224 

mapping (QM) approach. It has been shown that the QM method is the best for reducing systematic biases of regional satellite 225 

precipitation estimates because of its independence from predetermined functions (Themessl et al., 2011;Chen et al., 2013). 226 

QM is a nonparametric empirical approach that considers a time-dependent correction function. This approach is designed 227 

to transform the cumulative distribution function (CDF) of satellite data into the CDF of data at each station. 228 

𝑌𝑜 = h(𝑌𝑠)                                           (1) 229 

where the variable 𝑌𝑠 is the distribution of the observed variable 𝑌𝑜. In this study 𝑌𝑜 denotes each gauge or gridded 230 

precipitation data point location from CMA and 𝑌𝑠 denotes the corresponding CHIRP grid cell value. The objective of QM 231 

is to correct the daily precipitation amount from a climate simulation and the transformation h is defined in Eq. (2): 232 

𝑌𝑜 = 𝐻𝑜
−1(𝐻𝑠(𝑌𝑠))                                       (2) 233 

where the 𝐻𝑠 is the CDF of 𝑌𝑠 and 𝐻𝑜
−1 is the inverse CDF (or quantile function) corresponding to 𝑌𝑜 (Gudmundsson 234 

et al., 2012). 235 

Notably, we separately calculate CDFs at each gauge and gridded pixel using the historical daily rainfall from the JJA in 236 

2016.  237 

The result of a QM adjustment is 𝑌𝑄𝑚, which is approximately the same as the CDF of the gauge observations on a seasonal 238 

scale, which is distinct from daily data. The suitable scale of the CDF is seasonal because the QM cannot effectively remove 239 

the day-by-day random errors in CHIRP estimates. Therefore, on the basis of 𝑌𝑄𝑚, the adjustment result, 1asC , for each C1 240 

pixel is derived from the minimum absolute value of the difference between the gauge observations and satellite estimations 241 

before and after applying the QM adjustment, referred to as the adjusted QM (Adj-QM) method, as shown in Eq. (3) - Eq. (5). 242 

𝐷𝑄𝑀 = |�̅�𝑄𝑀 − 𝑌𝑜|                                        (3) 243 

𝐷𝑠 = |𝑌𝑠 − 𝑌𝑜|                                          (4) 244 

1asC = {
�̅�𝑄𝑀 ,   𝐷𝑄𝑀 ≤ 𝐷𝑠

𝑌𝑠,   𝐷𝑠 ≤ 𝐷𝑄𝑀
                                   (5) 245 

where 𝐷𝑄𝑀  is the absolute value of the difference between 𝑌𝑄𝑚  and 𝑌𝑜, and 𝐷𝑠  is the absolute value of difference 246 

between 𝑌𝑠 and 𝑌𝑜.  247 

 248 

In general, satellite precipitation estimations deviated from ground-based measurementsobserved data, which were assumed 249 

to be the true values. Rule 1 aims to establish a regression model between each gauge historical observations and the 250 

corresponding CHIRP grid cell value. The regression relationship was derived by random forest regression (RFR) at each 251 

gauge station. RFR is a machine-learning algorithm for a predictive model with a large set of regression trees in which each 252 

tree in the ensemble is grown from a bootstrap (Johnson, 1998) sample drawn with replacement from the training set. The final 253 

prediction is obtained by combining the results of the prediction methods applied to each bootstrap sample (Genuer et al., 254 

2017). The predicted value is calculated by the mean of all trees. 255 

𝑌𝑜 = 𝑓
𝑅𝐹𝑅

(𝑌𝑠)                                    (1) 256 

where 𝑌𝑜 denotes each gauge historical observations and 𝑌𝑠 denotes the corresponding CHIRP grid cell values at C1 257 

pixels, 𝑓
𝑅𝐹𝑅

 is constructed from the time series 𝑌𝑜 (dependent variable) and 𝑌𝑠 (independent variable) by means of RFR. 258 

The number of decision trees was set to 500, which was determined by out-of-bag (OOB) error (Figure S1). The OOB error 259 带格式的: 字体: 10 磅
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reached the minimum value when the number of decision trees was less than 500.   260 

The Rule 1 builds the statistical relationships between gauge observations and corresponding CHIRP grid cell values, which 261 

is the key idea in correcting the satellite-based precipitation estimations in the whole study area. As there are 30 gauge stations 262 

in the study area, 30 regression relationships at C1 pixels were derived from Rule1. The values of C1 pixels are not corrected 263 

in Rule 1, but interpolated in Rule 4. 264 

3.1.3 Rule 2 of the WHU-SGCC method 265 

Commonly, a few of the national standard stations have free access, and these stations are unevenly distributed and do not 266 

satisfied the accuracy needed for regional precipitation estimation. Under these circumstances, the gridded precipitation data 267 

developed by CMA are applied as the supplementary data for observations with uniform spatial distribution. Therefore, Rule 268 

2 is same as Rule 1 with different input data. 2asC is the adjusted target precipitation of one C2 pixel. 269 

3.1.4 3 Rule 32 of the WHU-SGCC method 270 

It is reasonable to assume that there are some pixels that are statistically physically similar to the precipitation characteristics 271 

of C1 pixels in a certain spatial scope. Therefore, it is feasible to adjust the satellite estimation bias of C3 C2 pixels by referring 272 

to the appropriate regression relationships at corresponding C1 pixels based on Rule 1. 273 

First, the spatial scope in which pixels may have highly similar characteristics is established. Some studies indicate that 274 

geographical location, elevation and other terrain information influences the spatial distribution of rainfall, especially in 275 

mountainous areas with complex topography (Anders et al., 2006;Long and Singh, 2013). The size of the spatial range is an 276 

important parameter to distinguish spatial similarity and heterogeneity. In the WHU-SGCC method, the approach of fuzzy c-277 

means (FCM) clustering was explored to determine the spatial range considered as each pixel’s terrain factors including 278 

longitude, latitude, elevation, slope, aspect and curvature. FCM method was developed by J.C. Dunn in 1973 (Dunn, 1973), 279 

and improved in 1983 (Wang, 1983). It is an unsupervised fuzzy clustering method and the steps are as follows (Pessoa et al., 280 

2018): 281 

1) Choose the number of clusters tc. The optimum number of clusters was determined by L(c) which was derived from the 282 

inter-distance and inner-distance of elementssamples in Eq. (2). It is ensured that the distance between the same samples is 283 

smaller, while the distance between the different samples is larger. 284 

2

1 1

2

1 1

|| || /( 1)

( )

|| || /( )

c n
m

ij i

i j

c n
m

ij j i

i j

w c x c

L c

w x c n c

 

 

 



 




                                (2) 285 

In Eq. (2), the denominator is inner-distance and the molecular is inter-distance. The initial value of c is 1 and the maximum 286 

value of c is the number of gauge stations in this study area. The optimum number of clusters was optimized to maximize the 287 

