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Abstract. A large fraction of fossil fuel CO2 emissions emanate from “hotspots”, such as cities (where direct CO2 emissions 

related to fossil fuel combustion in transport, residential, commercial sectors, etc., excluding emissions from electricity-25 

producing power plants, occur), isolated power plants, and manufacturing facilities, which cover a small fraction of the land 

surface. The coverage of all high-emitting cities and point sources across the globe by bottom-up inventories is far from 

complete, and for most of those covered, the uncertainties in CO2 emission estimates in bottom-up inventories are too large to 

allow continuous and rigorous assessment of emission changes (Gurney et al., 2019). Space-borne imagery of atmospheric 

CO2 has the potential to provide independent estimates of CO2 emissions from hotspots. But first, what is a hotspot needs to 30 

be defined for the purpose of satellite observations. The proposed space-borne imagers with global coverage planned for the 

coming decade have a pixel size on the order of a few square kilometers, and a XCO2 accuracy and precision of <1 ppm for 

individual measurements of vertically integrated columns of dry air mole fractions of CO2 (XCO2). This resolution and 

precision is insufficient to provide a cartography of emissions for each individual pixel. Rather, the integrated emission of 

diffuse emitting areas and intense point sources are sought. In this study, we characterize area and point fossil fuel CO2 emitting 35 

sources generating coherent XCO2 plumes that may be observed from space. We characterize these emitting sources around 

the globe and they are referred to as “emission clumps” hereafter. An algorithm is proposed to identify emission clumps 

worldwide, based on the ODIAC global high resolution 1 km fossil fuel emission data product. The clump algorithm selects 

the major urban areas from a GIS (geographic information system) file and two emission thresholds. The selected urban areas 

and a high emission threshold are used to identify clump cores such as inner city areas or large power plants. A low threshold 40 
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and a random walker (RW) scheme are then used to aggregate all grid cells contiguous to cores in order to define a single 

clump. With our definition of the thresholds, which are appropriate for a space imagery with 0.5 ppm precision for a single 

XCO2 measurement, a total of 11,314 individual clumps, with 5,088 area clumps and 6,226 point-source clumps (power plants), 

are identified. These clumps contribute 72% of the global fossil fuel CO2 emissions according to the ODIAC inventory. The 

emission clumps is a new tool for comparing fossil fuel CO2 emissions from different inventories, and objectively identifying 45 

emitting areas that have a potential to be detected by future global satellite imagery of XCO2. The emission clump data product 

is distributed from https://doi.org/10.6084/m9.figshare.7217726.v1. 

1 Introduction 

Monitoring the effectiveness of emission reductions after the Paris Agreement on Climate (UNFCCC, 2015) requires 

frequently updated estimates of fossil fuel CO2 emissions and a global synthesis of these estimates. The need for emission 50 

monitoring goes beyond national estimates, as many cities and regions have set concrete objectives to reduce their greenhouse 

gas emissions. The CO2 emissions (direct and indirect) related to final energy use in cities are estimated to be 71% of the global 

total (IEA, 2008; Seto et al., 2014). In addition, power plants account for ~40% of direct energy-related CO2 emissions, and 

are subject to regulations that require a regular reporting of their emissions. The contribution from cities (excluding electricity-

related emissions from large power plants, see Sect. 2) and power plants to national and global mitigation efforts is thus critical 55 

(Creutzig et al., 2015; Shan et al., 2018). 

The technique called atmospheric CO2 inversion quantifies emissions based on a prior estimate from inventories, 

atmospheric CO2 measurements and atmospheric transport models. Inversions of fossil fuel CO2 emissions have used in-situ 

surface networks, aircraft measurements and mobile platforms around cities (Bréon et al., 2015; Lauvaux et al., 2016; Staufer 

et al., 2016), but the deployment of a network around each city may be impractical. Alternatively, it is possible to measure 60 

vertically integrated columns of dry air mole fractions of CO2 (XCO2) from satellites passing over emission hotspots. Satellite 

measurements offer the advantage of global spatial coverage, but research studies consistently outlined that satellite XCO2 

measurements need to have a high precision (< 1 ppm) and a spatial sampling at high resolution (< 2-3 km horizontal resolution) 

(Bovensmann et al., 2010; O’Brien et al., 2016). For example, the Greenhouse Gases Observing Satellite (GOSat-2) aims to 

measure XCO2 at 0.5 ppm precision (https://directory.eoportal.org/web/eoportal/satellite-missions/g/gosat-2). The single 65 

sounding random error in XCO2 from the Orbiting Carbon Observatory 2 (OCO-2) is on the order of magnitude of 0.5 ppm 

(Eldering et al., 2017; Chatterjee et al., 2017). XCO2 measurements from selected 10 km wide OCO-2 tracks downwind of 

large power plants were used to quantify their emissions by fitting observed XCO2 plumes with Gaussian dispersion models 

(Nassar et al., 2017). According to Nassar et al., (2017), the uncertainties in the emissions from three selected U.S. power 

plants were constrained within 1–17% of reported daily emission values. The primary scientific goal of the OCO-2 mission 70 

was to estimate natural land and ocean carbon fluxes, and tracks overpassing power plants are very sporadic, given the narrow 
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swath width and frequent clouds. In order to improve the sampling of the atmosphere, XCO2 imagers (e.g. passive spectral-

imagers in the short wave infrared spectrum) are under study. The list includes the Geostationary Carbon Observatory 

(GeoCARB) mission (Polonsky et al., 2014), the OCO-3 instrument on board the International Space Station capable of 

pointing to chosen emitting areas (https://www.nasa.gov/mission_pages/station/research/experiments/2047.html) and a 75 

constellation of low earth orbiting (LEO) imagers with a swath of a few hundred kilometers planned as future operational 

missions within the European Copernicus Program (Ciais et al., 2015).  

The ability of imaging instruments to reduce uncertainty on CO2 emissions was investigated by atmospheric inversions 

with pseudo-data, that is, Observing System Simulation Experiments (OSSEs), but only for case studies of limited duration. 

