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Abstract. The recent proliferation of high quality global gridded GIS datasets has spurred a renaissance of studies in many

fields, including biogeography. However, these data, often 1 km at the finest scale available, are too coarse for applications

such as precise designation of conservation priority areas and regional species distribution modeling, or purposes outside

of biology such as city planning and precision agriculture. Further, these global datasets likely underestimate local climate

variations because they do not incorporate locally relevant variables. Here we describe a comprehensive set of 30 m resolution5

rasters for Hong Kong, a small tropical territory with highly variable terrain where intense anthropogenic disturbance meets a

robust protected area system. The data include topographic variables, Normalized Difference Vegetation Index, and interpolated

climate variables based on weather station observations. We present validation statistics that convey each climate variable’s

reliability, and compare our results to a widely used global dataset, finding that our models consistently reflect greater climatic

variation. To our knowledge, this is the first set of published environmental rasters specific to Hong Kong. We hope this diverse10

suite of geographic data will facilitate future environmental and ecological studies in this region of the world, where a spatial

understanding of rapid urbanization, introduced species pressure, and conservation efforts is critical. The dataset (Morgan and

Guénard, 2018) is accessible at https://doi.org/10.6084/m9.figshare.6791276.

1 Introduction

Scale of analysis has long been considered a key concern in biogeographic research (Levin, 1992). Multiple types of scale are15

relevant to environmental data, including analysis grain, response grain, spatial structure, and study extent (Mertes and Jetz,

2018). Analysis grain, the minimum unit of spatial resolution in a spatial grid, is commonly referred to as a pixel or cell. In

research that uses environmental raster data, the pixel size directly dictates the types of biogeographic questions that can be

reasonably addressed.

This relationship between analysis grain and study suitability is complex, and higher resolutions are not always advanta-20

geous. For example, in global analyses excessively high resolution data would be computationally cumbersome and unneces-

sary if the goal is to characterize broad patterns. However as shown below, many studies have found notable benefits of higher

resolution climatic predictors. Unfortunately, regional analyses lacking local data are limited to using global datasets and the

grain size at which they are available (e.g. Cheng and Bonebrake, 2017).
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Species distribution modeling (SDM) is a common application of gridded environmental data, where the selected analysis

grain has important consequences. In SDM, one or more geographic predictors are associated statistically with the location of

known observations of a species (Peterson et al., 2011). The resulting statistical model can be converted to a geographic model:

a spatially continuous measure of species occurrence likelihood across the landscape of interest. SDMs are used for many

applications, including predicting potential ranges of invasive species, characterizing ecological constraints on species ranges,5

discovering biodiversity, and planning protected areas (Peterson et al., 2011). The effects of SDM grain size manipulation is an

active area of research. Below, we summarize findings on four main effects: estimated distribution size, inclusion of fine scale

features, predictor variable selection, and model predictive ability.

Coarser environmental data consistently result in SDMs that predict larger areas of species presence (Connor et al., 2017;

Franklin et al., 2013; Seo et al., 2009). Overestimation of SDMs is especially a concern for conservation purposes, where10

inferred size of suitable habitat is often used to inform extinction risk assessments. Mistakenly large calculated distributions

could result in species that are assigned artificially low risk levels.

Coarse resolution predictors can cause SDMs to omit small, but important areas. Particularly of interest are microrefugia,

climatically unique patches of land that can harbor rare species, and are especially important for conservation as species

distributions respond to climate change (Dobrowski, 2010). Meineri and Hylander (2017) demonstrated that because high15

resolution climate models included such microrefugia, the resulting species distribution models predicted lower extinction

rates for plant species than coarser predictors. Nezer et al. (2016) found that 10 m or 100 m resolution SDMs can reveal

other distribution features invisible at lower resolutions (1 km): movement corridors, isolated habitat patches, geomorphologic

features, and anthropogenic effects on distributions.

SDM scale can also affect which predictors are selected for model calculation. Certain predictors may be excluded in20

SDMs because they lack explanatory power at the chosen scale of analysis (Mertes and Jetz, 2017). For example, vegetation

measures like the Normalized Difference Vegetation Index (NDVI) in fragmented forests are unlikely to be relevant if the

grain size is much larger than the forest patch size, because each grid cell will be a single averaged value. This means that

coarse models might not only mischaracterize the distribution pattern itself, but they also may fail to explicate important

environmental relationships that determine species occurrence. Indeed, Nezer et al. (2016) found that the most important25

predictors (vegetation, slope) in their highest resolution models (10 m) were "nearly meaningless" at 1 km resolution. Another

study found similar differences in predictor importance related to variation in scale (Lasseur et al., 2006). Of course, predictor

importance is always relative and thus is subject to which predictors are included in model building. Therefore this pattern is

not expected to be observed in all studies, but should not be overlooked as a potential source of bias.

Last, any consistent effects of SDM grain size on the overall predictive ability of SDMs are unclear. The most commonly30

used measure of SDM performance is Area Under Curve (AUC), where a higher value indicates a greater ability to differentiate

between area the species is present or absent. Some studies found increased SDM resolution resulted in increased AUC (Seo

et al., 2009; Nezer et al., 2016), while others found no effect (Pradervand et al. 2014) or mixed effects depending on dataset

(Guisan et al., 2007). These studies used different species, predictors, scales, regions, and modeling algorithms, so further

research is required to investigate any association between SDM grain size and AUC.35
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The above advantages of higher resolution environmental data in SDM may be dependent on project-specific factors, such as

the quality of species records available and the goals of the research. For example, using environmental grids of a smaller grain

size than the locational accuracy of the available species records is untenable. Additionally, stationary species (e.g. lichens)

may be more strongly affected by local factors while highly mobile species (e.g. birds) may only be limited at broader scales.

