
Response to referees ESSD-2018-137
28 March 2019

Dear referees, dear editor,

we would to like to thank you for your constructive and relevant comments on our manuscript.

In the following, we reiterate or modify our initial response and indicate the changes to the manuscript. Our answers are
in red font color while referees’ comments are in normal font. Where feasible, we indicate changes to the manuscript in
blue.

We would like to thank you once more for your help.

On behalf of the authors,

Sincerely yours,

Oliver Bothe
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List Of Changes:

Introduction

Added discussion on pseudoproxies

Extended introduction of proxy system models

Extended on differences between our approach and previous works

Data

We changed the presented grid-point in the main manuscript and the supplementary file.

We now consider annual data instead of summer data.

Considerations and Results

We added a flow chart of our procedure.

We changed our code and provide more options for the various steps of our procedure.

We changed some of the noise models to allow for (higher) autocorrelations.

Particularly we clarified the questions by the referees.

We changed the spectral power estimation to a wavelet procedure.

We now show standard deviation ratios instead of their logarithm.

We added a mathematical expression for the generalized approach.

We changed the visualisation of the ensemble data.

Conclusions

We slightly extended our outlook.

Generally

We updated the tables and the supplements.
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Response to referees

Referee 1:

General Comments

In their manuscript, Bothe et al. provides a flexible approach to take into consideration noise in forward models of paleo-
climate proxies, i.e. pseudoproxies. Although the need for these pseudo proxy models is increasing, I’m unclear as of how
the present study adds to the growing body of methods available, including the recent SedProxy toolbox of Dolman and
Laepple referenced by the author.

We appreciate the referee’s concerns about the originality and usefulness of our manuscript, the chosen approach, and
the data sets. We appreciate that the referee acknowledges that current research directions require and benefit from the
development of pseudoproxy approaches.

Traditional pseudoproxy applications over the Common Era of the last 2,000 years started from, and mainly still rely on,
simple noise-based pseudoproxies. Thus, while there is the need of complexmechanistically modelled pseudoproxies, the
last 20 years have shown that paleoclimatology benefits from having access tomultiple pseudproxy generating algorithms.

Pseudoproxies may help in understanding proxy systems, testing reconstruction methods, evaluating and comparing sim-
ulations among another and against proxies, and in testing data assimilation techniques.

Regarding the work by Dolman and Laepple (2018), we note that the present work developed parallel to their approach.
From our point of view, our code and data complement their proxy system models from a more general point of view.
Additionally, we would argue that we make differing or additional assumptions compared to Dolman and Laepple (2018).

There are some major differences to the approach of Dolman and Laepple:

• The level of complexity of the different approaches

• The generalization of our approach including non-marine proxy archives.

Generally, our approach can be seen as complementary to the one of Dolman and Laepple and used as an independent
source for the generation of pseudoproxies.

We are going to argue in favor of the originality and the usefulness of our approach. Originality of research may refer
to hypotheses reported, methods used, and results obtained (Dirk, 1999, www.jstor.org/stable/285800). Morgan (1985,
www.ncbi.nlm.nih.gov/pmc/articles/PMC1346489) reformulates originality as ”independent or creative in thought or ac-
tion”. Research usually does not start from zero but refers to previous work. Independence and novelty, thus, are always
relative and depend on the context.

In the present case of a manuscript that provides a data set, the questions could be, following Dirk (1999), how new is the
method, and how new are the data (which is the result in this case). Considering the chosen approach, wewould argue that
we obviously rely on previous thinking on paleoproxies and indeed part of the work relies on discussions with colleagues
like Dolman, Laepple, and Weitzel, which we have to acknowledge. However, to our knowledge, there is no publication
presenting a simple noise-based pseudoproxy for deglacial and longer time-scales. There is definitely no publication us-
ing our specific approach, and, to our knowledge, there is no publication providing pseudoproxies or even ensembles of
pseudoproxies for full simulation output fields for easy usage.

Regarding the potential usefulness of our data, there are two things to consider. First, is our data readily usable? As
referee 3 notes, this is apparently not necessarily the case and we have to try to improve on this. Second, is the data by
itself of value? The data, as it is, can be used to test data assimilation methods as well as other reconstruction methods, to
evaluate the TraCE-21ka simulation against old and new proxy data, and to test model-data comparison methods. Using
our code allows to produce comparable proxies for other simulations and, e.g., additonally to compare these different
simulations among another. Is our data worse or better suited than other pseudoproxies for these purposes? We provide
an alternative, which we think worthwhile and usable.

I would not recommend the manuscript for publication in this present stage.

We appreciate the referee’s comments and hope that our responses are sufficient to change this assessment.

In particular, I suggest the authors make the following points clearer in their revisions: The work seems to rely on the
concept of proxy system introduced by Evans et al. (2013). A proxy system is composed of an archive, a sensor, and an
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observation (measurement in the present manuscript). Each components can bemodeled independently to obtain the full
proxy system model.

Indeed, our work relies on the concepts introduced by Evans et al. We agree, that a proxy system can be thought of as
including (at least) a sensor, an archive and the observation.

If the referee implies that each has to bemodelled separately, thenwe disagree. In our understanding, this would disqualify
VSLite as proxy systemmodel. Similarly, the approach of Thompson et al. (2011)would thennot qualify either. If the referee
means that it is possible to formulate models for each of the components of a proxy system in the sense of Evans et al.,
then we do not see their concern, as we precisely follow this approach.

In response to referee 3, we add a flowchart of our procedures, which hopefully clarifies the relation of our procedure to
the conceptual ideas described by Evans et al. Furthermore, wemore thoroughly introduce the concepts of a proxy system,
of proxy system models, and of pseudoproxies.

Proxy systemsmodel extend to age determinationmethods and I’m unsure aswhether it was singled out in thismanuscript.

We are unsure what the referee refers to. Thus, our following response may miss the point.

Our aim is to provide a pseudoproxy-setup that adds a noise-based error-term for the time-uncertainty to the discrete
time-series of the pseudoproxy instead of providing a tuple of uncertainties for the tuple of time and data. Our rationale is
that this helps in model-evaluation, model-data comparisons, and reconstruction exercises. In a sense, we single this out
as we regard this to be important. In our understanding this is of importance for model-data comparison and evaluation
of different model simulations.

Ideally, in order to fully represent the uncertainty in the proxy, one would want to use a proxy system model for the time
axis (e,g, radiocarbon in foraminifera shells) and y-axis (e.g., Mg/Ca in foraminiferal shell). In this particular example, the
archive and sensor model would be common to the x-axis and y-axis. The observation model would need to be tailored to
the particular measurement.

We agree on the optimal proxy system representation. However, we explicitly aim at (i) a simplified representation and (ii) a
representation that results in a time-series with associated errors where the error term also accounts for date uncertainty.

The code does not explicitly model the time axis. However, the sampling of dates and the assignment of uncertainties
should allow in principle to apply an age modelling approach comparable to PRYSM 2.0 in Dee et al. (2018).

The back and forth between age uncertainties and environmental variable uncertainties in the manuscript is confusing.

We are sorry for this and we will try to make our points more clearly in the revised version of the manuscript by clarifying
our terminology.

We tried to be as explicit as possible in distinguishing between the age uncertainties, the environmental uncertainties, and
what we call the “effective dating uncertainty error.

I’m also unclear on how thismodel is fully generalizable since each type of observationsmade on this archive (e.g., Mg/Ca in
foraminifera shells or UK37) would have specific “noise” associatedwith themwhichwould need to bemodeled individually.

Various sensors, various archives, and various observations, that is various proxies differ but also share common proper-
ties. In this sense we try to formulate a general model that assists in reconstruction method tests, model evaluation, and
the evaluation of model-data comparisons.

We our confident, that the code for the various components is flexible enough to allow individual researchers to adapt the
noise levels according to their understanding.

The authors keep referring to “non-climatic noise”. Climatic noise is also included in the proxy records and is often impos-
sible to disentangle from the other sources of noise discussed in the manuscript.

The referee is correct and we have to clarify this.

We tried to correct all instances of non-climatic noise.

Specific comments:

Introduction:

The concepts of proxy systems and proxy systems models need to be introduced earlier and a description of how the
current work fits into these larger concepts need to be included.
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We introduce proxy systems and proxy systemmodels now earlier in the introduction and also relate our approach to this
setting.

Please also include a discussion on how the present approach is different from the slew of studies on proxy systemmodels
and what it adds to the table.

We shortly discuss this more in the introduction.

Page 2, line 13: A proxy system is a mathematical representation of the proxy, including the error. How is this a second
way. I’m also unsure how the noise is not observation specific?

We try to clarify our thinking as follows:

In our understanding there are various approaches to obtain pseudoproxies. These range from comprehensive to sim-
plified. We can try to obtain a comprehensive representation from the environmental influences on a sensor to the mea-
surement and implement this into a mechanistic forward model of the proxy system of interest. Such models can be
more complex or they may concentrate on a core set of processes (compare the full and reduced implementations of the
Vaganov-Shashkin approach tomodelling tree-rings presented by, e.g., Evans et al., 2006, Tolwinski-Ward et al., 2011). That
is, the first approach to obtaining pseudoproxies is process based. Other, more reduced approaches potentially ignore this
mechanistic process understanding and focus on stochastic expressions of the noise that influence our inferences about
past climates. Such an approach can try to formulate mathematically tractable expressions for statistical noise-terms,
which represent the different processes or effects influencing the stages from the original environmental influence to our
final observation and reconstruction [Dolman et al., in preparation]. Another way of producing pseudoproxies by focussing
on stochastic noise expressions uses simple estimates of plausible errors. The different approaches can be very general
or specific for certain proxy types. They can focus on one stage of the proxy system from environment to measurement
or consider multiple stages. Indeed, all these approaches fit into the conceptual descriptions of Evans et al. (2013).

The manuscript now includes a paragraph comparable to the above initial response.

Page 2, line 30: How is a probabilistic description not a way to capture the error?

The referee is correct that our formulation is unclear. Wewill clarify it along the following: Our interest explicitly is to include
the uncertainty from the dating in a statistical noise term for a pseudoproxy time-series. Therefore, we do not consider
Bayesian or Monte Carlo methods but take a simple approach to develop an error term for the dating uncertainty.

The manuscript now includes sentences comparable to the above initial response.

Page 4, line 3: Why choose an arbitrary point on themap? Why not a placewhere it would be possible to have a sedimentary
record in the first place (ocean or lake)?

The TraCE-21ka simulation has a low grid-resolution of about 3.75 times 3.75 degree. The chosen grid-point represents a
good portion of the northern Iberian peninsula including the Pyrenees, where a lake core could be located. However, the
choice is in so far arbitrary as we do not try to use the location of an available core. As this is an example for visualisation’s
sake, we do not see why this choice is critical. As we mentioned, the use of a land grid-point eases the readability in
comparison to, e.g., the grid-point in the supplement.

We change the presented data to the grid-point at 150E, 38.97N.

Page 6, line 14: I’m rather unclear about “Bias at the reconstruction level”? Aren’t all sources of noise and biases important
the reconstruction level? Also how can seasonality not be considered sensor uncertainty?

We will clarify this. The referee is correct, as all sources of error affect the reconstruction, and indeed seasonality and
habitat are sensor specific factors.

Our rationale here is that there are processes for which our possibly wrong attribution is a factor at the reconstruction
stage and not at the sensor stage although the processes indeed are forward factors in the evolution of the record from
the date of an environmental occurrence to our reconstruction.

Page 7, line 18: The change in noise level is not obvious at all.

Since we changed the grid-point, we also hope the change in the noise-level becomes more obvious. We try to provide
more pointers in the text to Figures 1a.

Page 7, line 22: What three versions? Since it seems to be important, could you describe them?

We use three different amplitudes as shown in Figure 1b and also highlighted in Figure 1d.

We change “versions” to “potential amplitudes” to clarify this point.
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Page 17: Why use the Lomb for comparison? It is know to have a bias in the high frequencies. The WWZ transform might
be a better option for unevenly-spaced datasets.

We followed Dee et al. (2017) in using the Lomb-Scargle method. The preference of the one over the other is a matter of
subjective choice in our opinion. We feel confident in using the Lomb-Scargle by the given reference and reconsidering the
wider literature.

We now use the approach described by Mathias et al. (2004), which is related to the WWZ. Results and implications are
comparable between Lomb-Scargle and this approach.

Page 17, line 27: In pseudo proxy experiments, something needs to be used as ground truth would it be reanalysis data,
instrumental data or in the case the TracCE-21ka output. I’m unclear as how these peaks are spurious rather than “the
proxy didn’t capture them.”

We will clarify that, in our understanding, these peaks and troughs are due to the specific forcing implementation as
presented for example on http://www.cgd.ucar.edu/ccr/TraCE/.

Themanuscript now includes a comment comparable to the following: First, peaks and troughs at some location are clearly
attributable to the specific implementation of the forcing in the TraCE-21ka simulation (He, 2011; see also, Liu et al., 2009).
That is, these signals are not realistic but due to technical decisions in the production of the simulations.

Page 19, last three lines: I agree that a process-basedmodel would bemore useful and they are fairly simple to implement.
Hence, I don’t understand how the noise approach presented here is useful.

Our understanding of reconstruction methods and of simulations benefits from multitudes of approaches. The benefit of
this manuscript is that it provides in its assets the data. It boils the processes down to noise or bias formulations. It follows
pseudoproxy approaches used for the period of the Common Era, which rely on noise. As stated above, the usefulness of
a data-set or an approach often may be assessed a priori, but not always.

We hope that our clarifications in the manuscript are sufficient to convince the referee that our simplistic noise-based
approach has merit. In short, we would like to stress the complementary nature of our approach to more complex set-
ups and the flexibility of the noise formulations, which allow easily adapting it to changes in our understanding and thus
facilitates the performance testing of different tools of paleoclimatology.

Technical corrections

I would also suggest editing the manuscript for English.

We tried to improve on our use of English.

For instance, Page 2, line 3: “as base of the comparisons”. Do you mean “as a basis for comparison”?

We are sorry for this oversight.

We clarified the sentence.

Page 2, line 4: “a, eg. Temperature reconstruction and the model” is clearly missing words.

We are sorry for this oversight.

We modified the sentence.
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Referee 2:

This study presents a generalizable approach to modeling sedimentary proxy systems and then shows how it works using
the TraCE-21ka simulation. I think this is a good study that provides a flexible way to estimate various kinds of noise in
proxies and that provides a nice set of pseudoproxies for potential use in a pseudo-reconstruction framework. I also think
that this study can be useful for seeing how different uncertainties can affect proxy time series.

We would like to thank the referee for their comments and their generous evaluation of our manuscript.

I have a number of comments, corrections, and requests for clarification below:

Abstract and elsewhere: The use of e.g. and i.e. is too frequent and would be better to just re-write with words.

We hope we corrected this sufficiently in the revised version.

There are several paragraphs throughout that are just two sentences, which is a little unusual and not totally necessary,
and so would be better suited to combine with surrounding paragraphs.

We reorganised the manuscript accordingly.

Introduction: Can you better situate the present study in the context of previous approaches to generating sedimentary
proxy system models/pseudoproxies? What is unique about this approach? Is it more comprehensive than previous stud-
ies? Does it innovatively use the Evans et al. 2013 framework? Is it the first to be applied to the TraCE simulation or to
generate pseudoproxies over this time frame? Etc.

We position our manuscript, data, and approach better in the larger context.

The introduction now tries to clarify the difference between our approach and previous applications, our contribution to
this topic, how it relates to the framework of Evans et al. (2013), and how we use the TraCE simulation differently to other
studies.

p.2 l.8 The words “The review” just after citing both Smerdon 2012 and Mann and Rutherford 2002 make it unclear which
paper you’re referring to.

We thank the referee for spotting this.

We clarify this.

p.2 l.12-17 I’m not sure this discussion of “three” different ways is quite right or at least I think I disagree with the framing of
the issues here. For instance, the “proxy system model” framework of Evans et al. 2013 subsumes all of these. And so it’s
not as though using a proxy systemmodel framework is a different approach from just estimating proxy error, it’s that just
estimating proxy error is usually considering only one of several issues that must be accounted for in the construction of
pseudoproxies (i.e., only estimating the “sensor model” while potentially ignoring the “archive model” and the “observation
model”, using the terminology of Evans et al. 2013).

We try to clarify our framing as follows:

In our understanding there are various approaches to obtain pseudoproxies. These range from most comprehensive to
most simplified. We can try to obtain a comprehensive representation from the environmental influences on a sensor to
the measurement and implement this into a mechanistic forward model of the proxy system of interest. Such models can
bemore complex or theymay concentrate on a core set of processes (compare the full and reduced implementations of the
Vaganov-Shashkin approach to modelling tree-rings presented by, e.g., Evans et al. 2006, and Tolwinski-Ward et al., 2011).
That is, the first approach to obtaining pseudoproxies is process based. Other, more reduced approaches potentially ignore
this mechanistic process understanding and focus on stochastic expressions of the noise that influence our inferences
about past climates. Such an approach can try to formulate mathematically tractable expressions for statistical noise-
terms, which represent the different processes or effects influencing the stages from the original environmental influence
to our final observation [Dolman et al., in preparation]. Another way of producing pseudoproxies by focusing on stochastic
noise expressions uses simple estimates of plausible errors. The different approaches can be very general or specific for
certain proxy types. They can focus on one stage of the proxy system from environment to measurement or consider
more or even all stages. Indeed, all these approaches fit into the conceptual descriptions of Evans et al. (2013).

The manuscript now includes a justification comparable to the paragraph above.

p.3 l.13-15 It’s not clear to me what this sentence means. “On top of this one could use additional stages for the envi-
ronment and the final reconstruction, however, we can include the associated uncertainties in any of the three stages
proposed by Evans et al.” The different stages have different types of noise that are particular to the specific process
under consideration.
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Our thinking here is: Considering the reconstruction stage, our, e.g., calibration introduces additional uncertainty, which
is not a priori captured by the stages sensor, archive, measurement. We can argue to include it in the measurement stage.
We can also argue that these uncertainties are de facto uncertainties resulting from processes at the sensor stage or at the
archiving stage. Similarly, our understanding is that the sensor model does not commonly account for all uncertainties of
the environmental influences. That is, an additional environmental stage could provide weighted data of various environ-
mental influences. These processes, however to some extent, can also be included in the sensor model or uncertainties
can be assumed to mostly affect the measurement model.

The introduction now tries to clarify these points.

p.7 l.12-15 It’s not clear to me what the bias term actually is here. You mention several different things like that it is
dependent on insolation, or that it is scaled to be positive, or that it is randomized, or that it is scaled by an ad hoc constant.
So what is it then? All of these at once? Only one at a time? Can you state this more clearly and/or perhaps show in
mathematical terms what you mean for the different cases?–just having the term “Bias(t)” isn’t exactly clear.

In the initial formulation, we add one bias-term, which varieswith time. It is calculated dependent on insolation, it is positive
but it could be negative or the sign could be randomized, and it is scaled by an ad-hoc constant. We will clarify this and
provide the equations for the bias term.

Figure 6: I recommend putting the dates of the periods on this figure so it’s more clear which figures correspond to what
period (e.g., the deglaciation vs. the Holocene, which have very different correlation maps)

We add titles to clarify the Figure.

