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Abstract: 30 

Cold regions hydrology is very sensitive to the impacts of climate warming. Future warming is expected to 31 

increase the proportion of winter precipitation falling as rainfall. Snowpacks are expected to undergo less 32 

sublimation, form later and melt earlier and possibly more slowly, leading to earlier spring peak 33 

streamflow. More physically realistic and sophisticated hydrological models driven by reliable climate 34 

forcing can provide the capability to assess hydrologic responses to climate change. However, hydrological 35 

processes in cold regions involve complex phase changes and so are very sensitive to small biases in the 36 

driving meteorology, particularly in temperature and precipitation. Cold regions often have sparse surface 37 

observations, particularly at high elevations that generate a major amount of runoff. The effects of 38 

mountain topography and high latitudes are not well reflected in the observational record. The best 39 

available gridded data in Canada is from the high resolution forecasts of the Global Environmental 40 

Multiscale (GEM) atmospheric model and the Canadian Precipitation Analysis (CaPA) but this dataset has 41 

a short historical record. The EU WATCH ERA-Interim reanalysis (WFDEI) has a longer historical record, 42 

but has often been found to be biased relative to observations over Canada. The aim of this study, 43 

therefore, is to blend the strengths of both datasets (GEM-CaPA and WFDEI) to produce a less-biased long 44 

record product (WFDEI-GEM-CaPA). First, a multivariate generalization of the quantile mapping technique 45 

was implemented to bias-correct WFDEI against GEM-CaPA at 3h × 0.125o resolution during the 2005-46 

2016 overlap period, followed by a hindcast of WFDEI-GEM-CaPA from 1979. The final product (WFDEI-47 

GEM-CaPA, 1979-2016) is freely available at the Federated Research Data Repository 48 

(http://dx.doi.org/10.20383/101.0111). 49 

Subject Keywords: cold regions processes, observations, bias correction, North America 50 
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1 Introduction 52 

Accurate and reliable weather and climate information at watershed-to-basin scale is in 53 

increasingly high demand by policy-makers, scientists, and other stakeholders for various purposes such 54 

as water resources management (Barnett et al., 2005), infrastructure planning  (Brody et al., 2007), and 55 

ecosystem modelling (IPCC, 2013). Particularly, the potential impacts of a warming climate on water 56 

availability in snow-dominated high latitude regions continue to be a serious concern given that over the 57 

past several decades, these regions have experienced some of the most rapid warming on earth (Demaria 58 

et al., 2016; Diffenbaugh et al., 2012; Islam et al., 2017; Martin and Etchevers, 2005; Stocker et al., 2013). 59 

The on-going science suggests that these warming trends are resulting in the intensification of the 60 

hydrologic cycle, leading to substantial recent observed changes in the hydro-climatic regimes of major 61 

river basins in North America (Coopersmith et al., 2014; DeBeer et al., 2016; Dumanski et al., 2015). 62 

Changes in the timing and magnitude of river discharge (Dibike et al., 2016), shifts in extreme temperature 63 

and precipitation regimes (Asong et al., 2016b; Vincent et al., 2015) and changes in snow, ice, and 64 

permafrost regimes are anticipated (IPCC, 2013). Substantial evidence also indicates that the long-held 65 

notion of stationarity of hydrological processes is becoming invalid in a changing climate.  As pointed out 66 

by Milly et al. (2008), this loss of stationarity means that there will be an increase in the likelihood and 67 

frequency of extreme weather and climate events, including floods, droughts, and heat and cold waves.  68 

Water resources in most land areas north of 30° N are heavily dependent on natural water storage 69 

provided by snowpacks and glaciers, with water accumulated in the solid phase during the cold season 70 

and released in the liquid phase during warm events and the warm season. Particularly, the Rocky 71 

Mountains, the hydrologic apex of North America with headwater streams flowing to the Arctic, Atlantic 72 

and Pacific oceans, constitute an integral part of the global hydrologic cycle (Fang et al., 2013). Flows in 73 

these high elevation headwaters depend heavily on meltwater from snowpacks and glaciers. However, 74 

given that it is characterized by a highly varying cold region hydro-climate, studies indicate that it is in 75 
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these high elevation regions where climate variability and change is expected to be most pronounced in 76 

terms of its impacts on water supply (Beniston, 2003; Kane et al., 1991; Prowse and Beltaos, 2002; Woo 77 

and Pomeroy, 2011). More physically realistic and sophisticated hydrological models driven by reliable 78 

climate forcing information can enhance our ability to assess short- and long-term regional hydrologic 79 

responses to increasing variability and uncertainty in hydro-climatic conditions in a changing climate. 80 