Indeed, it has been shown that plant (rather than bird or mammal) species models with highest locational accuracy were those5

most improved by higher resolution (Guisan et al., 2007). Lastly, the utility of fine grain environmental grids can depend on

habitat; flat deserts may have less biologically relevant fine-scale spatial variation compared to mountainous forests or tropical

areas fragmented by human activity, like Hong Kong.

In this study, a new series of rasters for Hong Kong are introduced particularly suited for SDM. The layers produced focus on

long term climate averages, topography, and vegetation. We asked how the new 30 m scale rasters provide new information on10

climatic variables in Hong Kong in comparison to a global dataset already available. We hypothesize that our new climate data

will indicate greater variation (measured as raster standard deviation) in climate variables. The development of high-resolution

environmental rasters is particularly important in tropical regions where species exhibit small distribution ranges (as predicted

by Rapoport’s Rule: Stevens, 1989) and where understanding interactions between organisms and their changing habitats is

paramount.15

2 Study area: Hong Kong

Geographic data of appropriate resolution is critically important for conducting research within the Hong Kong Special Ad-

ministrative Region of China, because of its complex landscape. Hong Kong exhibits dramatically variable topography, fitting

numerous small islands, dozens of mountain peaks over 500 m, 733 km of coastline, and a human population of over 7 million

into a land area of only 1,104 km² (Fig. 1). Seasonally variable monsoon winds deliver equatorial heat and torrential precip-20

itation in summer, while northerly winds carry chilly dry air from continental Asia during the winter (Dudgeon and Corlett,

1994). However, daily temperature fluctuations are attenuated by the surrounding South China Sea and Pearl River Estuary.

Hong Kong’s terrain typically exhibits a stark bifurcation between some of the most densely constructed areas in the world

(Lau and Zhang, 2015) and steep, vegetated slopes. Uninhabited expanses are protected as part of 24 country parks and ad-

ditional special areas that cover over 40% of the territory’s land (Agriculture, Fisheries and Conservation Department, 2017).25

Even within these more natural areas, a strong disturbance gradient encompasses grasslands, shrublands, evergreen secondary

forests, and old-growth feng shui woods that have been protected from deforestation. Historically Hong Kong has been largely

stripped of its trees, and only since the end of World War II and later the establishment of the Country Park system have large

swathes of forest begun to regenerate (Zhuang and Corlett, 1997). However this process is frequently reset by human-induced

hill fires, which maintain predominantly upland areas as shrubland or grassland (Marafa and Chau, 1999). Hong Kong harbors30

several unique and restricted habitats, including mangroves in coastal areas and freshwater wetlands in the far northwest.

Hong Kong climate data is available within a variety of global gridded climate datasets (WorldClim 2 - Fick and Hijmans,

2017; MerraClim - Vega et al., 2017; CHELSA - Karger et al, 2017), but none of these have a resolution higher than 1
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km. We suspect those global climate models underestimate variation in local climate values, even after consideration of the

coarser scale. Local studies of Hong Kong meteorology have largely focused on characterizing and mitigating the effects of

urbanization (e.g. Shi et al., 2018; Wang et al., 2017; Nichol et al., 2014; Liu and Zhang, 2011; Ng, 2009; Giridharan et al.,

2004). Unfortunately, it appears the climate of Hong Kong’s landscape as a whole has been given little notice, and we are

unaware of long-term averaged climate rasters available for the region. Relevant studies that do exist include limited variables,5

and the data appear to be publicly unavailable. We are additionally unaware of Hong Kong data publicly available for vegetation

indices such as NDVI, or topographic data other than elevation. Therefore Hong Kong is in dire need of a comprehensive suite

of accessible environmental GIS data, at a resolution finer than 1 km, suitable for species distribution modeling and other

local applications. To this end, we developed new, 30 m resolution rasters of topography, NDVI, and 10 interpolated climate

variables for each month of the year.10

3 Methods

All data manipulation and geographic analyses were conducted in the R statistical computing environment (v3.3.2, R Core

Team, 2016) using RStudio (v1.0.136, RStudio Team, 2015) unless otherwise noted. Analyses are divided into three broad

categories of data products, detailed in the sections below: topographic variables, climate variables, and remote sensing vari-

ables. The variables developed were selected based on their utility in environmental research, especially SDM, as well as the15

availability of appropriate source data. An overview schematic of the data workflow is available in Figure S1.

3.1 Topographic variables

Data on the physical characteristics of Hong Kong’s landmass were assembled from remote sensing inputs, crowdsourced

coastline polygons, and a digital terrain model. The topographic variables developed are coastline, elevation, slope, aspect,

terrain roughness, relative elevation, distance to coast, water proximity, and urbanicity.20

3.1.1 Coastline

As reclamation of land from the ocean in Hong Kong is ongoing, obtaining current data for the coastline can be challenging.

