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Abstract 1 

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution 2 

among the atmosphere, ocean, and terrestrial biosphere – the ‘global carbon budget’ – is 3 

important to better understand the global carbon cycle, support the development of climate 4 

policies, and project future climate change. Here we describe data sets and methodology to 5 

quantify the five major components of the global carbon budget and their uncertainties. Fossil 6 

CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions 7 

from land-use change (ELUC), mainly deforestation, are based on land-use and land-use change 8 

data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its 9 

growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink 10 

(SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by 11 

observations. The resulting carbon budget imbalance (BIM), the difference between the estimated 12 

total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is 13 

a measure of imperfect data and understanding of the contemporary carbon cycle.  All 14 

uncertainties are reported as ±1σ. For the last decade available (2008-2017), EFF was 9.4 ± 0.5 GtC 15 

yr-1, ELUC 1.5 ± 0.7 GtC yr-1, GATM 4.7 ± 0.02 GtC yr-1, SOCEAN 2.4 ± 0.5 GtC yr-1, and SLAND 3.2 ± 0.8 GtC 16 

yr-1, with a budget imbalance BIM of 0.5 GtC yr-1 indicating overestimated emissions and/or 17 

underestimated sinks. For year 2017 alone, the growth in EFF was about 1.6% and emissions 18 

increased to 9.9 ± 0.5 GtC yr-1. Also for 2017, ELUC was 1.4 ± 0.7 GtC yr-1, GATM was 4.6 ± 0.2 GtC yr-19 

1, SOCEAN was 2.5 ± 0.5 GtC yr-1 and SLAND was 3.8 ± 0.8 GtC yr-1, with a small BIM of 0.3 GtC. The 20 

global atmospheric CO2 concentration reached 405.0 ± 0.1 ppm averaged over 2017. For 2018, 21 

preliminary data for the first 6-9 months indicate a renewed growth in EFF of +2.7% (range of 1.8% 22 

to 3.7%) based on national emissions projections for China, USA, the EU and India, and projections 23 

of Gross Domestic Product corrected for recent changes in the carbon intensity of the economy 24 

for the rest of the world. The analysis presented here shows that the mean and trend in the five 25 

components of the global carbon budget are consistently estimated over the period 1959-2017, 26 

but discrepancies of up to 1 GtC yr-1 persist for the representation of semi-decadal variability in 27 

CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad 28 

range of observations shows: (1) no consensus in the mean and trend in land-use change 29 

emissions, (2) a persistent low agreement between the different methods on the magnitude of 30 

the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 31 

variability by ocean models, originating outside the tropics. This living data update documents 32 
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changes in the methods and data sets used in this new global carbon budget and the progress in 1 

understanding of the global carbon cycle compared with previous publications of this data set (Le 2 

Quéré et al., 2018, 2016; 2015b; 2015a; 2014; 2013). All results presented here can be 3 

downloaded from https://doi.org/10.18160/GCP-2018. 4 

1 Introduction 5 

The concentration of carbon dioxide (CO2) in the atmosphere has increased from approximately 6 

277 parts per million (ppm) in 1750 (Joos and Spahni, 2008), the beginning of the Industrial Era, to 7 

405.0 ± 0.1  ppm in 2017 (Dlugokencky and Tans, 2018; Fig. 1). The atmospheric CO2 increase 8 

above preindustrial levels was, initially, primarily caused by the release of carbon to the 9 

atmosphere from deforestation and other land-use change activities (Ciais et al., 2013). While 10 

emissions from fossil fuels started before the Industrial Era, they only became the dominant 11 

source of anthropogenic emissions to the atmosphere from around 1950 and their relative share 12 

has continued to increase until present. Anthropogenic emissions occur on top of an active natural 13 

carbon cycle that circulates carbon between the reservoirs of the atmosphere, ocean, and 14 

terrestrial biosphere on time scales from sub-daily to millennia, while exchanges with geologic 15 

reservoirs occur at longer timescales (Archer et al., 2009). 16 

The global carbon budget presented here refers to the mean, variations, and trends in the 17 

perturbation of CO2 in the environment, referenced to the beginning of the Industrial Era. It 18 

quantifies the input of CO2 to the atmosphere by emissions from human activities, the growth rate 19 

of atmospheric CO2 concentration, and the resulting changes in the storage of carbon in the land 20 

and ocean reservoirs in response to increasing atmospheric CO2 levels, climate change and 21 

variability, and other anthropogenic and natural changes (Fig. 2). An understanding of this 22 

perturbation budget over time and the underlying variability and trends of the natural carbon 23 

cycle are necessary to understand the response of natural sinks to changes in climate, CO2 and 24 

land-use change drivers, and the permissible emissions for a given climate stabilization target. 25 

The components of the CO2 budget that are reported annually in this paper include separate 26 

estimates for the CO2 emissions from (1) fossil fuel combustion and oxidation from all energy and 27 

industrial processes and cement production (EFF; GtC yr-1) and (2) the emissions resulting from 28 

deliberate human activities on land, including those leading to land-use change (ELUC; GtC yr-1); 29 

and their partitioning among (3) the growth rate of atmospheric CO2 concentration (GATM; GtC yr-30 
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1), and the uptake of CO2 (the ‘CO2 sinks’) in (4) the ocean (SOCEAN; GtC yr-1) and (5) on land (SLAND; 1 

GtC yr-1). The CO2 sinks as defined here conceptually include the response of the land (including 2 

inland waters and estuaries) and ocean (including coasts and territorial sea) to elevated CO2 and 3 

changes in climate, rivers, and other environmental conditions, although in practice not all 4 

processes are accounted for (see Section 2.7). The global emissions and their partitioning among 5 

the atmosphere, ocean and land are in reality in balance, however due to imperfect spatial and/or 6 

temporal data coverage, errors in each estimate, and smaller terms not included in our budget 7 

estimate (discussed in Section 2.7), their sum does not necessarily add up to zero. We estimate a 8 

budget imbalance (BIM), which is a measure of the mismatch between the estimated emissions 9 

and the estimated changes in the atmosphere, land and ocean, with the full global carbon budget 10 

as follows: 11 

!"" + !$%& = ()*+ + ,-&.)/ + ,$)/0 + 12+. (1) 

GATM is usually reported in ppm yr-1, which we convert to units of carbon mass per year, GtC yr-1, 12 

using 1 ppm = 2.124 GtC (Table 1). We also include a quantification of EFF by country, computed 13 

with both territorial and consumption based accounting (see Sect. 2), and discuss missing terms 14 

from sources other than the combustion of fossil fuels (see Sect. 2.7).  15 

The CO2 budget has been assessed by the Intergovernmental Panel on Climate Change (IPCC) in all 16 

assessment reports (Ciais et al., 2013;Denman et al., 2007;Prentice et al., 2001;Schimel et al., 17 

1995;Watson et al., 1990), and by others (e.g. Ballantyne et al., 2012). The IPCC methodology has 18 

been adapted and used by the Global Carbon Project (GCP, www.globalcarbonproject.org), which 19 

has coordinated a cooperative community effort for the annual publication of global carbon 20 

budgets up to year 2005 (Raupach et al., 2007; including fossil emissions only), year 2006 21 

(Canadell et al., 2007), year 2007 (published online; GCP, 2007), year 2008 (Le Quéré et al., 2009), 22 

year 2009 (Friedlingstein et al., 2010), year 2010 (Peters et al., 2012b), year 2012 (Le Quéré et al., 23 

2013;Peters et al., 2013), year 2013 (Le Quéré et al., 2014), year 2014 (Friedlingstein et al., 24 

2014;Le Quéré et al., 2015b), year 2015 (Jackson et al., 2016;Le Quéré et al., 2015a), year 2016 (Le 25 

Quéré et al., 2016), and most recently year 2017 (Le Quéré et al., 2018;Peters et al., 2017). Each of 26 

these papers updated previous estimates with the latest available information for the entire time 27 

series.  28 

We adopt a range of ±1 standard deviation (σ) to report the uncertainties in our estimates, 29 

representing a likelihood of 68% that the true value will be within the provided range if the errors 30 
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have a Gaussian distribution and no bias is assumed. This choice reflects the difficulty of 1 

characterising the uncertainty in the CO2 fluxes between the atmosphere and the ocean and land 2 

reservoirs individually, particularly on an annual basis, as well as the difficulty of updating the CO2 3 

emissions from land-use change. A likelihood of 68% provides an indication of our current 4 

capability to quantify each term and its uncertainty given the available information. For 5 

comparison, the Fifth Assessment Report of the IPCC (AR5) generally reported a likelihood of 90% 6 

for large data sets whose uncertainty is well characterised, or for long time intervals less affected 7 

by year-to-year variability. Our 68% uncertainty value is near the 66% which the IPCC 8 

characterises as ‘likely’ for values falling into the ±1σ interval. The uncertainties reported here 9 

combine statistical analysis of the underlying data and expert judgement of the likelihood of 10 

results lying outside this range. The limitations of current information are discussed in the paper 11 

and have been examined in detail elsewhere (Ballantyne et al., 2015;Zscheischler et al., 2017). We 12 

also use a qualitative assessment of confidence level to characterise the annual estimates from 13 

each term based on the type, amount, quality and consistency of the evidence as defined by the 14 

IPCC (Stocker et al., 2013). 15 

All quantities are presented in units of gigatonnes of carbon (GtC, 1015 gC), which is the same as 16 

petagrams of carbon (PgC; Table 1). Units of gigatonnes of CO2 (or billion tonnes of CO2) used in 17 

policy are equal to 3.664 multiplied by the value in units of GtC. 18 

This paper provides a detailed description of the data sets and methodology used to compute the 19 

global carbon budget estimates for the period preindustrial (1750) to 2017 and in more detail for 20 

the period since 1959. It also provides decadal averages starting in 1960 including the last decade 21 

(2008-2017), results for the year 2017, and a projection for year 2018. Finally it provides 22 

cumulative emissions from fossil fuels and land-use change since year 1750, the preindustrial 23 

period, and since year 1870, the reference year for the cumulative carbon estimate used by the 24 

IPCC (AR5) based on the availability of global temperature data (Stocker et al., 2013). This paper is 25 

updated every year using the format of ‘living data’ to keep a record of budget versions and the 26 

changes in new data, revision of data, and changes in methodology that lead to changes in 27 

estimates of the carbon budget. Additional materials associated with the release of each new 28 

version will be posted at the Global Carbon Project (GCP) website 29 

(http://www.globalcarbonproject.org/carbonbudget), with fossil fuel emissions also available 30 

through the Global Carbon Atlas (http://www.globalcarbonatlas.org). With this approach, we aim 31 
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to provide the highest transparency and traceability in the reporting of CO2, the key driver of 1 

climate change. 2 

2 Methods 3 

Multiple organizations and research groups around the world generated the original 4 

measurements and data used to complete the global carbon budget. The effort presented here is 5 

thus mainly one of synthesis, where results from individual groups are collated, analysed and 6 

evaluated for consistency. We facilitate access to original data with the understanding that 7 

primary data sets will be referenced in future work (see Table 2 for how to cite the data sets). 8 

Descriptions of the measurements, models, and methodologies follow below and in depth 9 

descriptions of each component are described elsewhere. 10 

This is the 13th version of the global carbon budget and the seventh revised version in the format 11 

of a living data update. It builds on the latest published global carbon budget of Le Quéré et 12 

al.(2018). The main changes are: (1) the inclusion of data to year 2017 (inclusive) and a projection 13 

for the global carbon budget for year 2018; (2) the introduction of metrics that evaluate 14 

components of the individual models used to estimate SOCEAN and SLAND using observations, as an 15 

effort to document, encourage and support model improvements through time; (3) the revisions 16 

of the CO2 emissions associated with cement production based on revised clinker ratios; (4) a 17 

projection for fossil fuel emissions for European Union 28 member states based on compiled 18 

energy statistics; and (5) the addition of sub-section 2.7.2 on additional emissions from calcination 19 

not included in the budget. The main methodological differences between annual carbon budgets 20 

are summarised in Table 3.  21 

2.1 Fossil CO2 emissions (EFF) 22 

2.1.1 Emissions estimates 23 

The estimates of global and national fossil CO2 emissions (EFF) include the combustion of fossil 24 

fuels through a wide range of activities (e.g. transport, heating and cooling, industry, fossil 25 

industry own use & gas flaring), the production of cement, and other process emissions (e.g. the 26 

production of chemicals & fertilizers). The estimates of EFF rely primarily on energy consumption 27 

data, specifically data on hydrocarbon fuels, collated and archived by several organisations 28 

(Andres et al., 2012). We use four main data sets for historical emissions (1751-2017): 29 
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1. Global and national emission estimates for coal, oil, and gas from CDIAC for the time period 1 

1751-2014 (Boden et al., 2017), as it is the only data set that extends back to 1751 by country. 2 

2. Official UNFCCC national inventory reports for 1990-2016 for the 42 Annex I countries in the 3 

UNFCCC (UNFCCC, 2018). We assess these to be the most accurate estimates because they are 4 

compiled by experts within countries that have access to detailed energy data, and they are 5 

periodically reviewed. 6 

3. The BP Statistical Review of World Energy (BP, 2018), as these are the most up-to-date 7 

estimates of national energy statistics. 8 

4. Global and national cement emissions updated from Andrew (2018), which include revised 9 

emissions factors. 10 

In the following section we provide more details for each data set and describe the additional 11 

modifications that are required to make the data set consistent and usable.  12 

CDIAC: The CDIAC estimates have been updated annually to the year 2014, derived primarily from 13 

energy statistics published by the United Nations (UN, 2017b). Fuel masses and volumes are 14 

converted to fuel energy content using country-level coefficients provided by the UN, and then 15 

converted to CO2 emissions using conversion factors that take into account the relationship 16 

between carbon content and energy (heat) content of the different fuel types (coal, oil, gas, gas 17 

flaring) and the combustion efficiency (Marland and Rotty, 1984). 18 

UNFCCC: Estimates from the UNFCCC national inventory reports follow the IPCC guidelines (IPCC, 19 

2006), but have a slightly larger system boundary than CDIAC by including emissions coming from 20 

carbonates other than in cement manufacture. We reallocate the detailed UNFCCC estimates to 21 

the CDIAC definitions of coal, oil, gas, cement, and other to allow consistent comparisons over 22 

time and between countries.   23 

BP: For the most recent period when the UNFCCC (2018) and CDIAC (2015-2017) estimates are not 24 

available, we generate preliminary estimates using the BP Statistical Review of World Energy 25 

(Andres et al., 2014;Myhre et al., 2009;BP, 2018). We apply the BP growth rates by fuel type (coal, 26 

oil, gas) to estimate 2017 emissions based on 2016 estimates (UNFCCC), and to estimate 2015-27 

2017 emissions based on 2014 estimates (CDIAC). BP's data set explicitly covers about 70 28 

countries (96% of global emissions), and for the remaining countries we use growth rates from the 29 

sub-region the country belongs to. For the most recent years, flaring is assumed constant from the 30 
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most recent available year of data (2016 for countries that report to the UNFCCC, 2014 for the 1 

remainder). 2 

Cement: Estimates of emissions from cement production are taken directly from Andrew (2018). 3 

Additional calcination and carbonation processes are not included explicitly here, except in 4 

national inventories provided UNFCCC, but are discussed in Section 2.7.2.  5 

Country mappings: The published CDIAC data set includes 256 countries and regions. This list 6 

includes countries that no longer exist, such as the USSR and Yugoslavia. We reduce the list to 213 7 

countries by reallocating emissions to the currently defined territories, using mass-preserving 8 

aggregation or disaggregation. Examples of aggregation include merging East and West Germany 9 

to the currently defined Germany. Examples of disaggregation include reallocating the emissions 10 

from former USSR to the resulting independent countries. For disaggregation, we use the emission 11 

shares when the current territories first appeared, and thus historical estimates of disaggregated 12 

countries should be treated with extreme care. In addition, we aggregate some overseas 13 

territories (e.g. Réunion, Guadeloupe) into their governing nations (e.g. France) to align with 14 

UNFCCC reporting. 15 

Global total: Our global estimate is based on CDIAC for fossil fuel combustion plus Andrew (2018) 16 

for cement emissions. This is greater than the sum of emissions from all countries. This is largely 17 

attributable to emissions that occur in international territory, in particular, the combustion of 18 

fuels used in international shipping and aviation (bunker fuels). The emissions from international 19 

bunker fuels are calculated based on where the fuels were loaded, but we do not include them in 20 

the national emissions estimates. Other differences occur 1) because the sum of imports in all 21 

countries is not equal to the sum of exports, and 2) because of inconsistent national reporting, 22 

differing treatment of oxidation of non-fuel uses of hydrocarbons (e.g. as solvents, lubricants, 23 

feedstocks, etc.), and 3) changes in fuel stored (Andres et al., 2012). 24 

2.1.2 Uncertainty assessment for EFF 25 

We estimate the uncertainty of the global fossil CO2 emissions at ±5% (scaled down from the 26 

published ±10 % at ±2σ to the use of ±1σ bounds reported here; Andres et al., 2012). This is 27 

consistent with a more detailed recent analysis of uncertainty of ±8.4% at ±2σ (Andres et al., 28 