L(c). For this reason, c value is conducted in the range of 1 to the number of gauge stations with an incremental interval value 288 

of 1 in this study. 289 

 290 

2) Assign coefficients randomly to each data point ix  for the degree to which it belongs in the ji th cluster ( )ij iw x : 291 

1)  292 
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        (74),    
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x
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       (5) 293 

 294 

where x is a finite collection of n elements that will be partitioned into a collection of c fuzzy clusters, ic is the centre of 295 

each cluster, m is the hyper-parameter that controls the level of cluster fuzziness and ijw  is the degree to which element ix  296 

belongs to ic  and x  is the center vector of collection. In Eq. (63), 
( )t

jc  represents the cluster centre in iteration t. If the 297 

minimum improvement in objective function between two consecutive iterations satisfies the following equation, the algorithm 298 

terminates in iteration t (Eq. (6)): 299 

( ) ( +1)|| - ||<t t

i ic c                                         (6) 300 

 301 

2)3) Minimize the objective function cF  to achieve data partitioning. 302 

2

1 1

|| ||
n c

m

c ij j i

j i

F w x c
 

                                      (87) 303 

The results of FCM are the degree of membership of each pixel to the cluster centre as represented by numerical value. 304 

Pixels in each cluster have similar terrain features and precipitation characteristics. 305 

Second, the adjusted C1 and C2 are employed. SCC was used as the evaluation index for each C1 and C2 with their values 306 

after adjustment and gauge observations in JJA: 307 

1

2 2

1 1

( )( )

( ) ( )

n

i i

i

n n

i i

i i

rgx rgx rgy rgy

SCC

rgx rgx rgy rgy



 

 



 



 

                              (9) 308 

Spearman’s correlation coefficient is defined as Pearson’s correlation coefficient between the ranked variables, and it 309 

assesses monotonic relationships (whether linear or not) where n is the number of data points in each set, which was the number 310 

of each C1 or C2 in the historical JJA dataset. ix  is the ith data value in the first data set (satellite estimations after Rule 1 311 

and Rule 2 adjustment, 1asC  and 2asC ), ix  is converted to its rank irgx , and rgx  is its average value. Similar 312 

definitions exist for irgy  and rgy  (gauge and gridded observations at C1 and C2 pixels, 𝑌𝑜). The value range of the SCC 313 

is between -1 and +1. If there are no repeated data values, a perfect SCC of +1 or −1 occurs when each of the variables is a 314 

perfect monotone function of the other. However, if the value is close to zero, there is zero correlation. In addition, correlation 315 

is not only determined by the value of the correlation coefficient but also from the correlation test’s p-value. The critical value 316 

is 0.05, thus a p lower than 0.05 indicates the data are significantly correlated. Therefore, the C1 and C2 pixels selected for 317 

Rule 3 must meet the following criteria: 318 

0.5 0.05SCC and p                                   (10) 319 

Third, the filtered C1 and C2 pixels after adjustment is used to establish a regression model between the historical 1asC , 320 

2asC  and 𝑌𝑠. To ensure high accuracy, it is necessary to calculate the SCC and p values between 1asC , 2asC  and 𝑌𝑠, and 321 

complete the filtering criteria described above in Eq. (7) before building the regression model. The regression relationship was 322 
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derived by random forest regression (RFR). RFR is a machine-learning algorithm for a predictive model with a large set of 323 

regression trees in which each tree in the ensemble is grown from a bootstrap (Johnson, 1998) sample drawn with replacement 324 

from the training set. The final prediction is obtained by combining the results of the prediction methods applied to each 325 

bootstrap sample (Genuer et al., 2017). The predicted value is calculated by the mean of all trees. 326 

1asC or 2asC = 𝑓𝑅𝐹𝑅(𝑌𝑠)
                                    (11) 327 

where 𝑓
𝑅𝐹𝑅

 is constructed from the time series 1asC  or 2asC  (dependent variable) and the corresponding 𝑌𝑠  data 328 

(independent variable) at filtered C1 and C2 pixels in JJA by means of RFR. The number of decision trees was set at the default 329 

value of 500. 330 

Fourth, as mentioned above, the aim of Rule 3 is to derive an adjustment method for C3 pixels based on learning from Rule 331 

1 and Rule 2. With the establishment of a regression relationship between values before and after adjustment of the C1 and C2 332 

pixels by RFR method, the determination of C3 pixels follows a considerable procedure. Pixels in each cluster represent 333 

potential C3 pixels, with exception of the C1 and C2 pixels and are called R pixels. Spearman’s r and p values between the 334 

satellite estimations (CHIRP grid cell values) at R pixels and the C1 and C2 pixels are the criteria for final determination of 335 

C3 pixels. Each R pixel has m SCC and p values (the number of C1 and C2 pixels in the cluster), and the subset of C3 pixels 336 

is identified by excluding the data that failed the correlation test and retaining both the data with a maximum SCC of at least 337 

0.5 and the corresponding index of C1 and C2 pixels. The selected C3 pixels are statistically similar to the precipitation 338 

characteristics of corresponding C1 and C2 pixels in their defined spatial scope. 339 

After identifying the C3 pixels and their corresponding C1 and C2 pixels, the adjustment method for C3 pixels is derived 340 

from the regression model for the C1 and C2 pixels. 341 

3asC = 𝑓𝑅𝐹𝑅𝑐(𝑌𝑠)                                       (12) 342 

where 3asC  is the adjusted satellite precipitation estimate and 𝑌𝑠 is the CHIRP grid cell value for the C3 pixels, and 𝑓
𝑅𝐹𝑅𝑐

 343 

is the 𝑓
𝑅𝐹𝑅

 of corresponding C1 and C2 pixels. 344 

Second, as mentioned above, the aim of Rule 2 is to derive an adjustment method for C2 pixels based on learning from Rule 345 

1. With the establishment of a regression relationship between gauge observations and the corresponding CHIRP grid cell 346 

values of the C1 pixels by RFR method, the determination of C2 pixels follows a considerable procedure. With exception of 347 

the C1 pixels, the remaining pixels in each cluster represent potential C2 pixels called R pixels. Pearson’s correlation 348 

coefficient (PCC) and p-values between the satellite estimations (CHIRP grid cell values) at R pixels and the C1 pixels are the 349 

criteria for final determination of C2 pixels. The PCC is defined as follows: 350 