OSSEs were performed for large cities (Broquet et al., 2018; Pillai et al., 2016), single power plants (Bovensmann et al., 2010) 80 

or for a region encompassing several cities (O’Brien et al., 2016). An OSSE study with one LEO imager over Paris (Broquet 

et al., 2018) solved for emissions during the 6 h before a given satellite overpass. Their results showed that the uncertainty 

(~25%) in the 6 h mean emissions in the prior estimates could be reduced to less than 10% during few days when the wind 

speed is low and there is not much cloud. The results of such case studies are informative about the potential of satellite 

observations in quantifying fossil fuel CO2 emissions, but do not inform systematically about how many hotspots, and which 85 

fraction of emissions worldwide could be constrained with XCO2 imagers. 

A prerequisite for assessing the capability of satellite imagers is to have a high resolution global map of fossil fuel CO2 

emissions (Gurney et al., 2019). We use in this study the ODIAC map at 30×30 arc-seconds (~ 1 km×1 km) (Sect. 2.1). Not 

all the emitting 1 x 1 km land grid-cells of such a map will have emissions sufficiently intense to produce a XCO2 plume 

detected with a satellite (Nassar et al., 2017; Hakkarainen et al., 2016). On the other hand, a cluster of contiguous emitting grid 90 

cells will create a stronger plume than a single emitting grid cell, so that the uncertainty on the sum of emissions from a cluster 

could be reduced with space-borne measurements. This poses the research question of how to define those clusters of emitting 

pixels (called emission clumps hereafter) who will generate individual XCO2 plumes being detectable from space. The 

emission clumps should include intense area sources and large isolated point sources (e.g. power plants, large factories). Using 

political and administrative area of cities to define clumps does not work for this purpose because the same administrative area 95 

may contain separate large point sources or multiple hotspots forming separable plumes, as well as areas with no or little 

emission. The definitions of emitting areas differ among inversion studies. Broquet et al. (2018) estimated emissions from the 

Île de France region, while Pillai et al. (2016) defined their emitting region as an area of 100 km×100 km around Berlin. The 

arbitrary choice of emitting areas across studies make the comparison of their results difficult and are not applicable worldwide. 

This justifies the need for a systematic and objective definition of emission clumps that constitute observing targets for 100 

satellites.  

The algorithm for calculating emission clumps developed in this study is inspired by research on mapping urban area and 

socio-demographic activities (Li and Zhou, 2017; Elvidge et al., 1997; Zhou et al., 2015; Su et al., 2015; Doll and Pachauri et 

al., 2010; Letu et al., 2010). The corresponding algorithms can be grouped in classification-based or threshold-based. 
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Classification-based algorithms use datasets such as the normalized difference vegetation index (NDVI) and the normalized 105 

difference water index (NDWI) to train a machine-learning model to classify urban and non-urban areas (Cao et al., 2009; 

Huang et al., 2016). Threshold-based algorithms classify urban grid cells where some continuous variables (e.g. nighttime 

lights) are above a given threshold (Elvidge et al., 1997; Liu and Leung, 2015; Li et al., 2015; Liu et al., 2015). In threshold-

based methods, given the high spatial heterogeneity of urbanization and urban forms, efforts have been devoted to finding 

local optimal thresholds, such as the “light-picking” approach to find a local nighttime background light surrounding a target 110 

grid cell (Elvidge et al., 1997), or determining local thresholds by matching local/site-based surveys and land-use/land-cover 

(LULC) datasets (Zhou et al., 2014). 

The problem of characterizing CO2 emission clumps posed here consists in delineating all areas that have a potential to 

generate detectable atmospheric XCO2 plumes. “Detectable” means here that the concentration within a plume formed by a 

clump should be large enough compared to the surrounding background in XCO2 images of typical spatial resolution of ≈1 115 

km. The magnitude of a minimum detectable XCO2 enhancement in a plume (relative to the surrounding background) depends 

on the individual XCO2 sounding precision. Such sounding precision should be of a similar order of magnitude worldwide, 

although the solar zenith angle, aerosol loads, surface albedo etc. will affect it (Buchwitz, et al., 2013). In this context, contrary 

to the algorithms used for mapping urban areas, common global minimum emission thresholds for land grid cells forming a 

clump are relevant. 120 

Because CO2 produced by emissions is quickly dispersed by transport, XCO2 plumes sampled at a given time by a satellite 

image usually relate to emissions that occurred few hours before its acquisition (Broquet et al., 2018). In this study, we focus 

on planned LEO imagers on Sentinel missions, assuming an equator crossing time around 11:30 local time (Buchwitz et al., 

2013; Broquet et al., 2018) so that XCO2 plumes sampled by these imagers are from morning emissions. Different overpass 

times are also possible for other satellites. For example, Equator crossing times of OCO-2 and GOSAT are 13:00-13:30 local 125 

time. Geostationary imagers may provide a better temporal coverage of the emissions; e.g. GeoCARB images are considered 

to sample a city for multiple times within a day (O’Brien et al., 2016). 

This study aims to provide a global dataset of fossil fuel CO2 emission clumps for high-resolution atmospheric inversions 

that will use XCO2 imager data. Such a dataset can be used for OSSE studies to compare different imagery observation concepts 

for constraining fossil fuel CO2 emissions at the clump scale over the whole globe. We propose an approach that combines a 130 

threshold-based and an image-processing algorithm. Section 2 describes the high-spatial resolution global emission map upon 

which clumps are calculated, and the algorithm to delineate the clumps worldwide. The spatial distribution and extent of the 

resulting clumps throughout the globe are described in Sect. 3 and are compared with clumps diagnosed by applying the same 

algorithm to other emission maps. Section 4 discusses the sensitivity of the resulting clumps to the precision of XCO2 

measurements and future applications of this global dataset. Section 5 describes the data availability. Conclusions are drawn 135 

in Sect. 6. 
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2. Methodology 

2.1 Development of a high resolution emission map of morning emissions 

We use the high-spatial resolution (30" × 30" ≈ 1 km × 1 km) global annual fossil fuel CO2 emission map for the year 

2016 from the Open Source Data Inventory of Anthropogenic CO2 Emission (ODIAC, version 2017) (Oda and Maksyutov, 140 

2011; Oda et al., 2018) for calculating clumps. To our knowledge, it is the only emission map with global coverage and a 

spatial resolution high enough to match the pixel size of ≈ 1 km of atmospheric XCO2 imagers. We chose the year 2016 

assuming that the emission spatial distributions do not change significantly from year to year. In regions with rapid urbanization 

rates, the emission spatial distributions may change rapidly. The analysis of such changes is out of the scope of this paper, but 

the clump definition can be updated consistently with the latest high-resolution emission maps for each year, using the approach 145 

presented in Sect. 2.2. The ODIAC dataset provides emissions from power plants based on the CARMA database (Carbon 

Monitoring and Action, http://carma.org). Emissions from these point sources were spatially allocated to the exact locations 

from CARMA. Emissions from other sources (industrial, residential, commercial sectors and daily land transportation) were 

estimated by subtracting the sum of emissions from power plants in each country from the national totals given by the Carbon 

Dioxide Information and Analysis Center (CDIAC) (Boden et al., 2016). Annual emissions in each country excluding power 150 

plants were spatially distributed at 30" spatial resolution using nighttime light fields from the Defense Meteorological Satellite 

Program (DMSP) satellites. ODIAC has been used in atmospheric inversions to monitor CO2 emissions from cities (Oda et al., 

2018; Lauvaux et al., 2016).  

