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 13 

Abstract. The moderate spatial resolution and high temporal resolution of the MODIS imagery make it an ideal 14 

resource for time series surface water monitoring and mapping. We used MODIS MOD09Q1 surface reflectance 15 

archive images to create an Inland Surface Water Dataset in China (ISWDC), which maps water bodies larger than 16 

0.0625 km
2
 within the land mass of China for the period 2000–2016, with 8-day temporal and 250 m spatial resolution. 17 

We assessed the accuracy of the ISWDC by comparing with the national land cover derived surface water data and 18 

Global Surface Water (GSW) data. The results show that the ISWDC is closely correlated with the national reference 19 

data with determinant coefficients (R
2
) greater than 0.99 in 2000, 2005, and 2010, while the ISWDC possess very good 20 

consistency, very similar change dynamics, and similar spatial patterns in different regions with the GSW dataset. The 21 

ISWDC dataset can be used for studies on the inter-annual and seasonal variation of the surface water systems. It can 22 

also be used as reference data for verification of the other surface water dataset and as an input parameter for regional 23 

and global hydro-climatic models. The ISWDC data are available at http://doi.org/10.5281/zenodo.2616035. 24 
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1 Introduction 2 

Surface water is the most important source of water from planetary water resources available for the 3 

survival of both human and ecological systems (Lu and He, 2006). It is a key component of the 4 

hydrological cycle and the key factor affecting sustainable development of human society and 5 

ecosystem. Both climate change and human activities have a role in affecting the surface water 6 

availability at a given area and time. In order to locate the position and examine the change in dynamics 7 

of the inland surface water, regional and global datasets have already been produced through remotely 8 

sensed data by various researchers (Carroll et al., 2009; Verpoorter et al., 2014; Feng et al., 2015; Klein 9 

et al., 2014; Tulbure et al., 2016), but these contemporary researches were limited to measuring 10 

long-term changes at high spatial and temporal resolution. Pekel et al. (2016) quantified the changes in 11 

global surface water (GSW) over the past 32 years (1984-2015) at 30-meters resolution by using the 12 

Landsat imagery. Klein et al. (2017) generated a 250 m daily global dataset of inland water bodies based 13 

on a combination of MODIS Terra and Aqua daily classifications. However, the temporal resolution of 14 

the former research is near monthly, and the latter research only produced datasets from 2013-2015 at 15 

the moment, while the entire MODIS archive back to July 2002  is still ongoing (Klein et al., 2017). 16 

In China numerous regional case studies have been done and produced some surface water datasets 17 

but only in bits and pieces (Du et al., 2012; Lai et al., 2013; Luo et al., 2017). Their research mainly 18 

focused on lakes in Qinghai-Tibetan Plateau (Lu et al., 2017). Several research groups are focusing on 19 

the lake water changes of this region. Almost every 10-year since the 1960s lake water surface area 20 

datasets have been produced (Song et al., 2014; Zhang et al., 2014, 2017; Wan et al., 2014, 2016). At the 21 

national scale, the national wetland remote sensing datasets in 1978, 1990, 2000 and 2008 (Niu et al., 22 

2012), the national land cover datasets in 1990, 2000, 2010, and 2015 (Wu et al., 2017), and the national 23 

land use datasets in 1990, 1995, 2000, 2005, 2010, 2015 (Liu et al., 2018) contain the inter-decadal or 24 
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5-year time scale water surface dataset (Table 1). However, these datasets are available with limited 1 

temporal resolution and not freely and fully shared. 2 

Table 1 National and regional surface water related datasets of China 3 

Dataset Author Time series Resolution 

Lake water surface of Tibetan Plateau Lu et al., 2017 8-days, 2000-2012 250m 

Lake surface area of Tibetan Plateau Song et al., 2013 1970s, 1990, 2000, 2003-2009, 2011 60m, 30m 

Lake area of Tibetan Plateau Zhang et al., 2014, 2017 1970s, 1990, 2000, 2010 15m, 30m 

A lake dataset for the Tibetan Plateau Wan et al., 2014, 2016 1960s, 2005, 2014 16m, 30m 

China national wetland datasets Niu et al., 2012 1978, 1990, 2000, 2008 30 m 

China national land cover datasets Wu et al., 2017 1990, 2000, 2010, and 2015 30 m 