1
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                                    (8) 351 

where n is the number of samples, ix  and iy  are individual samples (CHIRP grid cell values at C1 and C2 pixels), x is 352 

the arithmetic mean of x calculated by 

1

1
=

n

i

i

x x
n 

 , y  is the arithmetic mean of y calculated by 

1

1
y=

n

i

i

y
n 

 . 353 

The value range of the PCC is between -1 and +1. If there are no repeated data values, a perfect PCC of +1 or −1 occurs 354 

when each of the variables is a perfect monotone function of the other. However, if the value is close to zero, there is zero 355 

correlation. In addition, correlation is not only determined by the value of the correlation coefficient but also from the 356 

correlation test’s p-value. The critical values for PCC and p-value are 0.5 and 0.05, thus a PCC value higher than 0.5 and a p-357 

value lower than 0.05 indicate the data are significantly correlated (Zhang and Chen, 2016). Therefore, the final determination 358 
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of C2 pixels must meet the following criteria: 359 

PCC 0.5 0.05and p                                   (9) 360 

Each R pixel has m PCC and p-values (the number of C1 pixels in the cluster), and the subset of C2 pixels is identified by 361 

excluding the data that failed the correlation test and retaining both the data with a maximum PCC of at least 0.5 and a p-value 362 

lower than 0.05, and the corresponding index of C1 pixels. The selected C2 pixels are statistically similar to the precipitation 363 

characteristics of corresponding C1 pixels in their defined spatial scope. 364 

After identifying the C2 pixels and their corresponding C1 pixels, the adjustment method for C2 pixels is derived from the 365 

regression model for the C1 pixels. 366 

2asC = 𝑓𝑅𝐹𝑅𝑐(𝑌𝑠)
                                       (10) 367 

where 2asC  is the adjusted satellite precipitation estimate and 𝑌𝑠 is the CHIRP grid cell value at the C2 pixels, and 𝑓𝑅𝐹𝑅𝑐 368 

is the 𝑓𝑅𝐹𝑅 of corresponding C1 pixel. 369 

3.1.5 4 Rule 4 3 of the WHU-SGCC method 370 

Recognizing that precipitation has a spatial distribution, the assumption that C4 C3 pixels are statistically physically similar 371 

to the precipitation characteristics of C3 C2 pixels was is adopted to establish the adjustment method for C4 C3 pixels.  372 

First, the determination of C4 C3 pixels in each spatial cluster is based on the selection of C3 C2 pixels. The satellite-based 373 

estimation values for at the remaining regional pixels with exception of the C1and , C2 pixels are used to calculate the SCC 374 

PCC and p- values with the satellite-based estimation values𝑌𝑠 for at the C3 C2 pixels in the same cluster of the JJA dataset. 375 

The results of each pixel’s k SCC PCC and p- value (the number of C3 C2 pixels in the cluster) are evaluated based on the 376 

correlation test (Eq. (9)), and that the pixels with a maximum SCC PCC of is at least 0.5, as well asand then  the corresponding 377 

index of C3 C2 pixels , are retained. The selected pixels called C4 C3 pixels, which are statistically physically similar to the 378 

precipitation characteristics of the corresponding C3 C2 pixels in the defined spatial scope. 379 

After identifying the C4 C3 pixels, a method for merging method themerging the CHIRP grid cell values at C4 C3 pixels 380 

(𝑌𝑠) and the target reference values of 3asC 2asC  at the corresponding C3 C2 pixels was is applied to estimate the adjusted 381 

precipitation values for at C4 C3 pixels. This method combines 𝑌𝑠 and 3asC 2asC  values in one variable, as shown in Eq. 382 

(1311): 383 

2
i

i

as

i

s

C
w

Y









  i=1,…, n                                   (1311) 384 

where 𝜆 is a positive constant set to 10 mm (Sokol, 2003), 3asC  2asC is the adjusted precipitation values for at the C3 C2 385 

pixels, 
isY is extracted from the CHIRP grid cell values atfor the pixel corresponding location of with the C3 C2 pixel, and n 386 

is the number of C3 C2 pixels in each spatial cluster.  387 

Each w of the C4 C3 pixels is assigned the same value as the corresponding C3 C2 pixel. Therefore, the values of C4 C3 388 

pixels areis derived from Eq. (1412): 389 

3 max( ( ) ,0)as sC w Y                                      (1412) 390 

where 4asC  3asC is the adjusted target precipitation value at one C4 C3 pixel and sY  is the corresponding CHIRP grid cell 391 

value. To avoid precipitation estimates below 0, Eq. (1412) sets these negative values to 0. 392 

If there is no C3 pixels in a spatial cluster, the C4 pixels are assumed to be physically similar to the precipitation 393 

characteristics of the C1 and C2 pixels and adjusted by the above method in Rule 4. 394 
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3.1.6 Rule 5 of the WHU-SGCC method 395 

Excluding the C1, C2, C3 and C4 pixels, the number of remaining pixels, called C5 pixels, is less than 10% of the total number 396 

of pixels, and each C5 pixel value ( 5asC ) is set to be the same as the CHIRP grid cell value at the corresponding position.  397 

In the end, after applying these five rules, we obtained complete daily adjusted regional precipitation maps for the summer 398 

(JJA) 2016.  399 

3.1.6 5 Rule 5 4 of the WHU-SGCC method 400 

Excluding the C1, C2, C3 and C4 C3 pixels, the number of remaining pixels, called C5 C4 pixels which are adjusted by Inverse 401 

Distance Weighted (IDW). IDW is based on the concept of the first law of geography from 1970. It was defined as everything 402 

is related to everything else, but near things are more related than distant things. Therefore, the attribute value of an unsampled 403 

point is the weighted average of known values within the neighbourhood and the distance weighting can be determined by 404 

IDW (Lu and Wong, 2008). In Rule 4, IDW is used to interpolate the unknown spatial precipitation data from the C2 and C3 405 

pixels adjusted precipitation values. The IDW formulas are given as Eq. (13) and Eq. (14). 406 

1

n

as i i

i

R w R


                                         (13) 407 

1

i
i n

i

i

d
w

d














 with 

1

1
n

i

i

w


                                  (14) 408 

 409 

where 
asR is the unknown spatial precipitation data, 

iR  is the adjusted precipitation values at C2 and C3 pixels, n is the 410 

number of C2 and C3 pixels, 
id  is the distance from each C2 or C3 pixel to be unknown grid cell,   is the power which is 411 

generally specified as a geometric form for the weight. Several researches (e.g., Simanton and Osborn 1980; Tung 1983) have 412 

experimented with variations in a power, the small   tends to estimate values with the averages of sampled grids in the 413 

neighbourhood, while large   tends to give larger weights to the nearest points and increasingly down-weights points farther 414 

away (Chen and Liu, 2012;Lu and Wong, 2008). The value of  has an influence on the spatial distribution of information 415 

from precipitation observations. For this reason,   value is conducted in the range of 0.1 to three (0.1, 0.3, 0.5, 1.0, 1.5, 2.0, 416 