Natural coastline and reservoir vectors were downloaded from OpenStreetMap (2018) and merged in QGIS (v3.01, QGIS

Development Team, 2018) to produce a shapefile of polygons representing Hong Kong land area as of January 2018. All

output rasters were masked to this area.25

3.1.2 Elevation, slope, aspect, and roughness

A 5 m resolution Hong Kong digital terrain model (Lands Department, 2017) was upscaled using bilinear resampling. The

resulting 30 m DEM was used as the elevation data throughout the study. Four other topographic predictor layers were derived

directly from this DEM: aspect, slope, aspect*slope, and a roughness index. These were calculated using the Hong Kong
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elevation raster with the terrain() function in the raster R package (Hijmans, 2019), using all 8 neighboring cells (queen case).

Aspect was transformed from degrees to a measure of north-south exposure ("northness") by cos(aspect*pi/180).

3.1.3 Relative elevation

Relative elevation is a measure of the difference in elevation between the pixel of interest, and the lowest pixel within a given

radius. A pixel on a mountain peak has a high relative elevation, while a pixel on a flat plain has a relative elevation of 05

(regardless of its elevation above or below sea level). A set of relative elevation layers for Hong Kong were calculated at

multiple scales, following the moving window approach of Bennie et al. (2010). The radii used were 60 m, 120 m, 240 m,

480 m, and 960 m. These layers are expected to be most applicable as measures of surface water drainage, and therefore soil

moisture as well. Relative elevation has been used as a covariate in climate interpolation as a proxy for cool air draining (Bennie

et al., 2010; Ashcroft and Gollan, 2012), but was not included here as a predictor as Hong Kong lacks large valleys and other10

sheltered areas where this effect would be most relevant.

3.1.4 Distance to coast and water proximity

Water bodies adjacent to land areas can act as temperature buffers, contribute to evaporative cooling (Lookingbill and Urban,

2003), and influence precipitation patterns (Heiblum et al., 2011; Paiva et al., 2011); therefore considering their presence is

important for climatic predictions. Here, two different methods were used to quantify water body distribution in Hong Kong:15

distance to coast and water proximity. A distance to coast raster, measured in meters, was produced using the distance() function

in the raster R package (Hijmans, 2019) with the Hong Kong coastline shapefile described in section 3.1.1. Distance to coast

did not incorporate inland water bodies. Second, water proximity (including inland water bodies) was calculated as the percent

of the the area surrounding a given pixel covered by land. A value of 1 means that the area within a given radius is entirely

terrestrial, while 0 indicates it is entirely aquatic. Multiple water proximity rasters were calculated with varying radii using a20

circular moving window approach like that described by Aalto et al. (2017), to represent buffering processes at different scales.

The radii used were 0.75 km, 1.5 km, 3 km, 6 km, and 12 km.

3.1.5 Urbanicity

Urbanicity rasters were developed because in densely constructed areas, urban heat island effects are expected to influence

temperatures (Nichol et al., 2013; Shi et al., 2018), and therefore urbanicity may be an important predictor in climate inter-25

polation. High rise buildings can influence temperature by blocking wind, creating shade, acting as heat sinks, and producing

thermal pollution. These effects are particularly relevant for this study, as some of Hong Kong’s weather observation stations

are adjacent to or inside urban centers. To quantify the distribution of developed area, we used a 30 m resolution dataset of

percent impervious surface (Brown de Colstoun et al., 2017), which we expect to strongly correlate with urban development.

For use in climate predictions this data was smoothed using a Gaussian moving window, because bulk air temperature is not30

expected to vary at a granular (30 m) scale. at three buffer scales (sigma = 10, 50, 100), using the focalWeight() and focal()
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functions in the raster R package (Hijmans, 2019), where type = ‘Gauss’. The resulting ’urbanicity’ layers were later used as

climate predictors. In these rasters, completely impervious locations have a value of 100, while vegetated areas have a value of

0.

3.2 Climate variables

Climate interpolators are often faced with the challenge of estimating climate parameters over a large area using sparse weather5

station observations, at least in part of the region considered (e.g. Hu et al., 2016). In contrast, interpolation in Hong Kong is

benefitted by a relatively small geographic area and a quite dense network of weather data provided by dozens of permanent

weather stations (Hong Kong Observatory, 2018; see Figure S2). Here we use multiple linear regression to predict geographic

climate patterns using weather station training points and raster covariates. This is followed by thin plate spline (TPS) interpo-

lation (see Wahba, 1979) of the regression model residuals. TPS is a widely used approach in climate interpolation (e.g. New10

et al., 2002; Fick and Hijmans, 2017), which fits a curved surface to irregularly distributed points. This two-step interpolation

(regression followed by TPS) was based on the approach of Meineri and Hylander (2017).

Weather station observation data and geographic coordinates were downloaded from the web portal of the Hong Kong

Observatory (2018). As the goal was to produce a representation of long-term but modern climate, measurements over 20

years (1998 to 2017) were included. To ensure averages were reliable, weather stations were only included for interpolation of15

each variable if at least 8 years of complete data were available within the 20 year window. The minimum number of stations

used for each model is provided in Table 2. Monthly observations of ten variables were obtained: maximum temperature, mean

daily maximum temperature, mean daily temperature, mean daily minimum temperature, minimum temperature, mean dew

point, mean relative humidity, mean wind speed, mean air pressure, and total rainfall.