To estimate morning emissions, we combined the ODIAC emission maps with the hourly profiles from the Temporal 

Improvements for Modeling Emissions by Scaling (TIMES) product (Nassar et al., 2013). In TIMES, the hourly profiles were 155 

provided as 24 scaling factors for each hour of the day that can be multiplied by daily average emissions to derive hourly 

emissions. Hourly scaling factors of TIMES were derived for residential, commercial, industrial, electricity production and 

mobile on-road sectors from the bottom-up model of fossil fuel CO2 emissions Vulcan v2.0 over the US (Gurney et al., 2009) 

with mobile non-road, cement manufacture and aircraft assumed temporally constant. The TIMES dataset also gives hourly 

scaling factors for 19 other high-emitting countries. These profiles were weighted by the emissions fraction in each sector from 160 

EDGAR to determine hourly profiles of total CO2 emissions. The US and 19 other high-emitting countries are called “proxy” 

countries. Other countries in the world were assigned one of the proxy country profiles, accounting for standard international 

time zones, and local socio-demographic patterns (e.g. time of day when people start to work, weekend defined according to 

different religions). The TIMES hourly profiles were derived at the national scale (assuming identical hourly profiles within a 

country) and then shifted by hourly offsets according to local solar time to approximate the variability related to geophysical 165 

cycles. The original TIMES hourly profiles at 0.25°×0.25° resolution were downscaled to  the spatial resolution of ODIAC, 

assuming the same profiles within each 0.25°×0.25° grid cell. For calculating clumps based on morning emissions, we 

multiplied the annual mean emission rate (unit: g C m-2 hr-1) in each grid cell of ODIAC by the average scaling factors of 
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emissions between 6:00-12:00 local time. The day-to-day and month-to-month variations in the spatial distribution of fossil 

fuel CO2 emissions may lead to temporal variations in the spatial extent of the clumps. In this study, we define the clumps 170 

based on two thresholds (see Sect. 2.2) to ensure that the effective clumps are always within the boundaries of the clumps, and 

that the satellite observation should provide emission estimates consistently within a year. We thus ignore the month-to-month 

and day-to-day variations in the emissions. 

2.2 Calculation of emission clumps 

The emission clumps from point sources and intense area sources in ODIAC are separated in this study. In ODIAC, the 175 

point sources only refer to power plants in the CARMA database. So in this study, we refer to sources other than power plants 

as area sources. Before clumps are calculated, Fig. 1 illustrates the ranked distribution of emission rates during morning hours 

from point sources (red) and other grid cells (blue). Excluding emissions from point sources, the maximum emission rate of 

emitting grid cells from area sources is 20.7 g C m-2 hr-1 and most grid cells including point sources have much larger emission 

rates than this value. In total, 35% of the global total emissions are from 12433 30"×30" grid cells encompassing at least one 180 

point source. 

 

 

Figure 1 Cumulative distribution of mean emission rates during morning hours in ODIAC for power plants (red) and area 

sources (blue). The y-axis represents the cumulative share of global total annual emissions at each level of emission rate for a 185 
single land grid cell (x-axis). The vertical dash lines are the two thresholds used in the clump algorithm (see text). 
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Figure 2 shows the flowchart of the clump algorithm. Fig. 3 illustrates how it operates for a small domain as an example. 

Two categories of emission clumps are defined: 

A)Only grid cells encompassing point sources with an emission rate larger than threshold-1 are considered. This threshold 190 

is chosen as 0.36 g C m-2 hr-1, based on the argument that, even without any atmospheric horizontal transport, emissions lower 

than this threshold over 6 hours would generate a local XCO2 excess of less than 0.5 ppm, the practical limit of individual 

sounding precision from current satellites (see Appendix for the detailed computation). This is illustrated in Fig. 3b by the red 

grid cell labeled as 1 and 2. There are 6226 grid cells in ODIAC2017 who encompass at least one power plant and whose 

emission rates are above threshold-1, which account for >99.99% of total emissions of all CARMA power plants globally.  195 

B) Emissions clumps from area sources are calculated. We combine two data streams to calculate area clumps: 1) the 

administrative division of major urban areas; and 2) two thresholds (threshold-1 and threshold-2 detailed below) applied to the 

grid cells of ODIAC. We assume that a group of emitting pixels encompassing some adjacent high emitting pixels (forming a 

core of the emission clump) and their surroundings will generate an individual plume in XCO2. The urban area and the high 

threshold (threshold-1) define the cores of each emission clump, while threshold-2 defines the lower limit of surrounding 200 

emitting pixels to be potentially included in the clumps. The four steps to compute area sources emission clumps are detailed 

as below. 