2.5 and 3.0) in this study. 417 

It is noted that the unknown spatial precipitation data including C1 and C4 pixels, because C1 pixels values were not adjusted 418 

in Rule 1.  419 

, is less than 10% of the total number of pixels, and each C5 pixel value ( 5asC ) is set to be the same as the CHIRP grid cell 420 

value at the corresponding position.  421 

In the end, after applying these five four rules, we obtained complete daily adjusted regional precipitation maps for the 422 

summer (JJA) 2016over the JinSha River basin.  423 

 424 

3.2 Accuracy assessment 425 

The performance of the WHU-SGCC adjusted precipitation estimates was evaluated by nine statistical indicators: Spearman’s 426 

correlation coefficient (SCC) Pearson’s correlation coefficient (PCC), root mean square error (RMSE), mean absolute error 427 

(MAE), relative bias (BIAS), the Nash-Sutcliffe efficiency coefficient (NSE), probability of detection (POD) and false alarm 428 

ratio (FAR) and critical success index (CSI). SCCPCC, RMSE, MAE and BIAS were used to evaluate how well the WHU-429 

SGCC method adjusted satellite estimation bias, while POD, FAR and CSI were used to evaluate the precipitation event 430 

带格式的: 字体: 倾斜

带格式的: 右, 允许文字在单词中间换行

域代码已更改

域代码已更改

域代码已更改

带格式的: 右

域代码已更改

域代码已更改

带格式的: 字体: 倾斜

域代码已更改

域代码已更改

域代码已更改

域代码已更改

域代码已更改

域代码已更改

带格式的: 缩进: 首行缩进:  0 厘米



15 

 

predictions (Su et al., 2011). SPCC measures strength of the nonlinear correlation relationship between the satellite estimations 431 

and observations. MAE represents the average magnitude of error estimations, considering both systematic and random errors. 432 

The NSE (Nash and Sutcliffe, 1970) determines the relative magnitude of the variance of the residuals compared to the variance 433 

of the observations, bounded by minus infinity to 1. A negative value indicates a poor precipitation estimate and the value of 434 

an optimal estimate is equal to 1. BIAS measures the mean tendency of the estimated precipitation to be larger (positive values) 435 

or smaller (negative values) than the observed precipitation, with an optimal value of 0.   436 

POD, also known as the hit rate, represents the probability of rainfall detection. FAR is defined as the ratio of the false 437 

detection of rainfall to the total number of rainfall events. All of the accuracy assessment indices are shown as in Table 3. 438 

Table 3 Accuracy assessment indices. 439 
Accuracy assessment Index Unit Formula Range Optimal value 

Spearman’s Pearson’s Correlation 

Coefficient (SCC) 

NA 
SCC =

∑ (𝑌𝑜𝑖 − �̅�𝑜)(𝐶𝑖 − 𝐶̅)𝑛
𝑖=1

√∑ (𝑌𝑜𝑖 − �̅�𝑜)2𝑛
𝑖=1 . √∑ (𝐶𝑖 − 𝐶̅)2𝑛

𝑖=1

 
[-1,1] 1 

Root Mean Square Error (RMSE) Mm 

RMSE = √
1

𝑛 − 1
∑(𝐶𝑖 − 𝑌𝑜𝑖)2

𝑛

𝑖=1

 

[0,+∞） 0 

Mean Absolute Error (MAE) Mm 
MAE =

1

𝑛
∑ |𝐶𝑖 − 𝑌𝑜𝑖|

𝑛

𝑖=1

 
[0, +∞) 0 

Relative Bias (BIAS) NA 
BIAS =

∑ (𝐶𝑖 − 𝑌𝑜𝑖)𝑛
𝑖=1

∑ 𝑌𝑜𝑖
𝑛
𝑖=1

 
(-∞, +∞) 0 

Nash-Sutcliffe Efficiency Coefficient (NSE) NA 
NSE = 1 −

∑ (𝐶𝑖 − 𝑌𝑜𝑖)2𝑁
𝑖=1

∑ (𝐶𝑖 − �̅�𝑜)2𝑁
𝑖=1

 
(-∞,1] 1 

Probability of Detection (POD) NA POD=H/(H+M) [0,1] 1 

False Alarm Ratio (FAR) NA FAR=F/(H+F) [0,1] 0 

Critical Success Index (CSI) NA CSI=H/(H+M+F) [0,1] 1 

Note: 𝑌𝑜𝑖 is the observation data and 𝐶𝑖  is the adjusted value using the WHU-SGCC method for test sample pixel; �̅�𝑜 is 440 

the arithmetic mean of 𝑌𝑜 and is given by 

1

1 n

o oi

i

Y Y
n 

  ; C  is the arithmetic mean of C and is given by

1

1 n

i

i

C C
n 

  ; 441 

H represents the number of both observed and estimated precipitation events (successfully forecasted), and F is the number of 442 

false alarms when observed precipitation was below the threshold and estimated precipitation was above threshold (false 443 

alarms). M is the number of events in which the estimated precipitation was below the threshold and observed precipitation 444 

was above the threshold (missed forecasts). POD and FAR values are dimensionless numbers ranging from 0 to 1. The 445 

precipitation threshold (event/no event) was set to 0.1 mm/day. 446 

 447 

4 Results and Discussion 448 

There were 18482 daily pixels to be adjusted by blending satellite estimations (CHIRP) and observations (gauge stations and 449 

gridded points) using the WHU-SGCC approach during for the 92 days of JJA from 1990 to 20142016. The number of pixelsof 450 

pixels adjusted by each rule in the WHU-SGCC method is shown in FigTable. 4. The number of C1 pixels was the number of 451 

training gauge stations accounting 0.16% of the total pixels (18482) inside the basin. Due to the leave-one-out cross validation 452 

step, the different training samples will have the different number of C2, C3 and C4 pixels respectively inside the Jinsha River 453 

Basin. The number of C4 pixels was approximately 10822 with the percentage around 60%, the number of C3 pixels was 454 

approximately 4331 with the percentage ranging from 21.72% to 24.40%, and the number of C2 pixels was approximately 455 

3300 with the percentage ranging from 15.59% to 18.36%. 456 
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The number of C1 and C2 was nearly 140, as well as 11493 C3 pixels, approximately 6344 C4 pixels, and the number of 457 

remaining C5 pixels was no more than 5%. 458 

Table 4 The number of each class pixels adjusted by each rule using the WHU-SGCC method inside the Jinsha River Basin. 459 
Validation  

gauge station 

C1 Pixels 

(%) 

C2 Pixels 

(%) 

C3 Pixels 

(%) 

C4 Pixels 

(%) 

52908 29 (0.16%) 3066 (16.59%) 4224 (22.85%) 11163 (60.40%) 

56004 29 (0.16%) 2882 (15.59%) 4111 (22.24%) 11460 (62.01%) 

56021 29 (0.16%) 3311 (17.91%) 4510 (24.40%) 10632 (57.53%) 

56029 29 (0.16%) 3338 (18.06%) 4447 (24.06%) 10668 (57.72%) 

56034 29 (0.16%) 3300 (17.86%) 4427 (23.95%) 10726 (58.03%) 