Figure 7: It would help the reader to briefly explain what the values imply. Logs of standard deviation ratios aren’t neces-
sarily intuitive. Also indicating the specific date ranges that you’re using (as in my comment on Fig. 6) would be helpful.

We now visualize standard deviation ratios in the Figure. We also added titles.

For both Fig 6 7. The color map used here is usually for dry-wet data, but the figures aren’t about hydroclimate at all. I
would recommend using a different colormap so as to minimize any confusion.

We change the color scales.

Section 3.5 It would be helpful to write this generalized model down in mathematical terms, not just explain in words, so
that readers can be sure what exactly you’ve done in producing Fig 8 or so that they can think about ways to adjust the
generalized model.

We provide a mathematical formulation of the generalizations.

p.21 l.11-12 This sentence isn’t clear.

We clarify the sentence as follows: If we repeat the analyses in Figures 6 and 7 for the generalized approach, differences
are hardly to identify.

Section 3.5.1 Can you motivate the “modifications” you’re doing here? It’s not obvious to me what needs modification and
why. And modifications to which approach, the full version or the generalized one? And what’s the motivation for using
the generalized approach vs. the full approach? I think you also need to say more clearly what approach the ensemble of
pseudoproxies is based on and why you chose one relative to the other for that dataset. Would it be possible and useful
to provide pseudoproxies for both approaches?

We clarify all these points in the revised version.

We now write something comparable to: In the following we present an ensemble of pseudproxies. At 144 locations we
compute 500 pseudoproxy records each. For this, wemake further slightmodifications to the generalized approach. These
adjustments relax our assumptions and result in larger differences between members of the ensemble than would be
possible without themodifications. [...] Using the generalized approach provides an ensemble based on themost reduced
formulation. [...] As mentioned above, these changes relax our assumptions on the effect of changes in the background
climate.

Indeed, it would be also of value to provide pseudoproxy ensembles for both the full approach as well as the un-modified
generalizations.

We decide not to provide an ensemble for the full approach.

p.21 l.14 Why are there 500 pseudoproxies at 144 locations? And are there 500 total or 500 for each of the 144 locations
(and thus n = 500*144 pseudoproxies)?
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We clarify this now in the text.

Indeed, there is an ensemble of 500 pseudoproxies at the 144 locations. We chose the 144 locations as the unique locations
after screening proxy locations from a number of publications.

Fig 10. The blue lines are hard to see here.

We changed the layout of the Figure and hope it is clearer now..

p.23 l.24-25 I’d recommend un-gendering this line using “their”

We thank the referee for spotting this extremely embarrassing mistake, and want to apologize for it.

We change this.

Referee 3:

SUMMARY

Bothe, Wagner and Zorita present code to produce sediment pseudo-proxy time series, i.e. a time series of a temperature
variable that originates from transient climate model output and that has been modified in several stages mimicking -
statistically - the processes that affect sedimentary palaeoclimate archives. This is a timely and relevant approach and
could prove useful for model data comparison in the near future with more transient paleoclimate model simulations
becoming available.

We want to thank the referee for their comments and their generous evaluation of our manuscript.

GENERAL COMMENTS

• unclear aims: which properties of the data will be compared? The present formulation only allows time-mean
comparisons.

We are unclear about the direction of these questions.

We will try to clarify the purpose of our pseudoproxy data.

The provided data and the code allow for the generation of pseudoproxy records for any simulation. These can be contin-
uous or temporally sparse and regularly or irregularly sampled. The provided data particularly allows the comparison of
different models against another over time, as well as testing methods for the comparison of simulation and proxy data
over time. The irregular sampling however hampers the comparison of time-slices. As said, we are unclear about the
direction of this question/comment.

We hope the revised manuscript clarifies our intentions for the data.

• downloading and testing the data generation is cumbersome as all parts apparently have to be manually down-
loaded. It would help to have a provided zip file, and a README on how to get started.

The repository allows to download folders and storage-items as zip-files. However, we provide zip-files collecting the
different types of data. Note that these zip-files can become huge. A short documentation clarifies how to best approach
data and code-examples. This is additionally included in the zip-files. We hope the data is now more easily accessible.

DETAILED COMMENTS

• p1 l4/following: the term “pseudoproxies” suggests that it is possible to hand the code a description of a specific
sediment record (including e.g. information on the number/precision/type of dating) and all ensuing uncertainties
are considered. This is not the case here, as all terms of non-climatic/insolation uncertainty considered remain
statistical and non-proxy/archive specific.

Weunderstand and respect the referee’s point but after reconsidering the termand its use in the literature, we try to explain
our view in using the term. The term pseudoproxy does not refer to a surrogate for a specific record. In the literature,
pseudoproxy, surrogate proxy, and pseudoproxy experiments are phrases, which refer to modifications of observational
data, reanalysis data, or simulation output. The applications of suchmodifications are not limited to either real world proxy
records or real world proxy types. Such modifications in the broad sense of pseudoproxies are simply stand-ins for real
world data in research enterprises of interest.
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The revised manuscript explains our view of the term pseudoproxy. We add in the introduction a comment similar to the
following: We clarify here our use of the term pseudoproxy. We follow the literature since Mann and Rutherford (2002).
That is, a pseudoproxy simply represents a modification of observational data, reanalysis data, or simulation output. It
replaces real world proxies in a certain application. The term may but does not necessarily refer to stand-ins for specific
proxy records or particular proxy types. That is, the term pseudoproxy does not by itself imply that the modifications of
the input data represent validly the uncertainties or characteristics of real world data. This view of the term pseudoproxy is
in line with the past literature (compare, for example, Mann and Rutherford, 2002; Osborn and Briffa, 2004; von Storch et
al., 2004; Jones et al., 2009; Graham andWahl, 2011; Thompson et al., 2011; Lehner et al., 2012; Smerdon, 2012; Hind et al.,
2012; Annan and Hargreaves, 2013; Kurahashi-Nakamura et al., 2014; Steiger and Hakim, 2016). These modifications may
be simply by adding noise to the input data or may invoke more complex forward approaches (for example mechanistic
Proxy System Models, Evans et al., 2013, see below).

-p2 l26-31: Considering dating uncertainty as purely additive white noise independent of the time axis strongly limits the
suitability of the resulting time series. Autocorrelation results from the distortion of the time axis by changes in accumula-
tion rate - which should, in a real proxy record, be captured by dating, and subsequent age modelling. Dating uncertainty
represents a large component of the overall contribution to the low signal to noise ratio (c.f. Reschke, Rehfeld Laepple,
Clim. Past. Discuss). The net cross-ensemble mean of the dating contribution to the final pseudoproxy uncertainty is zero
in the presented formulation, as is the serial correlation of the component. Both is not appropriate. It would be beneficial
to adopt (or include/prepare for) ensemblebased age models for the actual underlying proxy records; or if a simplistic
solution is desired, to include the more realistic option of modeling age uncertainty by relative squeezing and stretching
of the time axis.

We appreciate the referee’s concerns. There are various points here. We disagree on the suitability of the resulting time-
series. We are still confident that the time-series including the error terms are suitable for wide range of applications in,
e.g., comparing different model simulations, model-data evaluation, and testing of reconstruction methods. The dating
uncertainty in our set-up has two parts, the sampling of the dates and the sampling of the dating uncertainty on the one
hand, and the associated dating error modelling on the other hand.

Indeed, not all our implementations of the dating error show notable serial correlation, however, most and particularly the
main approach led to a small amount of serial correlation by making the dating uncertainty error dependent on previous
errors and “measurements”.

We tried to modify our code to allow for larger uncertainty and correlation in the final products. The changes do not result
in notably increased serial correlations. We now provide data for this approach, but the initial approach is still included in
the code. As mentioned above, we still regard the full set of pseudoproxies of immediate value for a number of tasks.

Thus, indeed, we choose to concentrate on a simplistic approach.

• p 3 l30 and following: Why is only summer seasonality considered? Is this a limitation of the pseudoproxy code?

In the initial submission, we concentrated on themodern boreal summer season sincemany authors attribute the sensitiv-
ity of their proxies to the summer season. We could have similarly used annual data or any other seasonal definition. The
pseudoproxy code takes a time-series of any seasonality of interest. At this stage, it does not read the full annual matrix.
We considered within the preparation of revisions to formulate the code more flexibly.

We now consider annual data for the simulation, and, in turn, also for the insolation bias. The code anyway allows to
calculate the bias for arbitrary seasonal definitions, but we only consider one fixed definition for convenience. As noted,
this is now annual.

• p4 l3: why this gridpoint? The arbitrariness of this choice somewhat illustrates that it appears difficult to use this
code to include knowledge on real-life proxy datasets (e.g. sedimentation rate/dating frequency/ multi-proxy con-
figurations).

As the referee already notes, this decision was generally arbitrary. It was made in relation to comparison with various
proxies around the Iberian Peninsula and more generally Europe in another context. As we described, the visualisation
for another proxy was provided in the Supplementary materials. As we state above, the aim here is not to test real world
proxies but to provide data for testing methods and code to evaluate models and data. Our approach does not aim at
mimicking real proxies but at providing pseudoproxies also for locations where we do not have real world knowledge.

We now consider a different grid point, which is located in the northwestern Pacific.

• Sec. 3: Please provide a graphical illustration of your pseudoproxy generation (e.g. using a graphical model).

We provide a visualisation of the procedure in the manuscript and in the manuscript assets.
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• p6 l26: Autocorrelation should be considered, as several of the noise components (dating, non-local climate) are
expected to be autocorrelated processes. The difficulty will be in actually estimating the true autocorrelation that
should be used for the noise process.

As we note, the code provided allows for generating autocorrelated noise.

We now consider correlated noise at more instances.

• p7 l6: Is the assumption of increasing noise variability with increasing parameter variability appropriate for all noise
components? It would appear that larger climatic variations might be recorded more precisely. In the absence
of information whether proxy noise is smaller or larger for higher or lower climate variability this term should be
reconsidered.

While larger variations may be recorded more precisely one may also assume that larger, e.g., temperature variations are
associated with larger variations in other environmental components that may result in larger errors.

We introduced a switch.

• p7 l22: Can winter insolation be considered as bias?

If we understand the referees question correctly, then, yes, there is no reason why one should not consider winter insola-
tion.

Our code does not calculate a winter insolation bias, but considering a winter insolation bias only requires changing a
number of parameters defining the months of interest.

• p8 l5 and following: How do the processes and results here compare to the approach by Dolman and Laepple
(2018)?

Our assumptions simplify the more complex approach of Dolman and Laepple. Our randomization could be seen as more
realistic while the lack of process based assumptions make our approach less realistic.

Generally our results are not as smooth as the results of Dolman and Laepple considering the bioturbation while the
assumptions on the subsampling appear to be comparable in our reading.

• p10 l13: typo original

We want to thank the referee for spotting this.

We change this in the revised version.

• p10 and following: The measurement error will depend on the type of sampling. To which degree is the sampling
of the pseudo-proxy archive consecutive, overlapping, or spot-wise?

In this implementation, we only consider a conceptual measurement error and sample the time-series at certain years in
the time-series as stated in the text.

We tried to clarify this in the text.

• p13 l12: Consider also the Bayesian Age-Depth modeling methods (e.g. OxCal, Bacon etc) which provide probability
density functions of the proxy records.

We mention age modelling methods now, but do not discuss them in depth. We note, that we provide in principle most
informations necessary to apply methods like Bchron (Haslett and Parnell, 2008) similar to their application in PRYSM by
Dee et al. (2015, 2018). Additional information for these methods could be randomized.

• Figure 5: Please provide ensemble averages that allow to assess the spectral biases due to the proxy processes
more easily.

We, at this point in the manuscript, do not use ensembles but only the single estimate.

We now use a wavelet based approach and weight the spectra to provide a smoother visualisation to ease the comparison.

• Figure 10: The time series are difficult to process and compare by eye. It appears in some cases there is an amplifi-
cation of the apparent signal in the pseudoproxy record. Why? Where on the globe is the SD of the pseudoproxy >
the SD of the climate signal?

This is mainly due to the size of the considered bias and the amplitude of noise processes.

While we announced to provide a visualisation equivalent to Figure 7 to answer the question about the SD, we decide
simply to refer to the upper panels of Figure 7. These do not show the data from Figure 10 but highlight the SD-ratios
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between input data and the proxies. We changed the visualisation there and now do not use the sampled interannual
input data but samples of a 501-year moving average version of the input data. We also add a panel for the full sampled
records.

• p28: missing section ref.

We want to thank the referee for spotting this.

We change this in the revised version.
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Abstract. Climate reconstructions are means to extract the signal from uncertain paleo-observations, i.e.
::
so

::::::
called proxies.

It is essential to evaluate these
::::::::::::
reconstructions

:
to understand and quantify their uncertainties. Similarly, comparing climate

simulations and proxies requires approaches to bridge the , e.g., temporal and spatial differences between both and address

their specific uncertainties. One way to achieve these two goals are so called pseudoproxies. These are surrogate proxy records

within , e.g., the virtual reality of a climate simulation. They in turn depend on an understanding of the uncertainties of5

the real proxies , i.e.
::::::::
including

:
the noise-characteristics disturbing the original environmental signal. Common pseudoproxy

approaches so far concentrated
:::::::::
concentrate on data with high temporal resolution from, e.g., tree-rings or ice-cores over the

last approximately 2,000 years. Here we provide a simple but flexible noise model for potentially low-resolution sedimentary

climate proxies for temperature on millennial time-scales, the code for calculating a set of pseudoproxies from a simulationand,

for one simulation, the pseudoproxiesthemselves,
::::
and

:::
one

:::::::
example

:::
of

::::::::::::
pseudoproxies. The noise model considers the influence10

of other environmental variables, a dependence on the climate state, a bias due to changing seasonality, modifications of the

archive (e.g.
::
for

:::::::
example, bioturbation), potential sampling variability, and a measurement error. Model, code, and data should

allow to develop new ways of comparing simulation data with proxies on long time-scales. Code and data are available at

https://doi.org/10.17605/OSF.IO/ZBEHX.

1 Introduction15

Proxy-records and derived reconstructions are our only observationally based information about past climates before the period

covered by human observations, i.e.,
:::
that

::
is

::::::
before

:::
we

::::
have

:
documentary or instrumental evidence. Climate reconstruction

methods statistically process the information in the proxy records to extract the recorded climate signal. However,
:::
this

:::::::
climate

:::::
signal

::
is

:::::::::
potentially

::::::::::
multivariate,

:::
and

:::
we

:::
are

:::::
often

::::
only

::::::::
interested

::
or

::::
able

::
to

::::::
extract

::
the

::::::
signal

::
for

::::
one

:::::
single

:::::::
climatic

:::::::::
parameter.

20

:::
All

::::
other

::::::::
imprints

::
of

::::::
climate

:::
are

:::::
noise

:::::::
relative

::
to

:::
this

:::::::
variable

::
of
:::::::

interest.
::::::::::::

Furthermore, part of the variability in the proxy

records is not caused by the climate . This
::
but

:::::
other

::::::
factors

::::::::::
influencing

:::
the

:::::::
original

:::::::::
generation

:::
of

:::
the

::::::::::::
proxy-record.

:::::
Thus,

::::
there

:::
are

:::::::
climatic

::::
and non-climatic variability, i. e., the proxy noise ,

:::::
noise

:::::::::::
contributions

::
to

:::
the

:::::
proxy

:::::::::
variability.

::::
This

::::::
proxy

::::
noise

:
may cause biases and uncertainties in the resulting climate reconstructions. Evaluating the quality and reliability of

reconstructions and of proxy-records requires an understanding of the noise in the proxy-records. Only this knowledge allows25

us to obtain reliable estimates of the errors in reconstructed properties.

1
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Some aspects of statistical climate reconstruction methods can be evaluated in so-called pseudoproxy experiments. In these

experiments, the reconstruction methods are mimicked
::
for

::::::::
example in the controlled conditions provided by climate simula-

tions with Earth System Models. However, for these tests surrogate proxy records have to be produced
:
, which are compatible

with the climate simulated by these models – the
::::::::::
models—the

:
pseudoproxies. In testing the reconstruction methods, pseudo-

proxies then
::::::::
eventually

:
replace the real paleo-observations in the method and the virtual climate of the Earth System simulation5

stands in for the real climate. For a useful test of reconstruction methods, the pseudoproxies should be as realistic as possible,

with statistical properties similar to the real proxies. This isachieved by contaminating the climate variables simulated by

:::
Our

:::
use

::
of

:::
the

::::
term

:::::::::::
pseudoproxy

::::::
follows

:::
the

::::::::
literature

:::::
since

::::::::::::::::::::::::
Mann and Rutherford (2002).

::::
That

::
is,

:
a
:::::::::::
pseudoproxy

:::::::::
represents

:
a
::::::::::
modification

:::
of

:::::::::::
observational

::::
data,

:::::::::
reanalysis

::::
data,

::
or

:::::::::
simulation

::::::
output.

::
It

:::::::
replaces

:::
real

:::::
world

:::::::
proxies

::
in

::
an

::::::::::
application.

::::
The

::::
term

::::
does

:::
not

:::::::::
necessarily

::::
refer

::
to

:::::::::
substitutes

:::
for

:::::::
specific

:::::
proxy

::::::
records

::
or

::::::::
particular

:::::
proxy

::::::
types.

::::
That

::
is,

:::
the

::::
term

:::::::::::
pseudoproxy10

::::
does

:::
not

:::
by

::::
itself

::::::
imply

:::
that

:::
the

::::::::::::
modifications

::
of

:::
the

:::::
input

::::
data

::::::::
represent

::::::
validly

:::
the

:::::::::::
uncertainties

:::
or

::::::::::::
characteristics

::
of

::::
real

:::::
world

::::
data.

::::
This

::::
view

:::
of the Earth System Model with statistical noise with a certain amplitude and statistical characteristics .

These properties ideally are based on estimates of a realistic or at least plausible noise to successfully mimic the behavior of

real-world proxies
:::
term

:::::::::::
pseudoproxy

::
is

::
in

::::
line

::::
with

:::
the

:::
past

::::::::
literature

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(compare, for example, Mann and Rutherford, 2002; Osborn and Briffa, 2004; Von Storch et al., 2004; Jones et al., 2009; Graham and Wahl, 2011; Thompson et al., 2011; Lehner et al., 2012; Smerdon, 2012; Hind et al., 2012; Annan and Hargreaves, 2013; Kurahashi-Nakamura et al., 2014; Steiger and Hakim, 2016).15

:::::::::::
Modifications

::
of

:::
the

:::::
input

::::
data

::::
may

::
be

::
as

::::::
simple

::
as

::::::
adding

:::::
white

:::
or

::::::
colored

:::::
noise

::
or

::::
they

::::
may

::::::
invoke

::::
more

::::::::
complex

:::::::
forward

:::::::::
approaches

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(for example mechanistic Proxy System Models, Evans et al., 2013, see below).