1) The value of threshold-2, above which emissions of a single emitting grid cell is selected to be potentially included in 

a clump, is chosen as 0.036 g C m-2 hr-1, a factor of 10 lower than threshold-1. The sum of emissions from grid cells above 

threshold-2 represents 82% of global total emissions (including point sources). Grid cells below threshold-2 are never included 205 

in any emission clump. Grid cells whose emission rates are above threshold-2 are illustrated in Fig. 3a by the yellow and 

orange grid cells;  

2) We then used the urban area GIS (geographic information system) file from the Environmental Systems Research 

Institute (ESRI, https://www.arcgis.com/home/item.html?id=2853306e11b2467ba0458bf667e1c584) to locate the geographic 

positions of major urban areas. ESRI contains 3615 separated urban areas, defined independently from the ODIAC emission 210 

map. We found 2017 ESRI urban areas containing at least one grid cell with emission above threshold-1. The remaining 1598 

ESRI urban areas are not considered hereafter. An illustration of one of the 2017 selected ESRI urban area is shown in Fig. 3c 

by the grid cells labeled as 3. Figure 4a-4c (solid lines) shows three examples of ESRI urban areas for major cities in Europe, 

North America and China. The grid cells within the ESRI urban area whose emission rates are above threshold-1 define the 

cores of the clumps. 215 

3) Although the ESRI GIS file cover large cities of the world, smaller populated areas, like small cities on the southeast 

coast of China that may also generate detectable plumes, are missed by ESRI map. This calls for a complementary step to 

identify non-ESRI emitting clumps. For the calculation of those non-ESRI clumps, we apply threshold-1 of 0.36 g C m-2 hr-1 

to all grid cells that are not selected in the previous step as part of any ESRI core. Contiguous non-ESRI grid cells above 

threshold-1 form non-ESRI core of clumps. These non-ESRI core grid cells must be spatially distinct from the ESRI core grid 220 
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cells. If they are adjacent to any ESRI core, they are absorbed by the ESRI ones. A total of 3071 non-ESRI cores are calculated, 

as shown in Fig. 3d by the grid cells labeled as 4; 

4) After ESRI and non-ESRI clump cores are defined, we aggregate all the emitting grid cells whose emission rates are 

larger than threshold-2 in their vicinity to form a clump. An ensemble of grid cells with emissions higher than threshold-2 in 

a domain with N cores are attributed to N distinct emission clumps. The attribution of a grid cell to a given core is calculated 225 

based on the spatial gradients of emissions and the distance between the emitting grid cells by using a “random walker” (RW) 

algorithm (Grady, 2006). RW is a type of algorithm used in the field of image segmentation, i.e. recognizing different 

segments/objects in a picture or photograph. The clumps with an ESRI core (step 2) are called “ESRI clumps”, while the 

clumps with a non-ESRI core (step 3) are called “non-ESRI clumps” hereafter. This step is illustrated in Fig. 3e by the grid 

cells in light yellow.  230 

The RW algorithm defines the probability of each grid cell to belong to some known labeled “seeds” (i.e. the cores defined 

in steps 2 and 3 in this study). This algorithm imagines that a random walker start from each grid cell to be labeled (in this 

study, the grid cells whose emissions that are above threshold-2 but not included in the cores). The probability that the walker 

will arrive at each known seeds, following the easiest path, are computed. The undefined grid cells are assigned to the seed 

that has the highest probability to be reached by the walker. Specifically, in this study, we define the probability that the walker 235 

move between two neighboring grid cells using an exponential decaying function of the ℓ2
 norm of the log-transformed local 

gradients in emissions (Grady, 2006):  

𝑤𝑖𝑗 = 𝑒−𝛽(𝑔𝑖−𝑔𝑗)
2

                                                                                   (1) 

where wij is the probability of motion between neighboring grid cells i and j, gi and gj are image intensity (defined as the log-

transformed emission rate in this study), and β is a free penalization parameter for the motion of random walker (the greater 240 

the β, the more difficult the motion). In this study, β only impacts how the undefined grid cells are assigned to the cores. It 

balances the effect of local gradients and the distance of the path from the undefined grid cells to the seeds: the larger the 

gradients along a path between the undefined grid cells and the seeds, the smaller probability that the walker would move; and 

the longer the path, the smaller the probability that the walker would arrive at corresponding seeds. Larger β will lead to larger 

impact of emission gradients than that of distance. In this study, β=13 σg
-1, where σg is the standard deviation of the emission 245 

rates at all the grid cells in ODIAC. In general, the algorithm can effectively separate different clusters of grid cells with 

different spatial distributions. For instance, a clump with a flat distribution of emissions and a clump (of similar size as the 

former one) with more skewed emissions are separated near the steepest gradients. This assumes that large emission gradients 

will generate large gradients in XCO2 (given similar meteorological condition for neighboring clumps), and that different 

XCO2 plumes are separable where the XCO2 gradients are the largest.  250 

After the RW algorithm, grid cells above threshold-2 that are not contiguous to any core are discarded. This removes 10% 

of the total from the 82% of global emissions defined in step 1. As a result, 72% of the global emissions are included in the 

emission clumps (see more detailed discussion below). 
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All the computation are made under the Python version 2.7 environment (Python Software Foundation, 

http://www.python.org) and the RW algorithm is from package “scikit-image” version 0.14dev (http://scikit-image.org/). 255 

 

 

Figure 2 The flow chart of emission clumps calculation. The colors qualitatively illustrate grid cell emission rates from low 

(light green) to high (red) 

 260 
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Figure 3 The processes of defining emission clumps. The colors qualitatively illustrate the emission rates from low (light 

green) to high (red). a) the emission field; b) 2 power plant (red grid cells) is defined as two individual clumps, labelled as 1 

and 2; c) The ESRI urban area is outlined by bold solid and dashed lines, but the ESRI core is labelled as 3 only for grid cells 

whose emission rates are above threshold-1; d) the orange area represent grid cells whose emissions are above threshold-1 to 265 
form a non-ESRI core, labelled as 4; e) each light-yellow grid cell is assigned to one of the clump cores using the RW algorithm 

(see the main text). Note that one power plant (labelled 2) is located within the ESRI urban area, but is identified as a different 

emission clump from the ESRI clump (labeled as 3 in Fig. 3e) 

 

3. Results 270 

3.1 Emission clumps defined on ODIAC emission map 

Figure 4 shows three regional clumps near Paris (France), New York (USA) and Beijing (China). The clumps near Paris 

are well isolated from each other. There are more emission clumps in the New York region. Because some clumps are close to 

each other in this region (e.g. New York and Clifton), their plumes will only be distinct when the wind direction is roughly 

perpendicular to the direction of the line connecting clumps (i.e. from southwest to northeast or the opposite for New York and 275 

Clifton). Near Beijing, there are a larger number of clumps than in the other two regions and their distribution is also more 

complex.  