2014) and at the high-end of the range of ±5-10% at ±2σ reported by Ballantyne et al. (2015). This 29 

includes an assessment of uncertainties in the amounts of fuel consumed, the carbon and heat 30 
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contents of fuels, and the combustion efficiency. While we consider a fixed uncertainty of ±5% for 1 

all years, the uncertainty as a percentage of the emissions is growing with time because of the 2 

larger share of global emissions from emerging economies and developing countries (Marland et 3 

al., 2009). Generally, emissions from mature economies with good statistical processes have an 4 

uncertainty of only a few per cent (Marland, 2008), while emissions from developing countries 5 

such as China have uncertainties of around ±10% (for ±1σ; Gregg et al., 2008). Uncertainties of 6 

emissions are likely to be mainly systematic errors related to underlying biases of energy statistics 7 

and to the accounting method used by each country.  8 

We assign a medium confidence to the results presented here because they are based on indirect 9 

estimates of emissions using energy data (Durant et al., 2011). There is only limited and indirect 10 

evidence for emissions, although there is high agreement among the available estimates within 11 

the given uncertainty (Andres et al., 2012;Andres et al., 2014), and emission estimates are 12 

consistent with a range of other observations (Ciais et al., 2013), even though their regional and 13 

national partitioning is more uncertain (Francey et al., 2013). 14 

2.1.3 Emissions embodied in goods and services 15 

CDIAC, UNFCCC, and BP national emission statistics ‘include greenhouse gas emissions and 16 

removals taking place within national territory and offshore areas over which the country has 17 

jurisdiction’ (Rypdal et al., 2006), and are called territorial emission inventories. Consumption-18 

based emission inventories allocate emissions to products that are consumed within a country, 19 

and are conceptually calculated as the territorial emissions minus the ‘embodied’ territorial 20 

emissions to produce exported products plus the emissions in other countries to produce 21 

imported products (Consumption = Territorial – Exports + Imports). Consumption-based emission 22 

attribution results (e.g. Davis and Caldeira, 2010) provide additional information to territorial-23 

based emissions that can be used to understand emission drivers (Hertwich and Peters, 2009) and 24 

quantify emission transfers by the trade of products between countries (Peters et al., 2011b). The 25 

consumption-based emissions have the same global total, but reflect the trade-driven movement 26 

of emissions across the Earth's surface in response to human activities. 27 

We estimate consumption-based emissions from 1990-2016 by enumerating the global supply 28 

chain using a global model of the economic relationships between economic sectors within and 29 

between every country (Andrew and Peters, 2013;Peters et al., 2011a). Our analysis is based on 30 
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the economic and trade data from the Global Trade and Analysis Project (GTAP; Narayanan et al., 1 

2015), and we make detailed estimates for the years 1997 (GTAP version 5), 2001 (GTAP6), and 2 

2004, 2007, and 2011 (GTAP9.2), covering 57 sectors and 141 countries and regions. The detailed 3 

results are then extended into an annual time-series from 1990 to the latest year of the Gross 4 

Domestic Product (GDP) data (2016 in this budget), using GDP data by expenditure in current 5 

exchange rate of US dollars (USD; from the UN National Accounts main Aggregrates database; UN, 6 

2017a) and time series of trade data from GTAP (based on the methodology in Peters et al., 2011b 7 

). We estimate the sector-level CO2 emissions using the GTAP data and methodology, include 8 

flaring and cement emissions from CDIAC, and then scale the national totals (excluding bunker 9 

fuels) to match the emission estimates from the carbon budget. We do not provide a separate 10 

uncertainty estimate for the consumption-based emissions, but based on model comparisons and 11 

sensitivity analysis, they are unlikely to be significantly different than for the territorial emission 12 

estimates (Peters et al., 2012a). 13 

2.1.4 Growth rate in emissions 14 

We report the annual growth rate in emissions for adjacent years (in percent per year) by 15 

calculating the difference between the two years and then normalising to the emissions in the 16 

first year: (EFF(t0+1)-EFF(t0))/EFF(t0)×100%. We apply a leap-year adjustment where relevant to 17 

ensure valid interpretations of annual growth rates. This affects the growth rate by about 0.3% yr-18 

1 (1/365) and causes growth rates to go up approximately 0.3% if the first year is a leap year and 19 

down 0.3% if the second year is a leap year. 20 

The relative growth rate of EFF over time periods of greater than one year can be re-written using 21 

its logarithm equivalent as follows: 22 

1
!""
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Here we calculate relative growth rates in emissions for multi-year periods (e.g. a decade) by 23 

fitting a linear trend to ln(EFF) in Eq. (2), reported in percent per year.  24 

2.1.5 Emissions projections  25 

To gain insight on emission trends for the current year (2018), we provide an assessment of global 26 

fossil CO2 emissions, EFF, by combining individual assessments of emissions for China, USA, the EU, 27 

and India (the four countries/regions with the largest emissions), and the rest of the world.  28 



13 
 

Our 2018 estimate for China uses:  (1) the sum of domestic production (NBS, 2018b) and net 1 

imports (General Administration of Customs of the People’s Republic of China, 2018) for coal, oil 2 

and natural gas and production of cement (NBS, 2018b) from preliminary statistics for January 3 

through September of 2018; and (2) historical relationships between January-September 4 

production and import statistics and full-year consumption figures from final official statistics for 5 

2000-2016 (NBS, 2015, 2017) and preliminary full-year data for 2017 (NBS, 2018a). See also Liu et 6 

al. (subm.) and Jackson et al. (2018b) for details. The uncertainty is based on the variance of the 7 

difference between the January-September and full-year data from historical data, as well as 8 

typical variance in the preliminary full-year data used for 2017 and typical changes in the energy 9 

content of coal for the period 2013-2016  (NBS, 2017, 2015). We note that developments for the 10 

final three months this year may be atypical due to the ongoing trade disputes between China and 11 

the U.S., and this additional uncertainty has not been quantified. Results and uncertainties are 12 

discussed further in Sect. 3.4.1.  13 

For the USA, we use the forecast of the U.S. Energy Information Administration (EIA) for emissions 14 

from fossil fuels (EIA, 2018). This is based on an energy forecasting model which is updated 15 

monthly (last update to October), and takes into account heating-degree days, household 16 

expenditures by fuel type, energy markets, policies, and other effects. We combine this with our 17 

estimate of emissions from cement production using the monthly U.S. cement data from USGS for 18 

January-August, assuming changes in cement production over the first part of the year apply 19 

throughout the year. While the EIA’s forecasts for current full-year emissions have on average 20 

been revised downwards, only ten such forecasts are available, so we conservatively use the full 21 

range of adjustments following revision, and additionally assume symmetrical uncertainty to give 22 

±2.5% around the central forecast. 23 

For India, we use (1) monthly coal production and sales data from the Ministry of Mines (2018), 24 

Coal India Limited (CIL, 2018) and Singareni Collieries Company Limited (SCCL, 2018), combined 25 

with import data from the Ministry of Commerce and Industry (MCI, 2018) and power station 26 

stocks data from the Central Electricity Authority (CEA, 2018); (2) monthly oil production and 27 

consumption data from the Ministry of Petroleum and Natural Gas (PPAC, 2018a); (3) monthly 28 

natural gas production and import data from the Ministry of Petroleum and Natural Gas (PPAC, 29 

2018b); and (4) monthly cement production data from the Office of the Economic Advisor (OEA, 30 

2018). All data were available for January to September or October. We use Holt-Winters 31 
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exponential smoothing with multiplicative seasonality (Chatfield, 1978) on each of these four 1 

emissions series to project to the end of the current year. This iterative method produces 2 

estimates of both trend and seasonality at the end of the observation period that are a function of 3 

all prior observations, weighted most strongly to more recent data, while maintaining some 4 

smoothing effect. The main source of uncertainty in the projection of India’s emissions is the 5 

assumption of continued trends and typical seasonality. 6 

For the EU, we use (1) monthly coal supply data from Eurostat for the first 6-9 months of the year 7 

(Eurostat, 2018) cross-checked with more recent data on coal-generated electricity from ENTSO-E 8 

for January through October (ENTSO-E, 2018); (2) monthly oil and gas demand data for January 9 

through August from the Joint Organisations Data Initiative (JODI, 2018); and (3) cement 10 

production is assumed stable. For oil and gas emissions we apply the Holt-Winters method 11 

separately to each country and energy carrier to project to the end of the current year, while for 12 

coal — which is much less strongly seasonal because of strong weather variations – we assume 13 

the remaining months of the year are the same as the previous year in each country.  14 

For the rest of the world, we use the close relationship between the growth in GDP and the 15 

growth in emissions (Raupach et al., 2007) to project emissions for the current year. This is based 16 

on a simplified Kaya Identity, whereby EFF (GtC yr-1) is decomposed by the product of GDP (USD yr-17 

1) and the fossil fuel carbon intensity of the economy (IFF; GtC USD-1) as follows: 18 

!"" = 	(<=	 ×	?""  (3) 

Taking a time derivative of Equation (3) and rearranging gives: 19 
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where the left-hand term is the relative growth rate of EFF, and the right-hand terms are the 20 

relative growth rates of GDP and IFF, respectively, which can simply be added linearly to give the 21 

overall growth rate.   22 

The growth rates are reported in percent by multiplying each term by 100. As preliminary 23 

estimates of annual change in GDP are made well before the end of a calendar year, making 24 

assumptions on the growth rate of IFF allows us to make projections of the annual change in CO2 25 

emissions well before the end of a calendar year. The IFF is based on GDP in constant PPP 26 

(purchasing power parity) from the International Energy Agency (IEA) up to 2016 (IEA/OECD, 27 
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2017) and extended using the International Monetary Fund (IMF) growth rates for 2016 and 2017 1 

(IMF, 2018). Interannual variability in IFF is the largest source of uncertainty in the GDP-based 2 

emissions projections. We thus use the standard deviation of the annual IFF for the period 2007-3 

2017 as a measure of uncertainty, reflecting a ±1σ as in the rest of the carbon budget. This is 4 

±1.0% yr-1 for the rest of the world (global emissions minus China, USA, EU and India).   5 

The 2018 projection for the world is made of the sum of the projections for China, USA, EU, India, 6 

and the rest of the world. The uncertainty is added in quadrature among the five regions. The 7 

uncertainty here reflects the best of our expert opinion.  8 

2.2 CO2 emissions from land use, land-use change and forestry (ELUC) 9 

The net CO2 flux from land use, land-use change and forestry (ELUC, called land-use change 10 

emissions in the rest of the text) include CO2 fluxes from deforestation, afforestation, logging and 11 

forest degradation (including harvest activity), shifting cultivation (cycle of cutting forest for 12 

agriculture, then abandoning), and regrowth of forests following wood harvest or abandonment 13 

of agriculture. Only some land management activities are included in our land-use change 14 

emissions estimates (Table A1). Some of these activities lead to emissions of CO2 to the 15 

atmosphere, while others lead to CO2 sinks. ELUC is the net sum of emissions and removals due to 16 

all anthropogenic activities considered. Our annual estimate for 1959-2017 is provided as the 17 

average of results from two bookkeeping models (Sect. 2.2.1): the estimate published by 18 

Houghton and Nassikas (2017; hereafter H&N2017) extended here to 2017, and an estimate using 19 

the BLUE model (Bookkeeping of Land Use Emissions; Hansis et al., 2015). In addition, we use 20 

results from Dynamic Global Vegetation Models (DGVMs; see Sect. 2.2.3 and Table 4), to help 21 

quantify the uncertainty in ELUC, and thus better characterise our understanding. The three 22 

methods are described below, and differences are discussed in Sect. 3.2.  23 

2.2.1 Bookkeeping models 24 

Land-use change CO2 emissions and uptake fluxes are calculated by two bookkeeping models. 25 

Both are based on the original bookkeeping approach of Houghton (2003) that keeps track of the 26 

carbon stored in vegetation and soils before and after a land-use change (transitions between 27 

various natural vegetation types, croplands and pastures). Literature-based response curves 28 

describe decay of vegetation and soil carbon, including transfer to product pools of different 29 

lifetimes, as well as carbon uptake due to regrowth. In addition, the bookkeeping models 30 
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represent long-term degradation of primary forest as lowered standing vegetation and soil carbon 1 

stocks in secondary forests, and also include forest management practices such as wood harvests.  2 

The bookkeeping models do not include land ecosystems’ transient response to changes in 3 

climate, atmospheric CO2 and other environmental factors, and the carbon densities are based on 4 

contemporary data reflecting stable environmental conditions at that time. Since carbon densities 5 

remain fixed over time in bookkeeping models, the additional sink capacity that ecosystems 6 

provide in response to CO2-fertilization and some other environmental changes is not captured by 7 

these models (Pongratz et al., 2014; see Section 2.7.3).  8 

The H&N2017 and BLUE models differ in (1) computational units (country-level vs spatially explicit 9 

treatment of land-use change), (2) processes represented (see Table A1), and (3) carbon densities 10 

assigned to vegetation and soil of each vegetation type. A notable change of H&N2017 over the 11 

original approach by Houghton et al. (2003) used in earlier budget estimates is that no shifting 12 

cultivation or other back- and forth-transitions at a level below country are included. Only a 13 

decline in forest area in a country as indicated by the Forest Resource Assessment of the FAO that 14 

exceeds the expansion of agricultural area as indicated by FAO is assumed to represent a 15 

concurrent expansion and abandonment of cropland. In contrast, the BLUE model includes sub-16 

grid-scale transitions at the grid level between all vegetation types as indicated by the harmonized 17 

land-use change data (LUH2) data set (Hurtt et al., in prep.). Furthermore, H&N2017 assume 18 

conversion of natural grasslands to pasture, while BLUE allocates pasture proportionally on all 19 

natural vegetation that exist in a gridcell. This is one reason for generally higher emissions in 20 

BLUE. H&N2017 add carbon emissions from peat burning based on the Global Fire Emission 21 

Database (GFED4s; van der Werf et al. (2017)), and peat drainage, based on estimates by Hooijer 22 

et al. (2010) to the output of their bookkeeping model for the countries of Indonesia and 23 

Malaysia. Peat burning and emissions from the organic layers of drained peat soils, which are not 24 

captured by bookkeeping methods directly, need to be included to represent the substantially 25 

larger emissions and interannual variability due to synergies of land-use and climate variability in 26 

Southeast Asia, in particular during El-Niño events. Similarly to H&N2017, peat burning and 27 

drainage-related emissions are also added to the BLUE estimate. 28 

The two bookkeeping estimates used in this study also differ with respect to the land use change 29 

data used to drive the models. H&N2017 base their estimates directly on the Forest Resource 30 

Assessment of the FAO which provides statistics on forest-area change and management at 31 
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intervals of five years currently updated until 2015 (FAO, 2015). The data is based on country 1 

reporting to FAO, and may include remote-sensing information in more recent assessments. 2 

Changes in land use other than forests are based on annual, national changes in cropland and 3 

pasture areas reported by FAO (FAOSTAT, 2015). BLUE uses the harmonized land-use change data 4 

LUH2 (Hurtt et al., in prep.), which describes land use change, also based on the FAO data, but 5 

downscaled at a quarter-degree spatial resolution, considering sub-grid-scale transitions between 6 

primary forest, secondary forest, cropland, pasture and rangeland. The LUH2 data provides a new 7 

distinction between rangelands and pasture. To constrain the models’ interpretation on whether 8 

rangeland implies the original natural vegetation to be transformed to grassland or not (e.g., 9 

browsing on shrubland), a new forest mask was provided with LUH2; forest is assumed to be 10 

transformed, while all other natural vegetation remains. This is implemented in BLUE.  11 

The estimate of H&N2017 was extended here by two years (to 2017) by adding the anomaly of 12 

total tropical emissions (peat drainage from Hooijer et al. (2010), peat burning as well as tropical 13 

deforestation and degradation fires from GFED4s) over the previous decade (2006-2015) to the 14 

decadal average of the bookkeeping result.  15 

2.2.2 Dynamic Global Vegetation Models (DGVMs) 16 

Land-use change CO2 emissions have also been estimated using an ensemble of 16 DGVM 17 

simulations. The DGVMs account for deforestation and regrowth, the most important 18 

components of ELUC, but they do not represent all processes resulting directly from human 19 

activities on land (Table A1). All DGVMs represent processes of vegetation growth and mortality, 20 

as well as decomposition of dead organic matter associated with natural cycles, and include the 21 

vegetation and soil carbon response to increasing atmospheric CO2 levels and to climate variability 22 

and change. Some models explicitly simulate the coupling of carbon and nitrogen cycles and 23 

account for atmospheric N deposition (Table A1). The DGVMs are independent from the other 24 

budget terms except for their use of atmospheric CO2 concentration to calculate the fertilization 25 

effect of CO2 on plant photosynthesis.   26 

The DGVMs used the HYDE land-use change data set (Klein Goldewijk et al., 2017a;Klein Goldewijk 27 

et al., 2017b), which provides annual, half-degree, fractional data on cropland and pasture. These 28 

data are based on annual FAO statistics of change in agricultural land area available to 2012. The 29 