Studies of the climate of the past 2,000 years regularly use such pseudoproxy approaches mimicking annually resolved prox-

ies such as dendroclimatogical ones. Smerdon (2012)
:::::::::::::
Smerdon (2012) reviews the approach of using pseudoproxy-experiments

to evaluate reconstruction methods with a focus on the last millennium. Such methods basically originated in Mann and20

Rutherford’s (2002) paper
:::
the

::::
work

:::
of

::::::::::::::::::::::::
Mann and Rutherford (2002) focussing on climate-field reconstructions. The review

::
by

::::::::::::::
Smerdon (2012) emphasizes the essential contribution of pseudoproxy-experiments to our understanding of past climates and

::
to evaluating our methods of studying past climates. Most

::
To

:::::
date,

::::
most

:
studies using pseudoproxies concentrated on the last

few millennia. Few studies considered periods further in the past (e.g., Laepple and Huybers, 2013; Dolman and Laepple, 2018)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Laepple and Huybers, 2013; Dolman and Laepple, 2018; Dee et al., 2018).25

There
:::
For

::
a
::::::
useful

:::
test

:::
of

::::::::::::
reconstruction

::::::::
methods,

:::
the

::::::::::::
pseudoproxies

:::::::
should

::
be

:::
as

:::::::
realistic

::
as

::::::::
possible,

::::
with

:::::::::
statistical

::::::::
properties

::::::
similar

::
to

:::
the

::::
real

:::::::
proxies.

::::
This

::
is

::::::::
achieved

::
by

::::::::::::
contaminating

:::
the

:::::::
climate

:::::::
variables

:::::::::
simulated

::
by

:::
the

:::::
Earth

:::::::
System

:::::
Model

:::::
with

::::::::
statistical

:::::
noise

::::
with

::
a
::::::
certain

:::::::::
amplitude

::::
and

::::::::
statistical

:::::::::::::
characteristics.

:::::
These

:::::::::
properties

::::::
ideally

::::
are

:::::
based

:::
on

:::::::
estimates

:::
of

:
a
:::::::
realistic

::
or

::
at

::::
least

::::::::
plausible

:::::
noise

::
to

::::::::::
successfully

:::::
mimic

:::
the

::::::::
behavior

::
of

:::::::::
real-world

:::::::
proxies.

::
In

:::
our

::::::::::::
understanding

:::::
there are various approaches to obtain such pseudoproxies. On the one hand we

:::::
These

:::::
range

:::::
from30

::::
most

::::::::::::
comprehensive

:::
to

::::
most

:::::::::
simplified.

:::
We

:
can try to obtain comprehensive representations of the proxy-system, i.e., we use

forward models of the proxies under consideration

(compare Laepple and Huybers, 2013; Dolman and Laepple, 2018; see also, e.g., ?; Dee et al., 2018; Evans et al., 2013). Secondly,

we
:
a
:::::::::::::
comprehensive

::::::::::::
representation

::
of

:
a
:::

so
:::::
called

::::::
proxy

::::::
system

::::::::::::::::::::
(Evans et al., 2013) from

::::
the

::::::::::::
environmental

:::::::::
influences

::
on

::
a

:::::
sensor

::
to

:::
our

::::::::::::
measurement

:::
and

::::::::
formulate

::::
this

:::
into

::
a

::::::::::
mechanistic

::::::
forward

::::::
model

::
of

:::
the

::::::
system

::
of

:::::::
interest.

:::::
Such

::::::
models

:::
can

:::
be35
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::::
very

:::::::
complex

::
or

::::
they

::::
may

::::::::::
concentrate

:::::
solely

::
on

::
a
::::
core

::
set

:::
of

::::::::
processes

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(compare the full and reduced implementations of the Vaganov-Shashkin approach to modelling tree-rings presented by Evans et al., 2006; Tolwinski-Ward et al., 2011).

::::
That

::
is,

:::
the

:::
first

::::::::
approach

::
to

::::::::
obtaining

::::::::::::
pseudoproxies

::
is
::::::::::::
process-based.

::::::
Other,

::::
more

:::::::
reduced

::::::::::
approaches

:::::::::
potentially

:::::
ignore

::::
this

::::::::::
mechanistic

::::::
process

::::::::::::
understanding

::::
and

:::::
focus

::
on

:::::::::
stochastic

::::::::::
expressions

::
of

:::
the

:::::
noise

::::
that

::::::::
influence

:::
our

:::::::::
inferences

:::::
about

::::
past

:::::::
climates.

:::::
Such

:::
an

::::::::
approach can try to formulate a mathematically tractable expression of the proxy error

:::::::::::::
mathematically5

:::::::
tractable

::::::::::
expressions

:::
for

::::::::
statistical

::::::::::
noise-terms,

::::::
which

::::::::
represent

:::
the

:::::::
different

::::::::
processes

::
or

::::::
effects

::::::::::
influencing

:::
the

:::::
stages

:::::
from

::
the

:::::::
original

::::::::::::
environmental

:::::::::
conditions

::
to

:::
our

::::
final

:::::::::
observation

:
[Dolman et al., in preparation,

:::
A.

:::::::
Dolman,

:::::::
personal

:::::::::::::
communication,

:::::
2018,

::
T.

:::::::
Laepple,

:::::::
personal

::::::::::::::
communication,

::::
2017]. A third way of formulating the proxy noise is to use a simple estimate of a

plausible non-climatic error in proxy-records. The
::::::
Another

::::
way

::
of
:::::::::

producing
::::::::::::
pseudoproxies

:::
by

::::::::
focussing

:::
on

::::::::
stochastic

:::::
noise

:::::::::
expressions

::::
uses

::::::
simple

::::::::
estimates

:::
of

::::::::
plausible

:::::
errors.

::::::
These different approaches can be very general or specific for certain10

proxy types
::
or

::::
very

:::::::
general.

::::
They

::::
can

:::::
focus

::
on

::::
one

::::
stage

::
of

:::
the

::::::
proxy

::::::
system

::::
from

:::::::::::
environment

::
to

:::::::::::
measurement

::
or

::::::::
consider

:::::::
multiple

:::::
stages.

A recipe for calculating pseudoproxies may include a variety of potential error estimates not only within the assumed

proxy-system but also in the relation between the ‘observed’ data and time, i. e. the anchoring of the data in time. These
:::
All

::::
these

:::::::::
approaches

:::
fit

:::
into

:::
the

::::::
concept

:::
of

:
a
:::::
proxy

::::::
system

:::::
model

::
as

::::::::
described

:::
by

::::::::::::::::
Evans et al. (2013).

:::
The

::::
idea

::
of

:::::::
forward

::::::
models

::
to15

::::
study

:::
the

:::::::
behavior

:::
of

::::::
proxies

:::
and

:::::
proxy

:::::::
systems

::
is

::
not

::::
new

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Schmidt, 1999; Tolwinski-Ward et al., 2011; Thompson et al., 2011) but

:::::::::::::::::::
Evans et al. (2013) were

:::
the

::::
first

::
to

::::::
clearly

:::::::
delineate

:::
the

:::::::::
modelling

::
of

:::::
proxy

:::::::
systems.

::
A

:::::
proxy

::::::
system

:::::::::
represents

:::
the

:::::::::
biological,

::::::::
chemical,

:::::::::
geological,

::::
and

:::::::
possibly

::::
also

:::::::::::
documentary

:::::::
system

:::
that

::::::::
translates

:::::::::::::
environmental

::::::::
influences

::::
into

:::
an

:::::::
archived

:::::
state

::
on

::::::
which

:::::::::
researchers

:::::
make

:::::::::::
observations.

:::
We

:::::::
usually

::::
refer

::
to
:::::

these
:::::::::::
observations

:::::
when

::::::::
speaking

::
of

::::::
climate

:::::::
proxies.

::
A
::::::

proxy

::::::
system

:::::
model

::
is

:
a
::::::::::::
representation

::
of

::::
how

:::
the

:::::
proxy

:::::::
system

::::::::
translates

:::
the

::::::::::::
environmental

::::::::
influences

::::
into

:::
our

:::::::::::
observations

:::::
based20

::
on

:::
our

:::::::::::::
understanding.

::::::::::::::::::::::
Evans et al. (2013) present

:
a
::::::::::
generalized

:::::::
concept

::
of

::::
this

:::::::::
modelling

::::::::
approach,

::::::
which

:::::::
consists

::
of

:::::
three

::::::::::
components:

:::::
First,

:
a
::::::

sensor
::::::
model

:::::
reacts

::
to

:::
the

::::::::::::
environmental

::::::::::
influences.

:::::::
Second,

::
an

:::::::
archive

:::::
model

:::::::::
transforms

:::::
these

::::::
sensor

::::::::
recordings

::::
into

::::::
archive

:::::
units.

::
A

::::
third

:::::
model

::::::::
translates

:::
the

::::::
archive

::::
into

::::::::::::
representations

:::
of

::::
what

:::
we

::::::
usually

::::::
observe

:::
on

::
an

:::::::
archive.

:::
For

::::::::
example,

:::
the

:::::
sensor

:::::
‘tree’

::::::
records

:::
the

::::::::::::
environmental

:::::::::
influences

::
in

:::
its

::::::
archive

:::::::
‘wood’,

:::
and

:::
we

:::
can

:::::
make

::::::::::::
measurements

:::
on

:::
this

::::::
archive

::
in

:::::
form

::
of

:::::::
tree-ring

::::::
counts

:::
and

::::::
widths

:::
etc.

::::
The

:::
full

::::::
system

:::::
from

::::::::
recording

::
to

::::::::::
observation

::
is

:::
the

:::::
proxy

::::::
system.

:
25

::::
Each

:::::
stage

::
in

::::
this

::::::
system

:::
and

:::
its

::::::
model

::::::::::::
representations

:::::
adds

::::::::::
uncertainty,

:::
and

:::::
each

::::
stage

:::::::
omitted

::
in

::
a
::::::::::::
generalization

::::
also

:::::::
increases

::::::::::
uncertainty.

::::
For

:::::::
example,

:::
the

:::::::::::
environment

:::
and

:::
the

:::::
final

::::::::::::
reconstruction

::::::
process

:::
can

:::
be

::::::::
additional

::::::
stages,

:::
but

:::
we

::::
can

::
try

::
to
:::::::
include

:::
the

:::::::::
associated

::::::::::
uncertainties

:::
in

:::
any

::
of

:::
the

:::::
three

:::::
stages

::::::::
proposed

:::
by

::::::::::::::::
Evans et al. (2013).

::::
That

:::
is,

::::::::::
considering

:::
the

:::::::::::
reconstruction

::::::
stage,

:::
the

:::::::::
calibration

:::::::::
introduces

:::::::::
additional

::::::::::
uncertainty,

::::::
which

::
is

:::
not

::
a
:::::
priori

::::::::
captured

:::
by

:::
the

:::::
stages

:::::::
sensor,

::::::
archive,

::::
and

::::::::::::
measurement.

:::
We

::::
can

:::::
argue

::
to

:::::::
include

:::
this

:::::::::
additional

::::::
source

::
of

:::::
error

::
in

:::
the

::::::::::::
measurement

:::::
stage.

:::
We

::::
can

::::
also30

::::
argue

::::
that

:::::
these

:::::::::::
uncertainties

:::
are

::
de

:::::
facto

:::::::::::
uncertainties

:::::::
resulting

:::::
from

::::::::
processes

::
at

:::
the

::::::
sensor

::::
stage

:::
or

::
at

:::
the

::::::::
archiving

:::::
stage

:::
and

::::::
include

:::::
them

:::::
there.

:::::::::
Similarly,

:::
the

::::::
sensor

:::::
model

:::::
does

:::
not

::::::::::
necessarily

::::::
account

::::
for

::
all

:::::::::::
uncertainties

::
of

::::
the

::::::::::::
environmental

:::::::::
influences.

:::
An

::::::::
additional

::::::::::::
environmental

:::::
stage

:::::
could

::::::
provide

::::::::
weighted

::::
data

::
of

::::::
various

::::::::::::
environmental

:::::::::
influences

::::::::::::::::::::::::::
(compare, e.g., Dee et al., 2018).

::::::
These

:::::::::
processes,

::::::::
however,

:::
can

::::
also

:::
be

::::::::
included

::
in

:::
the

::::::
sensor

::::::
model

::
or

:::::::::::
uncertainties

::::
can

::
be

:::::::
assumed

:::
to

::::::
mostly

:::::
affect

:::
the

:::::::::::
measurement

::::::
model.

:::
In

:::::
short,

:::::::::
inferences

:::::
about

::::
past

:::::::
climates

::::
from

::::::::::
proxy-data

:::
are

:::::
based

:::
on35
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::::::::::
observations

:::
on

::
an

::::::
archive

::::
that

::::::::::
accumulated

:
a
::::::::
property

::
of

:
a
:::::::
system.

::::
This

:::::::
(property

:::
of

:::
the)

::::::
system

::::
was

:::::::
sensitive

::
to

:::
and

::::::::
recorded

::
an

::::::::::::
environmental

:::::::
process

::
at

:::::
some

::::
date.

:::::
From

:::
the

::::::::
recording

:::::
stage

::
to

::::
our

::::::::
inference

::::
there

:::
are

::::::::
multiple

::::::
sources

:::
of

::::
error

::
to
::::

our

::::::::
inference.

:::
The

::::::::
potential

:
errors include different sources of errors

::::
noise

:
related to laboratory uncertainties like measurement errors

and reproducibility, local disturbances, dating uncertainty, time resolution, serial autocorrelation, and all possibly dependent5

on the overall climate state. Further uncertainty includes habitat preferences, seasonal biases, the variability in the relation

between sensor and environment, long term changes in this relation, long term modifications of the archive, sampling variability

and sampling disturbances, and not least generally erroneous assumptions on the researcher’s side on the relation between

recording sensor and environment, i.e., the calibration relation.
::
A

:::::
recipe

:::
for

::::::::::
calculating

::::::::::::
pseudoproxies

::::
may

::::::
include

::::::::
potential

::::
error

::::::::
estimates

:::
not

::::
only

:::
for

::::
parts

:::
of

::
the

::::::::
assumed

:::::::::::
proxy-system

:::
but

::::
also

:::
for

:::
the

:::::::
relation

:::::::
between

:::
the

:::::::::
‘observed’

::::
data

:::
and

:::::
time,10

:::
that

::
is

:::
the

::::::::
anchoring

::
of

:::
the

::::
data

::
in

:::::
time.

Regarding dating/age uncertainty, there are various approaches to dealing with it (e.g., Breitenbach et al., 2012; Carré et al.,

2012; Anchukaitis and Tierney, 2013; Comboul et al., 2014; Goswami et al., 2014; Brierley and Rehfeld, 2014; Rehfeld and

Kurths, 2014; Kopp et al., 2016; Boers et al., 2017) of which a number try to transfer the dating uncertainty towards the

proxy-record-uncertainty (e.g., Breitenbach et al., 2012; Goswami et al., 2014; Boers et al., 2017). As our interest is less in a15

probabilistic description and rather in how we can capture the error in a
:::
Our

::::::
interest

::::::::
explicitly

::
is

::
to

::::::
include

:::
the

:::::::::
uncertainty

:::::
from

::
the

::::::
dating

::
in

:::
an

::::::::
statistical

:::::
noise

::::
term

:::
for

::
a

::::::::::
pseudoproxy

:
time-series, we .

:::::::::
Therefore,

:::
we

:::
do

:::
not

::::::::
consider

::::::::
Bayesian

::
or

::::::
Monte

::::
Carlo

::::::::
methods

:::
but take a simple approach to include an error-term resulting from dating uncertainty

::::::
develop

::
an

:::::
error

::::
term

:::
for

::
the

::::::::::
uncertainty

::
in

:::
the

::::::
dating.

:::
We

::::
also

::
do

:::
not

:::::::
include

::::::
explicit

::::::::::::
age-modelling

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(compare, e.g., Haslett and Parnell, 2008; Blaauw and Christen, 2011; Trachsel and Telford, 2017).20

Besides evaluating reconstruction methods, a plausible estimate of noise within the proxies also can assist in comparison

studies between model-simulations and the proxy-records . This helps
::
or

::::::
among

::::::::
different

::::::::::::::::
model-simulations.

::::
This

::::::::
increases

our understanding about past climate changes by consolidating information from all available sources, i.e.,
:::::
which

:::
are

:
proxy

records and model simulations. The lack of high-quality observations with small uncertainty is always going to hamper efforts

to assess the quality of model-simulations of past climates. Such comparisons have to rely on the paleo-observations from25

proxies, and even the highest-quality proxy-records have an irreducible amount of uncertainty.

Most often data-model-comparisons use the model reality as base of the comparisons
:::
take

:::::
place

::
in

:::
the

::::::
virtual

:::::
reality

:::
of

:::
the

:::::
model

:::
and

::::
use

:::
the

::::::::
modelled

::::::::
variables. In the case of proxies, the comparison is betweena, e.g., ,

:::
for

::::::::
example,

::
a temperature

reconstruction and the
:
a
:
model. The alternative is to compare both in the proxy-space using a proxy-representation of the

model-climate. Pseudoproxies or a recipe how to compute them may be part of an interface between the data on the one side30

and the model simulations on the other side.

Inferences about past climates from proxy-data base on observations on an archive that accumulated a property of a system.

This (property of the ) system recorded, i.e. was sensitive to, an environmental process at some date. From the recording stage

to our inference there are multiple sources of error to our inference.
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Evans et al. (2013) describe a simple modelling framework from environment across sensor and archive towards the observation.

Each stage in this process adds uncertainty. Evans et al. simplify the full process through time to three stages:
::::::
Recent

:::::
years

:::
saw

::
an

::::::::::::
intensification

::
in

:::
the

:::::::
research

:::
on

:::::::
forward

::::::::
modelling

:::::::
proxies

:::
for

:::::::::::
understanding

:::::::
proxies,

::::::
testing

::::::::::::
reconstruction

::::::::
methods,

:::
and

:::::::::
evaluating

:::::::::
simulation

:::::
output

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see, for example, Dolman and Laepple, 2018; Dee et al., 2015, 2018; Konecky et al., 2019).

:::::
Many

::
of

:::::
these

::::::::::
approaches

::::::
follow

:::
the

:::::::
concept

:::
of

::::::::::
considering

:
sensor, archive, and measurement. For example, the sensor5

‘tree’ records the environmental influences in its archive ‘wood’, and we can make measurements on this archive, e.g. ,

in form of tree-ring counts and widths etc. On top of this one could use additional stages for the environment and the

final reconstruction, however, we can include the associated uncertainties in any of the three stages proposed by Evans

et al
::::::::::
observations

::
as

:::::::
distinct

:::::
steps

::
in

:::
the

:::::::
process.

:::::
Still,

::::
few

::
of

:::::
these

::::::::::
approaches

:::::::
consider

::::::::
transient

::::::::::
time-scales

:::::::
beyond

:::
the

:::
late

:::::::::
Holocene.

:::::::::::
Nevertheless,

::::::::::
particularly

::::
the

:::::
work

::
by

:::::::::::::::::::::::::::
Dolman and Laepple (2018) and

::::
also

:::::::::::::::::::
Dee et al. (2018) allow

:::
for

::::
the10

:::::::::
calculation

::
of

::::::::
different

::::::::::
sedimentary

:::::::
proxies

::::
over

::::::::::::::
multi-millennial

::::::::::
time-scales

:::::
based

:::
on

:::::::::
knowledge

:::
of

::::::
certain

::::::::
processes

:::
in

::
the

:::::::::
respective

:::::
proxy

:::::::
systems.