Table 1 summarizes the clumps calculated for the globe, Europe (European Russia included), China, North America, 

South America, Africa, Australia and Asia (China excluded). In total, our algorithm calculates 11314 clumps, including 6226 

point sources, 2017 ESRI clumps, and 3071 non-ESRI clumps. The clump with largest annual emission budget is Shanghai, 280 

which emits 47 Mt C per year. A large fraction of the non-ESRI clumps is found within China mainly located near the 

southeastern coast, which may be explained by the recent rapid urbanization (Shan et al., 2018; Wang et al., 2016) in this 

region. This is not documented by the ESRI map. The large number of non-ESRI clumps in China highlights the necessity to 

consider emitters outside the major cities (at least) in this country. In addition, the mean area of an emission clump is larger in 

China than over other continents/regions. This is because the southeast coast of China is densely populated even within rural 285 
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areas (yellow-green outside the urban area of ESRI urban map in Fig. 4e), and because the emission rates per capita is also 

high in China compared to the world average (Janssens-Maenhout et al., 2017). As a result, our algorithm finds more non-

ESRI clumps and larger area for each clump in China than other regions. 

Figure 5 shows the locations and annual emissions of the clumps. The densities of emission clumps are high in Europe, 

the East Coast of US, the East Coast of China and India. Fig. 6 shows the fractions of total emissions allocated to different 290 

clump categories. Globally, 27% of the clumps are calculated as non-ESRI, but the total emission from these clumps is less 

than 13% of the total emissions. Point sources form 55% of the total number of clumps and 44% of the total emissions. In 

China, however, point sources contribute only 21% of the total number of clumps and 39% of the total emissions, which may 

be explained by the fact that the power plants in China considered in CARMA dataset (and thus in ODIAC) are limited to the 

few larger power plants. Fig. 7 shows the cumulative distribution of the number of clumps and their emission for a few regions. 295 

Among ESRI clumps, 66% of them have an annual emission below 1 Tg C yr-1, but the cumulative emission from these low 

emitting clumps only account for 22% of the total emissions from all ESRI clumps. The inflexion point in Fig. 7 (when the 

cumulative distribution curve turns from nearly 0% to a fast increase) indicates the importance of clumps whose annual 

emissions are above this value. For non-ESRI clumps and point sources, the inflexion points are near 0.1 Tg C yr-1.  

 300 
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Figure 4 Emission clumps near Paris (a and d), Beijing (b and e) and New York (c and f). In a-c, solid lines depict the urban 

areas from ESRI product. Colored patches depict the clump area resulting from the algorithm defined in this study. In d-f, solid 

lines depict the boundaries of final clumps (boundary of colored patches in a-c). Colored fields in d-f show the emissions from 

ODIAC product. Light dashed lines indicate 1º×1º grids. 305 
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Figure 5 The spatial distribution of emission-weighted center of the emission clumps all over the globe. The inserted plots 

zooms over 4 regions that contain most of the clumps. 310 
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Figure 6 The fraction of the number (bars) and the fraction of emissions (hatched bars) found in the three types of clumps for 315 
European continent (European Russia included), China, North America (NA), South America (SA), Africa, Australia, Asia 

with China excluded (AS) and over the globe. The three colors represent ESRI clumps (yellow), non-ESRI clumps (green) and 

point-source clumps (red), respectively. The white-hatched bars indicate the fraction of ODIAC emissions that are not allocated 

into any clump by the algorithm. 

 320 

 

Figure 7 Cumulative distributions of the number (dashed lines) of emission clumps and of the emissions (solid lines) of the 

clumps for three categories of clumps (see text). 

 

Table 1 Characteristics of clumps defined in this study for the globe, European continent (European Russia included), China, 325 
North America (NA), South America (SA), Africa, Australia and Asia with China excluded (AS). 

 Globe Europe China NA 
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Total number of clumps 11314 2470 2091 2616 

Number of ESRI clumps 2017 300 404 292 

Number of non-ESRI clumps 3071 243 1243 302 

Number of point-source clumps 6226 1927 444 2022 

Mean area of one area clump (km2) 196 125 337 137 

Maximum area of one area clump (km2) 10356 6874 5762 5568 

Mean emission budget of one clump (Tg yr-1) 0.57 0.31 1.02 0.45 

Maximum emission budget of one clump (Tg yr-1) 47 17 47 15 

Minimum emission budget of one clump (Tg yr-1) 9.9×10
-4

 9.9×10
-3

 21×10
-4

 19×10
-4

 

Clump that has the largest annual emission Shanghai Moscow Shanghai Los Angeles 

Fraction of emissions from defined clumps to total emission 72% 60% 84% 70% 

Share of urban CO2 emissions to regional total in IEA report 67% 69% 75% 80% 

Share of urban energy use to regional total in GEA report 76% 77%1 65%2 86% 

 

(Table 1 continued) 

 SA Africa Australia AS 

Total number of clumps 477 470 110 2784 

Number of ESRI-urban clumps 172 108 12 705 

Number of non-ESRI clumps 69 144 5 1007 

Number of point-source clumps 235 218 93 1072 

Mean area of one area clump (km2) 186 183 133 229 

Maximum area of one area clump (km2) 4303 3438 3113 10356 

Mean emission budget of one clump (Tg yr-1) 0.35 0.43 0.69 0.63 

Maximum emission budget of one clump (Tg yr-1) 12 11 6.8 22 

Minimum emission budget of one clump (Tg yr-1) 20×10
-4

 26×10
-4

 21×10
-4

 17×10
-4

 

Clump that has the largest annual emission Buenos Aires Johannesburg Melbourne Riyadh 
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Fraction of emissions from defined clumps to total emission 52% 62% 76% 69% 

Share of urban CO2 emissions to regional total in IEA report - - 78% - 

Share of urban energy use to regional total in GEA report 85% 69%3 78% 63%4- 

1 Arithmetic mean of values for Western Europe and Eastern Europe 
2 In GEA report, this value correspond to China and Central Pacific Asia 330 
3 Arithmetic mean of values for Sub-Saharan Africa, North Africa and Middle East 
4 Arithmetic mean of values for Pacific Asia and South Asia 

3.2 Emission clumps based on other emission maps 

The clump results obviously depend on the input emission field. The ODIAC map is chosen as a reference because it is 

the only global map with a spatial resolution of ~ 1 km that we are aware of. But there are other emission products with coarser 335 

resolution or having only regional coverage. To test the dependency of calculated clumps on the choice of emission map, we 

apply the algorithm to three alternative global emission maps and two regional emission maps (Table 2). The three global 

emission maps are: PKU-CO2 v2 (Wang et al., 2013), FFDAS v2.0 (Rayner et al., 2010; Asefi-Najafabady et al., 2014), 