Climate interpolation consisted of two main steps. First, a linear model was built for each climate variable for each month20

of the year. Independent variables were selected by searching the literature for similar studies, and choosing predictors we

expected to have an influence on climate at this regional scale. When necessary, each predictor was statistically transformed

to approach a normal distribution. The six topographic predictors used as model building candidates were: elevation, log-

transformed distance to coast, exponentially transformed fine and coarse water proximity, log-transformed urbanicity (sigma =

50), and ‘northness’ - the cross product of aspect and slope. The water proximity layers were products of additively combining25

multiple scale rasters into fewer predictors: fine water proximity was the sum of 0.75 km, 1.5 km, 3 km scale rasters, while

coarse was the sum of 6 km, and 12 km. The six model predictors were tested for collinearity using vifstep() in the usdm

R package (Naimi et al., 2014) with a variance inflation factor threshold of 6, and no problems were found. Linear models

were built using the lm() R function. All predictors were initially included, then using the step() function, pared down in each

regression model using stepwise bidirectional selection based on the Akaike information criterion, using 4 degrees of freedom30

as a penalty to make predictor selection stricter than the default. The resulting regression model was used to calculate a climate

value at each grid cell based on a linear relationship with the selected predictors.

Second, to adjust for local variation in climate that is not associated with topography, the linear model residuals at each

station were calculated and interpolated using the thin plate spline approach implemented in the fields R package (Nychka et
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al., 2017). The lambda smoothing parameter, which determines how closely the fitted surface matches input values, was set to

0.01. This low lambda value was selected because of the relatively high confidence in the long-term averaged weather station

values (based on at least 8 years of data). This effectively produces a smoothed layer of local deviation from the linear model,

which was used to additively adjust the results of the linear model predictions and produce finalized climate rasters.

We measured the spatial predictive ability of models using ten-fold cross-validation (Dobesch et al., 2007). In each validation5

round, 10% of weather stations were reserved as a test dataset and the remainder were used for training. While randomly

selected test points may be subject to spatial sampling bias (Hijmans, 2012), this may be less of a concern for this study

because in Hong Kong the weather stations are fairly stratified (Figure S2). Average root mean squared error of the test data

subset from the final model prediction was used as an error measurement. To normalize these error measures across the climate

variables, we adjusted them as a percentage of the standard deviation of the initial weather station values measured. This cross-10

validation procedure was used only to produce these validation measurements. The finalized monthly climate rasters described

above were trained using all available data.

The finalized monthly rasters were then summarized into layers that characterize yearly climatic means and variation. These

include 19 "bioclimatic" variables using the biovars() function in the dismo R package (Hijmans et al., 2017), which are

specifically suited for species distribution modeling and other ecological purposes. This also allows our data to be compared15

with other climate data products that use the same calculations. Because those calculations only use rainfall and average daily

maximum and minimum temperatures in each month, we also produced yearly average layers of dewpoint, relative humidity,

mean daily temperature, air pressure, and wind speed. Also provided are layers of highest and lowest average monthly extreme

temperatures, and their difference (extreme temperature annual range). Because they are derived from monthly extremes rather

than averaged daily extremes, these variables represent the full range of temperatures experienced in a given location better20

than the bioclimatic variables.

For comparison with global climate data products, we resampled bioclimatic variables to the same (1 km) resolution as

WorldClim using bilinear interpolation. Only pixels present in both data products were used for comparisons.

3.3 Remote sensing data

Normalized difference vegetation index (NDVI) is a common metric of vegetation presence and density derived from satellite25

imagery. To calculate NDVI, Landsat 8 images (U.S. Geological Survey, 2018) of Hong Kong were obtained. We downloaded

one image from March 2016 that covers much of Hong Kong except for the far eastern areas, and is free of clouds. This was

supplemented with an image from March 2018 after adjustment, so that all land areas of the region were included. NDVI

calculations were completed using the standard equation (Pettorelli et al., 2005):

NDV I = (NIR−Red)/(NIR+Red) (1)30

Where NIR is near-infrared (Landsat band 5: 0.851 to 0.879 µm) and Red is visible red radiation (Landsat band 4: 0.636 to

0.673 µm). The resulting NDVI value varies between 1 and -1, where higher values correspond with denser vegetation.
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4 Results and discussion

Results of this environmental analysis of Hong Kong include 48 rasters and one vector file. All rasters are provided at an

identical 1 arc second (30 m) resolution and in the WGS84 geographic coordinate system. Summary values and filenames are

provided in the data repository.

4.1 Topographic variables5

Distance to coast results show that approximately 42% of Hong Kong’s land area is within 1 km of the coastline. However it is

apparent that inland areas often feature steep inclines, as half of Hong Kong’s land is above 84 m elevation.

For variables like relative elevation, urbanicity, and water proximity, the ideal scale of raster calculation is dependent on the

desired effect to be captured, and perhaps other characteristics of the landscape in question. For this reason, we provide these

rasters calculated at multiple buffer scales.10

Urbanicity results show that the majority of land in Hong Kong is not near urban areas, as the median raster values are below

4% urban at all scales calculated (Table 1). This shows that although Hong Kong has extremely dense urban cores, most of its

mountainous terrain is unpopulated.