In this paper, we
:::::
adopt

:::
the

:::::::::
conceptual

:::::::::::
sub-divisions

::
of
::::::::::::::::::

Evans et al. (2013) to
:
present a formal but still simple

:::::
noise

:::::
based

approach to describe the noise present
::::::::::
disturbances

:::::::
masking

:::
the

::::::
signal in proxy records, which

:
.
::::
This

::::::::
approach

:
can also be

applied to the generation of
:::::::
produce pseudoproxies for timescales longer than the last few millennia, i.e. including also

:::
that15

:
is
:

proxies with coarser time resolutions than interannual and afflicted by larger degrees of dating uncertainty. Thereby this

work extends on previous pseudoproxy-approaches, which often concentrated on well dated proxy-systems affected by fewer

sources of uncertainty.

The following presents a set of assumptions on proxy noise and estimates for some of the mentioned error sources. We further

provide pseudoproxies based on these assumptions for the TraCE-21ka simulation (Liu et al., 2009), which cover
:::::
covers the20

last 21,000 years. We concentrate on proxies,
:
which are subject to some kind of sedimentary process.

::::
Thus,

:::
our

:::::
work

:::::::
appears

::
to

::
be

::::::::::
particularly

::::::
similar

:::
to

:::
the

:::::
proxy

::::::
system

::::::
model

:::
for

:::::::::::
sedimentary

::::::
proxies

:::::::::::
implemented

:::
by

::::::::::::::::::::::::
Dolman and Laepple (2018).

::::::::::::::::::::::::::
Dolman and Laepple (2018) also

::::::::
consider

:::
the

::::
long

::::::::::
time-scales

:::::
since

:::
the

:::
last

::::::
glacial

:::::::::
maximum

::::
and

::::
rely

::
on

::::::
output

:::::
from

:::
the

::::::::::
TraCE-21ka

:::::::::
simulation

:::
for

::::
their

:::::::
forward

:::::::::
modelling.

:::::
Both,

:::
the

::::::
present

::::::::::
manuscript

:::
and

:::::::::::::::::::::::::::::
Dolman and Laepple (2018) follow

:::
the

::::::
concept

:::::::
outlined

:::
by

::::::::::::::::
Evans et al. (2013).

:::
The

:::::
main

::::::::
difference

:::::::
between

:::::::::::::::::::::::::::
Dolman and Laepple (2018) and

:::
the

::::::
present

:::::
study

:
is
::::
that25

:::
they

:::::::
provide

:
a
::::::
simple

::::::::::::::
process-focussed

::::::
model

::
of

:::
the

:::::
proxy

:::::::
system,

:::::::
whereas

:::
we

::
try

:::
to

::::::
provide

::
a

:::::
simple

::::::::::::::
characterisation

::
of

:::
the

::::
noise

::
in

:::
the

:::::
proxy

::::::
system

:::
that

::::::
finally

::::::::
influences

:::
the

:::::::
proxies.

:::
The

::::::::::::
process-based

::::::::::
formulation

::
of

:::::::::::::::::::::::::::::::::
Dolman and Laepple (2018) concentrates

::
on

::::
two

:::::
types

::
of

:::::::
marine

::::::
proxies

::::::::
whereas

:::
our

:::::::::::
noise-based

::::::::
approach

::::
tries

::
to

:::::::::
generalize

:::::
over

::::::::::
sedimentary

::::::
proxy

:::::
types.

::::
We

:::::
regard

::::
both

::::::::::
approaches

:::
as

:::::::::::::
complementary

::::
and

:::::
want

::
to

:::::::::
emphasize

:::
the

::::::
value

::
in

::::::
having

::
a
::::::::
multitude

:::
of

::::::::
methods

::
to

::::::
assess

:::::::::::::::
model-simulations

:::
and

::::::::::::
reconstruction

::::::::
methods.30

:::
Our

::::::::
approach

::::::::::
contributes

::
to

:::
the

:::::::
existing

:::::
proxy

::::::
system

:::::::::
modelling

::::
and

:::::::::::
pseudoproxy

::::::::::
computation

::::::::::
applications

:::
by

:::::
being

:::
an

::::::::::
intermediate

::::
step

:::::::
between

::::::::
complex

:::::::
forward

::::::::
modelling

::::::::::
approaches

::::
and

:::
the

:::::
noise

:::::
based

::::::::::
approaches,

::
of

::::::
which

:::
the

:::::
latter

::::
may

:::::
ignore

:::
the

:::::
proxy

:::::::
system

::::::::
workings.

::::
Our

::::
code

:::::::::
simplifies

:::
and

::::::::::
generalizes

::::
more

::::::::
complex

:::::::::::
assumptions.

:::
The

::::::::::
noise-focus

::::
and

:::
the

::::::::::::
generalizations

:::::
allow

:::
us

::
to

:::::::
provide

::::::
global

:::::::::::
pseudoproxy

::::
data

:::
and

:::
an

::::::::
ensemble

:::
of

:::::::::::
pseudoproxy

::::
data

:::::
using

:::
the

:::::::::::
TraCE-21ka

::::::::
simulation

:::::
over

:::
the

:::::::::
time-scale

::
of

:::
the

::::
last

:::
21

::::::::
thousand

:::::
years.

:
The manuscript assets at also include example code and the35
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calculated pseudoproxy data https://doi.org/10.17605/OSF.IO/ZBEHX
:::::::
provide

::
the

:::::::::
generated

::::::::::
pseudoproxy

::::
data

:::
and

::::
also

::::::
include

::::::
sample

::::
code. Thereby the manuscript provides for one simulation the data to make an informed comparison with real proxies

and the data to evaluate reconstruction techniques. Code and assumptions enable any interested researcher
:::
user

:
to produce

similar pseudoproxies for their simulation of interest. We consider the measurement error, local changes to the original proxy-

recording (compare, e.g., Laepple and Huybers, 2013), the basic climate state, a potential bias, and a simple estimate of the5

effect of dating uncertainty. All noise expressions are coded in a way to flexibly allow for different colors and types of noise.

2 Input Data

We use the summer (June, July, August; JJA)
:::::
annual

:
mean temperature at each grid-point of the TraCE-21ka simulation (Liu

et al., 2009). To date, this is the only available interannual transient Earth System Model simulation covering the last 21,000

years. Specific technical considerations, e.g.
::
for

:::::::
example, related to freshwater pulses and sea-level adjustments lead to some10

artefacts in the simulation output data fields. A brief description of the simulation can be found at http://www.cgd.ucar.edu/ccr/

TraCE/, and He (2011) describes the simulation in more detail in his
::
the

:
Ph.D.-dissertation

::
of

:::
He

:::::::::::::
(2011) provides

:::::
more

:::::
details.

The presented code uses only
:::::
results

::::
and

::::::
Figures

:::
are

::::::::
generally

:::
for

:
one grid-point at 0E, 42.68N. Figures generally show

results for this grid-point as well. This choice is arbitrary. Since this is indeed a grid-point on land, the
:::
150◦

::
E,

:::::
38.97◦

::
N.

::::
The

simulation output at this grid-point has the benefit of representing a rather smooth evolution of temperature over the last 21,00015

yearscompared to, e.g., a marine grid-point affected by the freshwater forcing of He (2011, compare also Liu et al. (2009)). On

the other hand, this implies the disadvantage of featuring
:::
the less extreme climate variations to be captured in a subsequent

pseudoproxy
:::
can

::
be

::::
seen

::
as

::
a

::::::::::
disadvantage. The document assets provide Figures equivalent to those in this document , which

show the output for a grid-point at 11.25W, 42.68N in the North Atlantic off the coast of the northern Iberian peninsula
:::
105◦

::
W,

:::::
45.39◦

::
S

::
in

:::
the

:::::
South

::::::
Pacific.20

On multi-millennial time-scales we have to consider changes in the insolation
::::::
caused

::
by

:::::::
changes

::
in

::::::
earth’s

::::::
orbital

:::::::
elements.

Global insolation data is calculated using the R (R Core Team, 2017) package palinsol (Crucifix, 2016).

We use for most noise-processes simple Gaussian noise. However, as the code is flexible, the user can easily change this.

3 Considerations and Results

In defining what we consider as noise, we first have to state the signal
:
, which we assume the proxy

::::::
system

:
records. That is,25

do we assume ,
:::
that the proxy records local or regionally accumulated signals? Here, we take the signal of interest to be local,

that is non-local influences enter the noise term and are not part of the signal. In addition, there are further local factors which

affect the recording of the signal but are not part of the signal of interest.

The appendix provides tables (Tables A1 to A4) summarising the considered parameters and noise models in the various

steps of the following
:::
our considerations.30

6
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flow
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of
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the

:::::::::
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In the following, we distinguish between different sources of errors related to the concept
:::::::
concepts

:
of sensor, archive

:
,

and measurements of Evans et al. (2013)
::::::::::::::::
Evans et al. (2013).

::::::
Figure

::
1

::::::::::
summarises

:::
our

:::::::::
procedure. Each section contains a

discussion of the implications of the respective error term. Afterwards we discuss the results of applying the respective step in

the framework to the output of the TraCE-21ka simulation.

3.1 Assumptions on essential error sources 1: Sensor5

3.1.1 Noise
:::
and

::::
bias

Visualising considered error sources at the sensor-stage: a) the initial noise and the underlying moving window standard

deviations of the input signal, b) three versions of a potential bias as function of the local insolation, c) the input data and

its 501-point moving mean, d) the input data and its 501-point moving mean plus noise and bias. The unsmoothed initial

temperature is effectively hidden behind the unsmoothed temperature plus bias.10

The sensor, e.g.
:::
that

::
is

:::
for

:::::::
example

:
an organism or a physical or biogeochemical process, reacts to multiple parts of its

environment. Researchers’
:
interest often is only in one of the environmental variables.

The sensor, S, is likely a nonlinear function of the environment, S(E), where E = {ei}, with ei being components of the

environment. If our interest is only in the sensor’s reaction to one variable, T ,

S(E)≈ Ŝ(T,ηi) (1)15

Under this assumption,
:
further components of the environment besides T contribute only noise components ηi to the reaction

of the sensor. These errors
:::::
Errors

:::
due

::
to

:::::
noise

:
are not necessarily additive but can also be multiplicative or could bias the

estimate. In a first step we, here, assume the sensor-reaction to be

S(E)≈ Ŝ(T ) + ηi (2)

Any of these errors or noise-processes may show auto-correlation in either space or time or both. Any such process may,20

in turn, add memory to the sensor-system. Indeed this memory-effect and spatial or temporal correlations may be large. For

example, if a process takes place in an environment with slowly and fast varying components, and our interest is in one of the

fast components, the low frequent variations add a noise or error with high auto-correlation in time.

The sensor reacts to all, potentially high-frequent, changes in its environment. This local environment is unlikely isolated

from the larger scale system. Additional noise may , thus,
:::::
Thus,

::::::::
additional

:::::
noise

::::
may be due to the sensor reacting to advected25

environmental properties instead of “local”
:::::
‘local’ ones or due to the environment redistributing the sensor or the record. In

the marine
:::::
realm

:
but also in lake domains, currents may influence the sensor, while in many domains the wind may affect

the recording of the signal. Furthermore, small and large scale spatial variations of the process may affect the signal and

contribute to the record. Our approach regards these contributions as noise. All these influences may introduce spatial and,

here considered to be of more importance, temporal correlations in those environmental properties,
:
which we here consider as30

part of the noise term. We assume that advection from other regions , i.e.,
::
by currents and wind, are especially important in
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contributing autocorrelation to our noise process. One can see these non-local factors as noise in the archive rather than the

sensor.

Besides simple noise, redistributions of the environmental signal may also introduce biases in our estimate of the environ-

ment. Such biases in turn are
::::
Any

:::
bias

::
is
:
likely not fully time-constant but evolve

::::::
evolves with the environment on interannual,

multi-decadal, and multi-centennial to millennial time-scales. The different time-scales result from the different time-scales of5

the environment. This is relevant for recent climate changes and interannual to interdecadal climate variability, but it becomes

even more important for multi-millennial time-scales where we have to deal with the effects of changing seasons, glaciation,

deglaciation, changes in bathymetry, and lithospheric adjustments. Such
:::
All

::
of

:::::
these

::::::::
processes

::::
may

::::
lead

::
to

::::::
biases,

:::
and

:::::
such

biases also lead to autocorrelation in the error.

One example of such time-evolving biases are changes in the seasonality of the environmental sensor. While one can see10

this again as a source of uncertainty in a narrowly defined proxy-system from sensor to reconstruction, it is in the end a bias

of our attribution of the measurement to one season. That is, it is a bias at the reconstruction-level rather than
::
We

::::::::
consider

:::
this

::::
bias on the sensor level. There are other potentially erroneous attributions besides the processes’ seasonality. These are the

location of the process in all three dimensions, e.g.
::
for

::::::::
example, the habitat of living organisms, and a generally only partially

correct calibration relationship. Again, while these are environmental factors influencing the sensor and can be considered
:::
we15

:::::::
consider

::::
them

:
as noise here, they are mainly errors in our reconstruction-calibration-relation. This .

::::::::
However,

::::
they

:::::
reflect

::
a non-

stationarity of our reconstruction-calibration-relationis an important source of uncertainty, although
:
.
:::::::::::
Nevertheless, the idea that

the modern relations
:::::::
between

::::::::::
environment

::::
and

:::::
proxy

::::::
system

:
worked over the full period of interest (e.g., Bradley, 2015) is a

fundamental assumption of paleo-climatology
:::::::::::::::::
(e.g., Bradley, 2015).

In the followingwe consider two error terms. However, we assume three components of the noise to be important
::::::::::
disturbances20

::
of

:::
the

:::::
signal

:
at the sensor level,

:
:
:
the environmental noise, the redistribution, and the attribution errorswhich we here reduce

:
.
:::
We

::::::
reduce

:::
the

::::
latter

:
to the potential biases due to changes in the seasonality. Taking all three components the sensor-record

becomes

S(E)≈ Ŝ(T ) + ηenv + ηredistr + ηseason (3)

where we for the moment replace ηi by ηenv . We assume in the following
::
In

::
the

:::::::::
following,

:::
we

::::::
reduce

::::
these

:::::
three

::::::::::
components25

::
to

:::
two

:::::
terms

::
in

:::
our

::::::::::::
modifications

::
of

:::
the

::::
input

:::::
data.

3.1.2
:::::
Noise

::::
First,

:::
we

:::::::
assume

::::
that ηi includes both the effects of environmental dependencies and of redistribution, i.e. , our

:
.
::::
That

:::
is,

ηi = ηenv + ηredistr. This is the first error term.

This in fact implies that we should consider auto-correlated noise-processes. However, for simplicity, the currently used30

version of ηi is a white noise process and thereby ignores that redistribution and other processes likely introduce temporal and

spatial correlations in the errors. The code includes the noise model as a set of parameters which the user can easily change to

include an autocorrelated noise model.
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Our pseudoproxy at this point becomes, if
::
If we only modify the model-output and concentrate on one parameter T , e.g.

:::
for

:::::::
example, temperature data,

:::
our

:::::::::::
pseudoproxy

::
at

:::
this

:::::
point

::::::::
becomes,

P (x,y, t,T ) = PT = T + ηi (4)

We take
:::
The

::::::
current

:::::::
version

::
of ηi to be

ηi = p · N (0,S(t)2)5

where p is a constant scaling factor, and
::
is

::::
only

::
a

::::::
weakly

:::::::::
correlated

::::::::::::
autoregressive

::::
(AR)

:::::::
process

::
of

:::::
order

::::
one,

::::::
which

:::
we

::::::::::
additionally

::::
scale

:::
by

::
an

:::
ad

:::
hoc

::::::
scaling

::::::
factor.

::
It

::::::
thereby

::::
only

::::::::
includes

:
a
:::::
small

::::
part

::
of

:::
the

:::::::
potential

::::::::::
correlations

::::::
among

::::::
errors

:::
due

::
to

:::::::::::
redistribution

::::
and

::::
other

:::::::::
processes.

:::
The

::::::::::
innovations

:::
are

:::::::
sampled

:::::::::
dependent

:::
on

::::
time

:::
and

::::::
climate

::::::::::
background

:::::
from

::::::::::
N (0,S(t)2),

::::::
where S(t) is a time-dependent standard deviation. The time-dependence mimics a dependence of the noise on

the background climate variability on long time-scales. Here, we use a 1000 year moving standard deviation , i.e., S(ti) =10

σ(T (ti−499 : ti+500)). Again, the code easily allows to change the noise-model to an AR-process with innovations generated

with standard deviation S(t). Our
:::
Our

::::::
general

:
formulation assumes that noise variability increases with increasing variability in

the parameter T . Obviously, it could also be that noise variability reduces or reacts totally differently relative to the variability

of T . The code includes a commented version where we
::::::
switch

::
to invert the moving standard deviation about its mean

::
or

::
to

::::::::
randomize

:::
the

::::::::::
orientation.15

3.1.3
::::
Bias

We can consider the changes of the seasonality, ηseason, as an orbitally influenced bias termwhich we compute first for the

current latitude .
::::

We
:::::::
compute

::
it

:::
for

:::
any

:::::::
latitude

::
of

:::::::
interest. We apply the orbital bias term as additive but one may see it as

multiplicative or
:
a
:::::::::::
multiplicative

:::
or

:
a
:
nonlinear effect in many cases. Therefore the code uses it after the noise term ηi. This

:::
The

::::
bias is the second error term .20

We add the
::
in

:::
our

::::::::::
formulation

:::
of

:::::::::::
modifications

::
at
::::

the
:::::
sensor

:::::
level.

::::
The

::::
bias

:::::
term

::
is

:
a
:::::::
scaling

::
of

:::
the

:::::::
changes

:::
in

::::::
annual

::::::::
latitudinal

:::::::::
insolation

:::
but

:
it
::
is
:::::::
possible

::
to
:::::::

choose
:::::::
different

:::::::::
sub-annual

:::::::::::
time-periods

::
of

:::::::
interest.

::::
The

::::::
scaling

::
is

:::::::
arbitrary

::::
and

:::
we

::::
refer

::
to

:::
the

:::::::
provided

:::::
code

:::
for

::::::
details.

::::
The bias term dependent on the latitudinal insolation. In its formulation we concentrate

on summer insolation. The insolation bias is scaled to be
::
is zero in the year 0BP. The bias becomes notable at some latitudes

but may be rather negligible elsewhere. The bias is scaled
:
0
::::

BP.
:::
We

:::
set

::
it to be positive if the insolation is largerbut ;

:
this25

can be randomized . The
:
in

:::
the

:::::
code.

::::
The

::::::::
amplitude

:::
of

:::
the bias is scaled by an ad hoc constant. Then the

:::
The

::::
bias

::::::::
becomes

::::::
notable

::
at

:::::
some

:::::::
latitudes

:::
but

::::
may

::
be

:::::
rather

:::::::::
negligible

:::::::::
elsewhere.

:::
We

::::
take

:::
the

::::
bias

::
as

::::::::::::::
Bias(t) = β · In.