56038 29 (0.16%) 3209 (17.36%) 4014 (21.72%) 11230 (60.76%) 

56144 29 (0.16%) 3347 (18.11%) 4442 (24.03%) 10664 (57.70%) 

56146 29 (0.16%) 3183 (17.22%) 4480 (24.24%) 10790 (58.38%) 

56152 29 (0.16%) 3173 (17.17%) 4176 (22.59%) 11104 (60.08%) 

56167 29 (0.16%) 3362 (18.19%) 4346 (23.51%) 10745 (58.14%) 

56247 29 (0.16%) 3385 (18.32%) 4416 (23.89%) 10652 (57.63%) 

56251 29 (0.16%) 3301 (17.86%) 4348 (23.53%) 10804 (58.46%) 

56257 29 (0.16%) 3313 (17.93%) 4043 (21.88%) 11097 (60.04%) 

56357 29 (0.16%) 3352 (18.14%) 4390 (23.75%) 10711 (57.95%) 

56374 29 (0.16%) 3341 (18.08%) 4294 (23.23%) 10818 (58.53%) 

56459 29 (0.16%) 3345 (18.10%) 4334 (23.45%) 10774 (58.29%) 

56462 29 (0.16%) 3380 (18.29%) 4377 (23.68%) 10696 (57.87%) 

56475 29 (0.16%) 3345 (18.10%) 4344 (23.50%) 10764 (58.24%) 

56479 29 (0.16%) 3305 (17.88%) 4212 (22.79%) 10936 (59.17%) 

56485 29 (0.16%) 3393 (18.36%) 4419 (23.91%) 10641 (57.57%) 

56543 29 (0.16%) 3373 (18.25%) 4384 (23.72%) 10696 (57.87%) 

56565 29 (0.16%) 3241 (17.54%) 4450 (24.08%) 10762 (58.23%) 

56571 29 (0.16%) 3306 (17.89%) 4263 (23.07%) 10884 (58.89%) 

56586 29 (0.16%) 3387 (18.33%) 4434 (23.99%) 10632 (57.53%) 

56651 29 (0.16%) 3340 (18.07%) 4432 (23.98%) 10681 (57.79%) 

56664 29 (0.16%) 3368 (18.22%) 4262 (23.06%) 10823 (58.56%) 

56666 29 (0.16%) 3323 (17.98%) 4431 (23.97%) 10699 (57.89%) 

56671 29 (0.16%) 3356 (18.16%) 4367 (23.63%) 10730 (58.06%) 

56684 29 (0.16%) 3335 (18.04%) 4278 (23.15%) 10840 (58.65%) 

56778 29 (0.16%) 3347 (18.11%) 4277 (23.14%) 10829 (58.59%) 

 460 

 461 
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 462 

Figure 4 The number of pixels adjusted by each rule using the WHU-SGCC method. 463 

4.1 CDFs of Rule 1 and Rule 2 results 464 

Figure 5 shows the daily average precipitation for observations, CHIRP, C1 (Fig. 5 (a)) and C2 (Fig. 5 (b)) in JJA 2016. 465 

Compared to the gauge or grid observations, CHIRP estimations deviated from the observations in Jinsha River Basin. 466 

However, the adjusted values for the C1 and C2 pixels improved the estimates and approximated the observations with 467 

application of Rule 1 and Rule 2 of the WHU-SGCC method. This result demonstrates that Rule 1 and Rule 2 of WHU-SGCC 468 

method are effective in correcting consistent biases and considerably reduce the systematic biases of CHIRP. These 469 

improvements not only adjust the bias of satellite estimations but also preserve the original CHIRP pixel values which are 470 

close to the corresponding observed data. These adjustments provide reliable precipitation estimates for the C1 and C2 pixels, 471 

which supports further study using the WHU-SGCC method, especially for areas in which rain gauges are limited. 472 

   473 

 474 

(a)                                               (b) 475 

Figure 5 CDFs of seasonal mean daily observations, CHIRP, C1 and C2 estimations for the Jinsha River Basin in JJA 2016 476 
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 477 

4.2 1 Spatial Clustering from the FCM methodof Rule 3 results 478 

To adjust the pixels other than for the gauged stationsand gridded points, the pixels statistically physically similar to the C1 479 

and C2 pixels were selected. According to Rule 32, C3 C2 pixels were identified in a spatial scope defined by the FCM method. 480 

In the following experiments of Rule 2, we set the parameters 2, =0.00001m   and the maximum number of iterations was 481 

set 1000 (an enough large value with the consideration of the algorithm efficiency). In order to determine the optimal numbers 482 

of clusters, c value was conducted in the range from 1 to 30 with an incremental interval value of 1 in this study. During the 483 

running of FCM approach, the values of L(c) were shown in Fig 4. Figure 4 shows the optimum number of clusters was 22, 484 

with the number of iterations was 690 less than the maximum number of iterations. 485 

 486 

Figure 4  The optimum number of clusters determined by the maximum L(c) with the iterative process. 487 

Therefore, the number of clusters was set to 22 and the number of iterations was still set to 1000 for fully operations by means 488 

of FCM. The spatial clusters results with consideration of the terrain factors was shown in Fig. 5. Figure 6 shows the twenty 489 

spatial clusters with consideration of the terrain factors. Overall, the spatial results of FCM have many of the same 490 

characteristics as spatial areas defined by terrain changes, especially with respect to slope and runoff directions, which may 491 

influence regional rainfall to some extent. 492 
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 493 

 494 

Figure 6 5 Spatial clustering as defined by FCM for the Jinsha River Basin. 495 

After Rule 3, each C3 pixel has a good SCC with a C1 or C2 pixel in its cluster; the statistical analysis is shown in Fig. 7. It 496 

was found that the average SCC value was 0.6. Therefore, the regression model established in Rule 3 for C1 and C2 before 497 

and after adjustment is applicable for each corresponding C3 pixel. 498 
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 499 

Figure 7 Frequency distribution histogram for Spearman’s correlation coefficient (SCC) for C3 pixels and their corresponding C1 and C2 500 
pixels using Rule 3. 501 

It is important to note that 62.18% of the pixels satellite precipitation estimates were adjusted by Rule 3 of the WHU-SGCC 502 

method. The accuracy assessment of C3 pixels is shown in Table 4. Validation statistics indicate that compared with the CHIRP 503 

and CHIRPS satellite estimations, the WHU-SGCC approach provides best adjustments based on all the statistical indicators 504 

at C3 pixels. With the improvement of precipitation accuracy by WHU-SGCC of C3 pixels, the adjustments of C4 pixels, 505 

which mainly rely on C3 pixel corrections, are reasonable. 506 

Table 4 Accuracy assessment of C3 pixels for JJA 2016. 507 

Statistic WHU-SGCC CHIRP CHIRPS 

SCC 0.3518 0.3176 0.2476 

RMSE 5.1776 5.6686 7.0311 

MAE 3.5226 3.7353 4.6909 

BIAS -0.0831 -0.2366 -0.2404 

NSE -0.0590 -0.2693 -0.9528 

POD 1.0000 0.8900 0.3396 

FAR 0.0687 0.0749 0.0763 

CSI 0.9313 0.8302 0.3304 

4.3 2 Model performance based on overall accuracy evaluations  508 

To test the performance of the WHU-SGCC method for precipitation estimates, the statistical analyses of SCCPCC, RMSE, 509 