EDGAR 4.3.2 (Janssens-Maenhout et al., 2017). The two regional emission maps are: the Multi-resolution Emission Inventory 

(MEIC) v1.2 for China (http://meicmodel.org/; Zheng et al., 2018) and the VULCAN inventory (Gurney et al., 2009) v2.2 for 340 

the contiguous U.S. The resolutions of these emission maps are 0.1º or 10 km (Table 2), that is, about 12 times coarser than 

ODIAC. Note that some small (in terms of area) groups of grid cells with high emission rates at a finer resolution than 0.1º are 

averaged to the coarser grid cells in these coarser-resolution maps. The clumps derived from these alternative emission maps 

thus have a tendency to miss small clumps, compared to ODIAC. However, the comparison of the results for the largest clumps 

is still indicative of the robustness of the clump definition. The years of the additional emission maps are different from the 345 

year of ODIAC (Table 2) because some institutions have not released emission maps for 2016. We scale the different emission 

maps to the same national totals as ODIAC and we assume that the spatial distribution of clumps do not change significantly 

at the continental and global scales so that the differences in the year for different emission maps is not expected to have strong 

impacts on the clump results. We compare the fractions of emissions in alternative maps (X) covered by the clumps calculated 

from these map (X-clumps) with the fraction covered by ODIAC-clumps to see whether the ODIAC-clump results miss 350 

significant emissions from X. Because the resolution of ODIAC and alternative emission maps are different, when computing 

the X emissions covered by ODIAC-clumps, we downscale map X to 30", assuming that emissions are distributed uniformly 

within each 0.1 º or 10 km grid cell. Since the actual distribution of emissions within each 0.1 º or 10 km grid cell is probably 

not uniform, this computation tends to overestimate the differences between ODIAC-clumps and X-clumps.  

 355 
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Table 2 The alternative emission maps used to compare with the results of ODIAC 

Emission product Coverage Resolution Year Reference 

EDGAR 4.3.2 Global 0.1º×0.1º 2010 Janssens-Maenhout et al., 2017 

PKU-CO2 v2 Global 0.1º×0.1º 2010 Wang et al., 2013 

FFDAS v2.0 Global 0.1º×0.1º 2009 http://hpcg.purdue.edu/FFDAS/Map.php; 

Rayner et al., 2010; Asefi-Najafabady et al., 2014 

MEIC v1.2 Global 0.1º×0.1º 2010 http://meicmodel.org; Zheng et al., 2018 

VULCAN v2.2 74% 10 km×10 km 2002 Gurney et al., 2009 

 

Each 30" grid cell is classified into a confusion matrix (CM) with 4 categories: 1) grid cell belongs to ODIAC-clump and 360 

X-clump (true positive, TP); 2) grid cell belongs to ODIAC-clump but not to X-clump (false positive, FP); 3) grid cell belongs 

to X-clump but not to ODIAC-clump (false negative, FN); and 4) grid cell neither in ODIAC-clump nor in X-clump (true 

negative, TN). The fractions of emissions in each CM category are computed for different regions. This comparison mainly 

allows us to verify whether the clumps delineated by the two thresholds are consistent using ODIAC and other maps. 

We also checked the consistency of ESRI clumps between ODIAC-clump and X-clumps with a similar CM. Each grid 365 

cell is classified into four categories: 1) grid cell belongs to the same ESRI clump in ODIAC and X (ESRI-TP); 2) grid cell 

belongs to ESRI clumps in both ODIAC and X, but does not belong to the same ESRI clump (ESRI-DIFF); 3) grid cell only 

belongs to an ESRI clump either in ODIAC or X (ESRI-FALSE); and 4) grid cell does not belong to any ESRI clump in 

ODIAC nor in X (ESRI-TN). Consistency for non-ESRI clumps is not really expected because X-clumps tend to miss small 

clumps because of the underlying coarser-resolution maps. Consistency is not calculated for point-source clumps because not 370 

all emission products explicitly provide names for each power plant, making it difficult to determine whether the power plants 

from different maps within a same grid cell are the same infrastructure. 

VULCAN is arguably the best emission map for the US, given its use of a large amount of relatively accurate data from 

local to national scales. PKU-CO2-v2 and MEIC v1.2, derived by Chinese institutions, used the exact locations of power plants 

and factories in China and detailed information of fuel consumption of each power plants and factories to estimate the point 375 

sources. They also used provincial data to distribute the non-point source emissions, resulting in more accurate estimates in 

the distribution of Chinese emissions than other global maps (Wang et al., 2013). EDGAR v4.3.2, developed by the Joint 

Research Center under the European Commission's service, has more accurate emission estimates in Europe. Therefore, we 

focus the clump consistency analysis between ODIAC and EDGAR v4.3.2 for Europe, between ODIAC, PKU-CO2-v2 and 

MEIC v1.2 for China, and between ODIAC and VULCAN v2.2 for the US.  380 

Figure 8 shows the results of the CM analysis. In general, there is a considerable fraction of national/regional emissions 

covered by both ODIAC-clump and X-clump (red bars). The sum of the fractions of TP (red bars) and TN (pink bars) are larger 
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than 70% for all countries and regions, indicating that the algorithm applied to different maps allocates consistently the same 

groups of emitting grid cells into clumps. In Europe, the fraction of EDGAR emissions allocated to EDGAR-clumps (red plus 

blue bars in Fig. 8) is close to the fraction of ODIAC emissions allocated to ODIAC clumps (black line). In China, the fraction 385 

from MEIC is also close to that derived from ODIAC. But this fraction in PKU-CO2-v2 (54%) is lower than that derived from 

ODIAC in China (84%). The differences between these fractions derived from ODIAC, MEIC and PKU-CO2-v2 indicate large 

uncertainties in the distribution of emissions in China. This fraction in VULCAN (46%) is lower than that derived from ODIAC 

in USA (73%). In addition, in all regions, the fractions of emissions allocated to X-clumps (red plus blue bars) in X emission 

maps are all lower than those derived from ODIAC, indicating the emissions in ODIAC are more centralized toward populated 390 

areas than in other maps. This is attributed to the lack of line sources in ODIAC (Oda et al., 2018). The blue bars in Fig. 7, 

representing emissions from X maps that are not covered by ODIAC-clumps, are less than 10% of the total emissions in most 

cases, indicating that ODIAC-clumps miss only a small fractions of emission hotspots compared to other plausible fossil fuel 

