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Abstract. The moderate spatial resolution and high temporal resolution of the MODIS imagery make it an ideal resource for 15 

time series surface water monitoring and mapping. We used MODIS MOD09Q1 surface reflectance archive images to create 16 

an Inland Surface Water Dataset in China (ISWDC), which maps water bodies larger than 0.0625 km
2
 within the land mass 17 

of China for the period 2000–2016, with 8-day temporal and 250 m spatial resolution. We assessed the accuracy of the 18 

ISWDC by comparing with the national land cover derived surface water data and Global Surface Water (GSW) data. The 19 

results show that the ISWDC is closely correlated with the national reference data with coefficient of determination (R
2
) 20 

greater than 0.99 in 2000, 2005, and 2010, while the ISWDC possess very good consistency, very similar change dynamics, 21 

and similar spatial patterns in different regions with the GSW dataset. The ISWDC dataset can be used for studies on the 22 

inter-annual and seasonal variation of the surface water systems. It can also be used as reference data for verification of the 23 

other surface water dataset and as an input parameter for regional and global hydro-climatic models. The ISWDC data are 24 
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available at http://doi.org/10.5281/zenodo.2616035. 1 

 2 

1 Introduction 3 

Surface water is the most important source of water from planetary water resources available for the survival of both human 4 

and ecological systems (Lu and He, 2006). It is a key component of the hydrological cycle and the key factor affecting the 5 

sustainable development of human society and ecosystem. Both climate change and human activities have a role in affecting 6 

the surface water availability at a given area and time. In order to locate the position and examine the change in dynamics of 7 

the inland surface water, regional and global datasets have already been produced through remotely sensed data by various 8 

researchers (Carroll et al., 2009; Verpoorter et al., 2014; Feng et al., 2015; Klein et al., 2014; Tulbure et al., 2016), but these 9 

contemporary researches were limited to measuring long-term changes at high spatial and temporal resolution. Pekel et al. 10 

(2016) quantified the changes in global surface water (GSW) over the past 32 years (1984-2015) at 30-meters resolution by 11 

using the Landsat imagery. Klein et al. (2017) generated a 250 m daily global dataset of inland water bodies based on a 12 

combination of MODIS Terra and Aqua daily classifications. However, the temporal resolution of the former research is near 13 

monthly, and the latter research only produced datasets from 2013-2015 until now, while the entire MODIS archive back to 14 

July 2002 is still ongoing (Klein et al., 2017). 15 

In China numerous regional case studies have been done and produced some surface water datasets but only in bits and 16 

pieces (Du et al., 2012; Lai et al., 2013; Luo et al., 2017). Their research mainly focused on lakes in the Qinghai-Tibetan 17 

Plateau (Lu et al., 2017). Several research groups are focusing on lake water changes of this region and have produced 18 

decadal lake surface water datasets since the 1960s (Song et al., 2014; Zhang et al., 2014, 2017; Wan et al., 2014, 2016). At 19 

the national scale, the national wetland remote sensing datasets in 1978, 1990, 2000 and 2008 (Niu et al., 2012), the national 20 

land cover datasets in 1990, 2000, 2010, and 2015 (Wu et al., 2017), and the national land use datasets in 1990, 1995, 2000, 21 

2005, 2010, 2015 (Liu et al., 2018) contain the inter-decadal or 5-year time scale water surface dataset (Table 1). However, 22 

these datasets are available with limited temporal resolution and not freely and fully shared. 23 

<Table 1> 24 

The most commonly used method of water extraction is based on water indices, such as the Normalized Difference Water 25 
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Index (NDWI) (Gao, 1996; McFeeters, 1996; Rogers and Kearney, 2004), the Modified Normalized Difference Water Index 1 

(MNDWI) (Xu, 2006), the Automated Water Extraction Index (AWEI) (Feyisa et al., 2014), and the Enhanced Water Index 2 

(EWI) (Wang et al., 2015). Furthermore, the single band threshold segmentation method (Li et al., 2012, Lu et al., 2017) and 3 

the multiband transformation method (Pekel et al., 2014) are also in practice. The key step for using these methods in 4 

extracting the water boundary is to determine the threshold value for segmentation. The existing threshold determination 5 

methods include human visual judgment (Huang et al., 2008; Li et al., 2012) and sample statistical analysis (Feyisa et al, 6 