China national land use datasets Liu et al., 2018 1990, 1995, 2000, 2005, 2010, 2015 30m 

The most commonly used method of water extraction is a water index method, such as the 4 

Normalized Difference Water Index (NDWI) (Gao, 1996; McFeeters, 1996; Rogers and Kearney, 2004), 5 

Modified Normalized Difference Water Index (MNDWI) (Xu, 2006), and Automated Water Extraction 6 

Index (AWEI) (Feyisa, et al., 2014). Furthermore, the single band threshold segmentation method (Li et 7 

al., 2012, Lu et al., 2017) and the multiband transformation method (Pekel et al. 2014) are also in 8 

practice. The key step for using these methods in extracting the water boundary is to determine the 9 

threshold value for segmentation. The existing threshold determination methods include human visual 10 

judgment (Huang et al., 2008; Li et al., 2012) and sample statistical analysis (Feyisa et al, 2014; Pekel 11 

etc., 2014; Pekel et al., 2016). The former relies on subjective experience, which causes the extraction 12 

results to be unstable, and thus difficult to apply on larger scales and to large amounts of data. Although 13 

the latter can get more accurate results through extensive sampling statistics, the use of a unified 14 

threshold for whole image or whole region may produce large errors in the local area. In order to 15 

overcome these problems, various comprehensive classification methods are widely used. Verpoorter et 16 

al. (2014) combined the Principal Component Analysis (PCA) and the Modified Brightness Index (MBI) 17 



4 

to generate supervised classes, and to divide these into water and non-water regions by using the 1 

decision tree method. Pekel et al. (2016) proposed an expert system by synthetic use of a visual 2 

analytical spectral library, NDVI index, HSV transformation results, and decision tree method. 3 

Khandelwal et al. (2017) introduced a global supervised classification based approach by defining 4 

initial spatial extents of each water body, using the global sample datasets, and incorporating all the 5 

spectral reflectance bands of the MODIS imagery. Use of supervised classification and decision tree 6 

method may improve the accuracy of water surface boundary extraction, however it increases the 7 

difficulty and efficiency of the method at the same time. Zhang et al. (2017) proposed an automatic 8 

threshold determination method based on the LBV (L, the general radiance level; B, the visible–infrared 9 

radiation balance; V, the radiance variation vector between bands) transformation of Landsat 8 OLI 10 

surface reflectance images. It was verified as an accurate, simple, and robust method for surface water 11 

extraction. However, the cloud pixels and atmospheric correction influences were not considered. 12 

China is one of the countries that have the highest densities of rivers and lakes in the world. There are 13 

more than 1500 rivers with an area exceeding 1000 km
2
, 2928 lakes with an area larger than 1 km

2
 and 14 

giving in a total surface water area of 91,020 km
2
 (Ma et al. 2011). However, owing to the influence of 15 

climate, geography and landscape of the country, these surface water resources are unevenly distributed. 16 

They are found more in the South than in the North, and more in the East than in the West. With the 17 

development of the economy, the increase in the demand for industrial, agricultural and domestic water 18 

has placed great pressure to these surface water systems, especially during the irrigation and drought 19 

season (Gong et al., 2011; Barnett et al., 2015). Therefore, there is an urgent need for spatio-temporal 20 

continuous surface water datasets to support the efficient and robust management of water resources, 21 

and to investigate the relationship between the national surface water and the global climate and human 22 

activities. However, until now, full public sharing data products with moderate spatial resolution and 23 

near-daily temporal resolution are still lacking in China. 24 

In order to address these limitations and to fulfill the need to develop a comprehensive 25 
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spatio-temporal dataset, this paper presents the Inland Surface Water Dataset in China (ISWDC) during 1 

the period of 2000-2016 (and will be continuously updated for the subsequent years on zenodo 2 

platform), which is derived from the 8-day and 250 m spatial resolution MODIS MOD09Q1 product. 3 

After recalling the methodology used in surface water mapping from the MODIS MOD09Q1 as 4 

described by Lu et al. (2017), the precision and accuracy of the dataset are reported, including the cross 5 

comparison with existing national and global datasets. 6 

 7 

2 Study area and data 8 

The inland water of this dataset refers to a water body larger than 0.0625 km
2
 of the terrestrial land of 9 