Nonetheless, hydrological processes in cold regions involve complex phase changes and so are very 81 

sensitive to small biases in the driving meteorology, particularly in temperature and precipitation.   82 

Cold regions often have sparse surface observations, particularly at the high elevations that 83 

generate a major amount of runoff. The effects of mountain topography and high latitudes are currently 84 

not well reflected in the observational record. Ground-based measurements (e.g. gauges) are limited 85 

especially over the Rocky Mountains, and suffer from gross inaccuracies associated with cold climate 86 

processes (Asong et al., 2017; Wang and Lin, 2015; Wong et al., 2017). The advent and use of weather 87 

radar systems have addressed some of the short-comings of gauge coverage, at least where radar exists. 88 

Unfortunately, in Canada, for example, the spatial coverage of weather radar is limited to the southern 89 

(south of 55° N) part of the country (Fortin et al., 2015b). Recently, improved satellite products have 90 

emerged such as the Global Precipitation Measurement (GPM) mission that provides meteorological 91 

information at fine spatiotemporal resolutions and regular intervals. But, the GPM is still at its early stage 92 

and only covers the region south of 60° N (Asong et al., 2017; Hou et al., 2014).  93 

The capability of the current generation of Earth System Models (ESMs) to represent 94 

meteorological variables is therefore of major interest for hydrological climate change impact studies in 95 

cold regions watersheds. Despite substantial progress being made, raw outputs from regional and global 96 

ESMs still differ largely from observational reference meteorology due partly to spatial scale mismatches 97 

and systematic biases (Taylor et al., 2012). Therefore, ESM outputs are often downscaled and biases are 98 

adjusted statistically before being used in hydrological simulations (Asong et al., 2016b; Chen et al., 2013; 99 
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Chen et al., 2018; Gudmundsson et al., 2012). Apart from uncertainty due to the many empirical statistical 100 

techniques which have been developed to post-process ESM outputs (Maraun, 2016), the quality and 101 

length of the reference observational data set for bias correction remains a major issue (Reiter et al., 2016; 102 

Schoetter et al., 2012; Sippel et al., 2016). In Canada and other regions of North America, regional gridded 103 

data sets such as the combined Global Environmental Multiscale (GEM) atmospheric model forecasts (Yeh 104 

et al., 2002) and the Canadian Precipitation Analysis―CaPA (Mahfouf et al., 2007)  have been found to 105 

perform comparably to ground observations, both statistically and hydrologically (Alavi et al., 2016; 106 

Boluwade et al., 2018; Eum et al., 2014; Fortin et al., 2015a; Gbambie et al., 2017; Wong et al., 2017). 107 

However, GEM-CaPA is too short to be used to directly correct ESM climate due to unsynchronized 108 

internal variability―the recommended minimum record length for bias correction is 30 years  (Maraun, 109 

2016; Maraun et al., 2017). Other gridded products such as the EU WATCH ERA-Interim reanalysis―WFDEI 110 

(Weedon et al., 2014) and Princeton (Sheffield et al., 2006) have a longer historical record, but have been 111 

found to be biased relative to observations over Canada (Wong et al., 2017) and the United States (Behnke 112 

et al., 2016; Sapiano and Arkin, 2009). However, the WFDEI has been found to outperform other long-113 

record gridded products (Chadburn et al., 2015; Park et al., 2016; Wong et al., 2017).  114 

The aim of this study, therefore, is to combine the strengths of both datasets (GEM-CaPA and 115 

WFDEI) to produce a less-biased long record product (WFDEI-GEM-CaPA) using a multi-stage bias 116 

correction framework. First, a multivariate generalization of the quantile mapping technique was 117 

implemented to bias-correct WFDEI against GEM-CaPA at 3h × 0.125o resolution during the 2005-2016 118 

period, followed by a hindcast of WFDEI-GEM-CaPA from 1979.  119 

2 Methodology 120 

2.1 Data sources  121 

 Hourly archived forecast data from the GEM model were acquired from Environment and Climate 122 

Change Canada (http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/submenus/rdps_e.html, 123 
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last access: 28 September 2018). The fields include downward incoming solar radiation, downward 124 

incoming longwave radiation and pressure at the surface, as well as specific humidity, air temperature, 125 

and wind speed at approximately 40 m above ground surface. The 40 m level was used because surface 126 

variables (2 m temperature, 2 m specific humidity, and 10 m wind speed) are only available from 2010 in 127 

the archive. The GEM data are approximately 24 km resolution from October 2001, approximately 15 km 128 

from June 2004, and approximately 10 km resolution from November 2012, and are provided on a rotated 129 

latitude/longitude grid in Environment and Climate Change Canada―ECCC ‘standard file’ format. The 130 

archived data are of former operational forecasts, and contain model outputs from versions of GEM prior 131 

to 2.0.0 through 5.0.0. A field for total precipitation (6-hourly) was acquired from the complementary 132 