FAOSTAT land use database is updated annually, currently covering the period 1961-2016 (but 30 
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used here to 2015 because of the timing of data availability).  HYDE applied annual changes in FAO 1 

data to the year 2012 data from the previous release to derive new 2013-2015 data. After the 2 

year 2015 HYDE extrapolates cropland, pasture, and urban land use data until the year 2018. 3 

Some models also use an update of the more comprehensive harmonised land-use data set (Hurtt 4 

et al., 2011), that further includes fractional data on primary and secondary forest vegetation, as 5 

well as all underlying transitions between land-use states (Hurtt et al., in prep.; Table A1). This 6 

new data set is of quarter degree fractional areas of land use states and all transitions between 7 

those states, including a new wood harvest reconstruction, new representation of shifting 8 

cultivation, crop rotations, management information including irrigation and fertilizer application. 9 

The land-use states now include five different crop types in addition to the pasture-rangeland split 10 

discussed before. Wood harvest patterns are constrained with Landsat tree cover loss data.  11 

DGVMs implement land-use change differently (e.g. an increased cropland fraction in a grid cell 12 

can either be at the expense of grassland or shrubs, or forest, the latter resulting in deforestation; 13 

land cover fractions of the non-agricultural land differ between models). Similarly, model-specific 14 

assumptions are applied to convert deforested biomass or deforested area, and other forest 15 

product pools into carbon, and different choices are made regarding the allocation of rangelands 16 

as natural vegetation or pastures. 17 

The DGVM model runs were forced by either the merged monthly CRU and 6 hourly JRA-55 18 

dataset or by the monthly CRU dataset, both providing observation based temperature, 19 

precipitation, and incoming surface radiation on a 0.5°x0.5° grid and updated to 2017 (Harris et 20 

al., 2014). The combination of CRU monthly data with 6 hourly forcing is updated this year from 21 

NCEP to JRA-55 (Kobayashi et al., 2015), adapting the methodology used in previous years (Viovy, 22 

2016) to the specifics of the JRA-55 data. The forcing data also include global atmospheric CO2, 23 

which changes over time (Dlugokencky and Tans, 2018), and gridded, time dependent N 24 

deposition (as used in some models; Table A1).  25 

Two sets of simulations were performed with the DGVMs. Both applied historical changes in 26 

climate, atmospheric CO2 concentration, and N deposition. The two sets of simulations differ, 27 

however, with respect to land use: one set applies historical changes in land use, the other a time-28 

invariant preindustrial land cover distribution and preindustrial wood harvest rates. By difference 29 

of the two simulations, the dynamic evolution of vegetation biomass and soil carbon pools in 30 

response to land use change can be quantified in each model (ELUC). We only retain model outputs 31 
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with positive ELUC, i.e. a positive flux to the atmosphere, during the 1990s (Table A1). Using the 1 

difference between these two DGVM simulations to diagnose ELUC means the DGVMs account for 2 

the loss of additional sink capacity (around 0.3 GtC yr-1; see Section 2.7.3), while the bookkeeping 3 

models do not.  4 

2.2.3 Uncertainty assessment for ELUC 5 

Differences between the bookkeeping models and DGVM models originate from three main 6 

sources:  the different methodologies; the underlying land use/land cover data set, and the 7 

different processes represented (Table A1). We examine the results from the DGVM models and 8 

of the bookkeeping method, and use the resulting variations as a way to characterise the 9 

uncertainty in ELUC. 10 

The ELUC estimate from the DGVMs multi-model mean is consistent with the average of the 11 

emissions from the bookkeeping models (Table 5). However there are large differences among 12 

individual DGVMs (standard deviation at around 0.6-0.7 GtC yr-1; Table 5), between the two 13 

bookkeeping models (average of 0.7 GtC yr-1), and between the current estimate of H&N2017 and 14 

its previous model version (Houghton et al., 2012). The uncertainty in ELUC of ±0.7 GtC yr-1  reflects 15 

our best value judgment that there is at least 68% chance (±1σ) that the true land-use change 16 

emission lies within the given range, for the range of processes considered here. Prior to the year 17 

1959, the uncertainty in ELUC was taken from the standard deviation of the DGVMs. We assign low 18 

confidence to the annual estimates of ELUC because of the inconsistencies among estimates and of 19 

the difficulties to quantify some of the processes in DGVMs.  20 

2.2.4 Emissions projections 21 

We project emissions for both H&N2017 and BLUE for 2018 using the same approach as for the 22 

extrapolation of H&N2017 for 2016-2017. Peat burning as well as tropical deforestation and 23 

degradation are estimated using active fire data (MCD14ML; Giglio et al. (2016)), which scales 24 

almost linearly with GFED (van der Werf et al., 2017), and thus allows for tracking fire emissions in 25 

deforestation and tropical peat zones in near-real time. During most years, emissions during 26 

January-October cover most of the fire season in the Amazon and Southeast Asia, where a large 27 

part of the global deforestation takes place.  28 
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2.3 Growth rate in atmospheric CO2 concentration (GATM) 1 

2.3.1 Global growth rate in atmospheric CO2 concentration 2 

The rate of growth of the atmospheric CO2 concentration is provided by the US National Oceanic 3 

and Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL; Dlugokencky 4 

and Tans, 2018), which is updated from Ballantyne et al. (2012). For the 1959-1979 period, the 5 

global growth rate is based on measurements of atmospheric CO2 concentration averaged from 6 

the Mauna Loa and South Pole stations, as observed by the CO2 Program at Scripps Institution of 7 

Oceanography (Keeling et al., 1976). For the 1980-2017 time period, the global growth rate is 8 

based on the average of multiple stations selected from the marine boundary layer sites with well-9 

mixed background air (Ballantyne et al., 2012), after fitting each station with a smoothed curve as 10 

a function of time, and averaging by latitude band (Masarie and Tans, 1995). The annual growth 11 

rate is estimated by Dlugokencky and Tans (2018) from atmospheric CO2 concentration by taking 12 

the average of the most recent December-January months corrected for the average seasonal 13 

cycle and subtracting this same average one year earlier. The growth rate in units of ppm yr-1 is 14 

converted to units of GtC yr-1 by multiplying by a factor of 2.124 GtC per ppm (Ballantyne et al., 15 

2012). 16 

The uncertainty around the atmospheric growth rate is due to three main factors. First, the long-17 

term reproducibility of reference gas standards (around 0.03 ppm for 1σ from the 1980s). Second, 18 

small unexplained systematic analytical errors that may have a duration of several months to two 19 

years come and go. They have been simulated by randomizing both the duration and the 20 

magnitude (determined from the existing evidence) in a Monte Carlo procedure. Third, the 21 

network composition of the marine boundary layer with some sites coming or going, gaps in the 22 

time series at each site, etc (Dlugokencky and Tans, 2018). The latter uncertainty was estimated 23 

by NOAA/ESRL with a Monte Carlo method by constructing 100 "alternative" networks 24 

(NOAA/ESRL 2017; Masarie, and Tans, 1995). The second and third uncertainties, summed in 25 

quadrature, add up to 0.085 ppm on average (Dlugokencky and Tans, 2018). Fourth, the 26 

uncertainty associated with using the average CO2 concentration from a surface network to 27 

approximate the true atmospheric average CO2 concentration (mass-weighted, in 3 dimensions) 28 

as needed to assess the total atmospheric CO2 burden. In reality, CO2 variations measured at the 29 

stations will not exactly track changes in total atmospheric burden, with offsets in magnitude and 30 

phasing due to vertical and horizontal mixing. This effect must be very small on decadal and 31 
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longer time scales, when the atmosphere can be considered well mixed. Preliminary estimates 1 

suggest this effect would increase the annual uncertainty, but a full analysis is not yet available. 2 

We therefore maintain an uncertainty around the annual growth rate based on the multiple 3 

stations data set ranges between 0.11 and 0.72 GtC yr-1, with a mean of 0.61 GtC yr-1 for 1959-4 

1979 and 0.18 GtC yr-1 for 1980-2017, when a larger set of stations were available as provided by 5 

Dlugokencky and Tans (2018), but recognise further exploration of this uncertainty is required. At 6 

this time, we estimate the uncertainty of the decadal averaged growth rate after 1980 at 0.02 GtC 7 

yr-1 based on the calibration and the annual growth rate uncertainty, but stretched over a 10-year 8 

interval. For years prior to 1980, we estimate the decadal averaged uncertainty to be 0.07 GtC yr-1 9 

based on a factor proportional to the annual uncertainty prior and after 1980 (0.61/0.18*0.02 GtC 10 

yr-1). 11 

We assign a high confidence to the annual estimates of GATM because they are based on direct 12 

measurements from multiple and consistent instruments and stations distributed around the 13 

world (Ballantyne et al., 2012). 14 

In order to estimate the total carbon accumulated in the atmosphere since 1750 or 1870, we use 15 

an atmospheric CO2 concentration of 277 ± 3 ppm or 288 ± 3 ppm, respectively, based on a cubic 16 

spline fit to ice core data (Joos and Spahni, 2008). The uncertainty of ±3 ppm (converted to ±1σ) is 17 

taken directly from the IPCC’s assessment (Ciais et al., 2013). Typical uncertainties in the growth 18 

rate in atmospheric CO2 concentration from ice core data are equivalent to ±0.1-0.15 GtC yr-1 as 19 

evaluated from the Law Dome data (Etheridge et al., 1996) for individual 20-year intervals over 20 

the period from 1870 to 1960 (Bruno and Joos, 1997). 21 

2.3.2 Atmospheric growth rate projection 22 

We provide an assessment of GATM for 2018 based on the observed increase in atmospheric CO2 23 

concentration at the Mauna Loa station for January to October, and a mean growth rate over the 24 

past 5 years for the months November to December. Growth at Mauna Loa is closely correlated 25 

with the global growth (r=0.95) and is used here as a proxy for global growth, but the regression is 26 

not 1-to-1. We also adjust the projected global growth rate to take this into account. The 27 

assessment method used this year differs from the forecast method used in Le Quéré et al. (2018) 28 

based on the relationship between annual CO2 growth rate and sea surface temperatures (SSTs) in 29 

the Niño3.4 region of Betts et al. (2016). A change was introduced because although the observed 30 
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growth rate for 2017 of 2.2 ppm was within the projection range of 2.5 ± 0.5 ppm of last year (Le 1 

Quéré et al. 2018), the forecast values for 2018 for January to October are too high by 2 

approximately 0.4 ppm above observed values on average. The reasons for the difference are 3 

being investigated. The use of observed growth at MLO for the first half of the year is thought to 4 

be more robust because of its high correlation with the global growth rate. Furthermore, 5 

additional analysis suggests that the first half of the year shows more interannual variability than 6 

the second half of the year, so that the exact projection method applied to November-December 7 

has only a small impact (<0.1 ppm) on the projection of the full year.  Uncertainty is estimated 8 

from past variability using the standard deviation of the last 5 years' monthly growth rates.  9 

2.4 Ocean CO2 sink 10 

Estimates of the global ocean CO2 sink SOCEAN are from an ensemble of global ocean 11 

biogeochemistry models (GOBMs) that meet observational constraints over the 1990s (see 12 

below). We use observation-based estimates of SOCEAN to provide a qualitative assessment of 13 

confidence in the reported results, and to estimate the cumulative accumulation of SOCEAN over 14 

the preindustrial period.  15 

2.4.1 Observation-based estimates 16 

We use the observational constraints assessed by IPCC of a mean ocean CO2 sink of 2.2 ± 0.4 GtC 17 

yr-1 for the 1990s (Denman et al., 2007) to verify that the GOBMs provide a realistic assessment of 18 

SOCEAN. This is based on indirect observations with seven different methodologies and their 19 

uncertainties, using the methods that are deemed most reliable for the assessment of this 20 

quantity (Denman et al., 2007). The IPCC confirmed this assessment in 2013 (Ciais et al., 2013). 21 

The observational-based estimates use the ocean/land CO2 sink partitioning from observed 22 

atmospheric O2/N2 concentration trends (Manning and Keeling, 2006; updated in Keeling and 23 

Manning 2014), an oceanic inversion method constrained by ocean biogeochemistry data 24 

(Mikaloff Fletcher et al., 2006), and a method based on penetration time scale for CFCs (McNeil et 25 

al., 2003). The IPCC estimate of 2.2 GtC yr-1 for the 1990s is consistent with a range of methods 26 

(Wanninkhof et al., 2013).  27 

We also use two estimates of the ocean CO2 sink and its variability based on interpolations of 28 

measurements of surface ocean fugacity of CO2 (pCO2 corrected for the non-ideal behaviour of 29 

the gas; Pfeil et al., 2013). We refer to these as pCO2-based flux estimates. The measurements are 30 
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from the Surface Ocean CO2 Atlas version 6, which is an update of version 3 (Bakker et al., 2016) 1 

and contains quality-controlled data to 2017 (see data attribution Table A4). The SOCAT v6 data 2 

were mapped using a data-driven diagnostic method (Rödenbeck et al., 2013) and a combined 3 

self-organising map and feed-forward neural network (Landschützer et al., 2014). The global pCO2-4 

based flux estimates were adjusted to remove the preindustrial ocean source of CO2 to the 5 

atmosphere of 0.78 GtC yr-1 from river input to the ocean (Resplandy et al., 2018), per our 6 

definition of SOCEAN. Several other ocean sink products based on observations are also available 7 

but they continue to show large unresolved discrepancies with observed variability. Here we used 8 

the two pCO2-based flux products that had the best fit to observations for their representation of 9 

tropical and global variability (Rödenbeck et al., 2015). 10 

We further use results from two diagnostic ocean models of Khatiwala et al. (2013) and DeVries 11 

(2014) to estimate the anthropogenic carbon accumulated in the ocean prior to 1959. The two 12 

approaches assume constant ocean circulation and biological fluxes, with SOCEAN estimated as a 13 

response in the change in atmospheric CO2 concentration calibrated to observations. The 14 

uncertainty in cumulative uptake of ±20 GtC (converted to ±1σ) is taken directly from the IPCC’s 15 

review of the literature (Rhein et al., 2013), or about ±30% for the annual values (Khatiwala et al., 16 

2009). 17 

2.4.2 Global Ocean Biogeochemistry Models (GOBMs) 18 

The ocean CO2 sink for 1959-2017 is estimated using seven GOBMs (Table A2). The GOBMs 19 

represent the physical, chemical and biological processes that influence the surface ocean 20 

concentration of CO2 and thus the air-sea CO2 flux. The GOBMs are forced by meteorological 21 

reanalysis and atmospheric CO2 concentration data available for the entire time period. They 22 

mostly differ in the source of the atmospheric forcing data (meteorological reanalysis), spin up 23 

strategies, and in their horizontal and vertical resolutions  (Table A2). GOBMs do not include the 24 

effects of anthropogenic changes in nutrient supply, which could lead to an increase of the ocean 25 

sink of up to about 0.3 GtC yr-1 over the industrial period (Duce et al., 2008). They also do not 26 

include the perturbation associated with changes in riverine organic carbon (see Sect. 2.7.3).   27 
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2.4.3 GOBM evaluation and uncertainty assessment for SOCEAN 1 

The mean ocean CO2 sink for all GOBMs fall within 90% confidence of the observed range, or 1.6 2 

to 2.8 GtC yr-1 for the 1990s. Here we have adjusted the confidence interval to the IPCC 3 

confidence interval of 90% to avoid rejecting models that may be outliers but are still plausible. 4 

The GOBMs and flux products have been further evaluated using fCO2 from the SOCAT v6 5 

database. We focused this initial evaluation on the interannual mismatch metric proposed by 6 

Rödenbeck et al. (2015) for the comparison of flux products. The metric provides a measure of the 7 

mismatch between observations and models or flux products on the x-axis as well as a measure of 8 

the amplitude of the interannual variability on the y-axis. A smaller number on the x-axis indicates 9 

a better fit with observations. The amplitude of the interannual variability of SOCEAN (y-axis) is 10 

calculated as the temporal standard deviation of the CO2 flux time-series.  11 

The calculation for the x-axis is done as follows: 1) the mismatch between the observed and the 12 

modelled fCO2 is calculated for the period 1985 to 2017 (except for IPSL model which uses 1985 to 13 

2015 due to data availability), but only for grid points where actual observations exist. 2) The 14 

interannual variability of this mismatch is calculated as the temporal standard deviation of the 15 

mismatch. 3) To put numbers into perspective, the interannual variability of the mismatch is 16 

reported relative to the interannual variability of the mismatch between a benchmark fCO2 field 17 

and the observations. The benchmark fCO2 field is designed to have no interannual variability, i.e. 18 

it is calculated as the mean seasonal cycle at each grid point over the full period plus the 19 

deseasonalized atmospheric fCO2 increase over time. By definition, the interannual variability of 20 

the misfit between benchmark and observations is large as the benchmark field does not contain 21 

any interannual variability from the ocean. A smaller relative interannual variability mismatch 22 

indicates a better fit between observed and modelled fCO2. This metric is chosen because it is the 23 

most direct measure of the year-to-year variability of SOCEAN in ocean biogeochemistry models.  24 