::::::
Where

::
β

::
is

:::
the

::::::
scaling

:::::::
constant,

::::
and

::
In::

is
:
a
::::::::::
normalised

:::
and

::::::
shifted

:::::::::
insolation.

::
In::

is
:::::::::
calculated

::
as

::::::::::::::::::::::::::::::::::::::::::
In = ((I − Ī)/σ(I) · q0.25− I(t= 0BP ) + 1)u− 1

::
for

::
a
::::::
chosen

::::::
period.

::::
The

::::::
chosen

::::::::::
time-period

::::::::
influences

:::
the

::::::::
statistics

:::::::
included

::
in
:::
the

:::::::
scaling.

:::
We

::::::::
consider

:::
the

::::::::
insolation

:::::
since

:::::::
150,000

:::
BP.

::::
q0.25::

is
:::
the

::::
25th

::::::::
percentile

::
of
:::
the

:::::::::
insolation

::::
data,

::
u

:
is
::::::::
generally

::
1,
:::
but

::::
can

::
be

:::::::
sampled

:::::
from

:::::::::::
U = {−1,1}.

:
30

:::
The

:
pseudoproxy becomes

PT (t) = T (t) + ηi(t) +Bias(t) (5)
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Figure 2. Visualising considered error sources at the archive-stage
:::::::::
sensor-stage: a) 501-year moving mean of the input data, the

pseudo-archive series with longer average smoothing lengths,
::::
initial

::::
noise

:
and the subsampled record, b) 501-year

::::::::
underlying moving

mean
:::::
window

:::::::
standard

::::::::
deviations

:
of the input data

:::::
signal,

:
b)

:::::
three

::::::
versions

::
of
::

a
:::::::
potential

:::
bias

:::
as

::::::
function

::
of
:

the pseudo-archive series

with shorter average smoothing lengths
:::
local

::::::::
insolation, c) 501-year moving mean of the input data , the pseudo-archive series with longer

average smoothing lengths, and the version with constant smoothing and added AR(1)-process
::
its

:::::::
501-point

::::::
moving

:::::
mean, d) 501-year

moving mean of the input data , the pseudo-archive series with shorter average smoothing lengths, and the version with shorter constant

smoothing
::
its

:::::::
501-point

:::::::
moving

::::
mean

::::
plus

::::
noise

:
and added AR(1)-process

::::
bias.

:::
The

:::::::::
unsmoothed

:::::
initial

:::::::::
temperature

::
is
::::::::
effectively

::::::
hidden

:::::
behind

:::
the

:::::::::
unsmoothed

:::::::::
temperature

:::
plus

::::
bias.

3.1.4
::::::
Results

3.1.5 Results

Figure 2a shows an example of the initial noise ηi. The dependence on the background state is obvious with
::::::
clearly

::::::
visible

::
for

:::
the

:::::::::
visualized

::::
grid

::::
point

:::::
data.

:::::
There

::
is an increase during the deglaciation . The blue line in the panel gives the underlying

moving standard deviation
:::
and

::
a

:::::::::::::
multi-millennial

::::::::
reduction

::::
over

:::
the

::::::::
Holocene. Indeed, Rehfeld et al. (2018) diagnose a reduc-5

tion in temperature variability from the Last Glacial Maximum to the Holocene by studying centennial to millennial time-scales.
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Panel b of Figure 2 compares three versions
:::::::
potential

:::::::::
amplitudes

:
of the orbitally induced bias. We use the version with the

smallest amplitude.

Panel c of the Figure presents the grid-point temperature of the TraCE-21ka simulation and a simple 501-year running

mean. The comparison with Figure 2d highlights that the effect of the bias is rather small given our choice of its amplitude.

Nevertheless, comparing the panels also clarifies that our implementation of the bias results in a warmer
:::::
colder

::::::
annual

:
record5

over most of the considered time period while the record becomes slightly colder
::::::
warmer

:
in the very early portion of the

simulated data.

3.2 Assumptions on essential error sources 2: Archive

3.2.1 Noise

So far our approach describes a record of an environmental influence plus two error terms. This record becomes subsequently10

integrated in an archive. Afterwards, various processes may modify the archive or redistribute it. Modifications include selective

destruction of parts of the record by processes acting all the time or by sparse random events or continually acting random

processes. Examples are bioturbation or re-suspension. These processes may result either in a correlated noise in time and

space or simply white noise. Other de facto white noise errors may result from our finite and random sampling of the archive.

However, this may be rather part of the observational noise.15

::::
Such

:::::::::::
modifications

:::
of

:::
the

::::::
archive

:::
and

::::::::
sampling

::::::
issues

::::::::
represent

::
an

::::::::
important

::::
step

::
in

:::::
using

::::::
inverse

::::::::::::
reconstruction

::::::::
methods

::::::
because

::
it

::
is

:
a
:::::
priori

:::
not

::::
clear

::::
how

::
the

:::::::
archive

:
is
::::::::
generated

::::
and

:::::::
whether

::
an

::::::::
individual

:::::::::::
measurement

:::::::::
represents

:::::
mean

:::::::::::
environmental

::::
states

:::
or

::::::
relates

::
to

::::::
single

::::::
events.

::
In

::::
this

:::::::
context,

:::::::
forward

:::::::
models

:::
and

:::::::::::
pseudoproxy

::::::::::
approaches

::
of

:::::::::::
sedimentary

:::::::
proxies

:::
are

:
a
::::::
crucial

::::
tool

::
in

::::::::::::
disentangling

:::
the

:::::::::
controlling

:::::::
climatic

:::::::::::::
environmental

::::::
factors

::
in

:::
the

:::::::::
generation

:::
of

::::::::
sediment

:::::
cores

:::
and

:::::
their

:::::::::::
interpretation.

:
20

3.2.1
:::::::::
Smoothing

::::
and

:::::
noise

Because we focus on sedimentary proxies, we argue that the archiving process foremost is a filter of variability above a certain

frequency level, e.g.
::
for

:::::::
example, by diffusive processes or bioturbation (compare, e.g., Dolman and Laepple, 2018, and their references)

:::::::::::::::::::::::::::::::::::::::::::::::
(compare Dolman and Laepple, 2018, and their references). Dependent on the system in question this may only affect the very

high frequencies but for other systems it may extend to multi-decadal or even centennial to millennial frequencies. On top of25

this smoothing of the archive, there may be additional noise as the smoothing function is unlikely homogeneous. We assume

such a filtering to be the fundamental modification of the record in the archive, and, thus, only consider this process in our

archive modelling.

Inspired by the simple proxy forward formulations of Laepple and Huybers (2013; see also Dolman and Laepple, 2018)

::::::::::::::::::::::::::::::::::::::::::::::::::::
Laepple and Huybers (2013, see also Dolman and Laepple, 2018), we produce five different versions of the archived pseudoproxy-30

series. The first and second series are simple running averages of the recorded proxy
:::::
sensor

:::::
record

:
on which we add a highly

correlated AR(1)-process
::::::::::::
autocorrelated

::::::::::
AR-process

::
of

:::::
order

:::
one. The two versions differ in the length of the averaging win-
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dow, the AR-coefficients, and the standard-deviations of the innovations. The versions three and four similarly differ in the

amount of average smoothing, but we use random window lengths for each date. The rationale for the two different smoothing

lengths is to mimic
:::::::
represent

:
both strongly and only slightly smoothed proxies.

The fifth version aims to mimic the behavior of proxies when researchers use only a small part of an available proxy, e.g.,

pick only a certain number of a samples. An example is the simple forward formulation for Mg/Ca proxies by Laepple and5

Huybers (2013; see also Dolman and Laepple, 2018)
:::::::::::::::::::::::::::::::::::::::::::::::::::::
Laepple and Huybers (2013, see also Dolman and Laepple, 2018).

Smoothing lengths and random factors in this approach could depend on the background climate. We choose not to consider

this possibility, but one can easily include a time-dependent standard-deviation of the innovations here.

::::::
Indeed,

:::
the

::::
code

:::::::
includes

::::::
options

:::
for

:::
the

:::::::
random

:::::::::
smoothing

::::::
lengths

::
to

::::::
depend

::
on

:::
the

:::::
mean

::::::
climate

:::
or

::
the

:::::::
climate

:::::::::
variability.

:::
The

::::::::
provided

::::
data

::::
uses

::
an

::::::::
approach

::::::
where

:::
the

::::::
random

:::::::::
smoothing

:::::::
lengths

::::::
follow

::
an

::::::::::::
autoregressive

:::::::
process

::::::
around

:
a
:::::::
climate10

::::::::
dependent

::::::::
reference

:::::::::
smoothing

::::::
length,

::::::
where,

::::::::::
considering

::::::::::::::::::
Vardaro et al. (2009),

::::::
warmer

::::::::
climates

:::::
result

::
in

::::::
shorter

:::::::::
smoothing

:::::::
intervals.

:
The smoothed archive records are then either

PT (t) = g1(T (t) + ηi(t) +Bias(t), t) (6)

where g1(t) is the time dependent filter, or

PT (t) = g2(T (t) + ηi(t) +Bias(t)) +AR (7)15

where g2 is the constant smoothing and we add an AR-process to account for the inhomogeneities in the smoothing.

The fifth version of the pseudoproxies subsamples over the random filter interval and adds a noise term to mimic a seasonal

uncertainty. That is, we sample n years within the filter interval, and take the mean over the temperature and the noise for these

years. We add another noise term to mimic
:::::::
represent

:
the intra-annual seasonal uncertainty.

PT in this case becomes20

PT = h(T (t), t) +h(ηi(t), t) + ηs (8)

where h(t) represents the sub-sampling and ηs the intra-annual noise.

We do not include the bias term here
:::
for

:::
the

::::::::::
subsampled

:::::::
proxies. On the one hand we apply this

::
the

:
bias only for the

summer season
::::
mean

::::::
annual

:
temperature, i.e. other

::::::::
individual seasons show different biases. While we could account for this

by sampling the biases of other
::::
over

:::
the

:::::::
different

:
seasons or even months in producing h(t) or ηs, we prefer to keep our model25

simpler. Excluding the bias term may be interpreted in terms of
::
as

:
the seasonal subsampling cancelling out the bias. In reality

any cancellation would not result in a convergence on the simulated climate state but more likely on a recorded value between

the biased and the ‘true’ climate. The coded version of the sub-sampling still includes the bias-term as a comment.

3.2.2 Results

Already the30

13



−20000 −15000 −10000 −5000 0

278

280

282

284

286

288

Year BP

Temperature /K

(a)

T moving−mean
Pseudoarchive series
Seasonally subsampled

−20000 −15000 −10000 −5000 0

275

280

285

290

Year BP

Temperature /K

(b)

T moving−mean
Pseudoarchive series

−20000 −15000 −10000 −5000 0

278

280

282

284

286

288

Year BP

Temperature /K

(c)

T moving−mean
Pseudoarchive series
Smoothed T plus AR(1)

−20000 −15000 −10000 −5000 0

275

280

285

290

Year BP

Temperature /K

(d)

T moving−mean
Pseudoarchive series
Smoothed T plus AR(1)

Figure 3.
::::::::

Visualising
::::::::
considered

::::
error

::::::
sources

::
at

:::
the

::::::::::
archive-stage:

::
a)
:::::::
501-year

::::::
moving

:::::
mean

::
of

:::
the

::::
input

::::
data,

:::
the

:::::::::::
pseudo-archive

:::::
series

:::
with

:::::
longer

::::::
average

:::::::::
smoothing

::::::
lengths,

:::
and

:::
the

:::::::::
subsampled

:::::
record,

::
b)
:::::::

501-year
::::::
moving

:::::
mean

::
of

:::
the

::::
input

::::
data,

:::
the

:::::::::::
pseudo-archive

:::::
series

:::
with

::::::
shorter

::::::
average

::::::::
smoothing

::::::
lengths,

:
c)
:::::::
501-year

::::::
moving

::::
mean

::
of

:::
the

::::
input

::::
data,

::
the

::::::::::::
pseudo-archive

::::
series

::::
with

:::::
longer

::::::
average

::::::::
smoothing

::::::
lengths,

:::
and

::
the

::::::
version

::::
with

::::::
constant

::::::::
smoothing

:::
and

:::::
added

::::::::::::
AR(1)-process,

::
d)

:::::::
501-year

::::::
moving

::::
mean

::
of

:::
the

::::
input

::::
data,

::
the

::::::::::::
pseudo-archive

::::
series

::::
with

:::::
shorter

::::::
average

::::::::
smoothing

::::::
lengths,

:::
and

:::
the

::::::
version

:::
with

::::::
shorter

::::::
constant

::::::::
smoothing

:::
and

:::::
added

::::::::::::
AR(1)-process.

:::
The

:
biased moving average

::::::
already shows the differences between the target temperature and the pseudoproxy-record

::::::::
(compare

:::::
Figure

::
2. The pseudo-archive-series in Figure 3a shows this more clearly. Here we use a randomized smoothing

interval. Differences are less visible for shorter random smoothing intervals (compare Figure 3b).

Further panels of Figure 3 add the constant smoothing archive approximations which we modify by an additional highly

correlated AR-process (Figure 3c and d). This procedure randomly amplifies, dampens, or inverts certain biases in the presented5

case. That is, while the simple random smoothing emphasizes
::::
may

:::::::::
emphasize the bias, the AR-procedure overlies this bias

with additional millennial-scale variations.

The panels highlight an apparent offset between the randomly smoothed archive series, the constantly smoothed archive

series, and the smoothed input data. The smoothed version of the input data as well as the constant filtering use a centered

approach, i.e.,
:::
that

::
is they are symmetric about their date. The time varying smoothing tries to more realistically mimic

::::
more10
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:::::::::
realistically

::
to
::::::
imitate

:
a bioturbation approach (compare Dolman and Laepple, 2018, and their references) and thus provides a

shift in the series.

Figure 3a also shows the seasonally subsampled pseudo-archive-proxy. The data does ignore
::::::
ignores

:
the bias term and the

resulting series is by construction symmetric around the original data, i.e. the
:::
our target. Nevertheless, there are pronounced de-

viations from the orginial
::::::
original data. Considering only the deviations from the target temperature moving mean (not shown)5

highlights that this approach is notably more noisy than the filtered data but preserves pronounced longer term excursions of

the input data
::::
(not

::::::
shown).

3.3 Assumptions on essential error sources 3: Measurements

3.3.1 Noise

The archiving represents also a transformation from time-units to archive-distance-units, e.g.,
:
to

:
depths, rings, distances. The10

proxy becomes a tuple of date and data. Now the dates are uncertain as each data-point includes information from different

original dates due to the smoothing function, the sampling introduces uncertainties , and our .
::::
The

::::::::
sampling

::::
may

::::
lead

:::
to

::::::::
additional

:::::::::::
uncertainties

:::
due

::
to

:::::::::::
disturbances

::
of

:::
the

:::::::
archive,

:::
and

:::
the dating of our samples is a profoundly uncertain process.

Visualising considered error sources at the measurement-stage for the full series: a) 501-year moving mean of the input

data, the pseudo-archive series with longer average smoothing lengths and the constant smoothing plus AR series with added15

measurement noise, b) 501-year moving mean of the input data, the pseudo-archive series with shorter average smoothing

lengths and the constant smoothing plus AR series with added measurement noise, c) 501-year moving mean of the input data,

the subsampled record, and the subsampled record with added measurement noise.

3.3.1 Measurement error

3.3.2
::::::::::::
Measurement

:::::
error20

Prior to dealing with
:::::
errors

:::
due

:::
to

:
dating uncertainty, we take an additional noise term to mimic

:::::::
represent

:
measurement

errors and apply this for each date to account for the potentially imperfectly measured series. The term includes not only

the uncertainties in
:::::
errors

:::::::::
introduced

::
by

:
our assumed methods of measuring the proxies and the methods’ potential to make

mistakes. This “true” measurement error may result in biases due to limits of what our methods can detect or systematic

offsets due to a laboratory-specific, potentially erroneous, approach to the measurement. Potential offsets imply that we should25

generally expect a certain amount of auto-correlation in this noise. The term further has
:::
has

::::::
further to account for the accidental

handling of the records in the laboratory, e.g.
::
for

:::::::
example, influences from storage or from other processing of the samples and

the data, which may result in autocorrelated errors if these influences have a systematic component.

Thus, it is not necessarily the case that we can consider inter-laboratory reproducibility as white noise. However, the intra-

laboratory repeatability is likely indeed a white random process. We also assume repeatability and reproducibility to be part of30

our measurement error term.
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While there are obviously many
:::::
While

:::
we

:::
just

:::::::::
mentioned

:::::::
various reasons to assume autocorrelation in this error-term, we ,

here, only provide a white noise term for the measurement noise. Again, the code allows to modify this.

We apply the measurement error term at the end. However, we introduce this term before dealing with the dating uncertainty

since we provide proxies without dating uncertainty. The measured proxy-series becomes

MT = PT + ηM (9)5

In reality, we do not have a continuously sampled series, but obtain only samples at certain intervals. Assuming N samples

the sampled pseudoproxy becomes

PPT
= PT (t= {t1, ..., tN}) (10)

The sampling of the archive likely produces errors in the samples. We assume these are included in the measurement

uncertainty. We provide at each grid-point sampled series of the pseudoproxies detailed above.
:::
We

::
do

:::
not

::::::::::
distinguish

:::::::
between10

:::::::
different

::::::::
sampling

:::::::::
techniques.

:::
We

::::::
simply

::::::
sample

:::
the

:::::::
records

::
at

::::::
certain

::::
dates

::::
and

:::
add

:::
the

::::::::
described

:::::
noise

:::::
term.

Visualising the sampled records: a) Input data and its 501-year moving mean, the pseudo-archive series with longer average

smoothing lengths plus the effective dating error and plus the effective dating error and measurement noise, b) input data and

its 501-year moving mean, the constantly smoothed record with longer smoothing length plus AR series with added effective

dating error and with added effective dating error and measurement noise, c) input data and its 501-year moving mean, the15

pseudo-archive series with shorter average smoothing lengths plus the effective dating error and plus the effective dating error

and measurement noise, d) input data and its 501-year moving mean, the constantly smoothed record with shorter smoothing

length plus AR series with added effective dating error and with added effective dating error and measurement noise, e) input

data and its 501-year moving mean, the subsampled record with added effective dating error and with added effective dating

error and measurement noise.20

3.3.3 Dating uncertainty

3.3.4
::::::
Dating

::::::::::
uncertainty

Dating uncertainty represents a big part of our overall uncertainty for many proxies, especially for sedimentary proxy-records.

In our framework, already the smoothing function redistributes information from one date across the archive. Usually one con-

siders this temporal uncertainty separately from the proxy-record uncertainty
::::
error. For assessing reconstruction methods and25

simulations, it , however, would be beneficial to be able to include dating uncertainty within the proxy-uncertainty
::::::::::
proxy-error.

::::
That

::
is,

::
if

:::
we

:::::::
consider

:::::::
proxies

::
as

:::::
tuples

::
of
::::

data
::::
and

::::
date,

:::
we

::::
have

:::
to

::::::::
transform

:::
the

::::::::::
uncertainty

::
of

:::
the

::::
date

:::
into

:::
an

:::::::::
error-term

::
for

:::
the

::::
data. In the following we have to distinguish between the dating uncertainty, i.e.