CaPA product (http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/submenus/capa_e.html, last 133 

access: 28 September 2018), which incorporates observed precipitation from meteorological weather 134 

stations, and more recently from radar, into the precipitation field from GEM. The CaPA data are 135 

approximately 10 km resolution from January 2002, also on a rotated latitude/longitude grid in ECCC 136 

‘standard file’ format. The data contain reanalysis outputs from CaPA 2.4b8 from 2002-2012, and of 137 

former operational analyses from versions of CaPA 2.3.0 through 4.0.0 from November 2012 onward. The 138 

fields from GEM and CaPA were spatially interpolated and re-projected to a regular latitude/longitude 139 

grid at 0.125o resolution. From GEM, they were interpolated using a bilinear algorithm, while CaPA was 140 

interpolated using nearest neighbor (Schulzweida et al., 2004). Where necessary, GEM fields were 141 

converted to SI units and CaPA was converted to a precipitation rate in SI units for better compatibility 142 

with certain simulation models.  143 

We also used the gridded WFDEI meteorological forcing data which has a global 0.5o spatial 144 

resolution and 3-h time step covering the period 1979-2016 (http://www.eu-watch.org/data_availability, 145 

last access: 25 July 2018). Weedon et al. (2014) used the ERA-Interim surface meteorology data as baseline 146 

information to derive the WFDEI product. Firstly, ERA-Interim data were interpolated at half-degree 147 
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spatial resolution to match the land–sea mask defined by the Climatic Research Unit (CRU). Subsequently, 148 

corrections for elevation and monthly bias of climate trends in the ERA-Interim fields were applied to the 149 

interpolated data. The WFDEI data have two sets of precipitation data: the Global Precipitation 150 

Climatology Centre product (GPCC) and CRU Time Series version 3.1 (CRU TS3.1). Thus, two variants of the 151 

WFDEI product are available―WFDEI-GPCC and WFDEI-CRU. We used the WFDEI-CRU data set because it 152 

goes up to 2016 while the WFDEI-GPCC had only been updated until 2013 at the time of our analysis. 153 

2.2 Data processing and bias correction workflow 154 

The workflow for the multi-stage bias correction is shown in Fig.1. Bias correction was done after 155 

aggregating 1-h GEM-CaPA estimates to 3-h (the values at each time step represent the mean of the 156 

previous 3-h period, to make it consistent with WFDEI) and interpolating both WFDEI and GEM-CaPA to 157 

0.125ᵒ resolution. For bias correction, a multi-stage approach was implemented as follows. A multivariate 158 

generalization of the quantile mapping technique (Cannon, 2018) which combines quantile delta mapping 159 

(Cannon et al., 2015) and random orthogonal rotations to match the multivariate distributions of two data 160 

sets was implemented to bias-correct WFDEI against GEM-CaPA at 3-h*0.125ᵒ resolution during the 2005-161 

2016 period. Models were fitted to data for each calendar month while accounting for inter-variable 162 

dependence structure. Using the fitted models (2005-2016), a hindcast was made of WFDEI between 163 

1979-2004. Finally, the corrected WFDEI data derived from the fitted (2005-2016) and hindcast (1979-164 

2004) periods were concatenated to obtain the bias-corrected WFDEI-GEM-CaPA product (1979-2016). 165 

 166 

 167 
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 168 

 169 

Figure 1. A schematic representation of inputs and bias correction procedure used to produce the WFDEI-170 

GEM-CaPA meteorological forcing data set. 171 

3 Results and discussion  172 

Table 1 presents an overview of the seven variables processed in this study. Note that the GEM 173 

40 m variables are used directly to correct WFDEI surface variables (2 m temperature, 2 m specific 174 

humidity, and 10 m wind speed). Therefore, the corrected WFDEI-GEM-CaPA data reflect 40 m variables. 175 

The spatial coverage of the WFDEI-GEM-CaPA data is depicted in Fig. 2. It spans the land region between 176 

longitude 50.0625o W to 149.9375o W and latitude 31.0625o N to 71.9375o N.  177 

 178 
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Table 1: List variables processed in this study with heights and units in each dataset. 179 