We apply the metric globally and by latitude bands (Fig. B1). Results are shown in Fig. B1 and 25 

discussed in Section 3.1.3.  26 

The uncertainty around the mean ocean sink of anthropogenic CO2 was quantified by Denman et 27 

al. (2007) for the 1990s (see Sect. 2.4.1). To quantify the uncertainty around annual values, we 28 

examine the standard deviation of the GOBM ensemble, which averages between 0.2 and 0.3 29 

GtC yr-1 during 1959-2017. We estimate that the uncertainty in the annual ocean CO2 sink is about 30 

± 0.5 GtC yr-1 from the combined uncertainty of the mean flux based on observations of ± 0.4 GtC 31 
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yr-1 and the standard deviation across GOBMs of up to ± 0.3 GtC yr-1, reflecting both the 1 

uncertainty in the mean sink from observations during the 1990’s (Denman et al., 2007; Section 2 

2.4.1) and in the interannual variability as assessed by GOBMs. 3 

We examine the consistency between the variability of the model-based and the pCO2-based flux 4 

products to assess confidence in SOCEAN. The interannual variability of the ocean fluxes (quantified 5 

as the standard deviation) of the two pCO2-based flux products for 1985-2017 (where they 6 

overlap) is ± 0.36 GtC yr-1 (Rödenbeck et al., 2014) and ± 0.38 GtC yr-1 (Landschützer et al., 2015), 7 

compared to ± 0.29 GtC yr-1 for the GOBM ensemble. The standard deviation includes a 8 

component of trend and decadal variability in addition to interannual variability, and their relative 9 

influence differs across estimates. Individual estimates (both GOBM and flux products) generally 10 

produce a higher ocean CO2 sink during strong El Niño events. The annual pCO2-based flux 11 

products correlate with the ocean CO2 sink estimated here with a correlation of r = 0.75 (0.59 to 12 

0.79 for individual GOBMs), and r = 0.80 (0.71 to 0.81) for the pCO2-based flux products of 13 

Rödenbeck et al. (2014) and Landschützer et al. (2015), respectively (simple linear regression), 14 

with their mutual correlation at 0.73. The agreement between models and the flux products 15 

reflects some consistency in their representation of underlying variability since there is little 16 

overlap in their methodology or use of observations. The use of annual data for the correlation 17 

may reduce the strength of the relationship because the dominant source of variability associated 18 

with El Niño events is less than one year. We assess a medium confidence level to the annual 19 

ocean CO2 sink and its uncertainty because it is based on multiple lines of evidence, and the 20 

results are consistent in that the interannual variability in the GOBMs and data-based estimates 21 

are all generally small compared to the variability in the growth rate of atmospheric CO2 22 

concentration.  23 

2.5 Terrestrial CO2 sink 24 

2.5.1 DGVM simulations 25 

The terrestrial land sink (SLAND) is thought to be due to the combined effects of fertilisation by 26 

rising atmospheric CO2 and N deposition on plant growth, as well as the effects of climate change 27 

such as the lengthening of the growing season in northern temperate and boreal areas. SLAND does 28 

not include land sinks directly resulting from land use and land-use change (e.g. regrowth of 29 

vegetation) as these are part of the land use flux (ELUC), although system boundaries make it 30 

difficult to attribute exactly CO2 fluxes on land between SLAND and ELUC (Erb et al., 2013). 31 
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SLAND is estimated from the multi-model mean of the DGVMs (Table 4). As described in section 1 

2.2.3, DGVM simulations include all climate variability and CO2 effects over land, with some 2 

DGVMs also including the effect of N deposition. The DGVMs do not include the perturbation 3 

associated with changes in river organic carbon, which is discussed section 2.7.   4 

2.5.2 DGVM evaluation and uncertainty assessment for SLAND 5 

We apply three criteria for minimum DGVM realism by including only those DGVMs with (1) 6 

steady state after spin up, (2) net land fluxes (SLAND – ELUC) that is an atmosphere-to-land carbon 7 

flux over the 1990s ranging between -0.3 and 2.3GtC yr-1, within 90% confidence of constraints by 8 

global atmospheric and oceanic observations (Keeling and Manning, 2014;Wanninkhof et al., 9 

2013), and (3) global ELUC that is a carbon source to the atmosphere over the 1990s. All 16 DGVMs 10 

meet the three criteria.  11 

In addition, the DGVM results are now also evaluated using the International Land Model 12 

Benchmarking system (ILAMB; Collier et al., 2018). This evaluation is provided here to document, 13 

encourage and support model improvements through time. ILAMB variables cover key processes 14 

that are relevant for the quantification of SLAND and resulting aggregated outcomes. The selected 15 

variables are vegetation biomass, gross primary productivity, leaf area index, net ecosystem 16 

exchange, ecosystem respiration, evapotranspiration, and runoff (see Fig. B2 for the results and 17 

for the list of observed databases). Results are shown in Fig. B2 and discussed in Section 3.1.3. 18 

For the uncertainty, we use the standard deviation of the annual CO2 sink across the DGVMs, 19 

which averages to ± 0.8 GtC yr-1 for the period 1959 to 2017. We attach a medium confidence 20 

level to the annual land CO2 sink and its uncertainty because the estimates from the residual 21 

budget and averaged DGVMs match well within their respective uncertainties (Table 5). 22 

2.6 The atmospheric perspective 23 

The world-wide network of atmospheric measurements can be used with atmospheric inversion 24 

methods to constrain the location of the combined total surface CO2 fluxes from all sources, 25 

including fossil and land-use change emissions and land and ocean CO2 fluxes. The inversions 26 

assume EFF to be well known, and they solve for the spatial and temporal distribution of land and 27 

ocean fluxes from the residual gradients of CO2 between stations that are not explained by fossil 28 

fuel emissions.  29 
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Four atmospheric inversions (Table A3) used atmospheric CO2 data to the end of 2017 (including 1 

preliminary values in some cases) to infer the spatio-temporal distribution of the CO2 flux 2 

exchanged between the atmosphere and the land or oceans. We focus here on the largest and 3 

most consistent sources of information, namely the total land and ocean CO2 flux and their 4 

partitioning among the mid-high latitude region of the Northern Hemisphere (30°N-90°N), the 5 

tropics (30°S-30°N) and the mid-high latitude region of the Southern Hemisphere (30°S-90°S). We 6 

also break down those estimates for the land and ocean regions separately, to further scrutinise 7 

the constraints from atmospheric observations. We use these estimates to comment on the 8 

consistency across various data streams and process-based estimates.   9 

Atmospheric inversions 10 

The four inversion systems used in this release are the CarbonTracker Europe (CTE; van der Laan-11 

Luijkx et al., 2017), the Jena CarboScope (Rödenbeck, 2005), the Copernicus Atmosphere 12 

Monitoring Service (CAMS; Chevallier et al., 2005), and MIROC (Patra et al., 2018). See Table A3 13 

for version numbers. The inversions are based on the same Bayesian inversion principles that 14 

interpret the same, for the most part, observed time series (or subsets thereof), but use different 15 

methodologies (Table A3). These differences mainly concern the selection of atmospheric CO2 16 

data, the used prior fluxes, spatial breakdown (i.e. grid size), assumed correlation structures, and 17 

mathematical approach. The details of these approaches are documented extensively in the 18 

references provided above. Each system uses a different transport model, which was 19 

demonstrated to be a driving factor behind differences in atmospheric-based flux estimates, and 20 

specifically their distribution across latitudinal bands (e.g., Gaubert et al., 2018). 21 

The inversions use atmospheric CO2 observations from various flask and in situ networks, as 22 

detailed in Table A3. They prescribe global EFF, which is scaled to the present study for CAMS and 23 

CTE, while slightly lower EFF values based on alternative emissions compilations were used in 24 

CarboScope and MIROC. Since this is known to result directly in lower total CO2 uptake in 25 

atmospheric inversions (Gaubert et al., 2018;Peylin et al., 2013) we adjusted the land sink of each 26 

inversion estimate (where most of the emissions occur) by its fossil fuel difference to the CAMS 27 

model. These differences amount to as much as 0.7 GtC for certain years (CarboScope inversion 28 

region NH) and are thus an important consideration in an inverse flux comparison.  29 
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The land/ocean CO2 fluxes from atmospheric inversions contain anthropogenic perturbation and 1 

natural pre-industrial CO2 fluxes. Natural pre-industrial fluxes are land CO2 sinks corresponding to 2 

carbon transported to ocean by rivers. These land CO2 sinks are compensated over the globe by 3 

ocean CO2 sources corresponding to the outgassing of riverine carbon inputs to the ocean. We 4 

apply the distribution of land CO2 fluxes in three latitude bands using estimates from Resplandy et 5 

al. (2018), which are constrained by ocean heat transport to a total sink of 0.78 GtC y-1. The 6 

latitude distribution of river-induced ocean CO2 sources are derived from a simulation of the IPSL 7 

GOBM using as an input the river flux constrained by heat transport of Resplandy et al. (2018). We 8 

adjusted the land/ocean fluxes per latitude band based on these results.  9 

The atmospheric inversions are now evaluated using vertical profiles of atmospheric CO2 10 

concentrations (Fig. B3). More than 50 aircraft programs over the globe, either regular or 11 

occasional, have been used in order to draw a robust picture of the model performance but the 12 

space-time data coverage is irregular, denser around 2009 or in the 0-45°N latitude band.  The 13 

four models are compared to independent CO2 measurements made onboard aircraft over many 14 

places of the world between 1 and 7 km above sea level, between 2008 and 2016. Results are 15 

shown in Fig. B3 and discussed in Section 3.1.3. 16 

2.7 Processes not included in the global carbon budget 17 

The contribution of anthropogenic CO and CH4 to the global carbon budget has been partly 18 

neglected in Eq. 1 and is described in Sect. 2.7.1. The contributions of other carbonates to CO2 19 

emissions is described in Sect. 2.7.2. The contribution of anthropogenic changes in river fluxes is 20 

conceptually included in Eq. 1 in SOCEAN and in SLAND, but it is not represented in the process 21 

models used to quantify these fluxes. This effect is discussed in Sect. 2.7.3. Similarly, the loss of 22 

additional sink capacity from reduced forest cover is missing in the combination of approaches 23 

used here to estimate both land fluxes (ELUC and SLAND) and its potential effect is discussed and 24 

quantified in Sect. 2.7.4.  25 

2.7.1 Contribution of anthropogenic CO and CH4 to the global carbon budget 26 

Equation (1) includes only partly the net input of CO2 to the atmosphere from the chemical 27 

oxidation of reactive carbon-containing gases from sources other than the combustion of fossil 28 

fuels, such as: (1) cement process emissions, since these do not come from combustion of fossil 29 

fuels, (2) the oxidation of fossil fuels, (3) the assumption of immediate oxidation of vented 30 
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methane in oil production. It omits however any other anthropogenic carbon-containing gases 1 

that are eventually oxidised in the atmosphere, such as anthropogenic emissions of CO and CH4. 2 

An attempt is made in this section to estimate their magnitude, and identify the sources of 3 

uncertainty. Anthropogenic CO emissions are from incomplete fossil fuel and biofuel burning and 4 

deforestation fires. The main anthropogenic emissions of fossil CH4 that matter for the global 5 

carbon budget are the fugitive emissions of coal, oil and gas upstream sectors (see below). These 6 

emissions of CO and CH4 contribute a net addition of fossil carbon to the atmosphere. 7 

In our estimate of EFF we assumed (Sect. 2.1.1) that all the fuel burned is emitted as CO2, thus CO 8 

anthropogenic emissions associated with incomplete combustion and their atmospheric oxidation 9 

into CO2 within a few months are already counted implicitly in EFF and should not be counted 10 

twice (same for ELUC and anthropogenic CO emissions by deforestation fires). Anthropogenic 11 

emissions of fossil CH4 are not included in EFF, because these fugitive emissions are not included in 12 

the fuel inventories. Yet they contribute to the annual CO2 growth rate after CH4 gets oxidized into 13 

CO2. Anthropogenic emissions of fossil CH4 represent 15% of total CH4 emissions (Kirschke et al., 14 

2013) that is 0.061 GtC yr-1 for the past decade. Assuming steady state, these emissions are all 15 

converted to CO2 by OH oxidation, and thus explain 0.06 GtC yr-1 of the global CO2 growth rate in 16 

the past decade, or 0.07-0.1 GtC yr-1 using the higher CH4 emissions reported recently (Schwietzke 17 

et al., 2016). 18 

Other anthropogenic changes in the sources of CO and CH4 from wildfires, vegetation biomass, 19 

wetlands, ruminants or permafrost changes are similarly assumed to have a small effect on the 20 

CO2 growth rate. The CH4 emissions and sinks are published and analysed separately in the Global 21 

Methane Budget publication that follows a similar approach as presented here (Saunois et al., 22 

2016).  23 

2.7.2 Contribution of other carbonates to CO2 emissions 24 

The contribution of fossil carbonates other than cement production is not systematically included 25 

in estimates of EFF, except at the national level where they are accounted in the UNFCCC national 26 

inventories. The missing processes include CO2 emissions associated with the calcination of lime 27 

and limestone outside cement production, and the reabsorption of CO2 by the rocks and concrete 28 

from carbonation through their life time (Xi et al., 2016). Carbonates are used in various 29 

industries, including in iron and steel manufacture and in agriculture. They are found naturally in 30 
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some coals. Carbonation from cement life-cycle, including demolition and crushing, was estimated 1 

by one study to be around 0.25 GtC yr-1 for year 2013 (Xi et al., 2016).  Carbonation emissions 2 

from cement life-cycle would offset calcination emissions from lime and limestone production. 3 

The balance of these two processes is not clear.  4 

2.7.3 Anthropogenic carbon fluxes in the land to ocean aquatic continuum 5 

The approach used to determine the global carbon budget refers to the mean, variations, and 6 

trends in the perturbation of CO2 in the atmosphere, referenced to the preindustrial era. Carbon is 7 

continuously displaced from the land to the ocean through the land-ocean aquatic continuum 8 

(LOAC) comprising freshwaters, estuaries and coastal areas (Bauer et al., 2013;Regnier et al., 9 

2013). A significant fraction of this lateral carbon flux is entirely ‘natural’ and is thus a steady state 10 

component of the preindustrial carbon cycle. We account for this preindustrial flux where 11 

appropriate in our study. However, changes in environmental conditions and land use change 12 

have caused an increase in the lateral transport of carbon into the LOAC – a perturbation that is 13 

relevant for the global carbon budget presented here.  14 

The results of the analysis of Regnier et al. (2013) can be summarized in two points of relevance 15 

for the anthropogenic CO2 budget. First, the anthropogenic perturbation has increased the 16 

organic carbon export from terrestrial ecosystems to the hydrosphere at a rate of 1.0 ± 0.5 GtC yr-17 

1, mainly owing to enhanced carbon export from soils.  Second, this exported anthropogenic 18 

carbon is partly respired through the LOAC, partly sequestered in sediments along the LOAC and 19 

to a lesser extent, transferred to the open ocean where it may accumulate. The increase in 20 

storage of land-derived organic carbon in the LOAC and open ocean combined is estimated by 21 

Regnier et al. (2013) at 0.65 ± 0.35GtC yr-1. We do not attempt to incorporate the changes in LOAC 22 

in our study.  23 

The inclusion of freshwater fluxes of anthropogenic CO2 affects the estimates of, and partitioning 24 

between, SLAND and SOCEAN in Eq. (1), but does not affect the other terms. This effect is not included 25 

in the GOBMs and DGVMs used in our global carbon budget analysis presented here. 26 

2.7.4 Loss of additional sink capacity 27 

Historical land-cover change was dominated by transitions from vegetation types that can provide 28 

a large sink per area unit (typically, forests) to others less efficient in removing CO2 from the 29 

atmosphere (typically, croplands). The resultant decrease in land sink, called the ‘loss of sink 30 
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capacity’, is calculated as the difference between the actual land sink under changing land-cover 1 

and the counter-factual land sink under preindustrial land-cover. An efficient protocol has yet to 2 

be designed to estimate the magnitude of the loss of additional sink capacity in DGVMs. Here, we 3 

provide a quantitative estimate of this term to be used in the discussion. Our estimate uses the 4 

compact Earth system model OSCAR whose land carbon cycle component is designed to emulate 5 

the behaviour of DGMVs (Gasser et al., 2017). We use OSCAR v2.2.1 (an update of v2.2 with minor 6 

changes) in a probabilistic setup identical to the one of Arneth et al. (2017) but with a Monte Carlo 7 

ensemble of 2000 simulations. For each, we calculate separately SLAND and the loss of additional 8 

sink capacity. We then constrain the ensemble by weighting each member to obtain a distribution 9 

of cumulative SLAND over 1850-2005 close to the DGVMs used here. From this ensemble, we 10 

estimate a loss of additional sink capacity of 0.4 ± 0.3 GtC yr-1 on average over 2005-2014, and 20 11 