CO2 emission fields even without any adjustment. However, ODIAC-clumps would capture some low-emitting grid cells in 

other emission maps, as shown by the green bars in Fig. 8. Further investigation into the three types of clumps: ESRI clumps, 395 

non-ESRI clumps and point-sources clumps shows that the largest differences between ODIAC and X lie in the latter two types 

(Fig. S1-S3). The non-ESRI clumps account for a small fraction of the total emissions (less than 20% in general, Fig. 6 and 

S2), and the coherence in terms of fractions of emissions covered by non-ESRI clumps between different emission maps is 

less than 5% (red bars in Fig. S2). There are also large disagreements in the emissions from point-source clumps between 

different emission maps, as displayed by Fig. S3.  400 

Figure 9 examines the consistency of the fractions of emissions covered by the same clumps between ODIAC and any 

emission map X. The consistency indicated by the red and pink bars is larger than 70%. The green bars are less than 10% in 

general, indicating that there are not many emission grid cells connecting different large cities. The major differences between 

ESRI clumps derived from various emission maps come from grid cells near the borders of ESRI clumps so that they are 

classified as ESRI clumps or other clumps in different emission maps (blue bars). 405 
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Figure 8 The fractions of emissions from corresponding emission products covered: 1) by both ODIAC-clumps and X-clumps 

(red); 2) only by X-clumps but not by ODIAC-clumps (green); 3) by ODIAC-clumps but not by X-clumps (blue); and 4) by 410 
neither ODIAC-clumps nor X-clumps (pink). The thick black lines indicate the fractions of emissions in ODIAC covered by 

ODIAC-clumps. 

 

 

 415 

Figure 9 The fractions of emissions from corresponding emission products covered 1) by the same ESRI clump from ODIAC 

and X (red); 2) by ESRI clumps in both ODIAC and X, but do not belong to the same ESRI urban area (green); 3) only by one 

of the ESRI clump in either ODIAC or X (blue); and 4) neither by any ESRI clump in ODIAC nor in X (pink). 
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4. Discussion 420 

4.1 Impacts of the sounding precision on the identification of emission clumps 

In this study, we use the map of urban area from ESRI and two thresholds to derive emission clumps. Threshold-1 

determines the cores of the clumps, corresponding to a XCO2 enhancement larger than the precision (0.5 ppm) of individual 

soundings without atmospheric horizontal transport (see Sect. 2.2 and Appendix). The precision largely depends on the designs 

and configurations of different satellites. In this section, we test the sensitivity of the clumps to different assumptions on 425 

threshold-1 related to the precision of an individual sounding. The results listed in Table 3 show that the number of clumps are 

very sensitive to threshold-1, or individual XCO2 sounding precision. However, the fractions of emissions covered by the 

clumps do not change significantly with threshold-1. The total number of clumps is reduced by 34% when the precision of an 

individual XCO2 measurement is degraded to 1.0 ppm, compared to that obtained assuming 0.5 ppm, but the fraction of 

emissions covered by all clumps is only reduced from 72% to 61%, e.g. 15% relative change. This indicates that a larger value 430 

of threshold-1 mainly removes clumps with small emissions. On the other hand, the number and fraction of emissions covered 

by point-source clumps are not sensitive to threshold-1, due to the fact that their emissions are highly concentrated in limited 

area. On the contrary, the number and emissions associated with non-ESRI clumps are the most sensitive to the precision.  

Threshold-2 is used to define which grid cells shall be aggregated with the cores to form a clump. In this study, threshold-

2 is chosen an order of magnitude smaller than threshold-1. This choice is somewhat arbitrary to include some marginal areas. 435 

Such marginal area accounts for the fact that the outskirt of the cities could also contribute to the city cores. In addition, the 

marginal area ensures that the effective clumps (e.g. the cores of the clumps) will always be accounted for in the clump map 

within a short time span (typically within one year to among few years). With this default choice of threshold-2, the fraction 

of emissions from clumps to the total emissions is occasionally close to the estimate of the share of CO2 emissions or energy 

use from cities to regional total in EIA and GEA (Table 1). The last two columns in Table 3 list the results for different values 440 

of threshold-2. Threshold-2 mainly impacts the extent of surrounding grid cells near the cores of each area clump. When 

threshold-2 is chosen to be 0.071 g C m-2 hr-1 (twice as large as the default one), keeping threshold-1 as 0.36 g C m-2 hr-1, the 

fraction of emissions covered by the clumps to the global total is reduced from 72% (default result, T2) to 66%. The comparison 

between the results of T2, T6, and T4 in Table 3 shows that the identification of non-ESRI clumps is more sensitive to 

threshold-1 (precision), while the identification of ESRI clumps is more sensitive to threshold-2 (grid cells around cores in 445 

ESRI urban areas). 
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Table 3 The sensitivity of number of emission clumps (integers before parentheses) and the fractions of emissions covered by 

the emission clumps (values in the parentheses) to global total to the thresholds in the clump algorithm 455 

Experiments T1 T2 T3 T4 T5 T6 

Precision of a single sounding (ppm) 0.3 ppm 0.5 ppm 0.7 ppm 1.0 ppm 0.5 ppm 0.5 ppm 

Threshold-1 (g C m-2 hr-1) 0.21 0.36 0.5 0.71 0.36 0.36 

Threshold-2 (g C m-2 hr-1) 0.021 0.036 0.05 0.071 0.05 0.071 

ESRI clumps 
2756 

(36%) 

2017 

(32%) 

1498 

(29%) 

1009 

(26%) 

2017 

(30%) 

2017 

(28%) 

Non-ESRI clumps 
6332 

(15%) 

3071 

(10%) 

1837 

(7.7%) 

1109  

(6%) 

3071 

(9.2%) 

3071 

(8.4%) 

Point-source clumps 
6928 

(30%) 

6226 

(30%) 

5774 

(30%) 

5304 

(30%) 

6226 

(30%) 

6226 

(30%) 

Total 
16016 

(80%) 

11314 

(72%) 

9109 

(67%) 

7422 

(61%) 

11314 

(69%) 

11314 

(66%) 

 

4.2 Impact of using ODIAC on the identification of emission clumps 

ODIAC used nighttime light as a proxy for the spatial distribution of emissions. The accuracy of the proxy in representing 

the distribution of actual emissions largely impacts the extent of the clumps. For example, compared with other emission 

products, ODIAC does not capture line source emissions such as on-road transportation (Oda et al., 2018; Gurney et al., 2019). 460 

The satellite observations of CO indicated significant CO enhancement over major roads (Borsdorff et al., 2019). Since our 

clump map is derived from ODIAC emission product, some of the roads that generate significant XCO2 plumes may be missed 

by the clumps defined in this study. As the ODIAC team is planning to include transportation network data in their emission 

product (Oda et al., 2018), our clump map could be updated with a new version of ODIAC. 