2014; Pekel etc., 2014; Pekel et al., 2016). The former relies on subjective experience, which causes the extraction results to 7 

be unstable, and thus difficult to apply on larger scales and to large volumes of data. Although the latter can get more 8 

accurate results through extensive sampling statistics, the use of a unified threshold for the whole image or whole region may 9 

produce large errors in the local area. To overcome these problems, various comprehensive classification methods are widely 10 

used. Verpoorter et al. (2014) combined the Principal Component Analysis (PCA) and the Modified Brightness Index (MBI) 11 

to generate supervised classes, and to divide these into water and non-water regions by using the decision tree method. Pekel 12 

et al. (2016) proposed an expert system by synthetic use of a visual analytical spectral library, the NDVI index, HSV 13 

transformation results, and decision tree method. Khandelwal et al. (2017) introduced a global supervised classification 14 

based approach by defining initial spatial extents of each water body, using the global sample datasets, and incorporating all 15 

the spectral reflectance bands of the MODIS imagery. Use of supervised classification or decision tree method may improve 16 

the accuracy of the water surface boundary extraction, however it increases the difficulty and efficiency of the method at the 17 

same time. Zhang et al. (2017) proposed an automatic threshold determination method based on the LBV (L, the general 18 

radiance level; B, the visible–infrared radiation balance; V, the radiance variation vector between bands) transformation of 19 

Landsat 8 OLI surface reflectance images. It was verified as an accurate, simple, and robust method for surface water 20 

extraction. However, cloud pixels and atmospheric correction influences were not considered. 21 

China has one of the highest densities of rivers and lakes in the world. There are more than 1500 rivers with an area 22 

exceeding 1000 km
2
 and 2928 lakes with an area larger than 1 km

2
 which form a total surface water area of 91,020 km

2
 (Ma 23 

et al. 2011). However, owing to the influence of climate, geography and landscape of the country, these surface water 24 

resources are unevenly distributed. They are found more in the South than in the North, and more in the East than in the 25 
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West. With the development of the economy, the increase in the demand for industrial, agricultural and domestic water has 1 

placed great pressure to these surface water systems, especially during the irrigation and drought season (Gong et al., 2011; 2 

Barnett et al., 2015). Therefore, there is an urgent need for spatio-temporal continuous surface water datasets to support the 3 

efficient and robust management of water resources, and to investigate the relationship between the national surface water 4 

and the global climate and human activities. However, until now, full public sharing data products with moderate spatial 5 

resolution and near-daily temporal resolution are still lacking in China. 6 

In order to address these limitations and to fulfill the need to develop a comprehensive spatio-temporal dataset, this paper 7 

presents the Inland Surface Water Dataset in China (ISWDC) during the period of 2000-2016 (and will be updated 8 

continuously for the subsequent years on zenodo platform), which is derived from the 8-day and 250 m spatial resolution 9 

MODIS MOD09Q1 product. After recalling the methodology used in surface water mapping from the MODIS MOD09Q1 10 

as described by Lu et al. (2017), the precision and accuracy of the dataset are reported, including the cross comparison with 11 

the existing national and global datasets. 12 

 13 

2 Study area and data 14 

The inland water of this dataset refers to a water body larger than 0.0625 km
2
 of the terrestrial land of China. The MODIS 15 

MOD09Q1 imagery was used to extract surface water (https://ladsweb.modaps.eosdis.nasa.gov/search/). MOD09Q1 is a 16 

MODIS level 3 land surface reflectance product. It is an 8-day synthetic imagery of Band 1 (red band) and Band 2 17 

(near-infrared band) with the spatial resolution of 250 m. In this study the near-infrared band is directly used to extract the 18 

surface water. There are 22 scenes covering the whole territory of China for every single date in a form of mosaic. For the 19 

complete temporal coverage from February 24, 2000 to December 26, 2016, total 16698 images were used. The SRTM 20 

(Shuttle Radar Topography Mission) DEM data with 90 m spatial resolution is used as an ancillary data for surface water 21 

extraction, which is jointly operated by NASA-JPL (NASA Jet Propulsion Laboratory) and NIMA (National Imagery and 22 

Mapping Agency (Slater et al., 2006).  23 

Two types of reference dataset are used for cross comparison. The first is a derived sub-dataset of surface water from 24 