China. The MODIS MOD09Q1 imagery has been used to extract surface water 10 

(https://ladsweb.modaps.eosdis.nasa.gov/search/). MOD09Q1 is a MODIS level 3 land surface 11 

reflectance product. It is an 8-day synthetic imagery of Band 1 (red band) and Band 2 (near-infrared 12 

band) with the spatial resolution of 250 m. In this study the near-infrared band is directly used to extract 13 

the surface water. There are 22 scenes covering the whole territory of China for every single date in a 14 

form of mosaic. For the complete temporal coverage from February 24, 2000 to December 26, 2016, 15 

total 16698 images were used. The SRTM (Shuttle Radar Topography Mission) DEM data with 90 m 16 

spatial resolution is used as ancillary data for surface water extraction, which is jointly measured by 17 

NASA-JPL (NASA Jet Propulsion Laboratory) and NIMA (National Imagery and Mapping Agency 18 

(Slater et al., 2006).  19 

Two types of reference dataset are used for cross comparison. The first is a derived sub-dataset of 20 

surface water from China national 30 m land cover dataset of 2000, 2005 and 2010 (Liu et al., 2014; 21 

Wu et al. 2017). The second is the global surface water (GSW) at 30 meter resolution for 2000-2015 22 

produced by Pekel et al. (2016).  23 

 24 



6 

3 Methods 1 

The threshold segmentation method proposed by Lu et al. (2017) which employs single band with 2 

one-by-one segmentation of water bodies is used to extract the surface water boundary, which includes 3 

four steps: interferences removal, preliminary water surface mapping, annual water surface mask 4 

acquisition, and water surface boundary extraction (Figure 1). In this study the last two steps of the 5 

method are updated and improved as in following sections 3.1 and 3.2. 6 
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Figure 1 Flowchart of the water surface extraction method reference to Lu et al. (2017) 8 

3.1 Annual water surface mask acquisition 9 

The water surface mask is a key input data for excluding land disturbance factors that affect the 10 

extraction of the water surface boundary. It is generated from the preliminary water surface mapping 11 

results based on the modified Otsu threshold method applied on the selected images having lesser cloud 12 

cover and better quality in each year (Lu et al., 2017). In order to eliminate error in water area 13 

information caused by the cloud and cloud shadow in this process, the determination probability ( ) 14 

parameter is used based on the fact that the cloud and its shadow will not appear in the same position 15 

for several days. The equation is as follows, 16 

∑   
 
       , D=1 17 
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where n is the number of the preliminary water surface mapping images,    is the pixel value of 1 

image  , D is the pixel value of the annual water surface mask,   is the determination probability for 2 

identifying water pixel. In this study the reference images from 2013 to 2016 were selected and the 3 

determination probability ( ) was determined based on the same rule with Lu et al. (2017). Furthermore, 4 

the annual reference images and determination probability ( ) of 2000-2012 are directly used here 5 

because they were originally obtained based on the whole images of China. 6 

Table 1 The images used for annual water surface mask generation and the determination probability each year 7 

Year Selected 8-day image dates (DOY) Determination probability (p) 

2000 185、201、209、233、241、249、257、265、281、305 0.2 

2001 185、193、201、233、241、249、257、265、273、281 0.2 

2002 185、193、209、217、225、233、241、249、257、265 0.2 

2003 177、193、201、209、217、233、249、257、265、289 0.3 

2004 185、201、217、225、233、249、257、265、273、281 0.2 

2005 209、217、225、233、241、249、257、265、273、281 0.2 

2006 137、145、169、177、185、193、201、209 0.2 

2007 185、193、201、209、217、225、233、241、257、265 0.3 

2008 193、201、209、225、233、241、249、257、265、273 0.3 

2009 129、137、153、169、185、193、201、233、241、249 0.3 

2010 185、209、217、225、233、241、249、257、273、281 0.2 

2011 161、169、177、185、201、209、217、225、233、265 0.2 

2012 185、201、209、217、225、233、241、257、265、273 0.2 

2013 185、193、201、209、217、225、233、249、257、281 0.2 

2014 193、201、209、225、233、241、249、265、257 、273 0.3 

2015 201、209、217、241、249、257、265、273、281、28 0.2 
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2016 193、209、225、241、257、265、273、289、305 0.2 