 WFDEI GEM-CaPA WFDEI-GEM-CaPA 

Variable Height Unit Height Unit Height Unit 
Precipitation  Surface kg m-2 s-1 surface kg m-2 s-1 surface kg m-2 s-1 
Air Temperature 2 m K 40 m K 40 m K 
Specific Humidity 2 m kg kg-1 40 m kg kg-1 40 m kg kg-1 
Wind Speed 10 m m s-1 40 m m s-1 40 m m s-1 
Surface Pressure Surface Pa Surface Pa Surface Pa 
Surface Downwelling 
Shortwave Radiation 

Surface W m-2 Surface W m-2 Surface W m-2 

Surface Downwelling 
Longwave Radiation 

Surface W m-2 Surface W m-2 Surface W m-2 

 180 

 181 

Figure 2: Spatial domain of the WFDEI-GEM-CaPA dataset spanning the region between longitude 182 

50.0625o W to 149.9375o W and latitude 31.0625o N to 71.9375o N 183 

The suitability of the bias correction algorithm to reproduce the observed annual cycle and inter-184 

annual variability of the variables was assessed for the fitting (2005-2016) and hindcast (1979-2004) 185 

periods. Data extracted over the entire Mackenzie River basin is used to demonstrate the quality of the 186 

bias correction exercise and uniqueness of the resulting output. Fig. 3 shows the annual cycle for GEM-187 

CaPA, WFDEI and WFDEI-GEM-CaPA during the fitting period. Overall, the monthly distributions show that 188 

the bias was removed for all variables resulting in the very close distributions between GEM-CaPA and 189 

WFDEI-GEM-CaPA. The bias was particularly large for wind speed, an important variable for both 190 
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mountainous and prairie hydrological processes, but was successfully removed. Fig. 4 shows the mean 191 

annual time series of the seven variables over the 1979-2016 period. It is noticeable that the bias is 192 

corrected while the inter-annual variability is well preserved between WFDEI and WFDEI-GEM-CAPA, 193 

excerpt for shortwave radiation where the inter-annual variability is not fully preserved as shown by the 194 

correlation between the WFDEI and WFDEI-GEM-CaPA annual series. However, this should not be a major 195 

issue when impact models are forced with these data. 196 

 197 
Figure 3: Annual cycle of GEM-CaPA (dark slate blue), WFDEI (orange) and bias corrected data―WFDEI-198 

GEM-CaPA (green) for air temperature (a), precipitation (b), surface pressure (c), wind speed (d), 199 

shortwave radiation (e), longwave radiation (f), and specific humidity (g) during the fitting period (2005-200 

2016). 201 

 202 

 203 
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 204 
Figure 4: Time series of GEM-CaPA (dark slate blue), WFDEI (orange) and bias corrected data―WFDEI-205 

GEM-CaPA (green) for air temperature (a), precipitation (b), surface pressure (c), wind speed (d), 206 

shortwave radiation (e), longwave radiation (f), and specific humidity (g) during the periods 2005-2016 207 

(GEM-CaPA) and 1979-2016 (WFDEI and WFDEI-GEM-CaPA). The correlation (r) between the WFDEI and 208 

WFDEI-GEM-CaPA annual series is indicated for each variable. 209 

The foregoing analyses have shown that the bias in the WFDEI data was removed for both the 210 

fitting and hindcast periods. However, some potential limitations remain―for example, WFDEI was 211 

interpolated directly from 0.5o to 0.125o and bias-corrected against GEM-CaPA at 0.125o. The interpolation 212 

does not add any event-scale spatial variability for a variable like precipitation which is very variable across 213 

different scales. These issues have been reviewed extensively by (Cannon, 2018; Maraun, 2013; Maraun 214 

et al., 2010; Storch, 1999). 215 

Page 11

Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-128

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Discussion started: 24 October 2018
c© Author(s) 2018. CC BY 4.0 License.



4 Conclusions  216 

Cold regions hydrology is very sensitive to the impacts of climate warming. More physically 217 

realistic hydrological models driven by reliable climate forcing can provide the capability to assess 218 

hydrologic responses to climate variability and change. However, cold regions often have sparse surface 219 

observations, particularly at high elevations that generate a significant amount of runoff. By making 220 

available this long-term dataset, we hope it can be used to better understand and represent the 221 

seasonal/inter-annual variability of hydrological fluxes and the timing of runoff, and their long-term 222 

trends. This unique data set will also prove valuable for bias correction of climate model projections to 223 

assess potential impacts of future climate change on the hydrology and water resources of North America. 224 

5 Data availability 225 

The latest dataset is available at the Federated Research Data Repository 226 

(http://dx.doi.org/10.20383/101.0111).  227 
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