China national 30 m land cover dataset of 2000, 2005 and 2010 (Liu et al., 2014; Wu et al. 2017). The second is the global 25 
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surface water (GSW) at 30-meter resolution from 2000-2015 produced by Pekel et al. (2016).  1 

 2 

3 Methods 3 

The threshold segmentation method proposed by Lu et al. (2017) which employs single band with one-by-one segmentation 4 

of water bodies is used to extract the surface water boundary, which includes four steps: interferences removal, preliminary 5 

water surface mapping, annual water surface mask acquisition, and water surface boundary extraction (Figure 1). In this 6 

study the last two steps of the method are updated and improved as in following sections 3.1 and 3.2. 7 

<Figure 1> 8 

3.1 Annual water surface mask acquisition 9 

The water surface mask is a key input data for excluding land disturbance factors that affect the extraction of the water 10 

surface boundary. It is generated from the preliminary water surface mapping results based on the modified Otsu threshold 11 

method applied on the selected images having less cloud cover and better quality in each year (Lu et al., 2017). In order to 12 

eliminate error in water area information caused by the cloud and cloud shadow in this process, the determination probability 13 

( ) parameter is used based on the fact that the cloud and its shadow will not appear in the same position for several days. 14 

The equation is as follows, 15 

∑   
 
       , D=1 16 

where n is the number of the preliminary water surface mapping images,    is the pixel value of image  , D is the pixel 17 

value of the annual water surface mask,   is the determination probability for identifying water pixel. In this study the 18 

reference images from 2013 to 2016 were selected and the determination probability ( ) was determined based on the same 19 

rule with Lu et al. (2017). Furthermore, the annual reference images and determination probability ( ) of 2000-2012 are 20 

directly used here because they were originally obtained based on the whole images of China (Table 2). 21 

<Table 2> 22 

3.2 Final water surface mapping 23 

Before determining the threshold value for each water body in the final step of the water surface extraction method (Lu et al., 24 

2017), the average pixel value in the mask area is used to eliminate the influence of the land pixels. Although this way can 25 
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improve the accuracy of water surface extraction, the average pixel value in different seasons will also be different. In order 1 

to optimize this process, 423 samples of lake and river in different regions of the country are selected (Figure 2) to obtain a 2 

reference average pixel value in different seasons. Two images with fewer clouds are selected for each season in each year, 3 

and the average pixel values for spring, summer, and autumn are calculated based on the water body samples. They were 4 

used as the upper limit threshold for determining the pixel value range for the final step of water surface mapping. In the 5 

process of water turning into ice in winter, the pixel value of ice is higher than that of water, and it accounts for a large 6 

proportion. The average pixel value will cause the ice layer to be extracted as the water surface, the minimum pixel value of 7 

the samples are used as the upper limit threshold for water surface mapping in winter. Finally, based on the upper limit 8 

thresholds in different seasons each year, the final binary water surface images of different time period are obtained by using 9 

the modified Otsu threshold method again (Lu et al., 2017). 10 

<Figure 2> 11 

4 Accuracy assessment 12 

4.1 Comparison with the national land cover dataset 13 

Based on the 30 m resolution national land cover dataset of 2000, 2005, and 2010, 511 samples from lakes and rivers 14 

spreading out across the country are selected as ground truth data (Figure 2), including 11 very large water bodies with areas 15 

larger than 1000 km
2
, 12 large water bodies with areas larger than 500 km

2
 and less than 1000 km

2
, 29 medium sized water 16 

bodies with area larger than 100 km
2
 and less than 500 km

2
, and 459 smaller water bodies with areas less than 100 km

2
. They 17 

were compared with the maximum ISWDC in the corresponding years. 18 

The results show that the ISWDC are highly consistent with the reference land cover derived surface water data. The 19 

coefficient of determination (R
2
) in 2000, 2005 and 2010 are found to be 0.9974, 0.992, and 0.9932, respectively as shown in 20 

Figure 3. The confusion matrix analysis results show that the average user accuracy is 91.13%, the average producer 21 

accuracy is 88.95%, and the average Kappa coefficient is 0.88 in three years (Table 3). 22 

As the national land cover data in 2000, 2005, 2010 are based on 30 m Landsat images that mainly obtained in summer 23 

season. The water surface in these datasets can be equated with annual maximum water surface results. So we compared 24 

them with our maximum ISWDC of corresponding year. The calculated R
2
 is based on the area of different size of water 25 
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bodies. The larger the R
2
, the better the consistency and the smaller the area error between the two datasets. Furthermore, the 1 

results of confusion matrix are equivalent to pixel scale analysis although it is not as intuitive as visual contrast. 2 