4.2 Climate variables

Minimally, a total of 32,024 monthly weather station measurements over 20 years (1998 to 2017) were used to construct15

climate models for all months and variables, at finer resolution compared to global datasets (Fig. 2). High weather station

density and availability of data on multiple candidate topographic climate-forcing factors allowed for high confidence in many

climate variable models, especially those related to temperature (Figs. 3, 4). The climate interpolation results include monthly

models of ten variables including temperature, precipitation, and humidity, making a total of 120 individual models produced

(monthly models of three temperature variables are shown in Fig. 5). As an example, one of these models represents minimum20

temperatures recorded in all Januaries with data available from 1998 to 2017. For all variables, the predictors included in

monthly models are displayed in Figure 6, and the number of stations with data included is in Table 2.

4.2.1 Temperature

Temperature was found to vary considerably across Hong Kong, with more than 6ºC difference in mean annual temperature

between the highest mountain peaks (>900 m, <18ºC) and some low-lying urbanized areas (>24ºC). While mean and minimum25

temperature are highest in urban areas, maximum temperature shows a different pattern with a maximum in inland valleys in

the northern New Territories. This pattern may be explained by urban heat retention: buildings act as heat sinks which absorb

solar radiation during the day, and slowly release heat at night, causing increased minimum temperatures (see Oke, 1982).

The high maximum temperatures in inland valleys may be due to reduced air circulation in sheltered locations, and lack of

complex vegetation or urban structures providing shade. The high accuracy of temperature models (Figs. 3, 4) is likely due to30

a strong association with elevation; elevation was by far the most commonly included predictor for temperature models (Fig.
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6). Urbanicity was important for mean and minimum temperature, but not maximum temperature. Water proximity and coast

distance were differentially included depending on the variable, while aspect*slope rarely had an effect.

4.2.2 Rainfall

In our models, the highest annual rainfall (bio12) areas in Hong Kong (>2500 mm annually) are inland and at high elevations,

presumably because of condensation from humid air as it passes over mountains. Areas near the coast, particularly small5

outlying islands and the eastern coast in Lung Kwu Tan receive the lowest amount of annual rainfall (<1600 mm). Precipitation

of driest month (bio14) was uniformly low, ranging from 20 to 40 mm, but the relative pattern of high and low precipitation

areas remained similar. The most commonly included model predictor was fine-scale water proximity (Figure 6). Elevation was

predictive for 5 out of 12 months, but few other topographic predictors were useful. Seasonality of rainfall in Hong Kong is

strong. Averaged across all locations, 52% of total yearly rainfall was recorded in three months (June through August). Rainfall10

models were informed by more weather stations than any other climate variable (Table 2), but they have the highest relative

standard error (Fig. 3) and therefore the lowest accuracy. Because they are influenced by both global and locally variable wind

patterns, precipitation distributions are notoriously difficult to predict, especially in urban areas (Cristiano et al., 2017).

4.2.3 Dew point, humidity, pressure, and wind speed

Dew point exhibits a similar pattern to other temperature variables, with mean annual dew point ranging from 15.5ºC at15

mountain peaks to around 19ºC on small islands and lower areas. Mean annual relative humidity reaches a maximum of about

90% at Tai Mo Shan, while many urban areas in Kowloon, Tuen Mun, and Yuen Long are between 70 and 75%. Surprisingly,

mean annual air pressure has a positive correlation with elevation; the highest values (reaching 1014 hPa) are at mountain

peaks, and particularly low values (as low as 1012.5 hPa) in coastal areas of southern and western Hong Kong. Mean annual

wind speed is also strongly associated with elevation, with mean annual values above 30 km/h on Lantau Island mountain20

peaks, down to below 5 km/h in interior low elevation areas of the New Territories.

4.2.4 Comparisons with global climate data

Our new climate models are compared with a recent global climate dataset to identify differences in predictions of Hong Kong

climate values (Fig. 7). WorldClim 2 was produced using a similar interpolation approach with regression modeling and thin

plate spline interpolation, but also included satellite-derived covariates in addition to topography (Fick and Hijmans, 2017).25

Because WorldClim incorporates vast amounts of data from multiple databases covering overlapping geographic and political

entities, it is difficult to ascertain exactly which individual weather stations were included, and we were unable to determine

whether any Hong Kong weather stations were included or if the datasets are completely independent. However, the model

predictions differ substantially (Figs. 2, 7; Table 3). Our models generally indicate greater spatial variation than WorldClim,

with cool areas colder, warm areas hotter, and wet areas wetter. For example in average low temperature of coldest month (bio6),30

high elevation areas could be more than 2ºC lower, and urban areas more than 2ºC higher than WorldClim indicates (Fig. 7a).
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To further quantify differences in values between these two datasets, for each of the 19 bioclimatic variables we calculated the

standard deviation of raster values (Table 3). All of our interpolated climate rasters had a higher standard deviation than their

WorldClim 2 counterparts. Though there is a temporal discrepancy between weather station data used in WorldClim 2 (1970-

2000) and this study (1998-2017), climate change is unlikely to explain the observed differences in temperature variability.

Evidence suggests that if anything, mountains are experiencing climate warming faster than low elevation areas (Pepin et5

al., 2015), which would give the opposite results of our findings where Hong Kong’s mountains are cooler than WorldClim

indicates (Fig. 7a). Unless global climate models increase in resolution and accuracy, regional models will remain critical for

local applications.