:::
that

::
is the uncertainty that a sample

is from a certain date, and the dating uncertainty error, by which we mean the potential error in our (pseudo)proxy due to the

uncertain dating.30

There are a number of approaches to transfer the dating uncertainty towards the

proxy-record-uncertainty (e.g., Breitenbach et al., 2012; Goswami et al., 2014; Boers et al., 2017). We
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::::::::::
proxy-record

:::::
error

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Breitenbach et al., 2012; Goswami et al., 2014; Boers et al., 2017).

::::::::
Ensemble

::::
and

:::::::
Bayesian

:::::::::
age-depth

::::::::
modelling

::::::::::
approaches

:::
also

:::::
allow

::
to

::::
infer

:::
an

::::::::
additional

::::
error

:::::
term

:::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Haslett and Parnell, 2008; Blaauw and Christen, 2011).

:::::::
However

:::
in

:::
the

::::::
present

::::::::::
application,

:::
we

:
want to capture the error in a time-series. Thus, we take a very simple approach,

which assumes that the error due to dating uncertainties is related to the climate state over the period of the dating uncertainty.

:::::::::::
Nevertheless,

:::::
since

:::
we

:::::::
provide

::::::
sample

:::::
dates

::::
and

:::::::
random

::::::::
sampling

:::::::::::
uncertainties,

::::
the

:::::::::
application

:::
of

:::
age

:::::::::
modelling

::
to
::::

the5

::::::::::::
pseudoproxies

:
is
::
in
::::::::
principle

:::::::
possible

:::::::::::::::::::::::::::::::::::::::::::::
(e.g., following the approach of Dee et al., 2015, 2018).

:

The code includes several variations of doing this
::
our

:::::::::
estimation

::
of

:::
an

:::::::
effective

:::::
dating

:::::
error. These reflect different amounts

of dependence between subsequent samples. The following general approach is common to all . We
::
In

::
all

::::::::
variants,

:::
we only

consider dependence between two subsequent samples while for real proxies the correlations may extend across larger portions

of the proxy-record.10

We proceed as follows
:::
The

::::::::
following

::::::
general

::::::::
approach

::
is

:::::::
common

::
to

:::
all

::::::::
variations

::
of

:::
our

::::::::
procedure: First, we sample random

dating uncertainties in time for each sample date. We take these as dating uncertainty standard deviations.
:::::
These

:::::::::::
uncertainties

:::
can

::
be

:::::::
sampled

:::::
fully

::::::::
randomly

::
or

:::::::::
dependent

::
on

:::
the

::::::::
available

:::::::::
smoothing

::::::
interval

::::
data

::::
from

:::
the

::::::
archive

::::::
stage. Then we take the

effective dating uncertainty error at each sample date/depth to be a random sample from a normal distribution.

The mean of this distribution is the difference between the sample-data and the mean over the data within plus and minus two15

dating uncertainty standard deviations. The standard deviation of the distribution is the standard deviation of the differences

between the individual data points within this interval and this mean.

The effective dating error is then

εD =N (PTD
,σ2
D) (11)

where20

PTD
= PT (tS = {ti−2σdating

, ..., ti, ..., ti+2σdating
})−PT (t= ti) (12)

is the mean over the region of influence and

σ2
D = E[(PT (tS)−PTD

)2] (13)

is the variance of the distribution.

In the simplest formulation ignoring the dependence between subsequent dates, the sampled pseudoproxies become25

PPT
(t1, ..., tN ) = g(T (t) + ηi(t) +Bias(t), t)(t1, ..., tN ) + εD(t1, ..., tN ) (14)

Alternative formulations of the pseudoproxy become

PPT
(t1, ..., tN ) = g(T (t) + ηi(t) +Bias(t))(t1, ..., tN ) +ARi(t1, ..., tN ) + εD(t1, ..., tN ) (15)

or30

PPT
(t1, ..., tN ) = h(T (t), t)(t1, ..., tN ) +h(ηi(t), t)(t1, ..., tN ) + ηs(t1, ..., tN ) + εD(t1, ..., tN ) (16)
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This initial formulation of the effective dating uncertainty error ignores potential correlation between the dating errors. The

most simple way to account for this makes subsequent errors dependent

εDi
= ρ · (εξDi−1

+ (PPT i−1
−PPT i

)) + εξDi
(17)

This formulation has only a minor influence on the results. It is included in the code via a binary switch.

A slightly more complex formulation makes the error term at each date dependent on the previous sample’s age uncertainties5

and mean data. Previous refers to archive units instead of time units. Then the dating error becomes

εDi
= ρ · (εDi−1

+ (PPT i−1
−PPT i

)) + εξDi
(18)

where ρ= 0.9 in our code and
:::::
where εξDi

are the random innovations for date i.
:::
Our

:::::
initial

::::::
choice

::
of ρ= 0.9 can give large

effective dating uncertainty errors. A switch in the code allows to use this inter-dependent error.

Another switch allows to consider the dependence between samples as a function of their dates and the dating uncertainty,10

ρ(t) = 1− (ti− ti−1)/(2 ·σd(i− 1)) (19)

The time-dependent dating uncertainty for each date σd(t) is generated randomly (compare above σD). We provide data for

this
:::
the case with a time-dependent ρ(t).

Alternative simple formulations may include different noise processes , e.g.,
:::
like noise generated from Gamma-distributions.

Furthermore, the
:::
The

:
available smoothing interval data could inform the

:::
can

::::::
inform

:::
the

:::::::
sampled

:
dating uncertainty. We could15

also
:::::
further

:
use this information to provide a deterministic, i.e. not random, error for each sampled date, i.e. taking

:::
that

::
is

:::
we

::::
could

::::
take

:
a bias based on all dates influencing the selected date within the dating uncertainty.

In our current setup the age uncertainty does not depend on the measurement noise. The measurement error is added af-

terwards to the series including the effective dating uncertainty error. This decision is arbitrary. On the one hand a classical

dating uncertainty affects the measured value. Then, also PPT
above should already include the measurement error. On the20

other hand, the dating uncertainty affects the archived values independent of the measurement noise. Therefore we keep both

independentand do not provide a dataset for the dependent case or code-switches.

The measured proxy-series becomes

MT = PPT
+ ηM (20)

The final proxy is in temperature units as is the initial input data. We ignore a separate term for potentially non-linear and25

climate-state dependent errors in our calibration relationship and assume the measurement noise term accounts for this as well.

A separate term could be again a state-dependent Gaussian noise. It could also be a noise from a skewed distribution whose ,

e.g., mode depends on the background climate. On the other hand, a state-dependent bias term could simulate a mis-specified

calibration relation while a time-dependent bias term could simulate a degenerative effect over time within the archived series.

::::
None

::
of
:::::
these

:::
are

:::::::
included

::
in
:::
the

:::::::
current

::::::
version.

:
30
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Figure 4.
:::::::::
Visualising

::::::::
considered

::::
error

::::::
sources

::
at

::
the

:::::::::::::::
measurement-stage

::
for

:::
the

:::
full

:::::
series:

::
a)

:::::::
501-year

::::::
moving

::::
mean

::
of

:::
the

::::
input

::::
data,

:::
the

:::::::::::
pseudo-archive

:::::
series

:::
with

:::::
longer

::::::
average

::::::::
smoothing

::::::
lengths

:::
and

:::
the

::::::
constant

::::::::
smoothing

::::
plus

:::
AR

::::
series

::::
with

:::::
added

::::::::::
measurement

:::::
noise,

::
b)

::::::
501-year

::::::
moving

:::::
mean

::
of

::
the

:::::
input

:::
data,

:::
the

::::::::::::
pseudo-archive

::::
series

::::
with

:::::
shorter

::::::
average

::::::::
smoothing

::::::
lengths

:::
and

:::
the

::::::
constant

::::::::
smoothing

::::
plus

:::
AR

::::
series

::::
with

:::::
added

::::::::::
measurement

:::::
noise,

::
c)

:::::::
501-year

::::::
moving

::::
mean

::
of

:::
the

::::
input

::::
data,

:::
the

:::::::::
subsampled

::::::
record,

:::
and

:::
the

:::::::::
subsampled

:::::
record

:::
with

:::::
added

::::::::::
measurement

:::::
noise.

3.3.5 Results

Figure 4 show

:::::
Figure

::
4

:::::
shows

:
versions of an archived proxy plus interannual measurement noise, i.e. they .

::::
The

:::::
panels

:
give an impression

::
of how a proxy would look from measurements on a perfectly annually sampled archive. The final amplitude of the noisy proxy

is smaller
::::::::
generally

::::::
slightly

:::::::
smaller

:::
for

::
all

:::::::
versions

:::
of

:::
our

::::::::::::
pseudoproxies

:
than the amplitude of the interannual variations for5

the chosen locationfor all three versions , simple smoothing ,
:
.
::::
This

::::
may

::
be

::::::::
different

::
at

::::
other

:::::::::
locations.

:::
The

::::::::
different

:::::::
versions

::
of

:::
the

:::::::::
smoothing

::::
and

::
of

:::
the

:
smoothing plus AR (

:::::::::
approaches

:::
are

::::::
shown

::
in

:
Figure 4a ), different smoothing and different

smoothing plus AR (Figure 4b), and seasonally subsampled (
:::
and

::
b,

:::::::::::
respectively. Figure 4c ). This may be different at other

locations
::::
plots

:::
the

:::::::::
seasonally

::::::::::
subsampled

:::::::::::
pseudoproxy. The final version generally preserves

:::::::
versions

::
of

:::
the

:::::::::::::
pseudoproxies

:::::::
generally

::::::::
preserve previously included biases.10
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Figure 5.
::::::::
Visualising

:::
the

::::::
sampled

:::::::
records:

::
a)

::::
Input

::::
data

:::
and

:::
its

:::::::
501-year

::::::
moving

:::::
mean,

:::
the

::::::::::::
pseudo-archive

::::
series

::::
with

::::::
longer

::::::
average

::::::::
smoothing

:::::
lengths

::::
plus

:::
the

::::::
effective

:::::
dating

::::
error

::::
and

:::
plus

:::
the

:::::::
effective

:::::
dating

::::
error

:::
and

::::::::::
measurement

:::::
noise,

::
b)

::::
input

:::
data

::::
and

::
its

:::::::
501-year

:::::
moving

:::::
mean,

:::
the

::::::::
constantly

:::::::
smoothed

:::::
record

::::
with

:::::
longer

::::::::
smoothing

:::::
length

:::
plus

:::
AR

:::::
series

:::
with

:::::
added

:::::::
effective

::::
dating

::::
error

:::
and

::::
with

:::::
added

::::::
effective

:::::
dating

::::
error

:::
and

:::::::::::
measurement

::::
noise,

::
c)
:::::

input
:::
data

:::
and

:::
its

:::::::
501-year

::::::
moving

::::
mean,

:::
the

::::::::::::
pseudo-archive

::::
series

::::
with

::::::
shorter

::::::
average

::::::::
smoothing

:::::
lengths

::::
plus

:::
the

::::::
effective

:::::
dating

::::
error

::::
and

:::
plus

:::
the

:::::::
effective

:::::
dating

::::
error

:::
and

::::::::::
measurement

:::::
noise,

::
d)

::::
input

:::
data

::::
and

::
its

:::::::
501-year

:::::
moving

:::::
mean,

:::
the

::::::::
constantly

:::::::
smoothed

:::::
record

::::
with

:::::
shorter

::::::::
smoothing

:::::
length

:::
plus

:::
AR

:::::
series

:::
with

:::::
added

:::::::
effective

:::::
dating

:::
error

:::
and

::::
with

:::::
added

::::::
effective

:::::
dating

::::
error

:::
and

::::::::::
measurement

:::::
noise,

:
e)
:::::
input

:::
data

:::
and

::
its

:::::::
501-year

::::::
moving

::::
mean,

:::
the

:::::::::
subsampled

:::::
record

::::
with

::::
added

:::::::
effective

:::::
dating

:::
error

::::
and

:::
with

:::::
added

:::::::
effective

:::::
dating

:::
error

::::
and

::::::::::
measurement

::::
noise.
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Figure 5 presents a number of series sampled at N = 200 dates. All panels include the original temperature data sampled

at these 200 dates. The Figure emphasizes how the initial temperature variability at the chosen grid-point is
:::::::
generally

:::::::
slightly

larger than any of our uncertainty estimates.

Our effective dating uncertainty error seldom results in large deviations from the archived record. The subsequently applied

measurement error also only seldom leads to large offsets compared to either the original data or the effectively date uncertain5

record.

Thus, for our chosen parameter settings and the shown grid-point, the pseudoproxies fall within the range of the initial

estimates. In turn, if we assume we have reliable calibration relationships, our calibrated proxy-series should also be reliable

estimates of the past states.

Nevertheless, the biased estimates occasionally are only bad matches for the original data. This is also the case , but less10

so, for the subsampled data where we did not include the bias. Comparing the sampled pseudoproxy series to the smoothed

original temperature data (compare Figure 5a) highlights that estimates for past climates may well fall within the range of the

original interannual temperature variability but
:::
may

:::::::::::
nevertheless strongly misrepresent the mean climate represented by the

sample.

Considering the effective dating uncertainty error, the discrepancies between input data and pseudoproxy are rather small15

for uncorrelated or weakly correlated age uncertainties. However, in the case of strong dependencies between subsequent data,

pronounced biases and mismatches may occur (not shown). The assumed co-relation between two dates has a strong influence

on the size of these mismatches. We show the case for a time-dependent co-relation between subsequent dates, which gives

intermediately sized mismatches.

Lomb-Scargle periodograms of selected records split up by first 10k years of the records and the last 12k years of the records.20

All panels include the late input data from the TraCE-21ka simulation as black lines, red lines are in all panels for a full period

record, blue lines are in all panels for the last 12k years of the version of a pseudoproxy. In addition to the input data from the

TraCE-21ka simulation the panels show: a) the sampled TraCE-21ka simulation input data, b) the sampled pseudoarchive-series

with long average smoothing plus the effective dating error and the measurement noise (long random smoothing MT ), c) the

constantly smoothed record with a longer smoothing plus an AR(1)-process and including the effective dating error and the25

measurement noise (long constant smoothing MT ), d) the sampled pseudoarchive-series with short average smoothing plus

the effective dating error and the measurement noise (short random smoothing MT ), e) the constantly smoothed record with a

shorter smoothing plus an AR(1)-process and including the effective dating error and the measurement noise (short constant

smoothing MT ), f) the subsampled data plus the effective dating error and the measurement noise (MT from subsampling).

3.4 General Results30

Figures 2 to 4 present the different versions of the pseudoproxies for the chosen location. Under our assumptions, the influence

of the orbital bias term is notable. The approaches using time-dependent smoothing or simple smoothing plus an AR-process

may nearly or fully cancel the bias. This effect is less prominent for the time-dependent filter. Generally, both approaches seem

to have similar effects.
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Figure 4 includes the effect when we hypothetically add measurement noise at every date. Under our assumptions this noise

is still smaller than
:
or

::::
only

::
as

:::::
large

::
as the original interannual variability but, including biases, mean estimates may be close to

the edge
::::::
outside of the interannual variability of the original data. In these examples, the variability of the subsampled proxies

is comparable to the smoothed ones after a measurement error is added. It is interesting to note that for the smaller smoothing

the AR
:::::::::
AR-process

:
seems to cancel the orbital bias more strongly in Figure 3. Figure 5 shows the data-sets sampled atN = 2005

dates. It clarifies the error described for the interannual data. The document assets provide equivalent visualisations for another

grid-point. These generally confirm the above descriptions.

3.4.1 Spectral power

Figure ??

:::::
Figure

::
6
:
adds a comparison of non-normalised Lomb-Scargle spectral power estimates. The Lomb-Scargle periodogram10

allows estimating the spectral power for records with uneven sampling. The calculation uses code based on the R

(R Core Team, 2017) package lomb (?). The package follows Press et al. (?) and normalises the spectra by dividing them by

two times the variance of the data. We omit this normalisation here
:::::
power

:::::::
spectral

:::::::
densities

:::::::::
computed

::::
from

::
a
:::::::
wavelet

:::::
based

:::::::
approach

::::::
similar

::
to

:::
the

::::::::
Weighted

:::::::
Wavelet

::::::::::
Z-transform

::
of

::::::::::::
Foster (1996).

:::
The

::::::::
approach

::
is

::::::::
described

::
by

:::::::::::::::::::::
Mathias et al. (2004) and

::::::
McKay

:::
and

:::::::::
colleagues

:::::::
provide

:
a
::::::::
compiled

::::::
version

::
at
:
https://github.com/nickmckay/nuspectral

:::
(last

::::::::
accessed,

:::
11

::::::
March

:::::
2019)15

:::::::::::::::::
(Nick McKay et al.).

:::
Due

::
to
:::
the

::::::
length

::
of

:::::::::::
computation,

:::
we

::
do

:::
not

:::::
show

:::
the

::::::
density

:::
for

:::
the

:::
full

::::::
22,040

::::
year

:::::
input

::::
data

:::
but

::::
only

::
for

::
a
:::::
record

:::::::
sampled

:::::
every

:::
ten

::::::
years.

::::::
Results

::::
may

::
be

:::::::
specific

:::
for

:::
the

::::::
chosen

::::::::
grid-point.

The Figure shows estimates for the full records and for the data of the last twelve thousand years of the records. Spectra

for the original and subsampled
::::::
Spectral

::::::::
densities

:::
for

:::
the

:::::::
regularly

:::::::
sampled

:::::::
original

:
temperature data in Figure ??

:
6a highlight

that the differentiation between full and late records does not result in large differences if we consider interannual data, and20

differences are also not too large if we consider the subsampled data except possibly for very long periods. While differences

are larger for the subsampled uncertain final pseudoproxies in subsequent panels of Figure ?? the Figure suggests that the

sample spectral estimates are rather similar. The equivalent Figure
:::::
results

::
in

:::::::::
prominent

:::::::::
differences

:
for another grid-point in

the document assets shows larger differences over
:::::::::::::
multi-centennial

:::
to

::::::::
millennial

:::::::
periods.

:::
On

:::
the

:::::
other

:::::
hand,

::::::::::
differences

:::
are

::::::
smaller

:::
for

:::
the

:::::::::
irregularly

:::::::
sampled

:::::
input

::::::::::
temperature

::::
data

:::
but

:::
still

:::::::
notable

:::
for

:::::::::
millennial

::::::
periods.

:::::::::
However,

::::
there

::
is
:::
an

:::::
offset25

:::::::
between

:::
the

:::::::::
irregularly

:::::::
sampled

::::
data

:::
and

:::
the

::::::::
regularly

:::::::
sampled

::::
input

:::::
data.

::::::
Spectra

:::
for

:::
full

::::
and

::::
late

::::::
records

:::
of

:::
the

::::::
various

:::::::::::::
pseudoproxies

:::
are

::::::::
generally

::::::
similar

::
to

:::
the

::::::::::
irregularly

:::::::
sampled

:::::
input

::::
data

::::::
spectra

::::::
(Figure

::::
6b-f)

:::
but

:::
the

:::::
offset

::
to

:::
the

:::::
input

::::
data

:::
can

::
be

::::::
smaller

::::
than

::
in

::::::
Figure

:::
6a.