 1 

3.2 Final water surface mapping 2 

Before determining the threshold value for each water body in the final step of the water surface 3 

extraction method (Lu et al., 2017), the average pixel value in the mask area is used to eliminate the 4 

influence of the land pixels. Although this way can improve the accuracy of water surface extraction, 5 

the average pixel value in different season will also be different. In order to optimize this process, 423 6 

sample lakes and rivers in different regions of the country are selected (Figure 2) to obtain the reference 7 

average pixel value in different season. Two images with lesser clouds are selected for each season in 8 

each year, and the average pixel values for spring, summer, and autumn are calculated based on the 9 

water body samples. They were used as the upper limit threshold for determining the pixel value range 10 

for the final step of water surface mapping. In the process of water turning into ice in winter, the pixel 11 

value of ice is higher than that of water, and it accounts for a large proportion. The average pixel value 12 

will cause the ice layer to be extracted as the water surface, the minimum pixel value of the samples are 13 

used as the upper limit threshold for water surface mapping in winter. Finally, based on the upper limit 14 

thresholds in different seasons each year, the final binary water surface images of different time period 15 

are obtained by using the modified Otsu threshold method again (Lu et al., 2017). 16 
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 1 

Figure 2 The boundary of China, the accuracy assessment and the upper limit threshold calculation samples for 2 

surface water extraction. NW: Northwest China, SW: Southwest China, SC: South China, CC: Central China; NC: 3 

North China, NE: Northeast China, EC: East China. 4 

 5 
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4 Accuracy assessment 1 

4.1 Comparison with the national land cover dataset 2 

Based on the 30 m resolution national land cover dataset of 2000, 2005, and 2010, 511 samples from 3 

lakes and rivers spreading out across the country are selected as ground truth data (Figure 2), including 4 

11 very large water bodies with areas larger than 1000 km
2
, 12 large water bodies with areas larger than 5 

500 km
2
 and lesser than 1000 km

2
, 29 medium sized water bodies with area larger than 100 km

2
 and 6 

lesser than 500 km
2
, and 459 smaller water bodies with areas lesser than 100 km

2
. They were compared 7 

with the maximum ISWDC in the corresponding years. 8 

The results show that the ISWDC are highly consistent with the reference land cover derived surface 9 

water data. The determinant coefficients (R
2
) in 2000, 2005 and 2010 are found 0.9974, 0.992, and 10 

0.9932, respectively as shown in Figure 3. The confusion matrix analysis results show that the average 11 

user accuracy is 91.13%, the average producer accuracy is 88.95%, and the average Kappa coefficient is 12 

0.88 in three years (Table 2). 13 

 14 

Figure 3 Comparison of the total area of surface water body samples with different size (< 100 km2, 100-500 km2, 500-1000 15 

km2, >1000 km2) between ISWDC and the National land cover derived surface water data. 16 

y = 1.1018x - 309.87 

R² = 0.9974 

y = 0.8708x + 1147.7 

R² = 0.992 

y = 0.9955x + 665.27 

R² = 0.9932 

1000

3000

5000

7000

9000

11000

13000

15000

17000

1000 3000 5000 7000 9000 11000 13000 15000 17000 19000

L
a

n
d

 c
o

v
e
r
 (

k
m

2
) 

ISWDC (km2) 

Land cover 2000 Land cover 2005 Land cover 2010



11 

Table 2 Accuracy analysis samples in different region and the assess results 1 

Sample regions 

Sample water bodies 

Very large Large Medium Small Total 

North China (NC) 1 1 1 73 76 

Northeast China (NE) 1 2 2 21 26 

East China (EC) 2 1 3 34 40 

Southwest China (SW) 2 3 5 75 85 

Northwest China (NW) 2 2 13 166 183 

Central China (CC) 2 1 2 46 51 

South China (SC) 1 2 3 44 50 

Average user accuracy 96.14 94.75 93.69 79.96 91.13 

Average producer accuracy 92.64 88.87 92.69 81.60 88.95 

Average Kappa coefficient 0.94 0.93 0.93 0.72 0.88 

 2 

4.2 Assessment against the global surface water dataset 3 

The time series of annual ISWDC and GSW permanent water bodies of whole China from 2000-2015 4 

were also compared. The results show that the two datasets possess very good consistency (Figure 4a) 5 

and very similar change dynamics (Figure 4b). The annual ISWDC and GSW permanent water bodies 6 

with area larger than 0.0625 km
2
 in 2015 also indicate similar spatial patterns in different regions 7 