4.3 Remote sensing variable

The NDVI data represents vegetation quality and density based on two merged satellite images, both in March of their respec-10

tive years. Although this is only an instantaneous representation of NDVI, we expect it to correlate strongly with the spatial

pattern of vegetation density throughout the year. Certain plant species shed and regenerate their leaves during specific months

ranging from winter through mid-summer, but Hong Kong’s woody vegetation is overall evergreen (Dudgeon and Corlett,

1994), so seasonal changes in NDVI are not expected to be drastic. NDVI values above 0.4 include Hong Kong’s densest

forests, while unvegetated or urbanized areas are well below 0.1. The densest vegetation (> 0.4 NDVI) in Hong Kong tends to15

be on slopes between 100 m and 400 m elevation (Fig. 8), and is distributed between Hong Kong Island, Lantau Island, and the

New Territories. The verdant mangrove forests, at sea level, are an exception. The patchy distribution of high density vegetation

likely reflects the effects of historical deforestation. The largest patches are found on the southeastern slopes of Tai To Yan in

the New Territories. The relative distribution of NDVI classes along Hong Kong’s elevational gradient is shown in Figure 8.

Future work could determine to what extent NDVI changes over time, in response to seasonality or recent weather. The limiting20

factor is the availability of data of adequate temporal resolution, as many satellite images of Hong Kong are obscured by cloud

cover or degraded by poor air quality.

4.4 Value and Utility

This new data will benefit environmental research, and specifically SDM studies, in two main ways. First, it will enable

finer scale analyses than previously possible. For SDM, this means improved detection of climatic microrefugia (Meineri and25

Hylander, 2017), and the ability to differentiate between human altered habitat and natural areas. Rampant development and

a shifting climate make this knowledge of local species persistence more important than ever. Additionally, this is especially

relevant in Hong Kong where topography varies dramatically, and where urban areas form a complex mosaic with undeveloped

expanses.

Second, we provide a diverse array of rasters derived from multiple independent data sources, but in a single resolution and30

format to facilitate further analysis and synthesis of meaning. For SDM, these layers have distinct advantages over datasets

that only contain climate data. Compared to climate data alone, using diverse predictors including topographic characteristics

have been shown to be important variables for accurate SDM results, such as predicting the spread of invasive species in new
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ranges (Peterson and Nakazasa, 2008). However benefits of non-climate data may only be evident in finer scale SDMs (Luoto

et al., 2007).

Finally, such high quality, diverse geographic data is especially uncommon in tropical regions, where improved knowledge

for environmental research and biological conservation is most needed. According to Rapoport’s Rule, tropical species are

more likely to have smaller distributions (Stevens, 1989), and therefore future execution of local SDM studies to understand5

their ranges are particularly important.

4.5 Limitations and next steps

Here we outline how shortfalls of the presented data may be improved in the future. First, though we inferred Hong Kong’s

pattern of urban development from impervious surface data, this is less than ideal because in addition to concrete, bare soil

or rock are sensed as impervious. Also, it cannot differentiate dense urban cores of high-rises from large paved areas. For10

climate modeling, an urbanicity measure that considers building height or population density at a 30 m or finer scale could be

preferable.

Second, while our temperature rasters should accurately represent air temperature in open areas, they do not reflect the

high spatial variation in temperature found in urban microclimates. For example, although the manned Kowloon HKO weather

station is inside a densely populated area, as pointed out by Nichol and To (2012) it is still in a small parklike area surrounded15

by trees, and therefore is not representative of the most densely urbanized areas of Hong Kong. Other stations in urban areas are

similarly near green spaces or otherwise open areas. Higher resolution (say 5 m or 1 m) studies of urban thermal distributions

would strongly benefit from analysis of wind patterns, building height, thermal pollution, and other factors (e.g. Shi et al., 2018).

Therefore granular, ground-level temperatures in urban areas are likely substantially different than the broader air temperature

values our models provide.20

Similar to other climate interpolation studies, bias in the physical locations of automatic weather stations may be of concern.

Weather stations are often intentionally placed in flat, open areas with the goal of measuring weather that is relevant to a broad

geographic area, rather than locations that may experience unique local climate. It may be for this reason that Slope*Aspect

was infrequently useful for model construction, as few stations are on steep slopes. Elevational distribution of stations may

also be a source of bias; although a weather station operates at the highest point in Hong Kong (Tai Mo Shan, 955 m), there are25

only two other stations above 600 m.

Finally, while we used cross-validation to measure the spatial predictive ability of the climate models, this method is only

able to test models against locations where weather stations are present; validation based on an independently collected dataset

would be ideal. One common validation method is to use weather data loggers placed across elevational and land-use gradients

(Meineri and Hylander, 2017). Such an approach would allow for explicit testing and comparing predictiveness of climate30

products for different areas of Hong Kong.

Important gaps in Hong Kong geographic data remain. Projections of future climate scenarios could complement historical

data to enable predictions of biodiversity change. Additional variables like cloud cover and solar radiation would especially

benefit studies of photosynthetic taxa. A discrete classification of habitat type would be useful for ecological research, and

11



quality soil type data is lacking. Availability of such data for Hong Kong would complement the findings of this project, which

significantly advance our understanding of geographic heterogeneity in this complex tropical region.

5 Conclusions

This diverse set of 30 m resolution topography, climate, and remote sensing data include the first published interpolation of

long-term climate averages specific to Hong Kong. Our findings suggest that global interpolated climate datasets are limited by5

their resolution, and underestimate local climate variability. Therefore the availability of such local data will remain critically

important for the foreseeable future. This new data will allow for a new generation of studies in Hong Kong, and enable con-

nections between environmental data and biotic patterns at a much finer scale than previously possible. Aside from clear uses

in conservation, ecological and biogeographic research, we also expect this freely accessible dataset to be broadly applicable

for many sectors, including tourism, hydrology, recreation, agriculture, mapmaking, and real estate.10

6 Data availability

GeoTIFF raster and shapefile documents (Morgan and Guénard, 2018) can be downloaded from figshare: https://doi.org/10.6084/m9.figshare.6791276.