::::::::::
Differences

:::::::
between

:::::::
sampled

:::
late

:::
and

::::
full

::::::
records

:::
are

::::
often

::::::
largest

::
at

::::::::::
intermediate

:::::::::
millennial

:::::::
periods.

:::::::::
Deviations

:::
are

::::::
largest

::
for

:::
the

::::::::::
subsampled

:::::::::::
pseudoproxy

::::::::
approach

::
at

::::
long

::::::
periods

::::::
(Figure

:::
6f)

:::
but

::::
they

::::::
become

::::
also

::::::
notable

:::
for

:::
the

:::::::
constant

:::::::::
smoothing

:::::::::
approaches

::
at

::::::
shorter

::::::
periods

::
in

:::
the

:::::::::
centennial30

::::
band

::::::
(Figure

:::::
6c,e).

::::
This

::
is

::::::
mainly

:::
due

::
to

:::
the

::::::::::::
characteristics

::
of

:
the full period since the record shows large millennial variability

in the early part of the time series. The sampled data does not capture this millennial scale variability
::::::
spectra

::
for

:::
the

::::::::
constant

:::::::::
smoothing,

:::::
which

:::::
show

:::
an

:::::::
increase

::
in

:::::
power

:::::::
spectral

:::::::
density

:::
for

::::::
shorter

:::
and

::::::
longer

:::::::
periods.

::::
That

::
is,

:::
the

::::::::
constant

:::::::::
smoothing

22
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Figure 6.
::::::
Wavelet

::::::
based

:::::
power

:::::::
spectral

::::::::
densities

::::::::::::::::::::::::::::::::
(Mathias et al., 2004; Nick McKay et al.).

::::::::
Densities

:::
are

::::::::
weighted

:::::::::
following

:::::::::::::::::
Mathias et al. (2004) to

::::::
smooth

:::
the

::::::
records

::
for

::::
ease

::
of
::::::::::

comparison.
:::::
Lines

:::
are

::
for

::::::
records

::::
split

:::
up

::
by

::::
first

:::
10k

::::
years

:::
of

::
the

::::::
records

::::
and

::
the

:::
last

::::
12k

::::
years

::
of

:::
the

::::::
records.

:::::
Input

::::
data

::::
refers

::
to
:::

the
:::::
input

:::
data

::
at
:::
10

:::
year

::::::::
intervals.

::
All

::::::
panels

::::::
include

:::
the

:::
late

::::
input

::::
data

::::
from

:::
the

:::::::::
TraCE-21ka

::::::::
simulation

::
as

:::::
black

::::
lines,

:::
red

::::
lines

::
are

::
in
:::

all
:::::
panels

:::
for

:
a
:::
full

:::::
period

::::::
record,

:::
blue

::::
lines

:::
are

::
in

::
all

::::::
panels

::
for

:::
the

:::
last

:::
12k

:::::
years

:
of
:::

the
::::::
version

::
of

:
a
::::::::::
pseudoproxy.

::
In

:::::::
addition

::
to

::
the

::::
input

::::
data

::::
from

:::
the

:::::::::
TraCE-21ka

::::::::
simulation

:::
the

:::::
panels

::::
show:

::
a)
:::
the

::::::
sampled

::::::::::
TraCE-21ka

::::::::
simulation

::::
input

::::
data,

::
b)

::
the

:::::::
sampled

:::::::::::::::
pseudoarchive-series

::::
with

:::
long

::::::
average

::::::::
smoothing

::::
plus

:::
the

::::::
effective

:::::
dating

::::
error

:::
and

:::
the

::::::::::
measurement

::::
noise

::::
(long

::::::
random

::::::::
smoothing

:::::
MT ),

::
c)

:::
the

::::::::
constantly

:::::::
smoothed

:::::
record

::::
with

:
a
:::::
longer

:::::::::
smoothing

:::
plus

::
an

:::::::::::
AR(1)-process

::::
and

:::::::
including

:::
the

::::::
effective

:::::
dating

::::
error

::::
and

::
the

::::::::::
measurement

:::::
noise

::::
(long

:::::::
constant

::::::::
smoothing

:::::
MT ),

::
d)

::
the

:::::::
sampled

::::::::::::::::
pseudoarchive-series

:::
with

:::::
short

::::::
average

::::::::
smoothing

:::
plus

:::
the

::::::
effective

:::::
dating

::::
error

:::
and

:::
the

::::::::::
measurement

::::
noise

:::::
(short

::::::
random

::::::::
smoothing

::::
MT ),

::
e)

:::
the

::::::::
constantly

:::::::
smoothed

:::::
record

::::
with

:
a
:::::
shorter

:::::::::
smoothing

:::
plus

::
an

::::::::::::
AR(1)-process

:::
and

:::::::
including

:::
the

:::::::
effective

:::::
dating

::::
error

:::
and

:::
the

::::::::::
measurement

::::
noise

:::::
(short

:::::::
constant

::::::::
smoothing

::::
MT ),

::
f)

::
the

:::::::::
subsampled

::::
data

:::
plus

:::
the

::::::
effective

:::::
dating

::::
error

:::
and

:::
the

::::::::::
measurement

::::
noise

::::
(MT::::

from
:::::::::::
subsampling).
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Figure 7. Point by point correlation maps between input data and the smoothed record plus AR(1)-process plus effective dating error and

measurement noise for the sample dates within the first (top left
:
a), second (top right

:
b) and third (bottom left

:
c) subsequent 5,000 year windows

of the record and the samples within the remaining years (bottom right
:
d).

:::
full

:::::
period

:::::::
spectra

::::::
remind

::
of

::::
grey

:::::
noise

::::::
spectra.

:::::::
Despite

:::::
these

:::::::::
differences

:::
and

:::
the

::::::::
apparent

:::::
offset

::
to

:::
the

::::
input

::::
data

:::::::
spectra,

:::
the

::::::::
irregularly

::::::::
sampled

::::::
spectra

:::
for

::
all

:::::
cases

:::
are

:::::
rather

::::::
similar.

3.4.2 Global data

The supplementary assets for this manuscript include plots of selected series from our analyses at all grid-points starting

from the south towards the north in supplementary
::::::::::::
(Supplementary

:
document 1 Figure 1 (

:
at

:
https://doi.org/10.17605/OSF.5

IO/ZBEHX/). These series are the input data at the grid-point, the smoothed-plus-AR-process series at the grid-point, and its

subsampled version including all uncertainties.

These plots highlight three main points. First, the specific forcing implementation of He (2011; see also Liu et al., 2009) for

:::::
peaks

:::
and

:::::::
troughs

::
at

:::::
some

:::::::
location

:::
are

::::::
clearly

::::::::::
attributable

::
to

:::
the

:::::::
specific

:::::::::::::
implementation

::
of

:::
the

:::::::
forcing

::
in

:
the TraCE-21ka

simulation results in occasionally spurious peaks and troughs for some locations
:::::::::::::::::::::::::::::
(He, 2011; see also Liu et al., 2009).

::::
That

:::
is,10

::::
these

::::::
signals

:::
are

:::
not

:::::::
realistic

:::
but

:::
due

::
to

:::::::
technical

::::::::
decisions

::
in

:::
the

:::::::::
production

::
of

:::
the

::::::::::
simulations. Furthermore there is potentially

unrealistic variability at some grid-points for some periods. Second, as all our time-series are for the averages over the boreal
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Figure 8. Top
:::
Left, logarithm of standard deviation ratios of the sampled

::::::
sampled

:::::::
501-year

::::::
moving

::::
mean

:
input data relative to the smoothed

record plus AR(1)-process and the effective dating error and the measurement noise for the samples in the first 5,000 years of record on the

left and
::
(a),

:
the last 7,040 years of the record on

:::
(b),

:::
and the right

:::
full

:::::
record

::
(c). Bottom

::::
Right, differences between the mean of the sampled

input data and the mean of the smoothed record plus AR(1)-process and the effective dating error and the measurement noise for the samples

in the first 5,000 years of record on the left
::
(d)

:
and the last 7040 years of the record on the right

::
(e).
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summer season June, July, and August, our bias term does not show any large influence in high latitudes of the southern

hemisphere. However, its effect is also not too large in the northern high
::
the

::::
bias

:::::
term

::
in

::
its

:::::::
current

::::::
version

::::
may

:::::
have

::::
only

:
a
:::::
small

::::::::
influence

::
at

::::::
certain latitudes. Third, our noise model shows generally the largest effect

::::
often

:::::
larger

::::::
effects in the mid

latitudes and the tropics. However, there
::::
There

:
is also a longitudinal dependence.

Supplementary document 2 Figure 1 (https://doi.org/10.17605/OSF.IO/ZBEHX/) emphasizes the regional differences in the5

long term climate evolutions by selecting only grid-points in equal intervals to provide a more intuitive view of the globe.

Similarly
:
,
:
Supplementary document 2 Figure 2 adds for a small selection of grid-points scatter plots of the pseudoproxy on

the y-axis against the original data on the x-axis
:::
for

:
a
:::::
small

::::::::
selection

::
of

::::::::::
grid-points, highlighting the common lack of a clear

relation besides the deglaciation.

Figure 7 gives
:::::::
provides

:
correlation coefficients between the sampled original

:::::::::
interannual grid-point data and the pseudo-10

proxies including all uncertainties for the strong smoothing plus AR. The four panels show correlations for those samples

within the first, second, and third 5,000 year chunks of the original data, and those samples in the remaining years. We choose

to present the data this way to avoid detrending the data over the deglaciation interval. Relations between original data and

pseudoproxies are generally weakest in the tropical belt. Except for the deglaciation in the top right panel they are also often

weakin the high latitudes. Correlations are largest in later periods
::
In

:::
the

::::::
period

::::
until

:::::::
present,

::::::::::
correlations

:::
are

::::::
overall

::::::
weak.15

::::
High

:::::::
latitude

::::::::::
correlations

:::
are

::::
most

:::::::
notable

::::::
during

:::
the

::::::::::
deglaciation

::::
and

::::::
slightly

::::
less

::::::
notable

::::::
during

:::
the

::::
first

::::::::
millennia

:::
of

:::
the

::::::::
Holocene.

::
In

:::::
these

:::::::
periods,

::::::::::
correlations

::::::
appear

::
to

::
be

::::::
largest in areas with glacial remnants.

Figure 8 adds for the firstand lastperiod the logarithm of ,
:::
the

:::::
last,

:::
and

::::
the

:::
full

::::::
period

:
the relative standard-deviation

σT21k/σP in the top row
::
left

:::::::
column

:
and the bias T̄T21k − T̄P in the bottom row

::::
right

:::::::
column. T21k refers to the simula-

tion, P to the pseudoproxies.
:::
For

:::
the

::::::::
standard

::::::::
deviation

:::::
ratios,

::::
we

:::
use

::::::::
501-year

::::::
moving

::::::::
averages

:::
of

:::
the

::::::::::
TraCE-21ka

:::::
data.20

Variability is generally larger in the pseudoproxies
:::::
except

:::
for

:::
the

:::::
North

:::::::
Atlantic

::::
and

:::
the

:::::::
northern

::::
high

::::::::
latitudes

::
in

:::
the

:::::
early

::::::
period,

:::
and

::
it
::
is

:::::
larger

:::
in

:::
the

::::::::::::
pseudoproxies

:::::
more

::
or

::::
less

::::::::::
everywhere

::
in

:::
the

::::
late

::::::
period.

:::::
Over

:::
the

:::
full

:::::::
period,

:::::::::
variability

::
is

::::::
notably

:::::
larger

::::::
mainly

:
in the tropics and the southern hemispheremidlatitudes but not elsewhere. The bias is largest over the

southern oceans where the pseudoproxies may be up to 2K warmer than the original data
:
,
::
it

::
is

:::::
about

:::::
equal

::::
over

:::::::::
Antarctica

:::
and

::::
wide

:::::::
regions

::
of

:::
the

:::::::
northern

:::::::::::
Hemisphere.

:::
The

:::::::::
variability

::
is

::::::
clearly

:::::
larger

::
in

:::
the

:::::
input

::::
data

::::
only

::::
over

:
a
:::::
small

::::::
region

::
in

:::
the25

:::::::
northern

::::::
Pacific.

:

:::
The

::::::
overall

::::::
largest

::::
bias

::::::
occurs

:::
off

:::
the

:::::
coast

:::
of

::::::::::
southeastern

::::::::::
Greenland

::
in

:::
the

:::::
early

::::::
period

::
in

::::::
Figure

::
8.

:::::::::
Otherwise

:::::
there

:
is
::

a
::::::
spatial

:::::::::
separation

:::::::
between

:::
the

:::::
mid-

::
to

::::
high

::::::::
latitudes

:::
and

:::
the

::::::
tropics

::::
and

:::::::::
subtropics

:::
for

::::
both

:::::::
periods.

::::
The

::::
bias

::
is

:::::
more

::::::::
prominent

::
in

:::
the

::::::
higher

:::::::
latitudes

::::::
where

:
it
::
is
:::::::::::::
predominantly

::::::
positive

:
in the early period

:::
but

::::::::::::
predominantly

:::::::
negative

::
in

:::
the

::::
late

::::::
period.

:::::::::
Obviously,

:::
the

::::::
general

:::::::::
latitudinal

:::
bias

::::::
pattern

::
is

::
by

:::::::::::
construction

:::::::
because

::
we

::::::::
construct

:::
the

::::
bias

::
as

:::::::
function

::
of

:::::::::
latitudinal30

::::::::
insolation.
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Figure 9. Visualising the simplified essence of the surrogate proxy calculations: a) input data and 501-point moving mean, b) input data

plus initial noise and bias term, c) moving mean of input data plus noise plus bias and the same record plus an AR(1)-process, d) smoothed

temperature plus noise plus bias plus AR-process sampled at 200 dates, this record plus the effective dating error, and this record plus the

effective dating error and measurement noise, e) smoothed temperature plus noise plus bias plus AR-process sampled at 100 dates, this record

plus the effective dating error, and this record plus the effective dating error and measurement noise.
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3.5
::

On
::::::::::::::
generalizations

::
of

:::
the

::::::
errors

3.6 Generalization of the errors

While we already chose comparatively simple procedures for our approach to obtain pseudoproxies from a model simulation,

it is likely possible to simplify these even more
::
to

:
a
::::::

higher
::::::
degree. Such a general expression for the error in proxies over

multi-millennial time-scales may be more usable in a number of ad-hoc
:::::
model

:::::::::
evaluations

::::
and model-data comparisons. Most5

importantly, such a generalized approach also allows to quickly produce ensembles of pseudoproxies.

The
::::::::
Following

:::
our

::::::::
previous

:::::::::::
assumptions,

:::
the easiest way to obtain such a generalized error-model would be to assume a

simple, potentially correlated noise model for the sensitivity of the sensor to the environment. While above we use white noise,

here we indeed include an AR1-process
:::::
Here,

:::
we

:::
use

::
an

::::::::::
AR-process

::
of

:::::
order

::::
one with AR-coefficient φ= 0.7. Either here or

later one scales the series or adds a bias term to account for changing seasonality over multi-millennial time-scales.10

The sum of the input data and this error are then subject to a simple moving averaging function. On top of this another simple

correlated noise process mimics that the redistribution in the archive is not constant in time.

Another random component accounts for the measurement error. Thus, simple correlated noise may be enough to catch the

essence of the error.

Nevertheless a full process-based approach is likely better to fully account for potential effects of biology, environmental15

long-term changes, orbital changes and other weakly constrained uncertainties. Such a full approach further allows for real

non-linearities between the climate and sensor and thus a truly non-linear pseudoproxy
::
In

:::::
short,

:::
the

::::::::::
generalized

:::::::::::
pseudoproxy

::::::::
becomes:

MT (t1, ..., tN ) = g(T (t) + ηit+Bias(t)) + εD(t1, ..., tN ) + ηM
::::::::::::::::::::::::::::::::::::::::::::::::::::

(21)

:::::
where

::
g

::
is

:::
the

::::::::::
smoothing,

::
ηi:::

is
:::
the

:::::
initial

::::::
noise,

:::::
Bias

::
is
::::

the
::::
bias

:::::
term,

:::
εD ::

is
:::
the

::::::::
effective

::::::
dating

:::::
error,

::::
and

:::
ηM::

is
::::

the20

:::::::::::
measurement

:::::
error.

::::
This

::
is

:::::::::::
conceptually

:::::::
identical

::
to

:::
the

:::::::::
smoothing

::::
plus

::::
AR

::::::::
approach

::::::::
presented

::::::
above.

::
Its

:::::::::
derivation

::
is

::::
less

::::::::
grounded

::
in

:::
real

:::::::
proxies.

::::
The

:::::::
provided

::::
data

::::::
differs

::::
only

::
in

:::
the

::::::
amount

::
of

:::::::::::::
autocorrelation

::
in

:::
the

:::::
noise

:::::
terms.

Figure 9 summarises results for our
::
the generalized approach. It clarifies that while an error may mask certain features of the

past climate evolution, this simple generalized pseudoproxy-generation is unlikely to distort the proxy completely assuming
:
if

::
we

::::
take

:
the assumptions made above are

::
to

::
be

:
approximately appropriate. Interestingly, the generalization appears to modify25

the input signal slightly less than the more complex approach. However, as we display slightly different data comparisons

here, it is more appropriate to note that the dating uncertainty has only a minor effect compared to the initial bias and AR-

process modifications and compared to the subsequent addition of the measurement noise. A global analysis of correlations

and variability is hardly to distinguish from the maps presented for the more complex approach in Figures 7 and 8

:::::
While

:::::::::
researchers

:::::
may

::::::
validly

::::
wish

:::
for

::::
such

:::::::::
simplified

::::::
recipes

:::
for

:::::::::
producing

:::::::::::::
pseudoproxies,

::::
using

::
a
:::
full

:::
or

::
at

::::
least

:::::
more30

:::::::
complex

::::::::::::
process-based

::::::::
approach

::
is

:::::::::
advisable,

::
if

:
it
:::

is
::::::::
necessary

::
to

:::::::
account

:::
for

::::::
effects

:::
of

:::::::
biology,

::::::::::::
environmental

:::::::::
long-term

:::::::
changes,

:::
and

:::::
other

::::::
weakly

::::::::::
constrained

::::::::::::
uncertainties.

:::::
More

:::::::
complex

::::::::::
approaches

::::::
further

:::::
allow

::
to

:::::
better

::::::
mimic

::::::::::::
non-linearities

:::::::
between

:::
the

::::::
climate

:::
and

::::::
sensor

:::
and

::::
thus

::
a

::::
truly

:::::::::
non-linear

::::::::::
pseudoproxy.
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Figure 10.
::::
Map

:
of
:::

the
:::::::
locations

:::
for

::
the

::::::::
ensemble

:
of
::::::::

surrogate
::::::
proxies.

3.5.1 Ensemble of Pseudoproxies

We make further slight modifications to our approach to obtain

::
In

:::
the

::::::::
following

:::
we

:::::::
present

:
an ensemble of 500 pseudoproxies at

:::::::::::
pseudproxies.