BAE, BIAS, NSE, POD, FAR, and CSI were calculated and are presented in Table 5 (The results were derived from the 510 

=0.1 for IDW in Rule 4 with the comparison with other values in RMSEs). Compared with the satellite images of CHIRP and 511 

CHIRPS, the results of the WHU-SGCC provide the greatest improvements for regional daily precipitation estimates over the 512 

Jinsha River Basin during in JJA from 1990 to 20164. After bias adjustment of the WHU-SGCC, SCC PCC was improved by 513 

17.383.34% and 39.6231.81% compared to CHIRP and CHIRPS, respectively. Meanwhile, the RMSE and, MAE and BIAS 514 

of the WHU-SGCC decreased by 4.206.91% and, 6.236.59% and 11.83% compared to CHIRP, and by 19.1022.71% and, 515 

24.4722.15% and 41.93% compared to CHIRPS. Although, the absolute value of BIAS of WHU-SGCC was no significant 516 

improvement than CHIRP and slightly higher than CHIRPS, all of the values were approximately to 0. This results of BIAS 517 
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indicates that the all three kinds of data were much the same on the performance. Nevertheless, Tthe NSE of the WHU-SGCC 518 

reached -0.01370.0864, an increase of 0.10 93.33% and 0.6098.32% compared to CHIRP and CHIRPS, respectively. The NSE 519 

of WHU-SGCC was still far less than 1, but it was improved to be zero that indicates the adjusted results are close to the 520 

average level of the rain gauge observations, while the NSEs of CHIRP and CHIRPS were much worse. It is noted that the 521 

POD of WHU-SGCC was approximate to 1, better than CHIRP and CHIRPS, and the FAR of WHU-SGCC was 0.11, lower 522 

than CHIRP and CHIRPS, which represents the better ability on precipitation event predictions of the WHU-SGCC.  523 

not only was the POD improved to over 0.95, but the CSI was also improved to over 0.85, and all the FARs were  524 

approximately 0.11. 525 

Table 5 Overall accuracy assessment in JJA 2016. 526 

Statistic WHU-SGCC CHIRP CHIRPS 

SCC 0.3006 0.2561 0.2153 

RMSE 8.3349 8.7003 10.3026 

MAE 4.4671 4.7641 5.9146 

BIAS -0.0529 -0.0600 -0.0911 

NSE -0.0864 -0.1838 -0.6599 

POD 0.9822 0.9230 0.3686 

FAR 0.1023 0.1122 0.1125 

CSI 0.8833 0.8266 0.3522 

 527 

Statistic WHU-SGCC CHIRP CHIRPS 

PCC 0.2536 0.2454 0.1924 

RMSE 8.7608 9.4108 11.3354 

MAE 5.4564 5.8415 7.0088 

BIAS -0.0167 -0.0443 -0.0134 

NSE -0.0139 -0.2083 -0.8293 

POD 0.9932 0.9578 0.4351 

FAR 0.1146 0.2323 0.1601 

CSI 0.8799 0.7405 0.4010 

4.3 Model performance based on the spatial distributions  528 

The spatial distributions of the statistical comparisons between observations and WHU-SGCC precipitation estimations are 529 

shown in Fig. 86. The variation of SCC PCC as seen in Fig. 86 (a) shows that low correlations are observed in areas with lower 530 

elevation, particularly in the southern Jinsha River Basin where there is higher precipitation and a greater density of rain gauges. 531 

This result is in contrast to the result in (Rivera et al., 2018), because of the few days for heavy rains in this study area. However, 532 

tThe higher correlations noted over the north central area of the river basin are in a drier region with complex terrain and sparse 533 

rain gauges. With respect to the spatial distribution of RMSE, Fig. 8 6 (b) indicates that smaller errors are scattered in the 534 

northwest area of the river basin, with values lower than 5 mm, while the highest errors, which are over 20 10 mm, are located 535 

over the border between the lower reaches of the Jinsha Jiang River and the river basin. All the values of MAE are below 102 536 

mm and the spatial behaviour is similar to that of the RMSE. Fig. 8 6 (c) shows that the lower MAE values are located over 537 

the mountainous region southwest of Qinghai and west of Sichuan, with values below 6 mm. The spatial distribution of the 538 

BIAS indicates that the WHU-SGCC has good agreement with the observations, with the most values ranging from -10%~10%. 539 

All the spatial distribution statistics indicate that the statistical relationships established during the process of the  WHU-540 

SGCC method is susceptible to the mode values of the rain gauge stations data. Although the average annual precipitation in 541 

the southern Jinsha River Basin was more than 600 mm (Fig.2), the days of light rain were still in the great percentage that 542 
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limited the performance over the south area, while there were sufficient data with similar precipitation features for WHU-543 

SGCC over the north data. Nevertheless,  WHU-SGCC approach is still effective in adjusting the satellite biases by blending 544 

with the observations, particularly in the complicated mountainous region where there are higher SCC PCC corresponding to 545 

lower values of RMSE, MAE and BIAS. The lower SCC and higher errors located over the area southeast of the river basin 546 

showed very limited improvement in precipitation estimates.  547 

548 

(a)                                         (b) 549 

550 

(c)                                         (d) 551 
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 552 

(a)                                         (b) 553 

 554 

(c)                                         (d) 555 

Figure 8 6 Spatial distribution of the statistical analyses of the overall agreement between observations and the WHU-SGCC estimations on 556 
leave-one-out cross validation 30% validation for JJA from 1990 to 2014 2016: a) Spearman’s Pearson’s correlation coefficient, b) root 557 
mean square error c) mean absolute error, and d) relative bias. 558 

4.4 Model performance based on daily accuracy evaluations  559 

After overall accuracy evaluations for JJA were conducted, further evaluations of daily accuracy were undertaken and the 560 

results are shown in Fig. 9. The evaluation of daily accuracy indicates that the WHU-SGCC reduces errors and biases compared 561 

to CHIRP and CHIRPS, with especially greatly decreases compared to CHIRPS. The RMSE and MAE derived from the WHU-562 

SFCC were reduced by approximately 5% and 30% compared to CHIRP and CHIRPS, respectively. However, the greatest 563 

reduction was reflected in the BIAS, with at least an 18% and 30% reduction compared to CHIRP and CHIRPS, respectively. 564 