<Figure 3> 3 

<Table 3> 4 

4.2 Assessment against the global surface water dataset 5 

The time series of annual ISWDC and GSW permanent water bodies with an area larger than 0.0625 km
2
 of the whole of 6 

China from 2000-2015 were also compared. The results show that the two datasets possess very good consistency 7 

(R
2
=0.6532) (Figure 4a) and very similar change dynamics (Figure 4b). The annual ISWDC and GSW permanent water 8 

bodies in 2015 also indicate similar spatial patterns in different regions (Figure 5). For the lake groups in central 9 

Qinghai-Tibetan Plateau, the comparison between ISWDC obtained from MODIS and Landsat derived GSW indicated a 10 

closer pattern between the two results (Figure 5a). For the rivers and lakes interlaced with Poyang Lake region, in addition to 11 

the narrow width of the river and some small water bodies, the coincidence between the two datasets is also very high 12 

(Figure 5b). The over-extracted water (red regions in Figure 5) on the margins for large water bodies like Siling Co, Namco, 13 

Poyang Lake, and some of the wide rivers, and the under-extracted slender rivers and small water bodies (green regions in 14 

Figure 5), for the ISWDC dataset, are mainly caused by the mixed pixel effects due to relatively coarse spatial resolution of 15 

the MODIS images. 16 

<Figure 4> 17 

<Figure 5> 18 

5 Applications and data availability 19 

5.1 Time series of surface water dataset applications 20 

Time series of surface water dataset can be used to analyze the inter-annual and seasonal variation characteristics of surface 21 

water area, including inter-annual variation trend, abrupt change time, intra-annual hydrological process monitoring etc. 22 

(Huang et al., 2018; Xing et al., 2018). Similarly, it can also be used as cross-validation reference data for global surface 23 

water datasets with a similar spatial resolution (Klein et al., 2017), and as a key input parameter for regional and global 24 

hydro-climatic model calibration and evaluation (Khan et al., 2011; Stacke and Hagemann, 2012). 25 
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For example, based on the ISWDC from 2000-2016, the annual variation of surface water in China can be obtained by 1 

superimposing all the 8-day time series water surface area data of each year. Figure 6 shows that the surface water area 2 

began to increase in early March and increased gradually in spring and summer. After reaching its peak in autumn, it then 3 

began to decrease gradually. The annual variation of surface water area in different regions can also be portrayed by 4 

calculating the multi-year average of every 8-day data. Figure 7 shows that the surface water area of Southwest China (SW) 5 

and Northwest China (NW) is very large and inter-seasonally it varies greatly than the surface water area of other regions. 6 

Surface water area in Northeast China (NE) began to increase rapidly in spring. It reached a peak in May and decreased 7 

slightly in June-July. After reaching its maximum in August-September, it began to decline again in October. In North China 8 

(NC), surface water area is relatively small, but the change still shows some seasonality. There is a significant increase in 9 

summer and autumn, but the range of increase and decrease is relatively small. Surface water area in Central China (CC) and 10 

Eastern China (EC) varies steadily during the year. It reaches its maximum in summer and begins to decrease gradually in 11 

late summer and early autumn. Surface water area in South China (SC) was relatively stable throughout the year.  12 

Furthermore, the spatial distributions of surface water can clearly be depicted by means of multi-year average analysis. 13 

The results in Table 4 show that surface water of inland China is mainly distributed in western China, accounting for 49.13% 14 

of the total surface water area, with 29.88% in the Southwest China (SW) and 19.25% in the Northwest China (NW), 15 

followed by the Central China (CC) and East China (EC), which accounted for 8.13% and 24.78% of the total surface water 16 

area, respectively. The North China (NC), Northeast China (NE) and South China (SC) account for the other 17.96% of the 17 

national surface water area.  18 

<Figure 6> 19 

<Figure 7> 20 

<Table 4> 21 

5.2 Data availability 22 

The ISWDC dataset is distributed under a Creative Commons Attribution 4.0 License. The data may be downloaded from the 23 

data repository Zenodo at http://doi.org/10.5281/zenodo.2616035 (Lu et al., 2019). In each 8-day surface water image, the 24 

pixel values of 1 and 0 represent the water and the background respectively. The 8-day data in each month can be used to 25 
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calculate the monthly water occurrence and all the 8-day data in each year can be used to calculate the yearly water 1 

occurrence, by summing up all the surface water images together in corresponding time periods. The vector datasets of the 2 