::
At

:
144 locations . These

::
we

::::::::
compute

:::
500

:::::::::::
pseudoproxy

::::::
records

:::::
each.

::::
For

::::
this,

:::
we

::::
make

::::::
slight

:::::::::::
modifications

::
to

:::
the

::::::::::
generalized

:::::::::
approach.

:::::
These

::::::::::
adjustments

:::::
relax

:::
our

::::::::::
assumptions

::::
and

:::::
result

:::
in

:::::
larger

::::::::::
differences

::::::::
between

::::::::
members

::
of

::::
the

::::::::
ensemble

::::
than

::::::
would

:::
be

:::::::
possible

:::::::
without

::::
the5

:::::::::::
modifications.

::::
The

:
locations are the grid-points

:
, which are close to proxies either included in Shakun et al. (2012), Clark

et al. (2012) or Marcott et al. (2013)
:::::::::::::::::
Shakun et al. (2012),

::::::::::::::::
Clark et al. (2012),

::
or

::::::::::::::::::
Marcott et al. (2013). Figure 10 shows the

locations.

Map of the locations for the ensemble of surrogate proxies.
:::::
Using

:::
the

:::::::::
generalized

::::::::
approach

::::::::
provides

::
an

::::::::
ensemble

:::::
based

:::
on

::
the

:::::
most

:::::::
reduced

::::::::::
formulation.

::::
The

:::::::
provided

:::::
code

:::::
allows

:::::
users

::
to

:::::::
produce

:::::::::
ensembles

:::
for

::::
their

::::
input

::::
data

::
of

:::::::
interest.

:
10

Modifications to the code are , for one
:
as

::::::::
follows:

::::
First, we use a number of parameters’

::::::::
parameter

:
values sampled from

either uniform distributions around the otherwise fixed value or from a list of values. Second, we consider the series S
::::::
random

:::::::::
orientations

:
for bias and moving standard deviation

::::::::
deviations,

::::
that

::
is

::
we

::::
take

::
S as Su where we sample u from U = {−1,1}.

The
::
We

:::::::
provide

:::
the

:::::
script

:::
for

:::
the

:::::::::
ensemble

:::::::::
production

::
as

:
supplementary example code at highlights these differenceshttps:

//doi.org/10.17605/OSF.IO/ZBEHX.
:::
As

:::::::::
mentioned

::::::
above,

::::
these

:::::::
changes

:::::
relax

:::
our

::::::::::
assumptions

:::
on

:::
the

:::::
effect

::
of

:::::::
changes

::
in

:::
the15

:::::::::
background

:::::::
climate.

Visualising the surrogate proxy-ensemble at selected locations (Longitude and Latitude in top right corners of panels): Input

data is plotted as grey lines, the range of the ensemble is transparent red shaded, and blue and cyan lines are two random

members of the ensemble.
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Figure 11.
::::::::
Visualising

::
the

::::::::
surrogate

::::::::::::
proxy-ensemble

::
at

::::::
selected

:::::::
locations

:::::::::
(Longitude

:::
and

:::::::
Latitude

::
in

:::
top

:::
left

::::::
corners

::
of

:::
the

:::
left

::::::
column

::::::
panels):

:::
The

:::
left

::::::
column

:::::
shows

::
the

::::
input

::::
data

:::::
plotted

::
as
::::
grey

::::
lines,

:::
and

::::
two

::::::
random

:::::::
members

::
of

::
the

:::::::
ensemble

::
as
::::

blue
:::
and

:::::
purple

::::
lines.

::::
The

:::
right

::::::
column

::::
plots

:::
the

::::
range

::
of

:::
the

:::::::
ensemble

::::::::::
transparently

:::::
brown

::::::
shaded,

:::
and

:::
blue

::::
and

:::::
purple

:::
lines

:::
are

:::
the

::::
same

:::
two

::::::
random

:::::::
members.

::::
The

:::::
x-axes

::
are

:::::
years

::
BP.

::::
The

::::
panel

::
on

:::
the

::::::
bottom

:::
right

:::::
shows

:::
the

:::::
Figure

::::::
legend.
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For Figure 11 we select twenty
:
8
:
locations to represent the locally diverse representations of the climate in

::
the

:
TraCE-21ka

::::::::
simulation

:
and how the ensemble of pseudoproxies modifies this. The Figure provides an impression of the range of the local

ensembles and of two random ensemble members around the original temperature series. The diversity of the local climates in

TraCE-21ka carries over to individual pseudoproxies and their ensembles. Besides this, Figure 11 mainly reflects the results of

previous Sections
::::::
sections

:
regarding how constrained our pseudoproxies are. However, we see commonly pseudoproxies and5

ensembles exceeding the variability of the original temperature data, not least because of our modifications to the selection of

parameters and the orientation of the bias about its mean.

3.6 Provided DataProvided Data

Tables 1 to 4 detail the provided data files. All files are in netcdf-format. These are generally gridded files on the original

TraCE-21ka grid.10

Only the ensembles of pseudoproxies are provided at their respective individual grid-points.
:::
The

::::
data

:::::::::
repository

::
at https:

//doi.org/10.17605/OSF.IO/ZBEHX
:::::::
provides

::::::::::
instructions

::::
how

::
to

:::::
access

:::
the

:::
file

:::::::::
structures.

:

4 Conclusions and outlook

We present in this document, the associated code, and the provided data
:::
This

::::::::::
publication

:::::::
presents a flexible yet simple approach

for describing the non-climatic error
:::
error

::::::::::
originating

:::::
from

:::::::
climatic

:::
and

:::::::::::
non-climatic

:::::::
sources in proxy-records over multi-15

millennial time-scales
::::::::
including

:::
the

:::
last

::::::::::
deglaciation. The assumptions are simplistic but base upon

::::::::
relatively

::::::
simple

:::
but

::::
they

::
are

:::::
based

:::
on similar assumptions for

:::::::::::
process-based proxy-system forward models.

The approach can be easily extended to compute ensembles of proxies for single locations. We chose to give one set of

pseudoproxies for each grid-point of the Trace-21ka
::::::::::
TraCE-21ka

:
simulation and an ensemble of pseudoproxies at locations

close to real proxy-locations. This simulation has a specific climatology (Liu et al., 2009) but a comparison to real proxy data20

may easily be achieved by only considering anomalies (as done, e.g., by Marsicek et al., 2018).
:::
The

::::::::
provided

:::::::::::
pseudoproxy

::::
data,

:::
and

:::
the

::::
code

::
to
::::::::
compute

::::::
further

::::::::::::
pseudoproxies

::::::
allows

::
the

::::::::::
application

::
of

:::
our

:::::::::::::::::::
pseudoproxy-approach

:::
for

:::
the

:::::::::
evaluation

::
of

::::::
models,

:::
the

::::::::::
comparison

::
of

::::::
models

:::
to

::::
paleo

:::::
data,

:::
and

:::
the

::::::
testing

::
of

::::::::::::
reconstruction

:::
and

:::::::::::::::
data-assimilation

:::::::
methods.

:

We choose only one possible set of parameters in our pseudoproxy-model, but we sample around this set for the ensemble

of pseudoproxies. We choose these specific parameters to provide some disturbance to the data but not to get anywhere too25

far away from the original state. For example, it is quite likely that we have to deal with
::::
face larger biases in reality than

represented by our choice. Every researcher should make his
:::::
Users

::::::
should

:::::
make

::::
their

:
own choice of parameters according to

his
:::
their

:
assumptions on the various noise-contributions.

One can easily extend the chosen approach to even longer time-scales. Some modifications may be advisable considering the

dating uncertainty to account for the likely sparser data further back in time, to better accommodate the increasing uncertainty,30

and especially to be more realistic in considering an effective dating uncertainty error for the pseudoproxy data. Similarly, we
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do not consider spatial correlations in the noisegenerally and between different locations. Such correlations
:::::::
between

::::::::
locations

are probably relevant for some noise-terms while they are probably less important for others.

We focused on the time-series approach and did not choose a probabilistic approach like, e.g. Breitenbach et al. (2012) or

Goswami et al. (2014).
::
for

::::::::
example,

:::::::::::::::::::::::
Breitenbach et al. (2012) or

::::::::::::::::::
Goswami et al. (2014).

:::::::
Neither,

::::
does

::::
our

:::::::
approach

:::
as

::
of

::::
now

::::::::
explicitly

:::
link

::
to

::::::::::
probabilistic

::::::::::::
age-modelling

::::::::::
approaches

::
as

::::::::
described

::
by

::::::::::::::::::::::
Haslett and Parnell (2008),

::::::::::::::::::::::::
Blaauw and Christen (2011),5

::
or

:::::::::::::::::::::::
Trachsel and Telford (2017).

:

There are a variety of other potential approaches how to obtain simple pseudoproxies from the model data. One such example

would be to consider an envelope around the model state,
:
to

:
select randomly a set of dates from the original data, fit a smooth

through this set and then sample again around this uncertain smoothing. Similarly, Gaussian Process Models or Generalized

Additive Models may be valuable means in producing pseudoproxies for paleoclimate studies over time-scales longer than the10

Common Era of the last 2,000 years. For example, Simpson (2018) shows the benefits of Generalized Additive Models for

studies on paleoenvironmental time series.

The present approach ignores a variety of possible complications. For example, there is not so far a method to include
:::
we

:::::::
currently

:::
do

:::
not

:::::::
consider

:
hiatusses in the sensor. Furthermore, the dependency on the background climate is minimal

::::
small.

Nevertheless, we are confident that this approach is of value for the comparison of simulation data and proxy data over long15

periods,
:::
for

::::::
testing

::::::::::::
reconstruction

::::::::
methods,

:::
and

:::
for

:::::::::
evaluating

:::::::
different

::::::
model

:::::::::
simulations

::::::
against

:::::
each

::::
other.
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Table A1. List of parameters used.

Description Parameter Value Category

Season limits for insolation bias mon1.for.insol, mon2.for.insol 6, 8
::
1,

::
12 all

Number of samples along the full record n.samples 200 all

Scaling of initial noise amplitude amp.noise.env 0.5 field, essence

model for
:::::
Switch

::
for

:::::::::::
proportionality

::
of
:::::
initial

::::
noise

: :::::::::::::::::::::
switch.orient.runsd.noise.env

: :
0
: ::

all

:::::
Model

::
for

:::
the

:
initial noise model.noise.1 c(

::
0.3) field, essence

standard
::::::
Standard

:
deviation of innovations of

::
for

:
initial noise sd.noise.1 not used field

:
,
::::::
essence

:::::
Length

::
of

::::::
window

:::::::::
influencing

:::::
initial

::::
noise

:::::::::::::::
length.window.runsd

: ::::
1000

::::
field,

::::::
essence

:::::
Switch

:::
for

::::::::
orientation

::
of

:::
bias

: ::::::::::::::::
switch.orient.bias.seas

: :
0
: ::

all

Scaling of bias term amp.bias.seas 4 field, essence

mean height

5 Code and data availability

The TraCE-21ka simulation data is available from www.cgd.ucar.edu/ccr/TraCE and was obtained via the Earth System Grid

(www.earthsystemgrid.org/project/trace.html). Our results as described in section 3.6 are available from the Open Science

Framework (OSF) at https://doi.org/10.17605/OSF.IO/ZBEHX/. There, one also finds sample code for computing proxies and

the script for computing the ensemble at 144 locations.5

Appendix A: Tables of parameters

Tables A1 to A4 summarise the considered parameters and noise models. They also clarify whether the parameters
::::::::
parameter

settings are used for a global field of surrogate proxies, a more generalized approach, an ensemble calculation, or all.
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Table A2.
:::::::::
Continuation

::
of

:::
list

::
of

::::::::
parameters

::::
used.

:::::::::
Description

:::::::
Parameter

: ::::
Value

: :::::::
Category

:::::
Switch

:::
for

::::::::
smoothing

:::::
variant

: :::::::::::::
switch.smoothing

:
3
: :::

field
:

::::::::
Secondary

:::::
switch

::
for

:::::::::
smoothing,

:::
see

::::
code

:::::::::
switch.sm.2

:
1
: :::

field
:

::::::
Scaling

::
for

::::::
climate

:::::::::
dependence

::
of

::::::::
smoothing

::::::
scale.sm

: :::
1/10

: :::
field

:

::::
Mean

:
smoothing length for longer random smoothing rand.mean.length.smooth 350 field , essence

standard
::::::
Standard

:
deviation for longer random smoothing rand.sd.length.smooth 75 field , essence

fixed
:::::
Model

::
for

::::::
longer

:::::::
alternative

:::::::::
smoothing

::::::::::::
model.smooth.1

:::::
c(0.99)

: :::
field

:

:::::
Model

::
for

:::::
longer

::::::::
alternative

::::::
climate

::::::::
dependent

::::::::
smoothing

: :::::::::::::::
model.clim.smooth.1

: ::::
c(0.9)

: :::
field

:

::::
Basis

::::
long

::::::::
smoothing

:::::
length

::
for

::::::::
alternative

:::::::
approach

: ::::::::::::::::::::
rand.length.smooth.mean.1

:::
500

:::
field

:

:::::::
Standard

:::::::
deviation

::
for

:::::
longer

::::::::
alternative

::::::::
smoothing

:::::::::
approaches

::::::::::::::
sd.model.smooth.1

::
10

:::
field

:

::::
Fixed

:
longer smoothing length fix.length.smooth 501 field , essence

Minimum allowed longer random smoothing length min.rand.length.smooth 40 field , essence

AR-coefficient for added AR(1)-process coeff.ar.smooth 0.999 field , essence

Standard deviation for the innovations sd.ar.smooth 0.01 field , essence

mean
::::

Mean smoothing length for longer shorter smoothing rand.mean.length.smooth.2 31 field , essence

standard
::::::
Standard

:
deviation for shorter random smoothing rand.sd.length.smooth.2 5 field , essence

fixed
:::::
Model

::
for

::::::
shorter

::::::::
alternative

::::::::
smoothing

::::::::::::
model.smooth.2

::::
c(0.7)

: :::
field

:

:::::
Model

::
for

::::::
shorter

::::::::
alternative

::::::
climate

:::::::
dependent

:::::::::
smoothing

:::::::::::::::
model.clim.smooth.2

: ::::
c(0.9)

: :::
field

:

::::
Basis

::::
short

::::::::
smoothing

:::::
length

:::
for

::::::::
alternative

:::::::
approach

::::::::::::::::::::
rand.length.smooth.mean.2

::
31

:::
field

:

:::::::
Standard

:::::::
deviation

::
for

::::::
shorter

::::::::
alternative

::::::::
smoothing

::::::::
approaches

: ::::::::::::::
sd.model.smooth.2

:
4
: :::

field
:

::::
Fixed

:
shorter smoothing length fix.length.smooth.2 31 field , essence

Minimum allowed shorter random smoothing length min.rand.length.smooth.2 5 field , essence

AR-coefficient for added AR(1)-process coeff.ar.smooth.2 0.9 field , essence

Standard deviation for the innovations sd.ar.smooth.2 0.15 field , essence

number height
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Table A3.
:::::::::
Continuation

::
of

:::
list

::
of

::::::::
parameters

::::
used.

:::::::::
Description

:::::::
Parameter

: ::::
Value

: :::::::
Category

::::::
Number

:
of picked samples for subsampling n.samp.pick 30 field

standard
::::::
Standard

:
deviation of innovations for subsampling noise sd.noise.pick 0.5 field

model
:::::
Model of subsampling noise model.noise.pick c() field

1.96 Sigma
::::
sigma

:
of measurement-noise lim.noise.meas 1.5 field, essence

noise
:::::
Noise model for measurement noise model.noise.meas c() field, essence

Continuation of list of parameters used. Description Parameter Value Categorynoise
::::
Noise

:
model for measurement noise for subsampled record model.seas.pick.noise.meas c() field

1.96 Sigma
::::
sigma

:
for measurement noise for subsampled record lim.seas.pick.noise.meas 1.5 field

switch
:::::
Switch

:
for correlated effective dating error switch.cor.date.unc 1 all

switch
:::::
Switch

:
for weakly correlated only switch.weak.cor.date.unc 1 all

switch
:::::
Switch

:
for time dependent correlated switch.delta.cor.date.unc 1 all

fixed
::::
Fixed

:
correlated dating error coefficient cor.date.unc 0.9 all

mean
::::

Mean of distribution of dating uncertainty mean.date.unc 350 all

standard
::::::
Standard

:
deviation of distribution of dating uncertainty sd.date.unc 100 all

switch for proportionality of initial noise - not used
:::::

Switch
::
for

:::::
length

::
of

:::::::
influence

::
on

:::::
dating

:::::::::
uncertainty switch.orient.runsd.noise.env

:::::::
cor.length

:
1
:

field, essence
::
all

switch for orientation of bias
:::::
Switch

:::
for

:::
date

:::::::
sampling

: ::::::::::::
switch.sampling

:
1
: ::

all

:::::
Switch

:::
for

:::::
dating

::::::::
uncertainty

:::::::
sampling

:
switch.orient.bias.seas

:::::::::
sampling.unc

:
0 1

: ::
all

:::::
Model

::
for

:::::
initial

::::
noise

:::
for

:::::::::
generalized

:::
case

: ::::::::::::
model.gen.noise

::::
c(0.7)

:
field, essence

model
:::::
Model for initial noise for generalized case coeff.gen.ar.smooth 0.999 essence,

:::::::
ensemble

:

standard deviation for initial noise
:::::::
Standard

:::::::
deviation

::
for

:::
AR

::::::
process

:
innovations, generalized case sd.gen.ar.smooth 0.01 essence,

:::::::
ensemble

:

smoothing
::::::::
Smoothing

:
length generalized case , prescribed

:::::::::::::::
length.filter.uniform 501 essence

alternative model for initial noise model.gen.noise c(0.7) essencealternative model for measurement noise - not used model.noise.meas.b c(0.35) essencealternative scaling of amplitude of initial noise - not used amp.noise.env.2 0.25 essenceheight
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Table A4. Continuation of list of parameters used.

Description Parameter Value Category

Ensemble size size.ensemble 500 ensemble

amplitude
::::::::
Amplitude of scaling of initial noise amp.noise.env U(0.4,1.5) ensemble

scaling
:::::
Scaling

:
of bias amp.bias.seas U(3,10) ensemble

standard
::::::
Standard

:
deviation of measurement noise lim.noise.meas U(0.75,3)/1.959964 ensemble

ar-coefficient
:::::::::::
AR-coefficient of measurement noise model rand.model.coeff U(0.3,0.8) ensemble

ar-coefficient
:::::::::::
AR-coefficient of initial noise model rand.model.coeff.gen U(0.6,0.8) ensemble

window
::::::
Window

:
of influence of background climate - not

::::::::::
climate—not used rand.width.background.sd U(500,2000) ensemble

window
::::::
Window

:
of influence of background climate rand.width.background.sd 1000 ensemble

width
::::
Width

:
of window of filter influence length.filter.uniform lfil is random sample from all L= {301,303,305, ...,1001} orientation of bias signorbit is random sample from ensemble SO = {−1,1} proportionality of initial noise signnoise is random sample from ensemble

SN = {−1,1}
::::::::::::::::::::::
L= {301,303,305, ...,1001}
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