± 15 GtC accumulated between 1870 and 2017 (using a linear extrapolation of the trend to 12 

estimate the last few years).  13 

3 Results 14 

3.1 Global carbon budget mean and variability for 1959 – 2017  15 

The global carbon budget averaged over the last half-century is shown in Fig. 3. For this time 16 

period, 82% of the total emissions (EFF + ELUC) were caused by fossil CO2 emissions, and 18% by 17 

land-use change. The total emissions were partitioned among the atmosphere (45%), ocean (24%) 18 

and land (30%). All components except land-use change emissions have grown since 1959, with 19 

important interannual variability in the growth rate in atmospheric CO2 concentration and in the 20 

land CO2 sink (Fig. 4), and some decadal variability in all terms (Table 6). Differences with previous 21 

budget releases is documented in Fig. B4.  22 

3.1.1 CO2 emissions 23 

Global fossil CO2 emissions have increased every decade from an average of 3.1 ± 0.2 GtC yr-1 in 24 

the 1960s to an average of 9.4 ± 0.5 GtC yr-1 during 2008-2017 (Table 6, Fig. 2 and Fig. 5). The 25 

growth rate in these emissions decreased between the 1960s and the 1990s, from 4.5% yr-1 in the 26 

1960s (1960-1969), 2.8% yr-1 in the 1970s (1970-1979), 1.9% yr-1 in the 1980s (1980-1989), and to 27 

1.0% yr-1 in the 1990s (1990-1999). After this period, the growth rate began increasing again in the 28 

2000s at an average growth rate of 3.2% yr-1, decreasing to 1.5% yr-1 for the last decade (2008-29 

2017), with a 3-year period of no or low growth during 2014-2016 (Fig. 5). 30 
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In contrast, CO2 emissions from land use, land-use change and forestry have remained relatively 1 

constant, at around 1.3 ± 0.7 GtC yr-1 over the past half-century but with large spread across 2 

estimates (Fig. 6). These emissions are also relatively constant in the DGVM ensemble of models, 3 

except during the last decade when they increase to 1.9 ± 0.7 GtC yr-1. However, there is no 4 

agreement on this recent increase between the two bookkeeping models, each suggesting an 5 

opposite trend (Fig. 6).  6 

3.1.2 Partitioning among the atmosphere, ocean and land 7 

The growth rate in atmospheric CO2 level increased from 1.7 ± 0.07 GtC yr-1 in the 1960s to 4.7 ± 8 

0.02 GtC yr-1 during 2008-2017 with important decadal variations (Table 6 and Fig. 2). Both ocean 9 

and land CO2 sinks increased roughly in line with the atmospheric increase, but with significant 10 

decadal variability on land (Table 6), and possibly in the ocean (Fig. 7).  11 

The ocean CO2 sink increased from 1.0 ± 0.5 GtC yr-1 in the 1960s to 2.4 ± 0.5 GtC yr-1 during 2008-12 

2017, with interannual variations of the order of a few tenths of GtC yr-1 generally showing an 13 

increased ocean sink during large El Niño events (i.e. 1997-1998) (Fig. 7; Rödenbeck et al., 2014). 14 

Although there is some coherence among the GOBMs and pCO2-based flux products regarding the 15 

mean, there is poor agreement for interannual variability and the ocean models underestimate 16 

decadal variability (Sect. 2.4.3 and Fig. 7; DeVries et al. (2017)).  17 

The terrestrial CO2 sink increased from 1.2 ± 0.5 GtC yr-1 in the 1960s to 3.2 ± 0.7 GtC yr-1 during 18 

2008-2017, with important interannual variations of up to 2 GtC yr-1 generally showing a 19 

decreased land sink during El Niño events (Fig. 6), responsible for the corresponding enhanced 20 

growth rate in atmospheric CO2 concentration. The larger land CO2 sink during 2008-2017 21 

compared to the 1960s is reproduced by all the DGVMs in response to the combined atmospheric 22 

CO2 increase and changes in climate, and consistent with constraints from the other budget terms 23 

(Table 5).  24 

Estimates of total atmosphere-to-land fluxes (SLAND – ELUC) from the DGVMs are consistent with 25 

the budget constraints (Table 5), except during 2008-2017, where the DGVM ensemble estimates 26 

a total atmosphere-to-land flux of 1.3 ± 0.5 GtC yr-1, likely below the budget constraints of 2.1 ± 27 

0.7 GtC yr-1 and outside the range of the inversions (Table 5). This comparison suggests that the 28 

DGVMs could overestimate ELUC emissions and/or underestimate the terrestrial sink SLAND during 29 

the last decade.   30 
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3.1.3 Model evaluation 1 

The evaluation of ocean estimates (Fig. B1) shows a relative interannual mismatch of 15% and 2 

17% for the two pCO2-based flux products over the globe, relative to the pCO2 observations from 3 

the SOCAT v6 database for the period 1985-2017. A 0% mismatch would indicate a perfect model, 4 

and a field with no interannual variability would result in a 100% mismatch. A larger than 100% 5 

mismatch is possible when the method produces a larger mismatch than the benchmark field with 6 

no interannual variability (see section 2.4.3). This mismatch by the pCO2-based flux products is 7 

improved compared with earlier published versions of these two flux products of around 20-25% 8 

for the 1992-2009 time period (Rödenbeck et al. 2015), likely because of the larger data 9 

availability after 2009. The GOBMs show a global relative interannual mismatch between 50% and 10 

60%, with one model at 94% and one at 193%. The GOBM mismatch is of the same order as the 11 

mismatch calculated in an ensemble of 14 flux products, but larger than the two flux products 12 

used in this report (Fig. 5 in Rödenbeck et al. 2015). The mismatch is generally larger at high 13 

latitudes compared to the tropics, for both the flux products and the GOBMs. The two flux 14 

products have similar mismatch of around 10-15% in the tropics, around 25% in the north, and 30-15 

55% in the south. The GOBM mismatch is more spread across regions, ranging from 29% to 178% 16 

in the tropics, 70% to 192% in the North, and 108% to 304% in the South. The higher mismatch 17 

occurs in regions with stronger climate variability, such as the northern and southern high-18 

latitudes (poleward of the subtropical gyres) and the equatorial Pacific. The latter is also apparent 19 

in the model mismatch, but is hidden in Figure B1 due to the averaging over 30°S to 30°N (see also 20 

section 4). 21 

The evaluation of the DGVMs (Fig. B2) shows generally high skill scores across models for runoff, 22 

and to a lesser extent for vegetation biomass, GPP, and ecosystem respiration (Fig. B2, left panel). 23 

Skill score was lowest for leaf area index and net ecosystem exchange, with a widest disparity 24 

among models for soil carbon.  Further analysis of the results will be provided separately, focusing 25 

the strengths and weaknesses in the DGVM ensemble and its validity for use in the global carbon 26 

budget. 27 

The evaluation of the atmospheric inversions (Fig. B3) shows long-term mean biases in the free 28 

troposphere better than 0.8 ppm in absolute values for each product. CAMS and CTE biases show 29 

some dependency on latitude (a trend of -0.0018 ± 0.0005 and 0.0043 ± 0.0004 ppm per degree 30 

for CAMS and CTE, respectively). These latitude-dependent biases may reveal biases in the surface 31 
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fluxes (e.g., Houweling et al., 2015) but the link is not straight-forward and will be analysed 1 

separately. The biases for MIROC and CarboScope behave similarly together in relative values, but 2 

they are less regular than the two other products, which hampers the interpretation. Lesser 3 

model performance for specific aircraft programs, like for the four-year Discover-AQ campaign in 4 

continental US (https://discover-aq.larc.nasa.gov/), contributes to this variability. 5 

3.1.4 Budget imbalance 6 

The carbon budget imbalance (BIM; Eq. 1) quantifies the mismatch between the estimated total 7 

emissions and the estimated changes in the atmosphere, land and ocean reservoirs. The mean 8 

budget imbalance from 1959 to 2017 is small (0.14 GtC yr-1) and shows no trend over the full time 9 

series. The process models (GOBMs and DGVMs) have been selected to match observational 10 

constraints in the 1990s but no further constraints have been applied to their representation of 11 

trend and variability. Therefore, the near-zero mean and trend in the budget imbalance is an 12 

indirect evidence of a coherent community understanding of the emissions and their partitioning 13 

on those time scales (Fig. 4). However, the budget imbalance shows substantial variability of the 14 

order of ± 1 GtC yr-1, particularly over semi-decadal time scales, although most of the variability is 15 

within the uncertainty of the estimates. The positive carbon imbalance during the 1960s, early 16 

1990s, and in the last decade, suggest that either the emissions were overestimated or the sinks 17 

were underestimated during these periods. The reverse is true for the 1970s and around 1995-18 

2000 (Fig. 4).  19 

We cannot attribute the cause of the variability in the budget imbalance with our analysis, only to 20 

note that the budget imbalance is unlikely to be explained by errors or biases in the emissions 21 

alone because of its large semi-decadal variability component, a variability that is untypical of 22 

emissions and has not changed in the past 50 years in spite of a nearly tripling in emissions (Fig. 23 

4). Errors in SLAND and SOCEAN are more likely to be the main cause for the budget imbalance. For 24 

example, underestimation of the SLAND by DGVMs has been reported following the eruption of 25 

Mount Pinatubo in 1991 possibly due to missing responses to changes in diffuse radiation 26 

(Mercado et al., 2009) or other yet unknown factor, and DGVMs are suspected to overestimate 27 

the land sink in response to the wet decade of the 1970s (Sitch et al., 2008). Decadal and semi-28 

decadal variability in the ocean sink has been also reported recently (DeVries et al., 29 

2017;Landschützer et al., 2015), with the pCO2-based ocean flux products suggesting a smaller 30 

than expected ocean CO2 sink in the 1990s and a larger than expected sink in the 2000s (Fig. 7), 31 
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possibly caused by changes in ocean circulation (DeVries et al., 2017) not captured in coarse 1 

resolution GOBMs used here (Dufour et al., 2013). The absence of internal variability could also be 2 

at fault. Internal variability is not captured by single realizations of coarse resolution model 3 

simulations (Li and Ilyina, 2017), and is thought to be largest in regions with strong seasonal and 4 

interannual climate variability, i.e. the high latitude ocean regions (poleward of the subtropical 5 

gyres) and the equatorial Pacific (McKinley et al., 2016). Some of these errors could be driven by 6 

errors in the climatic forcing data, particularly precipitation (for SLAND) and wind (for SOCEAN) rather 7 

than in the models.  8 

3.2 Global carbon budget for the last decade (2008 – 2017) 9 

The global carbon budget averaged over the last decade (2008-2017) is shown in Fig. 2 and Fig. 9. 10 

For this time period, 87% of the total emissions (EFF + ELUC) were from fossil CO2 emissions (EFF), 11 

and 13% from land-use change (ELUC). The total emissions were partitioned among the 12 

atmosphere (44%), ocean (22%) and land (29%), with a remaining unattributed budget imbalance 13 

(5%).  14 

3.2.1 CO2 emissions 15 

Global fossil CO2 emissions grew at a rate of 1.5% yr-1 for the last decade (2008-2017). China’s 16 

emissions increased by +3.0% yr-1 on average (increasing by +0.64 GtC yr-1 during the 10-year 17 

period) dominating the global trends, followed by India’s emissions increase by +5.2% yr-1 18 

(increasing by +0.25 GtC yr-1), while emissions decreased in EU28 by –1.8% yr-1 (decreasing by –19 

0.17 GtC yr-1), and in the USA by 0.9% yr-1 (decreasing by –0.18 GtC yr-1). In the past decade, fossil 20 

CO2 emissions decreased significantly (at the 95% level) in 25 countries: Aruba, Barbados, Croatia, 21 

Czech Republic, North Korea, Denmark, France, Greece, Greenland, Iceland, Ireland, Malta, 22 

Netherlands, Romania, Slovakia, Slovenia, Sweden, Switzerland, Syria, Trinidad and Tobago, 23 

Ukraine, United Kingdom, USA, Uzbekistan and Venezuela. Notable was Germany, whose 24 

emissions did not decrease significantly.  25 

In contrast, there is no apparent trend in CO2 emissions from land-use change (Fig. 6), though the 26 

data are very uncertain, with the two bookkeeping estimates showing opposite trends over the 27 

last decade. Larger emissions are expected increasingly over time for DGVM-based estimates as 28 

they include the loss of additional sink capacity, while the bookkeeping estimates don’t. The LUH2 29 
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dataset also features large dynamics in land use in particular in the tropics in recent years, causing 1 

higher emissions in DGVMs and BLUE than in H&N. 2 

3.2.2 Partitioning among the atmosphere, ocean and land 3 

The growth rate in atmospheric CO2 concentration increased during 2008-2017, in contrast to 4 

more constant levels the previous decade and reflecting a similar decrease in the land sink 5 

compared to an increase in the previous decade, albeit with large interannual variability (Fig. 4). 6 

During the same period, the ocean CO2 sink appears to have intensified, an effect which is 7 

particularly apparent in the pCO2-based flux products (Fig. 7) and is thought to originate at least in 8 

part in the Southern Ocean (Landschützer et al., 2015).  9 

The budget imbalance (Table 6) and the residual sink from global budget (Table 5) include an error 10 

term due to the inconsistency that arises from using ELUC from bookkeeping models, but SLAND 11 

from DGVMs. This error term includes the fundamental differences between bookkeeping models 12 

and DGVMs, most notably the loss of additional sink capacity. Other differences include: an 13 

incomplete accounting of LUC practices and processes in DGVMs, while they are all accounted for 14 

in bookkeeping models by using observed carbon densities, and bookkeeping error of keeping 15 

present-day carbon densities fixed in the past. That the budget imbalance shows no clear trend 16 

towards larger values over time is an indication that the loss of additional sink capacity plays a 17 

minor role compared to other errors in SLAND or SOCEAN (discussed in 3.1.4). 18 

3.2.3 Regional distribution 19 

Fig. 8 shows the partitioning of the total atmosphere-to-surface fluxes excluding fossil CO2 20 

emissions (SLAND + SOCEAN – ELUC) according to the multi-model average of the process models in the 21 

ocean and on land (GOBMs and DGVMs), and to the atmospheric inversions. Fig. 8 provides 22 

information on the regional distribution of those fluxes by latitude bands. The global mean total 23 

atmosphere-to-surface CO2 fluxes from process models for 2008-2017 is 3.7 ± 1.2 GtC yr-1. This is 24 

below but still within the uncertainty range of a global mean atmosphere-to-surface flux of 4.6 ± 25 

0.5 GtC yr-1 inferred from the carbon budget (EFF – GATM in Equation 1; Table 6). The total 26 

atmosphere-to-surface CO2 fluxes from the four inversions are very similar, ranging from 4.7 to 27 

5.0 GtC yr-1, consistent with the carbon budget as expected from the constraints on the inversions 28 

and the adjustments to the same EFF distribution (See Section 2.6). 29 
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In the south (south of 30°S), the atmospheric inversions suggest an atmosphere-to-surface flux for 1 

2008-2017 around 1.6-1.7 GtC yr-1, close to the process models’ estimate of 1.4 ± 0.7  GtC yr-1 (Fig. 2 

8). The interannual variability in the south is low because of the dominance of ocean area with 3 

low variability compared to land areas. The split between land (SLAND-ELUC) and ocean (SOCEAN) 4 

shows a small contribution to variability in the south coming from the land, with no consistency 5 

between the DGVMs and the inversions or among inversions. This is expected due to the difficulty 6 

of separating exactly the land and oceanic fluxes when viewed from atmospheric observations 7 

alone. The oceanic variability in the south is estimated to be significant in the two flux products 8 

and in at least one of the inversions, with decadal variability of around 0.5 GtC yr-1. The GOBMs do 9 

not reproduce this variability.    10 

In the tropics (30°S-30°N), both the atmospheric inversions and process models suggest the total 11 

carbon balance in this region is close to neutral on average over the past decade, with 12 

atmosphere-to-surface fluxes for the 2008-2017 average ranging between –0.4 and +0.4 GtC yr-1. 13 