8-day surface water boundaries extracted from the raster data products can also be obtained through the same link. 3 

 4 

6. Discussion and conclusions 5 

In this study, the 8-day 250-meter resolution surface water dataset of inland China (ISWDC) from 2000 to 2016 has been 6 

introduced. It is a fully public sharing data product with prominent features of long time series, moderate spatial resolution 7 

and high temporal resolution. The ISWDC is a valuable basic data source for the analysis of dynamic changes of surface 8 

water in China in the past 20 years. 9 

The results have been validated based on the 2000, 2005 and 2010 national land cover derived surface water data and 10 

show high accuracy. The average user accuracy is 91.13%, the average producer accuracy is 88.95%, and the average Kappa 11 

coefficient is 0.88 for these three years. Furthermore, a comparison with the GWS service underlines the reliability of 12 

temporal processes and spatial distribution. In terms of temporal variation, the ISWDC and the GWS possess excellent 13 

consistency and very similar change dynamics during the whole time period, which simply shows that both datasets are 14 

highly correlated. For the spatial distribution characteristics, the ISWDC in 2015 has similar spatial patterns in different 15 

regions to that of the GSW dataset, especially for larger water bodies, such as lakes, water reservoirs and wide rivers.  16 

The advantage of the ISWDC dataset is its high level of revealing the spatio-temporal variability of inland surface water. 17 

Based on this dataset, the spatial distribution characteristics and temporal variation processes of surface water can be 18 

described through the multi-year average spatial statistics and annual data overlapping analysis. In addition, the dataset can 19 

also be used as a cross-validation reference data for other global surface water datasets, and a key input parameter for 20 

regional and global hydro-climatic models.  21 

However influenced by the algorithm design and the used data sources the results have certain limitations. First of all, as 22 

for other surface water datasets derived from multi-spectral sensors, it only includes open water surfaces, while water bodies 23 

which are covered by vegetation are not captured. Secondly, as ISWDC only uses MODIS MOD09Q1 near-infrared band for 24 

water surface extraction, thus the accuracy of datasets depends mainly on the quality of the original 8-day synthetic images. 25 
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When there exist clouds exist in the water distribution region of the synthetic image at a certain time, the cloud covered 1 

water surface will not be extracted which causes underestimation for extracting water bodies. In addition, the reference 2 

images used to produce the annual water surface mask will also affect the accuracy of the final results. For example, if the 3 

selected image does not contain the information of the actual maximum water surface occurrence in that year, it may lead to 4 

the exclusion of that part of the water pixels which lies outside the mask. Finally, because of the small difference of 5 

reflectance between the ice-water mixing boundary in autumn and spring, the accuracy of water surface area extraction will 6 

be limited in these two seasons. 7 

Although the water surface extraction method designed in this study is aimed at extracting water surface information from 8 

the MODIS MOD09Q1 images, its core process is automatic thresholding for estimation of water bodies one by one. 9 

Therefore, this method is also applicable to traditional water body indices, such as NDWI, MNDWI and AWEI, or to other 10 

water surface information based on enhanced thematic data. In the future, while continuing to extend the existing datasets 11 

from 2017 to now by using this method, the 30-meter GWS dataset in China will be extended. At the same time, the national 12 

10-meter spatial resolution water surface dataset based on Sentinel-2 imagery will be produced. After the national scale 13 

datasets are completed, the corresponding global scale datasets are also expected. 14 
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Table 1. National and regional surface water related datasets of China. 1 

Dataset Author Time series Resolution 

Lake water surface of Tibetan Plateau Lu et al., 2017 8-days, 2000-2012 250m 

Lake surface area of Tibetan Plateau Song et al., 2013 1970s, 1990, 2000, 2003-2009, 2011 60m, 30m 

Lake area of Tibetan Plateau Zhang et al., 2014, 2017 1970s, 1990, 2000, 2010 15m, 30m 

A lake dataset for the Tibetan Plateau Wan et al., 2014, 2016 1960s, 2005, 2014 16m, 30m 