A document in the repository includes file names, descriptions, and summary statistics for all provided rasters. Individual

monthly rasters for each of the 10 climate variables are available as a compressed zip file.
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Figure 1. Hong Kong geography. The three highest peaks in the territory, as well as the highest point on Hong Kong Island are marked.

Areas protected as Country Parks are highlighted in green.
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Figure 2. Comparison of average high of warmest month (bio5) model results for Hong Kong. (a) is from our newly interpolated climate

models at 30 m resolution, while (b) is 1 km resolution data available as part of WorldClim 2 (Fick and Hijmans, 2017). Not only is the

resolution markedly improved, but also the temperature values are more varied, for instance on the large southern islands.
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Figure 3. Adjusted r2 values of initial (pre-spline) regression models. Each boxplot includes 12 points, one for each monthly model. Tem-

perature variation, especially mean temperature, was best explained by linear modeling, while rainfall was predicted the most poorly.
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Figure 4. Relative magnitude of training and testing dataset errors, from 10 validation rounds of climate variable modeling. A value of 100

indicates for that climate model, that the average difference between the value recorded at a given weather station and the value predicted

by the model at that location, is equal to the standard deviation of the initial set of all values recorded at all weather stations for that climate

variable.
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Figure 5. Model results for three of ten interpolated climate variables. (a) Maximum temperature, (b) Mean temperature, and (c) Minimum

temperature.
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Figure 6. Regression predictors included in monthly models for 10 climate variables. Each predictor is represented by a different color.

Minimum and mean temperature variables were most predictable, consistently including elevation and urbanicity. Rainfall patterns were

most difficult, with the fewest predictors included.
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Figure 7. Differences between results of this study and Worldclim 2 (Fick and Hijmans, 2017) values. (a) is average low temperature of

coldest month (bio6), with red where the local model is warmer than WorldClim, and blue is colder. (b) shows annual precipitation (bio12),

with blue where the local model predicts more rainfall than WorldClim, and tan is less rainfall. Our model results were resampled to 1 km

resolution using bilinear interpolation to allow for these comparisons.
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Figure 8. NDVI class composition over Hong Kong’s elevational range. The majority of land area near sea level is below NDVI 0.1, while

Hong Kong’s highest elevation areas are between 0.1 and 0.2, indicating short vegetation. The elevation range with proportionally the most

dense vegetation (0.4 to 0.5 NDVI) is 300 to 400 m.
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Figure S1. Schematic of data products and the sources that informed them. Items enclosed in a box represent the files available for download

from the figshare repository.

25



Figure S2. Permanent weather stations operated by the Hong Kong Observatory. Symbols indicate what type of data is available from each

station: temperature, rainfall, or both.
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Table 1. Raster product descriptions, units, and 5th, 50th, and 95th percentile values.

Description Unit 5% 50% 95% Filename

Aspect (Northness) index -0.99 0 0.99 aspect.tif

Aspect (Degree) º 18 180 341 aspect_degree.tif

Slope º 0 17 33 slope.tif

Terrain Roughness index 0.33 24.95 50.67 rough.tif

Elevation m 5 84 407 elevation.tif

Aspect * Slope index -23.5 0 23.58 aspect_x_slope.tif

Distance to Coast m 68 1349 6186 waterdist.tif

Relative Elevation (60 m radius) m 0 16 37 relelev60.tif

Relative Elevation (120 m radius) m 0 28 69 relelev120.tif

Relative Elevation (240 m radius) m 2 46 124 relelev240.tif

Relative Elevation (480 m radius) m 2 64 208 relelev480.tif

Relative Elevation (960 m radius) m 3 76 308 relelev960.tif

Water Proximity (0.75 km radius) proportion 0.52 1 1 water25.tif

Water Proximity (1.5 km radius) proportion 0.4 0.98 1 water50.tif

Water Proximity (3 km radius) proportion 0.33 0.88 1 water100.tif

Water Proximity (6 km radius) proportion 0.31 0.74 1 water200.tif

Water Proximity (12 km radius) proportion 0.27 0.66 0.94 water400.tif

Annual Mean Temperature ºC 20.8 22.9 24 biovars_t_1.tif

Mean Diurnal Range (Mean (max temp-min temp)) ºC 4.9 6.2 7.7 biovars_t_2.tif

Isothermality (bio2/bio7) (* 100) index 27.4 31.9 35.6 biovars_t_3.tif

Temperature Seasonality (standard deviation *100) index 467 496 512 biovars_t_4.tif

Average High Temperature of Warmest Month ºC 28.9 31.5 32.8 biovars_t_5.tif

Average Low Temperature of Coldest Month ºC 9.5 11.7 13.9 biovars_t_6.tif

Temperature Annual Range (bio5-bio6) ºC 17.7 19.6 21.6 biovars_t_7.tif

Mean Temperature of Wettest Quarter ºC 25.8 27.8 29.2 biovars_t_8.tif

Mean Temperature of Driest Quarter ºC 14.4 16.3 17.4 biovars_t_9.tif

Mean Temperature of Warmest Quarter ºC 25.9 28.2 29.2 biovars_t_10.tif

Mean Temperature of Coldest Quarter ºC 14.4 16.3 17.4 biovars_t_11.tif

Annual Precipitation mm 1738 2079 2415 biovars_t_12.tif

Precipitation of Wettest Month mm 345 425 521 biovars_t_13.tif

Precipitation of Driest Month mm 25 32 35 biovars_t_14.tif

Precipitation Seasonality (Coefficient of Variation) index 78.7 82.8 86 biovars_t_15.tif
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Table 1. Continued.