(Figure 5). For the lake groups in central Qinghai-Tibetan Plateau, the comparison between ISWDC 8 

obtained from MODIS and Landsat derived GSW indicated a closer pattern between the two results 9 

(Figure 5a). For the rivers and lakes interlaced with Poyang Lake region, in addition to the narrow width 10 

of the river and some small water bodies, the coincidence between the two datasets is also very high 11 

(Figure 5b). The over-extracted water (red regions in Figure 5) on the margins for large water bodies 12 

like Siling Co, Namco, Poyang Lake, and some of the wide rivers, and the under-extracted slender 13 
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rivers and small water bodies (green regions in Figure 5), for the ISWDC dataset, are mainly caused by 1 

the mixed pixel effects due to relatively coarse spatial resolution of the MODIS images. 2 

  3 

（a）                                                    (b) 4 

Figure 4 Comparison of the time series annual ISWDC and GSW permanent water bodies of whole China from 2000-2015. (a) is 5 

the correlation analysis result, (b) is the change trend comparison result. 6 
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 1 

Figure 5 Comparison of permanent water bodies derived from ISWDC and GSW over the sites of the central Qinghai-Tibetan 2 

Plateau (a) and Poyang Lake region (b). 3 

 4 

5 Applications and data availability 5 

5.1 Time series of surface water dataset applications 6 

Time series of surface water dataset can be used to analyze the inter-annual and seasonal variation 7 

characteristics of surface water area, including inter-annual variation trend, abrupt change time, 8 

intra-annual hydrological process monitoring etc. (Huang et al., 2018; Xing et al., 2018). Similarly, it 9 

can also be used as cross-validation reference data for global surface water datasets with similar spatial 10 

resolution (Klein et al., 2017), and as a key input parameter for regional and global hydro-climatic 11 

model calibration and evaluation (Khan et al., 2011; Stacke and Hagemann, 2012). 12 

For example, based on the ISWDC from 2000-2016, the annual variation of surface water in China 13 

can be obtained by superimposing all the 8-day time series water surface area data of each year. Figure 14 
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6 shows that the surface water area began to increase in early March and increased gradually in spring 1 

and summer. After reached its peak in autumn, it then began to decrease gradually. The annual variation 2 

of surface water area in different regions can also be portrayed by calculating the multi-year average of 3 

every 8-day data. Figure 7 shows that the surface water area of Southwest China (SW) and Northwest 4 

China (NW) is very large and inter-seasonally it varies greatly than the surface water area of other 5 

regions. Surface water area in Northeast China (NE) began to increase rapidly in spring. It reached a 6 

peak in May and decreased slightly in June-July. After reaching its maximum in August-September, it 7 

began to decline again in October. In North China (NC), surface water area is relatively small, but the 8 

change still shows some seasonality. There is a significant increase in summer and autumn, but the 9 

range of increase and decrease is relatively small. Surface water area in Central China (CC) and Eastern 10 

China (EC) varies steadily during the year. It reaches its maximum in summer and begins to decrease 11 

gradually in late summer and early autumn. Surface water area in South China (SC) was relatively 12 

stable throughout the year.  13 

Furthermore, the spatial distributions of surface water can clearly be depicted by means of multi-year 14 

average analysis. The results in Table 3 show that surface water of inland China is mainly distributed in 15 

western China, accounting for 49.13% of the total surface water area, with 29.88% in the Southwest 16 

China (SW) and 19.25% in the Northwest China (NW), followed by the Central China (CC) and East 17 

China (EC), which accounted for 8.13% and 24.78% of the total surface water area, respectively. The 18 

North China (NC), Northeast China (NE) and South China (SC) account for the other 17.96% of the 19 

national surface water area.  20 

 21 
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 1 

Figure 6 Annual change of total water area during the period of 2000-2016. 2 

 3 

Figure 7 Average annual 8-day surface water area of different regions of China from 2000 to 2016. NE: Northeast China, NC: 4 

North China, EC: East China, SC: South China, CC: Central China, NW: Northwest China, SW: Southwest China. 5 
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Table 3 The average distribution of surface water area in inland China from 2000-2016 1 