China national wetland datasets Niu et al., 2012 1978, 1990, 2000, 2008 30 m 

China national land cover datasets Wu et al., 2017 1990, 2000, 2010, and 2015 30 m 

China national land use datasets Liu et al., 2018 1990, 1995, 2000, 2005, 2010, 2015 30m 

 2 

Table 2. The images used for annual water surface mask generation and the determination probability each year. 3 

Year Selected 8-day image dates (DOY) Determination probability (p) 

2000 185、201、209、233、241、249、257、265、281、305 0.2 

2001 185、193、201、233、241、249、257、265、273、281 0.2 

2002 185、193、209、217、225、233、241、249、257、265 0.2 

2003 177、193、201、209、217、233、249、257、265、289 0.3 

2004 185、201、217、225、233、249、257、265、273、281 0.2 

2005 209、217、225、233、241、249、257、265、273、281 0.2 

2006 137、145、169、177、185、193、201、209 0.2 

2007 185、193、201、209、217、225、233、241、257、265 0.3 

2008 193、201、209、225、233、241、249、257、265、273 0.3 

2009 129、137、153、169、185、193、201、233、241、249 0.3 

2010 185、209、217、225、233、241、249、257、273、281 0.2 

2011 161、169、177、185、201、209、217、225、233、265 0.2 
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2012 185、201、209、217、225、233、241、257、265、273 0.2 

2013 185、193、201、209、217、225、233、249、257、281 0.2 

2014 193、201、209、225、233、241、249、265、257 、273 0.3 

2015 201、209、217、241、249、257、265、273、281、289 0.2 

2016 193、209、225、241、257、265、273、289、305 0.2 

 1 

Table 3. Accuracy analysis samples in different region and the accuracy evaluation results. 2 

Sample regions 

Sample water bodies 

Very large Large Medium Small Total 

North China (NC) 1 1 1 73 76 

Northeast China (NE) 1 2 2 21 26 

East China (EC) 2 1 3 34 40 

Southwest China (SW) 2 3 5 75 85 

Northwest China (NW) 2 2 13 166 183 

Central China (CC) 2 1 2 46 51 

South China (SC) 1 2 3 44 50 

Average user accuracy 96.14 94.75 93.69 79.96 91.13 

Average producer accuracy 92.64 88.87 92.69 81.60 88.95 

Average Kappa coefficient 0.94 0.93 0.93 0.72 0.88 

 3 

Table 4. The average distribution of surface water area in inland China from 2000-2016 4 

Regions Area(km2) Area percentage (%) 

North China (NC) 6250.6 6.11 

Northeast China (NE) 8991.3 8.79 
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East China (EC) 25342.3 24.78 

Central China (CC) 9313.4 8.13 

South China (SC) 3126.0 3.06 

Southwest China (SW) 30548.6 29.88 

Northwest China (NW) 19680.2 19.25 

Total 103252.3 100.00 

 1 
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 2 

Figure 1. Flowchart of the water surface extraction method reference to Lu et al. (2017). 3 
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 1 

Figure 2. The boundary of China, the accuracy assessment and the upper limit threshold calculation samples for surface water 2 

extraction. NW: Northwest China, SW: Southwest China, SC: South China, CC: Central China; NC: North China, NE: Northeast 3 

China, EC: East China. 4 
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 1 

Figure 3. Comparison of the total area of surface water body samples with different size (< 100 km2, 100-500 km2, 500-1000 2 

km2, >1000 km2) between ISWDC and the National land cover derived surface water data. 3 

 4 

  5 

（a）                                                    (b) 6 

Figure 4. Comparison of the time series annual ISWDC and GSW permanent water bodies of the whole of China from 2000-2015. 7 

(a) is the correlation analysis result, (b) is the change trend comparison result. 8 
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 1 

 2 

Figure 5. Comparison of permanent water bodies derived from ISWDC and GSW over the sites of the central Qinghai-Tibetan 3 

Plateau (a) and Poyang Lake region (b). 4 
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 1 

Figure 6. Annual change of total water area during the period of 2000-2016. 2 

 3 

Figure 7. The 8-day surface water area in different regions of China from 2000 to 2016. NE: Northeast China, NC: North China, 4 

EC: East China, SC: South China, CC: Central China, NW: Northwest China, SW: Southwest China. 5 
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