The agreement between inversions and models is significantly better for the last decade than for 14 

any previous decade, although the reasons for this better agreement are still unclear. Both the 15 

process models and the inversions consistently allocate more year-to-year variability of CO2 fluxes 16 

to the tropics compared to the north (north of 30°N; Fig. 8). The split between the land and ocean 17 

indicates the land is the origin of most of the tropical variability, consistently among models (both 18 

for the land and for the ocean) and inversions. The oceanic variability in the tropics is similar 19 

among models and with the two ocean flux products, reflected in their lower observational 20 

mismatch (Section 3.1.3). While the inversions indicate that atmosphere-to-land CO2 fluxes are 21 

more variable than atmosphere-to-ocean CO2 fluxes in the tropics, the correspondence between 22 

the inversions and the ocean flux products or GOBMs is much poorer.  23 

In the north (north of 30°N), the inversions and process models show less agreement on the 24 

magnitude of the atmosphere-to-land flux, with the ensemble mean of the process models 25 

suggesting a total Northern Hemisphere sink for 2008-2017 of 2.2 ± 0.6 GtC yr-1, likely below the 26 

estimates from the inversions ranging from 2.6 to 3.6 GtC yr-1 (Fig. 8). The discrepancy in the 27 

north-tropics distribution of CO2 fluxes between the inversions and models arises from the 28 

differences in mean fluxes over the northern land. This discrepancy is also evidenced over the 29 

previous decade and highlights not only persistent issues with the quantification of the drivers of 30 

the net land CO2 flux (Arneth et al., 2017;Huntzinger et al., 2017) but also the distribution of 31 
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atmosphere-to-land fluxes between the tropics and higher latitudes that is particularly marked in 1 

previous decades, as highlighted previously (Stephens et al., 2007;Baccini et al., 2017;Schimel et 2 

al., 2015).   3 

Differences between inversions may be related for example to differences in their 4 

interhemispheric transport, and other inversion settings (Table A3). Separate analysis has shown 5 

that the influence of the chosen prior land and ocean fluxes is minor compared to other aspects of 6 

each inversion. In comparison to the previous global carbon budget publication, the fossil fuel 7 

inputs were adjusted to match that of EFF used in this analysis (see Section 2.6), therefore 8 

removing differences due to fossil emissions prior. Differences between inversions and the 9 

ensemble of process models in the north cannot be simply explained. They could either reflect a 10 

bias in the inversions or missing processes or biases in the process models, such as the lack of 11 

adequate parameterizations for forest management in the north and for forest degradation 12 

emissions in the tropics for the DGVMs. The estimated contribution of the north and its 13 

uncertainty from process models is sensitive both to the ensemble of process models used and to 14 

the specifics of each inversion.  15 

Resolving the differences in the Northern Hemisphere land sink will require the consideration and 16 

inclusion of larger volumes of semi-continuous observations from tall towers close to the surface 17 

CO₂ exchange. Some of this data is becoming available, but not used in the current inverse models 18 

sometimes due to the short records, and sometimes because the coarse transport models cannot 19 

adequately represent these time series. Improvements in model resolution and atmospheric 20 

transport realism together with expansion of the observational record (also in the data sparse 21 

Boreal Eurasian area) will help anchor the mid-latitude fluxes per continent. In addition, new 22 

metrics could potentially differentiate between the more- and less realistic realisations of the 23 

Northern Hemisphere land sink shown in Fig. 8. 24 

3.2.4 Budget imbalance 25 

The budget imbalance was +0.5 GtC yr-1 on average over 2008-2017. Although the uncertainties 26 

are large in each term, the sustained imbalance over this last decade suggests an overestimation 27 

of the emissions and/or an underestimation of the sinks. An origin in the land and/or ocean sink 28 

may be more likely, given the large variability of the land sink and the suspected underestimation 29 

of decadal variability in the ocean sink. An underestimate of SLAND would also reconcile model 30 
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results with inversions estimates for fluxes in the total land during the past decade (Fig. 8; Table 1 

5). However, we cannot exclude that the budget imbalance over the last decade could partly be 2 

due to an overestimation of CO2 emissions from land-use change, given their large uncertainty, as 3 

has been suggested elsewhere (Piao et al., 2018). More integrated use of observations in the 4 

Global Carbon Budget, either on their own or for further constraining model results, should help 5 

resolve some of the budget imbalance (Peters et al. 2017; Section 4).  6 

3.3 Global carbon budget for year 2017  7 

3.3.1 CO2 emissions 8 

Preliminary estimates of global fossil CO2 emissions based on BP energy statistics are for emissions 9 

growing by 1.6% between 2016 and 2017 to 9.9 ± 0.5 GtC in 2017 (Fig. 5), distributed among coal 10 

(40%), oil (35%), gas (20%), cement (4%) and gas flaring (0.7%). Compared to the previous year, 11 

emissions from coal increased by 1.6%, while emissions from oil, gas, and cement increased by 12 

1.7%, 3.0%, and 1.2%, respectively. All growth rates presented are adjusted for the leap year, 13 

unless stated otherwise.  14 

The growth in emissions of 1.6% in 2017 is within the range of the projected growth of 2.0% 15 

(range of 0.8 to 3.0%) published in Le Quéré et al. (2018) based on national emissions projections 16 

for China, the USA, and India and projections of gross domestic product corrected for IFF trends for 17 

the rest of the world. The growth in emissions in 2017 for China, UEA, and the rest of the world is 18 

also within their previously projected range, while the growth in India was slightly above the 19 

projection (Table 7).  20 

In 2017, the largest absolute contributions to global CO2 emissions were from China (27%), the 21 

USA (15%), the EU (28-member states; 10%), India (7%), while the rest of the world contributed 22 

42%. The percentages are the fraction of the global emissions including bunker fuels (3.1%). These 23 

four regions account for 59% of global CO2 emissions. Growth rates for these countries from 2016 24 

to 2017 were +1.5% (China), –0.5% (USA), +1.2% (EU28), and +3.9% (India), with +1.9% for the rest 25 

of the world. The per-capita CO2 emissions in 2017 were 1.1 tC person-1 yr-1 for the globe, and 26 

were 4.4 (USA), 2.0 (China), 1.9 (EU28) and 0.5 (India) tC person-1 yr-1 for the four highest emitting 27 

countries (Fig. 5). 28 

In 2016 (the last year available), the largest absolute contributions to global CO2 emissions from a 29 

consumption perspective were China (25%), USA (16%), the EU (12%), and India (6%). The 30 
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difference between territorial and consumption emissions (the net emission transfer via 1 

international trade) has generally increased from 1990 to around 2005 and remained relatively 2 

stable afterwards until the last year available (2016; Fig. 5).  3 

The global CO2 emissions from land-use change are estimated as 1.4 ± 0.7 GtC in 2017, close to 4 

the previous decade but with low confidence in the annual change. This brings the total CO2 5 

emissions from fossil plus land-use change (EFF+ELUC) to 11.3 ± 0.9 GtC (41.2 ± 3 GtCO2). 6 

3.3.2 Partitioning among the atmosphere, ocean and land 7 

The growth rate in atmospheric CO2 concentration was 4.6 ± 0.2 GtC in 2017 (2.16 ± 0.09 ppm; Fig. 8 

4; Dlugokencky and Tans, 2018). This is near the 2008-2017 average of 4.7 ± 0.1 GtC yr-1 and 9 

reflects the return to normal conditions after the El Niño of 2015-2016. 10 

The estimated ocean CO2 sink was 2.5 ± 0.5 GtC in 2017. All models and data products estimate a 11 

small reduction or no change in the sink (average of 0.1, ranging from +0.02 to -0.4 GtC), 12 

consistent with the return to normal conditions after the El Niño which caused an enhanced sink 13 

in previous years (Fig. 7).  14 

The terrestrial CO2 sink from the model ensemble was 3.8 ± 0.8 GtC in 2017, above the decadal 15 

average (Fig. 4) and consistent with constraints from the rest of the budget (Table 5). 16 

The budget imbalance was +0.3 GtC in 2017, indicating, as for the last decade, a small 17 

overestimation of the emissions and/or underestimation of the sinks for that year. This imbalance 18 

is indicative only, given the large uncertainties in the estimation of the BIM.  19 

3.4 Global carbon budget projection for year 2018  20 

3.4.1 CO2 emissions 21 

Based on available data as of 7 November 2018 (see Sect. 2.1.5), fossil CO2 emissions (EFF) for 2018 22 

are projected to increase by +2.7% (range of 1.8% to +3.7%; Table 7). Our method contains several 23 

assumptions that could influence the estimate beyond the given range, and as such, it has an 24 

indicative value only. Within the given assumptions, global emissions would be 10.1 ± 0.5 GtC 25 

(37.1 ± 1.8 GtCO2) in 2018. The interpretation of the 2018 emissions projection is provided 26 

elsewhere (Figueres et al., 2018;Jackson et al., 2018a).  27 
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For China, the expected change is for an increase in emissions of +4.7% (range of +2.0% to +7.4%) 1 

in 2018 compared to 2017. This is based on estimated growth in coal (+4.5%; the main fuel source 2 

in China), oil (+3.6%), natural gas (+17.7%) consumption, and cement production (+1.0%). The 3 

uncertainty range considers the variations in the difference between preliminary January-4 

September data and final full-year data, the uncertainty in the preliminary data used for the 2017 5 

base, and uncertainty in the evolution of energy density and carbon content of coal. See also Liu 6 

et al. (2018) for further analysis of China’s projected emissions.  7 

For the USA, the EIA emissions projection for 2018 combined with cement data from USGS gives 8 

an increase of 2.5 % (range of +0.5 to +4.5 %) compared to 2017.  9 

For the European Union, our projection for 2018 is for a decrease of –0.7% (range of –2.6% to 10 

+1.3%) over 2017. This is based on estimates for coal of –1.2%, oil of +1.2%, gas of –2.9%, and 11 

stable cement emissions.  12 

For India, our projection for 2018 is for an increase of +6.3% (range of 4.3% to +8.3%) over 2017. 13 

This is based on separate projections for coal (+7.1%), oil (+2.9%), gas (+6.0%) and cement 14 

(+13.4%). 15 

For the rest of the world, the expected growth for 2018 is +1.8% (range of +0.5% to +3.0%). This is 16 

computed using the GDP projection for the world excluding China, USA, EU, and India, of 2.8% 17 

made by the IMF (IMF, 2018) and a decrease in IFF of –1.0% yr-1 which is the average from 2008-18 

2017. The uncertainty range is based on the standard deviation of the interannual variability in IFF 19 

during 2008-2017 of ±0.7% yr-1 and our estimate of uncertainty in the IMF’s GDP forecast of 20 

±0.5%.  21 

Preliminary estimate of fire emissions in deforestation zones indicate that emissions from land-22 

use change (ELUC) for 2018 were below average until October, and are expected to range between 23 

0.1 and 0.2 lower than the 2008-2017 average. We therefore expect ELUC emissions of around 1.2 24 

GtC in 2018, for a total CO2 emissions of 11.3 ± 0.9 GtC (41.5 ± 3 GtCO2). 25 

3.4.2 Partitioning among the atmosphere, ocean and land 26 

The 2018 growth in atmospheric CO2 concentration (GATM) is projected to be 4.9 ± 0.7 GtC (2.3 ± 27 

0.3 ppm) based on MLO observations until the end of August 2018, bringing the atmospheric CO2 28 

concentration to an expected level of 407 ppm averaged over the year. Combining projected EFF, 29 
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ELUC and GATM suggests a combined land and ocean sink (SLAND + SOCEAN) of about 6.5 GtC for 2018. 1 

Although each term has large uncertainty, the oceanic sink SOCEAN has generally low interannual 2 

variability and is likely to remain close to its 2017 value of around 2.5 GtC, leaving a rough 3 

estimated land sink SLAND of around 4.0 GtC. If realised, it would be among the largest SLAND over 4 

the historical period. However, the possible onset of an El Niño at the end of 2018 could reduce 5 

SLAND, with GATM returning to high growth rate towards the end of the year.  6 

3.5 Cumulative sources and sinks 7 

Cumulative historical sources and sinks are estimated as in Eq. (1) with semi-independent 8 

estimates for each term and a global carbon budget imbalance. Cumulative fossil CO2 emissions 9 

for 1870-2017 were 425 ± 20 GtC for EFF and 190± 75 GtC for ELUC (Table 8; Fig. 9), for a total of 10 

615 ± 80 GtC. The cumulative emissions from ELUC are particularly uncertain, with large spread 11 

among individual estimates of 135 GtC (Houghton) and 240 GtC (BLUE) for the two bookkeeping 12 

models and a similar wide estimate of 180± 75 GtC for the DGVMs. These estimates are consistent 13 

with indirect constraints from vegetation biomass observations (Li et al., 2017), but given the large 14 

spread a best estimate is difficult to ascertain.   15 

Emissions were partitioned among the atmosphere (250 ± 5 GtC), ocean (150 ± 20 GtC), and the 16 

land (190 ± 50 GtC). The use of nearly independent estimates for the individual terms shows a 17 

cumulative budget imbalance of 25 GtC during 1870-2017 (Fig. 2), which, if correct, suggests 18 

emissions are too high by the same proportion or the land or ocean sinks are underestimated. The 19 

bulk of the imbalance is likely to originate largely from the large estimation of ELUC between the 20 

mid 1920s and the mid 1960s which is unmatched by a growth in atmospheric CO2 concentration 21 

as recorded in ice cores (Fig. 3). The known loss of additional sink capacity of about 20 GtC due to 22 

reduced forest cover has not been accounted in our method and would further exacerbate the 23 

budget imbalance (Section 2.7.4).  24 

Cumulative emissions through to year 2018 increase to 625 ± 80 GtC (2290 ± 290 GtCO2), with 25 

about 70% contribution from EFF and about 30% contribution from ELUC. Cumulative emissions and 26 

their partitioning for different periods are provided in Table 8.  27 

Given the large and persistent uncertainties in cumulative emissions, we suggest extreme caution 28 

is needed if using cumulative emission estimate to determine the “remaining carbon budget” to 29 

stay below given temperature limit (Rogelj et al., 2016). We suggest estimating the remaining 30 
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carbon budget by integrating scenario data from the current time to some time in the future 1 

(Millar et al., 2017).  2 

4 Discussion 3 

Each year when the global carbon budget is published, each flux component is updated for all 4 

previous years to consider corrections that are the result of further scrutiny and verification of the 5 

underlying data in the primary input data sets. Annual estimates may improve with improvements 6 

in data quality and timeliness (e.g. to eliminate need for extrapolation of forcing data such as land 7 

use). Of the various terms in the global budget, only the fossil CO2 emissions and the growth rate 8 

in atmospheric CO2 concentration are based primarily on empirical inputs supporting annual 9 

estimates in this carbon budget. Although it is an imperfect measure, the carbon budget 10 

imbalance provides a strong indication of the limitations in observations, in understanding or full 11 

representation of processes in models, and/or in the integration of the carbon budget 12 

components.  13 

The persistent unexplained variability in the carbon budget imbalance limits our ability to verify 14 

reported emissions (Peters et al., 2017) and suggests we do not yet have a complete 15 

understanding of the underlying carbon cycle processes. Resolving most of this unexplained 16 

variability should be possible through different and complementary approaches. First, as intended 17 

with our annual updates, the imbalance as an error term is reduced by improvements of individual 18 

components of the global carbon budget that follow from improving the underlying data and 19 

statistics and by improving the models through the resolution of some of the key uncertainties 20 

detailed in Table 9. Second, additional clues to the origin and processes responsible for the 21 

current imbalance could be obtained through a closer scrutiny of carbon variability in light of 22 

other Earth system data (e.g. heat balance, water balance), and the use of a wider range of 23 

biogeochemical observations to better understand the land/over partitioning of the carbon 24 

imbalance (e.g. oxygen, carbon isotopes). Finally, additional information could also be obtained 25 

through higher resolution and process knowledge at the regional level, and through the 26 

introduction of inferred fluxes such as those based on satellite CO2 retrievals. The limit of the 27 

resolution of the carbon budget imbalance is yet unclear, but most certainly not yet reached given 28 

the possibilities for improvements that lie ahead.  29 
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The assessment of the GOBMs used for SOCEAN with flux products based on observations highlights 1 

substantial discrepancy at mid and high latitudes. Given the good data coverage of pCO2 2 

observations in the Northern Hemisphere (Bakker et al., 2016), this discrepancy points at an 3 

underestimation of variability in the GOBMs globally and consequently, the variability in SOCEAN 4 

appears to be underestimated. The size of this underestimate (order of 0.5 GtC yr-1) could account 5 

for some of the budget imbalance, but not all. Increasing model resolution or incorporating 6 

internal variability (Li and Ilyina, 2017) have been suggested as ways to increase model variability 7 

(Section 3.1.4).  8 

The assessment of the net land-atmosphere exchange derived from land sink and net land use 9 

change flux with atmospheric inversions also shows substantial discrepancy, particularly for the 10 

estimate of the total land flux over the northern extra-tropics in the past decade. This discrepancy 11 

highlights the difficulty to quantify complex processes (CO2 fertilisation, nitrogen deposition, 12 

climate change and variability, land management, etc.) that collectively determine the net land 13 

CO2 flux. Resolving the differences in the Northern Hemisphere land sink will require the 14 

consideration and inclusion of larger volumes of observations (Section 3.2.3).  15 

Estimates of ELUC suffer from a range of intertwined issues, including the poor quality of historical 16 

land-cover and land-use change maps, the rudimentary representation of management processes 17 

in most models, and the confusion in methodologies and boundary conditions used across 18 

methods (e.g. Pongratz et al., 2014, Arneth et al. 2017, and Section 2.7.4 on the loss of sink 19 

capacity). Uncertainties in current and historical carbon stocks in soils and vegetation also add 20 

uncertainty in the LUC flux estimates. Unless a major effort to resolve these issues is made, little 21 

progress is expected in the resolution of ELUC. This is particularly concerning given the growing 22 

important of ELUC for climate mitigation strategies, and the large issues in the quantification of the 23 

cumulative emissions over the historical period that arise from large uncertainties in ELUC.  24 