Regions Area(km2) Area percentage (%) 

North China (NC) 6250.6 6.11 

Northeast China (NE) 8991.3 8.79 

East China (EC) 25342.3 24.78 

Central China (CC) 9313.4 8.13 

South China (SC) 3126.0 3.06 

Southwest China (SW) 30548.6 29.88 

Northwest China (NW) 19680.2 19.25 

Total 103252.3 100.00 

 2 

5.2 Data availability 3 

The ISWDC dataset is distributed under a Creative Commons Attribution 4.0 License. The data may be 4 

downloaded from the data repository Zenodo at http://doi.org/10.5281/zenodo.2616035 (Lu et al., 2019). 5 

In each 8-day surface water image, the pixel values of 1 and 0 represent the water and the background 6 

respectively. The 8-day data in each month can be used to calculate the monthly water occurrence and 7 

all the 8-day data in each year can be used to calculate the yearly water occurrence, by summing up all 8 

the surface water images together in corresponding time periods. The vector datasets of the 8-day 9 

surface water boundaries extracted from the raster data products can also be obtained through the same 10 

link. 11 

 12 

6. Discussion and conclusions 13 

In this study, the 8-day 250-meter resolution surface water dataset of inland China (ISWDC) from 2000 14 

to 2016 has been introduced. It is a fully public sharing data product with prominent features of long 15 
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time series, moderate spatial resolution and high temporal resolution. The ISWDC is a valuable basic 1 

data source for the analysis of the dynamic changes of surface water in China in the past 20 years..  2 

The accuracy analysis results show that the ISWDC is highly consistent with the national land cover 3 

derived surface water data from 2000, 2005 and 2010, with the determinant coefficients (R
2
) of 0.9974, 4 

0.992, and 0.9932 respectively. The average user accuracy is 91.13%, the average producer accuracy is 5 

88.95%, and the average Kappa coefficient is 0.88 for these three years. Furthermore, in terms of 6 

temporal variation, the ISWDC and the GWS possess excellent consistency and very similar change 7 

dynamics during the whole time period, which simply shows that both datasets are highly correlated. 8 

For the spatial distribution characteristics, the ISWDC in 2015 has similar spatial patterns in different 9 

regions (including the central Qinghai-Tibetan Plateau and Poyang Lake region) to that of the GSW 10 

dataset, especially for larger water bodies (such as lakes, water reservoirs and wide rivers).  11 

Based on the ISWDC for 2000-2016, the spatial distribution characteristics and temporal variation 12 

processes of surface water can be described through the multi-year average spatial statistics and annual 13 

data overlapping analysis. In addition, the dataset can also be used as a cross-validation reference data 14 

for other global surface water datasets, and a key input parameter for regional and global hydro-climatic 15 

models. 16 

As ISWDC only uses MODIS MOD09Q1 near-infrared band for water surface extraction, thus the 17 

accuracy of datasets depends mainly on the quality of the original 8-day synthetic images. When there 18 

are clouds exist in the water distribution region in the synthetic image at a certain time, the cloud 19 

covered water surface will not be extracted which causes underestimation for extracting water bodies. In 20 

addition, the reference images used to produce the annual water surface mask will also affect the 21 

accuracy of the final results. For example, if the selected image does not contain the information of the 22 

actual maximum water surface occurrence in that year, it may lead to the exclusion of that part of the 23 

water pixels which lies outside the mask. Furthermore, because of the small difference of reflectance 24 

between the ice-water mixing boundary in autumn and spring, the accuracy of water surface area 25 
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extraction will be limited in these two seasons. 1 

Although the water surface extraction method designed in this study is aimed at extracting water 2 

surface information from the MODIS MOD09Q1 images, its core process is automatic thresholding for 3 

estimation of water bodies one by one. Therefore, this method is also applicable to traditional water 4 

body indices, such as NDWI, MNDWI and AWEI, or to other water surface information based on 5 

enhanced thematic data. In the future, while continuing to extend the existing datasets from 2017 to now 6 

by using this method, the 30-meter GWS dataset in China will be extended. At the same time, the 7 

national 10-meter spatial resolution water surface dataset based on Sentinel-2 imagery will be produced. 8 

After the national scale datasets are completed, the corresponding global scale datasets are also 9 

expected. 10 
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