Therefore, the WHU-SGCC approach is effective for adjustments of daily precipitation estimates, and improves estimate 565 

performance.  566 
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  567 

 568 

Figure 9 The statistical analysis of the agreement between daily observations and WHU-SGCC, CHIRP and CHIRPS estimates on 30% 569 
validation: a) root mean square error b) mean absolute error, and c) relative bias. 570 

The series of daily precipitation differences between WHU-SGCC, CHIRP, CHIRPS and observations is presented in Fig. 571 

10. In this comparison, the WHU-SGCC has the best agreement with the observations, and provides a certain improvement 572 

compared to CHIRP, while CHIRPS shows the greatest inconsistencies with the observations.indicates that short heavy 573 

rainstorms (Katsanos et al., 2016b;Herold et al., 2017). In general, the precipitation estimated using the WHU-SGCC method 574 

are superior to other products. 575 

 Furthermore, it is noted that differences in precipitation estimates and observations are reduced gradually as the season 576 

progresses, especially in August when rainfall is decreased. But at days 36 and 56, short heavy rain events occurred in 577 

conjunction with the largest differences in observed WHU-SGCC values. This However, in general, the precipitation estimated 578 

using the WHU-SGCC method are superior to other products. 579 
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 580 

 581 

Figure 10 The daily precipitation difference between WHU-SGCC, CHIRP, CHIRPS and observations; D-CHIRP is the difference between 582 
CHIRP and observations, D-CHIRPS is the difference between CHIRPS and observations, and D-WHU-SGCC is the difference between 583 
WHU-SGCC and observations. 584 

 585 

 586 

4.5 4 Model performance for rain events 587 

To measure the WHU-SGCC performance for different rain events, the daily precipitation thresholds of 0.1, 10, 25, and 505, 588 

10, 20, and 40 mm were considered, and the result is shown in Table 6 and Table 67 and Fig. 11. The days of each class of 589 

rain events at the validation gauge station during JJA from 1990 to 2014 were shown in Table 5. The major rain events inside 590 

the Jinsha River Basin were light rain (0.1-10 mm), accounting for 54.76% of the total days (the average percentage of rain 591 

event days in its total days at each gauge station), while the days with daily precipitation over the 50 mm was least, only 592 

accounting for 0.72%. And the percentage of the daily precipitation of <0.1, 10-25, and 25-50 mm were 26.89%, 14.01% and 593 

3.62% respectively. The result indicated that the average daily precipitation was less than 10 mm, though in the summer seasons 594 

during the multi-year. As well as, the spatial distribution of precipitation was also uneven, with an increase from north to south. 595 

 596 

Table 6. 597 

In terms of performance with respect to different daily rain events, the WHU-SGCC approach had the lowest error, as indicated 598 

by RMSE, MAE and BIAS for events with total rainfall between 1 and 20 mm, but WHU-SGCC performance for heavy rain 599 

(20-40 mm) events did not improve compared to CHIRP, though it was better than that of CHIRPS. Although the WHU-SGCC 600 

approach improved accuracy for light rain events, its behaviour for heavy rain ( 40 mm) events was not as good as CHIRP 601 

and CHIRPS, as shown in Fig. 11. These results indicate that WHU-SGCC is applicable for the detection of rainfall events 602 

with less than 20 mm precipitation, while there is insufficient observational data for the validation of WHU-SGCC performance 603 

during heavy rain events, which represented less than 4% of all observational data and were not sufficient to fully test 604 
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performance of the model. 605 

Table 5 The days of each class of rain events at the validation gauge station during JJA from 1990 to 2014 inside the Jinsha River 606 

Rain event 

 (mm) 

Validation gauge station 

<0.1 [0.1,10) [10,25) [25,50) >=50 Total days 

52908 637 1186 134 9 0 1966 

56004 628 1243 128 3 0 2002 

56021 535 1305 166 9 0 2015 

56029 556 1328 190 5 0 2079 

56034 558 1351 185 17 0 2111 

56038 459 1329 222 16 0 2026 

56144 562 1153 321 25 0 2061 

56146 467 1278 267 19 0 2031 

56152 466 1255 307 35 1 2064 

56167 565 1234 278 20 0 2097 

56247 591 1089 246 34 0 1960 

56251 466 1247 320 30 0 2063 

56257 336 1212 429 59 0 2036 

56357 313 1247 373 63 1 1997 

56374 393 1191 351 47 0 1982 

56459 487 1080 377 102 13 2059 

56462 185 1315 430 86 2 2018 

56475 544 983 352 148 20 2047 

56479 667 931 298 156 28 2080 

56485 588 905 232 100 37 1862 

56543 332 1200 289 41 1 1863 

56565 526 1020 349 120 13 2028 

56571 674 819 301 159 49 2002 

56586 730 950 223 79 9 1991 

56651 402 1056 391 137 31 2017 

56664 727 797 306 166 56 2052 

56666 858 791 226 128 44 2047 

56671 616 886 289 148 70 2009 

56684 768 899 246 114 19 2046 

56778 682 930 274 119 43 2048 

 607 

 608 

In terms of performance with respect to different daily rain events, the WHU-SGCC approach had the lowest error, as indicated 609 

by RMSE, MAE and BIAS for events with total rainfall between 1lower than  and 2025 mm, but WHU-SGCC performance 610 

for total rainfall higher than 25mm heavy rain (20-40 mm) events did not improve compared to CHIRP and CHIRPS (Table 611 

6), though it was better than that of CHIRPS. This negative performance on the total rainfall higher than 25 mm was probably 612 

caused by the precipitation conditions inside the Jinsha River Basin (Table 5). The average daily precipitation was less than 613 

10 mm inside the basin, during the multi-year summer seasons, which provided a large amount of rain gauge stations data with 614 

the values lower than 10 mm, that caused a significantly impact on the statistical relationships establishment for WHU-SGCC. 615 

In hence, the approach of WHU-SGCC is applicable for the detection of rainfall events over the Jinsha River Basin, with the 616 

precipitation less than 10 mm, or even than 25mm. Due to the 4.34% of summer days with the daily precipitation over the 25 617 

mm, the performance of WHU-SGCC on these rain events was poorer than the results of CHIRP and CHRPS.  618 
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 619 

Although the WHU-SGCC approach improved accuracy for light rain events, its behaviour for heavy rain (  40 mm) events 620 

was not as good as CHIRP and CHIRPS, as shown in Fig. 9. These results indicate that WHU-SGCC is applicable for the 621 

detection of rainfall events with less than 20 mm precipitation, while there is insufficient observational data for the validation 622 

of WHU-SGCC performance during heavy rain events, which represented less than 4% of all observational data and were not 623 

sufficient to fully test performance of the model. 624 

 625 

Table 6 Accuracy assessment on wet precipitation events for JJA 2016 626 
 RMSE MAE BIAS 