To move towards the resolution of the carbon budget imbalance, this year we have introduced 25 

metrics for the evaluation of the ocean and land models and atmospheric inversions. These 26 

metrics expand the use of observations in the global carbon budget, helping 1) to support 27 

improvements in the ocean and land carbon models that produce the sink estimates, and 2) to 28 

constrain the representation of key underlying processes in the models and to allocate the 29 

regional partitioning of the CO2 fluxes. This is an initial step towards the introduction of a broader 30 
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range of observations that we hope will support continued improvements in the annual estimates 1 

of the global carbon budget. 2 

We assessed elsewhere (Peters et al. 2017) that a sustained decrease of –1% in global emissions 3 

could be detected at the 66% likelihood level after a decade only. Similarly, a change in behaviour 4 

of the land and/or ocean carbon sink would take as long to detect, and much longer if it emerges 5 

more slowly. Reducing the carbon imbalance, regionalising the carbon budget, and integrating 6 

multiple variables are powerful ways to shorten the detection limit and ensure the research 7 

community can rapidly identify growing issues of concern in the evolution of the global carbon 8 

cycle under the current rapid and unprecedented changing environmental conditions.  9 

 10 

5 Data availability 11 

The data presented here are made available in the belief that their wide dissemination will lead to 12 

greater understanding and new scientific insights of how the carbon cycle works, how humans are 13 

altering it, and how we can mitigate the resulting human-driven climate change. The free 14 

availability of these data does not constitute permission for publication of the data. For research 15 

projects, if the data are essential to the work, or if an important result or conclusion depends on 16 

the data, co-authorship may need to be considered. Full contact details and information on how 17 

to cite the data included in the GCP (2018) release are given at the top of each page in the 18 

accompanying database and summarised in Table 2. 19 

The accompanying database includes two Excel files organised in the following spreadsheets 20 

(accessible with the free viewer https://support.microsoft.com/en-gb/help/273711/how-to-21 

obtain-the-latest-excel-viewer): 22 

File Global_Carbon_Budget_2018v1.0.xlsx includes the following:  23 

1. Summary 24 

2. The global carbon budget (1959-2017); 25 

3. Global CO2 emissions from fossil fuels and cement production by fuel type, and the per-capita 26 

emissions (1959-2017); 27 

4. CO2 emissions from land-use change from the individual methods and models (1959-2017); 28 

5. Ocean CO2 sink from the individual ocean models and pCO2-based products (1959-2017); 29 

6. Terrestrial CO2 sink from the DGVMs (1959-2017); 30 
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7.  Additional information on the carbon balance prior to 1959 (1750-2017). 1 

File National_Carbon_Emissions_2018v1.0.xlsx includes the following:  2 

1. Summary 3 

2. Territorial country CO2 emissions from fossil CO2 emissions (1959-2017) from CDIAC, 4 

extended to 2016 using BP data; 5 

3. Territorial country CO2 emissions from fossil CO2 emissions (1959-2017) from CDIAC with 6 

UNFCCC data overwritten where available, extended to 2017 using BP data; 7 

4. Consumption country CO2 emissions from fossil CO2 emissions and emissions transfer from 8 

the international trade of goods and services (1990-2016) using CDIAC/UNFCCC data 9 

(worksheet 3 above) as reference; 10 

5. Emissions transfers (Consumption minus territorial emissions; 1990-2016); 11 

6. Country definitions; 12 

7. Details of disaggregated countries;  13 

8. Details of aggregated countries. 14 

National emissions data are also available from the Global Carbon Atlas (globalcarbonatlas.org).  15 

6 Conclusions 16 

The estimation of global CO2 emissions and sinks is a major effort by the carbon cycle research 17 

community that requires a careful compilation and synthesis of measurements, statistical 18 

estimates and model results. The delivery of an annual carbon budget serves two purposes. First, 19 

there is a large demand for up-to-date information on the state of the anthropogenic perturbation 20 

of the climate system and its underpinning causes. A broad stakeholder community relies on the 21 

data sets associated with the annual carbon budget including scientists, policy makers, businesses, 22 

journalists, and non-governmental organizations engaged in adapting to and mitigating human-23 

driven climate change. Second, over the last decade we have seen unprecedented changes in the 24 

human and biophysical environments (e.g. changes in the growth of fossil fuel emissions, Earth’s 25 

temperatures, and strength of the carbon sinks), which call for frequent assessments of the state 26 

of the planet, a growing understanding, and an improved capacity to anticipate the evolution of 27 

the carbon cycle in the future. Building this scientific understanding to meet the extraordinary 28 

climate mitigation challenge requires frequent, robust, and transparent data sets and methods 29 
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that can be scrutinized and replicated. This paper via ‘living data’ helps to keep track of new 1 

budget updates.  2 
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Tables 1 

Table 1. Factors used to convert carbon in various units (by convention, Unit 1 = Unit 2 2 
conversion).  3 

Unit 1 Unit 2 Conversion Source 

GtC (gigatonnes of carbon) ppm (parts per million)a 2.124b Ballantyne et al. (2012) 

GtC (gigatonnes of carbon) PgC (petagrams of carbon) 1 SI unit conversion 

GtCO2 (gigatonnes of carbon dioxide) GtC (gigatonnes of carbon) 3.664 44.01/12.011 in mass equivalent 

GtC (gigatonnes of carbon) 
MtC (megatonnes of 

carbon) 
1000 SI unit conversion 

a Measurements of atmospheric CO2 concentration have units of dry-air mole fraction. ‘ppm’ is an 4 
abbreviation for micromole/mol, dry air.  5 
bThe use of a factor of 2.124 assumes that all the atmosphere is well mixed within one year. In 6 
reality, only the troposphere is well mixed and the growth rate of CO2 concentration in the less 7 
well-mixed stratosphere is not measured by sites from the NOAA network. Using a factor of 2.124 8 
makes the approximation that the growth rate of CO2 concentration in the stratosphere equals 9 
that of the troposphere on a yearly basis. 10 
  11 
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Table 2. How to cite the individual components of the global carbon budget presented here. 1 

Component Primary reference 

Global fossil CO2 emissions (EFF), total and by fuel type Boden et al., (2017)  

National territorial fossil CO2 emissions (EFF)  CDIAC source: Boden et al., (2017)  

UNFCCC (2018) 

National consumption-based fossil CO2 emissions (EFF) 

by country (consumption)  

Peters et al. (2011b) updated as described in this paper 

Land-use change emissions (ELUC) Average from Houghton and Nassikas (2017) and Hansis 

et al., (2015), both updated as described in this paper 

Growth rate in atmospheric CO2 concentration (GATM) Dlugokencky and Tans (2018)   

Ocean and land CO2 sinks (SOCEAN and SLAND) This paper for SOCEAN and SLAND and references in Table 4 

for individual models. 
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Table 3. Main methodological changes in the global carbon budget since first publication. Methodological changes introduced in one year are 1 
kept for the following years unless noted. Empty cells mean there were no methodological changes introduced that year.  2 

Publication yeara Fossil fuel emissions LUC emissions Reservoirs Uncertainty & other 
changes Global Country (territorial) Country (consumption) Atmosphere Ocean Land 

2006  
Raupach et al. (2007) 

 Split in regions       

2007  
Canadell et al. (2007) 

   ELUC based on FAO-FRA 
2005; constant ELUC for 2006 

1959-1979 data 
from Mauna Loa; 

data after 1980 from 
global average 

Based on one ocean 
model tuned to 

reproduced observed 
1990s sink 

 ±1σ provided for all 
components 

2008 (online)    Constant ELUC for 2007     
2009  
Le Quéré et al. (2009) 

 Split between Annex 
B and non-Annex B 

Results from an 
independent study 

discussed 

Fire-based emission 
anomalies used for 2006-

2008 

 Based on four ocean 
models normalised to 

observations with 
constant delta 

First use of five DGVMs to 
compare with budget 

residual 

 

2010 Friedlingstein et 
al. (2010) 

Projection 
for current 
year based 

on GDP 

Emissions for top 
emitters 

 ELUC updated with FAO-FRA 
2010 

    

2011 

Peters et al. (2012b) 
  Split between Annex B 

and non-Annex B 
     

2012  
Le Quéré et al. (2013) 
Peters et al. (2013) 

 129 countries from 
1959 

129 countries and regions 
from 1990-2010 based on 
GTAP8.0 

ELUC for 1997-2011 includes 
interannual anomalies from 
fire-based emissions 

All years from global 
average 

Based on 5 ocean models 
normalised to 
observations with ratio 

Ten DGVMs available for 
SLAND; First use of four 
models to compare with 
ELUC 

 

2013  
Le Quéré et al. (2014) 

 250 countriesb 134 countries and regions 
1990-2011 based on 

GTAP8.1, with detailed 
estimates for years 1997, 

2001, 2004, and 2007 

ELUC for 2012 estimated 
from 2001-2010 average 

 Based on six models 
compared with two data-

products to year 2011 

Coordinated DGVM 
experiments for SLAND and 

ELUC 

Confidence levels; 
cumulative emissions; 

budget from 1750 

2014 
Le Quéré et al. (2015b) 

Three years 
of BP data 

Three years of BP 
data 

Extended to 2012 with 
updated GDP data 

ELUC for 1997-2013 includes 
interannual anomalies from 

fire-based emissions 

 Based on seven models  Based on ten models Inclusion of breakdown of 
the sinks in three latitude 

bands and comparison with 
three atmospheric 

inversions 
2015 
Le Quéré et al. (2015a) 
Jackson et al. (2016) 

Projection 
for current 
year based 

Jan-Aug data 

National emissions 
from UNFCCC  

extended to 2014 
also provided  

Detailed estimates 
introduced for 2011 

based on GTAP9 

  Based on eight models  Based on ten models with 
assessment of minimum 

realism 

The decadal uncertainty for 
the DGVM ensemble mean 

now uses ±1σ of the decadal 
spread across models 

2016 
Le Quéré et al. (2016) 

Two years of 
BP data 

Added  three small 
countries; CHN 

emissions from 1990 
from BP data (this 

release only) 

 Preliminary ELUC using FRA-
2015 shown for comparison; 

use of five DGVMs 

 Based on seven models  Based on fourteen 
models 

Discussion of projection for 
full budget for current year 

2017 
Le Quéré et al. (2018) 

Projection 
includes 

India-specific 
data 

  Average of two 
bookkeeping models; use of 

twelve DGVMs 

 Based on eight models 
that match the observed 

sink for the 1990s; no 
longer normalised  

Based on fifteen models 
that meet observation-
based criteria (see Sect. 

2.5)  

Land multi-model average 
now used in main carbon 
budget, with the carbon 

imbalance presented 
separately; new table of key 

uncertainties 
2018 (this study) Revision in 

cement 
Aggregation of 

overseas territories 
 Use of sixteen DGVMsc  Use of four 

atmospheric 
Based on seven models  Based on sixteen models; 

revised atmospheric 
Introduction of metrics for 

evaluation of individual 
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emissions; 
Projection 

includes EU-
specific data 

into governing 
nations for total of 

213 countriesb 

inversions forcing from CRUNCEP to 
CRU-JRA-55  

models using observations 

aThe naming convention of the budgets has changed. Up to and including 2010, the budget year (Carbon Budget 2010) represented the latest year of the data. From 2012, 1 
the budget year (Carbon Budget 2012) refers to the initial publication year. 2 
bThe CDIAC database has about 250 countries, but we show data for 213 countries since we aggregate and disaggregate some countries to be consistent with current 3 
country definitions (see Sect. 2.1.1 for more details) 4 
cELUC is still estimated based on bookkeeping models as in 2017, but the number of DGVMs used to characterise the uncertainty has changed.   5 
 6 
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Table 4. References for the process models, pCO2-based ocean flux products, and atmospheric 1 
inversions included in Figs. 6-8. All models and products are updated with new data to end of year 2 
2017, and the atmospheric forcing for the DGVMs has been updated as described in Section 2.2.2. 3 

Model/data 
name Reference Change from Le Quéré et al. (2018) 

Bookkeeping models for land-use change emissions  

BLUE Hansis et al. (2015) LUH2 rangelands were treated differently, using the static LUH2 
information on forest/non-forest grid-cells to determine 
clearing for rangelands. Additionally effects on degradation of 
primary to secondary lands due to rangelands on natural 
(uncleared) vegetation were added to BLUE. 

H&N2017 Houghton and Nassikas 
(2017) No change.  

Dynamic global vegetation modelsa  

CABLE-POP Haverd et al. (2018) 
Simple crop harvest and grazing implemented. Small 
adjustments to photosynthesis parameters to compensate for 
effect of new climate forcing on GPP. 

CLASS-CTEM Melton and Arora (2016)  20 soil layers used. Soil depth is prescribed following Pelletier et 
al. (2016). 

CLM5.0 Oleson et al. (2013) No change. 

DLEM Tian et al. (2015) Using observed irrigation data instead of a potential irrigation 
map. 

ISAM Meiyappan et al. (2015) Crop harvest and N fertilizer application as described in Song et 
al (2016). 

JSBACH 
 Mauritsen et al. (In 
review) 

New version of JSBACH (JSBACH 3.2), as used for CMIP6 
simulations. Changes include a new fire algorithm, as well as 
new processes (land nitrogen cycle, carbon storage of wood 
products). Furthermore, LUH2 rangelands were treated 
differently, using the static LUH2 information on forest/non-
forest grid-cells to determine clearing for rangelands. 

JULES Clarke et al. (2011) No Change. 

LPJ-GUESS Smith et al. (2014)b  No Change. 

LPJ Poulter et al. (2011)c 
Uses monthly litter update (previously annual), 3 product pools 
for deforestation flux, shifting cultivation, wood harvest, and 
inclusion of boreal needleleaf deciduous PFT. 

LPX-Bern Lienert and Joos (2018) 
Minor refinement of parameterization. Changed from 1x1 
degree to 0.5x0.5 degree resolution. Nitrogen deposition and 
fertilization from NMIP. 

OCN Zaehle and Friend (2010) No change (uses r294). 

ORCHIDEE-Trunk Krinner et al. (2005)d Updated soil water stress and albedo scheme; overall C-cycle 
optimisation (gross fluxes). 

ORCHIDEE-CNP Goll et al. (2017) First time contribution (ORCHIDEE with nitrogen and 
phosphorus dynamics). 

SDGVM Walker et al. (2017) No change. 
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SURFEXv8 Joetzjer et al. (2015) Not applicable (not used in 2017). 

VISIT Kato et al. (2013) Updated spinup protocol. 

Global ocean biogeochemistry models   

CCSM-BEC Doney et al. (2009) No change. 

MICOM-HAMOCC 
(NorESM-OC) 

Schwinger et al. (2016) No drift correction. 

MITgcm-REcoM2 Hauck et al. (2016) No change. 

MPIOM-HAMOCC Mauritsen et al. (In 
review) 

Change of atmospheric forcing; cmip6 model version including 
modifications and bug-fixes in HAMOCC and MPIOM. 

NEMO-PISCES 
(CNRM) Berthet et al. (Submitted) New model version with update to NEMOv3.6 and improved gas 

exchange.  

NEMO-PISCES (IPSL) Aumont and Bopp (2006) No change. 

NEMO-PlankTOM5 Buitenhuis et al. (2010)e  No change. 

pCO2-based flux ocean products  

Landschützer Landschützer et al. (2016)  No change. 

Jena CarboScope Rödenbeck et al. (2014) No change. 

Atmospheric inversions 

CAMS Chevallier et al. (2005) No change.  

CarbonTracker 
Europe (CTE) 

van der Laan-Luijkx et al. 
(2017) 

Minor changes in the inversion set up. 

Jena CarboScope Rödenbeck et al. (2003) No change. 