Precipitation of Wettest Quarter mm 883 1085 1276 biovars_t_16.tif

Precipitation of Driest Quarter mm 86 104 112 biovars_t_17.tif

Precipitation of Warmest Quarter mm 814 1054 1260 biovars_t_18.tif

Precipitation of Coldest Quarter mm 86 104 112 biovars_t_19.tif

Extreme Temperature Annual Range ºC 26.3 29 32.1 avars_annual_range.tif

Annual Mean Dew Point ºC 17.3 18.4 19.1 avars_dewp_mean.tif

Annual Mean Relative Humidity % 75.4 80.4 84.9 avars_humid_mean.tif

Maximum Temperature of Warmest Month ºC 32.3 35 36.2 avars_max_tmax.tif

Minimum Temperature of Coldest Month ºC 2.4 5.6 8.6 avars_min_tmin.tif

Annual Mean Air Pressure hPa 1012.5 1012.8 1013.4 avars_press_mean.tif

Actual Annual Mean Temperature ºC 20.3 22.4 23.6 avars_tmean_mean.tif

Annual Mean Wind Speed km/h 5.4 11.6 19.2 avars_windsp_mean.tif

Urbanicity (sigma = 10) % 0 0 68.9 urbanicity_gauss10.tif

Urbanicity (sigma = 50) % 0 1.5 56 urbanicity_gauss50.tif

Urbanicity (sigma = 100) % 0 3.3 50.1 urbanicity_gauss100.tif

Normalized Difference Vegetation Index (NDVI) index 0.05 0.29 0.39 hk_ndvi.tif

Hong Kong Coastline and Reservoirs - - - - HK_border.shp
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Table 2. Number of weather stations that contributed data for each climate model.

press tmax mtmax tmean mtmin tmin dewp humid prec windsp

Jan 17 39 39 38 39 38 23 23 40 28

Feb 17 40 40 39 40 39 25 25 41 28

Mar 17 39 39 38 39 39 25 25 40 28

Apr 18 39 39 37 39 39 24 24 41 29

May 17 39 39 39 39 39 24 24 41 27

Jun 16 38 38 37 38 38 24 24 42 27

Jul 17 37 37 37 37 37 24 24 41 28

Aug 17 39 39 39 39 39 25 25 40 27

Sep 16 40 40 38 40 40 25 25 41 27

Oct 18 42 42 42 42 42 26 26 43 29

Nov 18 42 42 41 42 42 26 26 43 29

Dec 18 43 43 42 43 42 25 25 44 29
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Table 3. Comparisons of variation between bioclimatic variables, measured as raster value standard deviation. All new rasters are more

variable than their corresponding Worldclim 2 layers. Increases in standard deviation range from 1.4x to 3.4x. Calculations may appear

inaccurate due to rounding.

Local Model SD Worldclim 2 SD Increase Ratio

bio 1 1.0 0.5 1.9

bio 2 0.8 0.3 3.0

bio 3 2.5 0.7 3.4

bio 4 14.6 10.2 1.4

bio 5 1.2 0.7 1.7

bio 6 1.3 0.5 2.8

bio 7 1.2 0.6 2.0

bio 8 1.1 0.6 1.8

bio 9 0.9 0.5 1.9

bio 10 1.1 0.6 1.7

bio 11 0.9 0.5 1.9

bio 12 204.4 95.4 2.1

bio 13 52.9 21.5 2.5

bio 14 3.1 1.6 1.9

bio 15 2.2 1.1 2.0

bio 16 119.9 54.2 2.2

bio 17 8.2 4.1 2.0

bio 18 136.2 67.9 2.0

bio 19 8.2 5.5 1.5
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Appendix A: Glossary of variable definitions

Maximum temperature (tmax) the highest temperature observed within a month

Mean daily maximum temperature (mtmax) the mean of all daily high temperatures within a month

Mean daily temperature (tmean) the mean of all temperatures within a month

Mean daily minimum temperature (mtmin) the mean of all daily low temperatures within a month5

Minimum temperature (tmin) the lowest temperature observed within a month

Mean dew point (dewp) the mean of all dew point observations within a month

Mean relative humidity (humid) the mean of all relative humidity observations within a month

Mean wind speed (windsp) the mean of all wind speed observations within a month

Mean air pressure (press) the mean of all air pressure observations within a month10

Rainfall (prec) the total of all rain recorded within a month

Relative elevation the difference in elevation between the pixel of interest, and the lowest pixel within a given radius

Distance to coast geometric distance between the pixel of interest and the nearest oceanic coastline

Water proximity percent of area that is terrestrial within a given radius of the pixel of interest

NDVI Normalized Difference Vegetation Index15

Urbanicity measure of area that is impervious surface within a given radius of the pixel of interest
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