Rain Event 
WHU- 

SGCC 
CHIRP CHIRPS 

WHU- 

SGCC 
CHIRP CHIRPS 

WHU- 

SGCC 
CHIRP CHIRPS 

[0.1,1) 4.1609 4.5077 5.2762 2.3569 2.2940 2.2187 4.8423 4.9153 4.7541 

[1 , 2) 4.2658 4.7385 6.2943 2.4820 2.5563 3.3707 1.3491 1.8199 2.3996 

[2 , 5) 4.8378 5.2392 7.7315 3.2026 3.4011 5.2681 0.2808 1.0023 1.5525 

[5 , 10) 4.8765 5.5616 8.4619 4.0646 4.5505 6.8346 -0.2292 0.6315 0.9485 

[10,20) 8.8240 9.5254 11.5381 7.5957 8.3153 10.0287 -0.4627 0.6142 0.7408 

[20,40) 17.3305 17.0107 18.8758 15.5649 15.2646 16.4080 -0.6035 0.6011 0.6461 

40 95.8157 95.5185 95.2107 64.6789 64.1252 64.6337 -0.8850 0.8774 0.8844 

 627 

Table 6 Accuracy assessment on liquid precipitation events during the JJA from 1990 to 2014 628 

 RMSE MAE BIAS 

Rain Event 
WHU- 

SGCC 
CHIRP CHIRPS 

WHU- 

SGCC 
CHIRP CHIRPS 

WHU- 

SGCC 
CHIRP CHIRPS 

<0.1 4.7253 5.0802 7.1643 2.5927 2.9562 2.9145 / / / 

[0.1,10) 4.1661 6.8684 9.6022 3.9885 4.5534 6.2462 0.8021 1.4435 1.9842 

[10,25) 10.4281 11.0848 13.4427 9.2722 9.6866 11.5909 -0.5762 0.6342 0.7559 

[25,50) 25.7494 24.5600 25.4975 24.8386 23.0967 23.4927 -0.7784 0.7250 0.7388 

50 56.6072 54.5037 52.7875 54.4168 52.1557 49.4318 -0.8861 0.8297 0.7852 

 629 

 630 
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 631 

 632 

 633 
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 640 

Figure 11 Accuracy assessment based on daily observations for the estimations of WHU-SGCC, CHIRP and CHIRPS for wet precipitation 641 
events in JJA 2016: a) root mean square error b) mean absolute error, and c) relative bias. 642 

5 Data availability 643 

All the resulting dataset derived from the WHU-SGCC approach is available on PANGAEA, with the following DOI: 644 

https://doi.pangaea.de/10.1594/PANGAEA.896615 (Shen et al., 2018). The high-resolution (0.05°) daily precipitation 645 

estimation data over Jinsha River Basin in summer 2016 can be downloaded in TIFF format.  646 

65 Conclusions 647 

This study provided a novel approach in the WHU-SGCC method for merging daily satellite-based precipitation estimates 648 

with observations. A case study of Jinsha River Basin was conducted to verify the effectiveness of the WHU-SGCC approach 649 

during the in JJA from 1990 to 20142016, and the adjusted precipitation estimates were compared to CHIRP and CHIRPS. 650 

WHU-SGCC aims to reduce systematic and random errors in CHIRP over the a region that has complicated mountainous 651 

terrain and sparse rain gauges. To the best of the authors’ knowledge, this study is the first to use daily CHIRP and CHIRPS 652 

data in this area. 653 

According to our findings, the following conclusions can be drawn: (1) The WHU-SGCC method is effective for the 654 

adjustment of precipitation biases from point to surface. The precipitation estimated by the WHU-SGCC method can achieve 655 

greater accuracy, which was evaluated with SCCPCC, RMSE, MAE, BIAS, NSE, POD, FAR and CSI. Particularly, the SCC 656 

NSE statistic was improved by 17.3893.33% and 39.6298.32% compared to CHIRP and CHIRPS, respectively, and all 657 

measured errors were reduced except the BIAS with no significant improvement, but approximately to 0. The results show 658 

that compared to CHIRPS, the WHU-SGCC approach can achieve substantial improvements in precipitation estimate accuracy. 659 

(2) Moreover, the spatial distribution of precipitation estimate accuracy derived from the WHU-SGCC method is related to 660 

the complexity of the topography. These random errors over the lower evaluations and the large size of the light precipitation 661 

events with short duration rainstorms in the region resulted in a limited improvement in accuracy, with SCC PCC values less 662 

than 0.3, especially during short rainstorms. However, higher SCC PCC and lower errors were observed over the north central 663 

area of the river basin, which is a drier region with complex terrain and sparse rain gauges. All the spatial distribution statistics 664 

indicate that the WHU-SGCC method is superior for adjustment of satellite biases by blending with the observations over the 665 

complex terraincomplicated mountainous region. (3) The WHU-SGCC validations for daily rain events confirmed that the 666 

model was effective in the detection of precipitation events less than 20 25 mm due to the less average annual precipitation 667 

inside the Jinsha River Basin. According to the comparison, the WHU-SGCC approach achieves error reductions for the RMSE, 668 
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MAE and BIAS statistics for rain events within the range of 1-20 25 mm. Specifically, compared with CHIRP, the RMSE 669 

value was reduced by approximately by 5.92%-39.44%9%, the MAE value by 2.914.28% ~ 10.6812.41%, and the absoulte  670 

BIAS value by 1.499.15% ~ 175.3344.43%; compared with CHIRPS, the RMSE and MAE values were reduced by 2011.04% 671 

~ 4056.61%, and the absoulte BIAS value by 43.7823.77% ~ 162.4659.58%. 672 

Therefore, the WHU-SGCC approach can help adjust the biases of daily satellite-based precipitation estimates over the 673 

Jinsha River Basin, the complicated mountainous terrains with sparse rain gauges, particularly for precipitation events with 674 

less than 20 25 mm in summer. This approach is a promising tool to monitor monsoon precipitation over the Jinsha River 675 

Basin, considering the spatial correlation and historical precipitation characteristics between raster pixels located in regions 676 

with similar topographic features. Future development of the WHU-SGCC approach will focus on the following three aspects: 677 

1) improvement of the adjusted precipitation quality by blending in different rain reducing random errorsevents and applying 678 

in all seasons; 2) introduction of more topographic factors and long time series climatic factors to achieve a more accurate 679 

spatial distribution of precipitation; and 3) investigation of the performance over other areas and on the particular hydrological 680 

case to validate the WHU-SGCC.  681 

6 Data availability 682 

All the resulting dataset derived from the WHU-SGCC approach is available on PANGAEA, with the following DOI: 683 

https://doi.pangaea.de/10.1594/PANGAEA.896615 (Shen et al., 2018). The high-resolution (0.05°) daily precipitation 684 

estimation data over the Jinsha River Basin in the summer from 1990 to 2014 can be downloaded in TIFF format.  685 
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