Fig. 8 shows that if the ODIAC-clumps are applied to other emission maps even without any adjustment, a majority of 465 

emission hotspots (indicated by red plus green bars in Fig. 8) are still included in the clump areas. However, Fig. 9 shows that 

there are large differences in the way emitting grid cells are grouped depending on the input emission map. When multiplying 

the map of ODIAC-clumps by another X emission map, the difference between the emissions from ODIAC and the emissions 

from the same area in the X map, for a single clump, range between 0%-165% (5th - 95th percentiles). The relative differences 

tend to be larger for small clumps than large ones. For the monitoring of fossil fuel CO2 emissions from the space, these results 470 

highlight the necessity to objectively associate the observed CO2 plumes with underlying emitting regions.  

In this study, the clumps are only defined based on the ODIAC emission map for the year 2016. However, in the regions 

experiencing fast urbanization rates, the spatial distribution of emissions are also changing rapidly. In order to build an 
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operational observing system in the near future, it is also necessary to consistently update the clump definition based on the 

latest emission maps to track the trends in the emissions and CO2 plumes for growing cities. 475 

4.3 Implication for future inversion studies 

The emission clumps is a valuable concept relevant for the monitoring of fossil fuel CO2 emissions from satellites. The 

emission clumps defined in this study have at least one grid cell that will generate an excess of XCO2 of at least 0.5 ppm over 

a morning period of 6 hours, assuming no atmospheric horizontal transport. This assumption is optimistic in terms of 

detectability of XCO2 plumes. In reality, accounting for wind advection or vegetation fluxes near a clump, XCO2 enhancement 480 

in plumes may be smaller than 0.5 ppm, and therefore harder to detect with imagers. In this sense, the emissions covered in 

emission clumps derived based on such an assumption conservatively define the upper fraction of fossil fuel CO2 emissions 

that could be constrained by XCO2 imagery. In addition, the sampling of plumes will be reduced in presence of clouds, and 

will suffer from XCO2 biases related to aerosol loads (Broquet et al., 2018; Pillai et al., 2016). The emission clumps defined 

in this study provide a test bed for assessing the potential of satellite imagery for monitoring fossil fuel CO2 emissions. In the 485 

future, global/regional inversion systems and observing system simulation experiment (OSSE) frameworks shall be developed 

using emission fields classified into clumps. Such inversions and OSSE studies will play a critical role in the deployment of 

new observation strategies and assessing the potential of these observing systems for assessing the fossil fuel CO2 emissions 

(e.g. Broquet et al., 2018; Turner et al., 2016; Pillai et al., 2016).  

5. Data availability 490 

The ODIAC2017 data product is available from a website can be downloaded from the website 

http://db.cger.nies.go.jp/dataset/ODIAC/ (or https://doi.org/10.17595/20170411.001). The TIMES data product can be 

downloaded from http://cdiac.ess-dive.lbl.gov/ftp/Nassar_Emissions_Scale_Factors/. The clump map can be downloaded 

from https://doi.org/10.6084/m9.figshare.7217726.v1. 

6. Summary and Conclusion 495 

In this study, we have identified a set of emission clumps with large emission rates (in the unit of g C m-2 hr-1) from a 

high-resolution emission inventory. These clumps will generate individual atmospheric XCO2 plumes that may be observed 

from space. This method identifies the clump cores using ESRI map of major urban area and a high threshold related to the 

precision of XCO2 measurements from planned satellites. It uses a low threshold and a RW algorithm to consider the area in 

the vicinity of the cores and split the area between different clumps based on the spatial gradients in the emission field. The 500 

emission clumps defined in this study depict the emitting hotspots around the globe that are relevant for the monitoring of 
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fossil fuel CO2 emissions from the satellites measurements. The clumps are derived with a trans-boundary approach, bypassing 

any artificial border imposed by national emissions accounting. In total, the emission clumps cover 72% of the total emissions 

in the original ODIAC. They defines the scales and regions of monitoring the short-term temporal profiles and long term trends 

in fossil fuel CO2 emissions, which might be very useful for the Global Stocktaking exercise of UNFCCC. The clumps that 505 

have been identified here span a large range of emission. Given actual atmospheric transport condition, it is not clear whether 

those in the low range of emission generate an atmospheric CO2 plume that can be identified from space. The presence of 

cloud cover may also challenge the detection of XCO2 plumes and thus the estimate of emissions using space-borne 

measurements. Which fraction of the identified clump can be observed from space, and what accuracy can be expected from 

the atmospheric inversion requires an OSSE framework which shall be developed in a future paper. 510 

Appendix 

We make a calculation of the emission flux that would generate a 0.5 ppm excess of XCO2 during 6 hours without wind. 

This is a conservative case with the accumulation of all emissions in the air column. The 0.5 ppm XCO₂ is taken as the 

individual sounding precision of a satellite CO₂ imager. Assuming a constant emission rate F (g C m-2 hr-1) during 6 hours, the 

XCO2 excess (XCO2, unit: ppm) is given by: 515 

XCO2=F×6/MC/Xair×106                                                                              (1) 

where MC (=12×10-3 kg mol-1) represented the molar mass of C, Xair (unit: mol m-2) represented the molar quantity of air mass 

in the air column. The Xair could be approximated by: 

Xair=Psruf/g/Mair                                                                                    (2) 

where Psurf (=1.013×105 Pa) represents the surface pressure, g (=9.8 m s-2) represents the acceleration of gravity, Mair (=29×10-520 
3 kg mol-1) represents the average molar mass of air. Thus, the minimum emissions F* that would generate a 0.5 ppm excess 

of XCO2 is computed: F*=0.36 g m-2 hr-1. 
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