MIROC Saeki and Patra (2017) Not applicable (not used in 2017). 
a The forcing for all DGVMs has been updated from CRUNCEP to CRUJRA.   1 
b To account for the differences between the derivation of shortwave radiation (SWRAD) from CRU cloudiness and 2 
SWRAD from CRU-JRA-55, the photosythesis scaling parameter αa was modified (-15%) to yield similar results. 3 
c Compared to published version, decreased LPJ wood harvest efficiency so that 50% of biomass was removed off-site 4 
compared to 85% used in the 2012 budget. Residue management of managed grasslands increased so that 100% of 5 
harvested grass enters the litter pool. 6 
d Compared to published version, new hydrology and snow scheme; revised parameter values for photosynthetic 7 
capacity for all ecosystem (following assimilation of FLUXNET data), updated parameters values for stem allocation, 8 
maintenance respiration and biomass export for tropical forests (based on literature) and, CO2 down-regulation 9 
process added to photosynthesis. Version used for CMIP6.  10 
e With no nutrient restoring below the mixed layer depth.11 

12 
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Table 5. Comparison of results from the bookkeeping method and budget residuals with results from the DGVMs and inverse estimates for 1 
different periods, last decade, and last year available. All values are in GtC yr-1. The DGVM uncertainties represent ±1σ of the decadal or annual 2 
(for 2017 only) estimates from the individual DGVMs: for the inverse models all three results are given where available. 3 
 4 

Mean (GtC yr-1) 

 1960-1969 1970-1979 1980-1989 1990-1999 2000-2009 2008-2017 2017 

Land-use change emissions (ELUC)  

Bookkeeping methods 1.5 ± 0.7 1.2 ± 0.7 1.2 ± 0.7 1.4 ± 0.7 1.3 ± 0.7 1.5 ± 0.7 1.4 ± 0.7 

DGVMs 1.5 ± 0.7 1.4 ± 0.7 1.5 ± 0.7 1.3 ± 0.6 1.4 ± 0.6 1.9 ± 0.6 2.0 ± 0.7 

Terrestrial sink (SLAND)  

Residual sink from global 
budget (EFF+ELUC-GATM-SOCEAN) 

1.8 ± 0.9 1.8 ± 0.9 1.5 ± 0.9 2.6 ± 0.9 2.9 ± 0.9 3.5 ± 1.0 4.1 ± 1.0 

DGVMs 1.2 ± 0.5 2.1 ± 0.4 1.8 ± 0.6 2.4 ± 0.5 2.7 ± 0.7 3.2 ± 0.7 3.8 ± 0.8 

Total land fluxes (SLAND – ELUC)  

Budget constraint (EFF-GATM-
SOCEAN) 

0.3 ± 0.5 0.6 ± 0.6 0.4 ± 0.6 1.2 ± 0.6 1.6 ± 0.6 2.1 ± 0.7 2.7 ± 0.7 

DGVMs -0.3 ± 0.6 0.7 ± 0.5 0.3 ± 0.6 1.1 ± 0.5 1.3 ± 0.5 1.3 ± 0.5 1.8 ± 0.5 

Inversions* —/—/— —/—/— -0.2–0.1 0.5–1.1 0.8–1.5 1.4–2.4 1.2–3.1 

*Estimates are corrected for the pre-industrial influence of river fluxes and adjusted to common EFF (Sect. 2.7.2). Two inversions are available for the 1980s and 1990s. Two 5 
additional inversions are available from 2001 and used from the decade of the 2000 (Tables A3).6 
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Table 6. Decadal mean in the five components of the anthropogenic CO2 budget for different periods, and last year available. All values are in 1 
GtC yr-1, and uncertainties are reported as ±1σ. The table also shows the budget imbalance (BIM), which provides a measure of the 2 
discrepancies among the nearly independent estimates and has an uncertainty exceeding ± 1 GtC yr-1. A positive imbalance means the 3 
emissions are overestimated and/or the sinks are too small.  4 
 Mean (GtC yr-1) 

 1960-1969 1970-1979 1980-1989 1990-1999 2000-2009 2008-2017 2017 

Total emissions (EFF+ELUC)        

Fossil CO2 emissions (EFF) 3.1 ± 0.2 4.7 ± 0.2 5.4 ± 0.3 6.3 ± 0.3 7.8 ± 0.4 9.4 ± 0.5 9.9 ± 0.5 

Land-use change emissions 

(ELUC) 

1.5 ± 0.7 1.2 ± 0.7 1.2 ± 0.7 1.4 ± 0.7 1.3 ± 0.7 1.5 ± 0.7 1.4 ± 0.7 

Total emissions 4.7 ± 0.7 5.8 ± 0.7 6.6 ± 0.8 7.6 ± 0.8 9.0 ± 0.8 10.8 ± 0.8 11.3 ± 0.9 

Partitioning        

Growth rate in atmospheric 

CO2 concentration (GATM) 
1.7 ± 0.07 2.8 ± 0.07 3.4 ± 0.02 3.1 ± 0.02 4.0 ± 0.02 4.7 ± 0.02 4.6 ± 0.2 

Ocean sink (SOCEAN) 1.0 ± 0.5 1.3 ± 0.5 1.7 ± 0.5 2.0 ± 0.5 2.1 ± 0.5 2.4 ± 0.5 2.5 ± 0.5 

Terrestrial sink (SLAND) 1.2 ± 0.5 2.1 ± 0.4 1.8 ± 0.6 2.4 ± 0.5 2.7 ± 0.7 3.2 ± 0.7 3.8 ± 0.8 

Budget imbalance        

BIM = EFF+ELUC - 

(GATM+SOCEAN+SLAND) 

(0.6) (–0.3) (–0.3) (0.2) (0.2) (0.5) (0.3) 
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Table 7. Comparison of the projection with realised fossil CO2 emissions (EFF). The ‘Actual’ values are first estimate available using actual data, 1 
and the ‘Projected’ values refers to estimate made before the end of the year for each publication. Projections based on a different method 2 
from that described here during 2008-2014 are available in Le Quéré et al., (2016). All values are adjusted for leap years.  3 
 4 

 World China USA EU28 India Rest of World  

 Projected Actual Projected Actual Projected Actual Projected Actual Projected Actual Projected Actual 

2015a –0.6% 
(–1.6 to 0.5) 0.06% 

–3.9% 
(–4.6 to –1.1) –0.7% –1.5% 

(–5.5 to 0.3) –2.5% – – – – 1.2% 
(–0.2 to 2.6) +1.2% 

2016b –0.2% 
(–1.0 to +1.8) 0.2% –0.5% 

(–3.8 to +1.3) –0.3% –1.7% 
(–4.0 to +0.6) –2.1%  – – – – +1.0% 

(–0.4 to +2.5) +1.3% 

2017c +2.0% 
(+0.8 to +3.0) +1.6% +3.5  

(+0.7 to +5.4) +1.5% –0.4% 
(–2.7 to +1.0) –0.5% – – +2.0% 

(+0.2 to +3.8) +3.9% +1.6% 
(0.0 to +3.2) +1.9% 

2018d +2.7% 
(+1.8 to +3.7) – +4.7  

(+2.0 to +7.4) – +2.5% 
(+0.5 to +4.5) – -0.7% 

(-2.6 to +1.3) – +6.3% 
(+4.3 to +8.3) – +1.8% 

(+0.5 to +3.0) – 

aJackson et al. (2016) and Le Quéré et al. (2015a). bLe Quéré et al. (2016). cLe Quéré et al. (2018). dThis study.  5 
  6 
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Table 8. Cumulative CO2 for different time periods in gigatonnes of carbon (GtC). All uncertainties are 1 

reported as ±1σ. ELUC and SOCEAN have been revised to incorporate multiple estimates (Section 3.5), and the 2 

terrestrial sink (SLAND) is now estimated independently, from the mean of the DGVM. Therefore the table 3 

also shows the budget imbalance, which provides a measure of the discrepancies among the nearly 4 

independent estimates. Its uncertainty exceeds ± 60 GtC. The method used here does not capture the loss 5 

of additional sink capacity from reduced forest cover, which is about 20 GtC and would exacerbate the 6 

budget imbalance (see Section 2.7.3). All values are rounded to the nearest 5 GtC and therefore columns 7 

do not necessarily add to zero. 8 

Units of GtC 1750-2017 1850-2005 1850-2014 1959-2017 1870-2017 1870-2018a 

Emissions       

Fossil CO2 emissions (EFF) 430 ± 20 320 ± 15 400 ± 20 350 ± 20 425 ± 20 435 ± 20 

Land-use change CO2 emissions (ELUC) 235 ± 95  185 ± 70  195 ± 75 80 ± 40  190 ± 75  190 ± 75 

Total emissions 660 ± 95 500 ± 75 595 ± 80 430 ± 45 615 ± 80 625 ± 80 

Partitioning       

Growth rate in atmospheric CO2  

concentration (GATM) 
275 ± 5 200 ± 5 235 ± 5 190 ± 5 250 ± 5 255 ± 5 

Ocean sink (SOCEAN) 165 ± 20 125 ± 20b 150 ± 20 100 ± 20 150 ± 20 155 ± 20 

Terrestrial sink (SLAND) 215 ± 50 160 ± 45 185 ± 50 130 ± 30 190 ± 50 195 ± 50 

Budget imbalance       

BIM = EFF+ELUC - (GATM+SOCEAN+SLAND) (5) (20) (25) (10) (25) (25) 

a
Using projections for year 2018 (Sect. 3.3). 9 

bThis value was incorrectly reported as 145 in Le Quéré et al. (2018).  10 

  11 
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Table 9. Major known sources of uncertainties in each component of the Global Carbon Budget, 1 

defined as input data or processes that have a demonstrated effect of at least ±0.3 GtC yr-1.  2 

 3 

Source of uncertainty Time scale (years) Location Status Evidence 

Fossil CO2 emissions (EFF; Section 2.1) 

energy statistics annual to decadal mainly China see Sect. 2.1 (Korsbakken et al., 2016) 

carbon content of coal decadal mainly China see Sect. 2.1 (Liu et al., 2015) 

Emissions from land-use change (ELUC; section 2.2) 

land-cover and land-use 

change statistics 
continuous global; in particular 

tropics see Sect. 2.2 (Houghton et al., 2012) 

sub-grid-scale transitions annual to decadal global see Table A1 (Wilkenskjeld et al., 2014) 

vegetation biomass annual to decadal global; in particular 

tropics see Table A1 (Houghton et al., 2012) 

wood and crop harvest annual to decadal global; SE Asia see Table A1 (Arneth et al., 2017) 

peat burninga multi-decadal trend global see Table A1 (van der Werf et al., 2010) 

loss of additional sink 

capacity 
multi-decadal trend global not included; 

Section 2.7.3 (Gitz and Ciais, 2003) 

Atmospheric growth rate (GATM) à no demonstrated uncertainties larger than ±0.3 GtC yr-1, b 

Ocean sink (SOCEAN) 

variability in oceanic 

circulationc 

semi-decadal to 

decadal 
global; in particular 

Southern Ocean see Sect. 2.4.2 (DeVries et al., 2017) 

Internal variability annual to decadal high latitudes; Equatorial 

Pacific 

no ensembles/ 

coarse 

resolution 
(McKinley et al., 2016) 

anthropogenic 

changes in nutrient supply 
multi-decadal trend global not included (Duce et al., 2008) 

Land sink (SLAND) 

strength of CO2 fertilisation multi-decadal trend global see Sect. 2.5 (Wenzel et al., 2016) 

response to variability in 

temperature and rainfall 
annual to decadal global; in particular 

tropics see Sect. 2.5 (Cox et al., 2013) 

nutrient limitation and 

supply 
multi-decadal trend global see Sect. 2.5 (Zaehle et al., 2011) 

response to diffuse 

radiation 
annual global see Sect. 2.5 (Mercado et al., 2009) 

aAs result of interactions between land-use and climate 4 
bThe uncertainties in GATM have been estimated as ±0.2 GtC yr-1, although the conversion of the growth rate into a 5 

global annual flux assuming instantaneous mixing throughout the atmosphere introduces additional errors that have 6 

not yet been quantified. 7 
cCould in part be due to uncertainties in atmospheric forcing (Swart et al., 2014)  8 
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Appendix A. Supplementary tables.  1 

Table A1. Comparison of the processes included (Y) or not (N) in the bookkeeping and Dynamic 2 

Global Vegetation Models for their estimates of ELUC and SLAND. See Table 4 for model references. 3 

All models include deforestation and forest regrowth after abandonment of agriculture (or from 4 

afforestation activities on agricultural land).  5 
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Processes relevant for ELUC               
 

 
 

 

Wood harvest and forest 

degradationa 
Y Y Y N Y Y Y Y N Y Y Nd Y N Y N N Y 

Shifting cultivation / 

subgrid scale transitions 
Nb Y Y N Y N N Y N Y Y Nd N N N N N Y 

Cropland harvest 

(removed, r, or added to 

litter, l) 

Y(r)h Y(r)h Y(r) Y(l) Y(r) Y Y Y(r,l) N Y(r) Y(l) Y(r) Y(r,l) Y(r) Y(r) Y(r) N Y(r) 

Peat fires Y Y N N Y N N N N N N N N N N N N N 

Fire as a management tool Yh Yh N N N N N N N N N N N N N N N N 

N fertilization Yh Yh N N Y Y Y N N Y N Y Y Y N N N N 

Tillage Yh Yh Y Ye N N N N N Y N N N N Yg  N N N 

Irrigation Yh Yh N N Y Y Y N N Y N N N N N N Yg N 

Wetland drainage Yh Yh N N N N N N N N N N N N N N N N 

Erosion Yh Yh N N N N N N N N N N N N N N N Y 

Southaast Asia peat 

drainage 
Y Y N N N N N N N N N N N N N N N N 

Grazing and mowing 

harvest (removed, r, or 

added to litter, l) 

Y(r)h Y(r)h Y(r) N N N Y(l) Y(l) N Y(r) Y(l) N Y(r,l) N N N N N 

Processes relevant also for 

SLAND 
              

 

 

 

 

Fire simulation  US only N N Y Y Y N Y N Y Y Y N N N  Y Y Y 

Climate and variability N N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

CO2 fertilisation Nf Nf Y Y Y Y Y Y Y Y Y Y Y Y Ye Y Y Y 

Carbon-nitrogen 

interactions, including N 

deposition 

Nh Nh Y Nd Y Y Y Y N Y N Y Y Y N Yc Ni N 

a Refers to the routine harvest of established managed forests rather than pools of harvested products.  6 
b No back- and forth-transitions between vegetation types at the country-level, but if forest loss based on FRA 7 

exceeded agricultural expansion based on FAO, then this amount of area is interpreted as shifting cultivation. 8 
c Limited. Nitrogen uptake is simulated as a function of soil C, and photosynthesis is directly related to canopy N. Does 9 

not consider N deposition.  10 
d Although C-N cycle interactions are not represented, the model includes a parameterization of down-regulation of 11 

photosynthesis as CO2 increases to emulate nutrient constraints (Arora et al., 2009)  12 
e Tillage is represented over croplands by increased soil carbon decomposition rate and reduced humification of litter 13 

to soil carbon.  14 
f Bookkeeping models include effect of CO2-fertilization as captured by observed carbon densities, but not as an effect 15 

transient in time.  16 
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g 20% reduction of active soil organic carbon (SOC) pool turnover time for C3 crop and 40% reduction for C4 crops  1 
h Process captured implicitly by use of observed carbon densities. 2 
i Simple parameterization of nitrogen limitation based on Yin (2002; assessed on FACE experiments). 3 

 4 

  5 
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Table A2. Comparison of the processes and model set up for the Global Ocean Biogeochemistry 1 

Models for their estimates of SOCEAN. See Table 4 for model references.  2 
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Atmospheric forcing NCEP 

CORE-I (spin 

up) / NCEP 

with CORE-II 

corrections 

JRA55 
NCEP / 

NCEP+ERA-20C 

(spin-up) 
NCEP NCEP NCEP 

Initialisation of 

carbon chemistry 
GLODAP 

GLODAP v1 + 

spin up 1000 

years 

GLODAP, then 

spin-up 116 

years (2 cycles 

JRA55) 

spin-up with 

ERA20C 

GLODAPv2 + 

300 years 

online 

GLODAP from 

1948 onwards 
GLODAP + spin 

up 30 years 

Physical ocean 

model 

POP Version 
1.4.3 MICOM MITgcm 65n MPIOM 

NEMOv3.6-

GELATOv6-

eORCA1L75 

NEMOv3.2-

ORCA2L31 
NEMOv2.3-

ORCA2 

Resolution 
3.6o lon, 0.8 to 

1.8o lat 

1° lon, 0.17 to 

0.25 lat; 51 

isopycnic 

layers + 2 bulk 

mixed layer 

2° lon, 0.38-2° 

lat, 30 levels 
1.5o; 

40 levels 

1° lon, 0.3 to 1° 

lat 

75 levels, 1m 

at surface 

2o lon, 0.3 to 

1.5o lat; 31 

levels 

2o lon, 0.3 to 

1.5o lat; 31 

levels 

  4 

5 
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Table A3. Comparison of the inversion set up and input fields for the atmospheric inversions. 1 

Atmospheric inversions see the full CO2 fluxes, including the anthropogenic and pre-industrial 2 

fluxes. Hence they need to be adjusted for the pre-industrial flux of CO2 from the land to the 3 

ocean that is part of the natural carbon cycle before they can be compared with SOCEAN and SLAND 4 

from process models. See Table 4 for references. 5 

a(GLOBALVIEW, 2016;Carbontracker Team, 2017)  6 
b(van der Velde et al., 2014) 7 
cocean prior not optimised8 

  CarbonTracker 

Europe (CTE) 
Jena CarboScope CAMS MIROC 

Version 

number 

CTE2018 s85oc_v4.2 v17r1 tdi84_2018 

Observations  

Atmospheric 

observations 

Hourly resolution 

(well-mixed 

conditions) OBSPACK 

GLOBALVIEWplus 

v3.2 & NRTv4.2a 

Flasks and hourly 

(outliers removed by 

2-sigma criterion) 

Daily averages of well-

mixed conditions - 

OBSPACK 

GLOBALVIEWplus v3.2a & 

NRT v4.2, WDCGG, 

RAMCES and ICOS ATC 

Flask and 

continuous data at 

remote sites from 

ObsPack 

GLOBALVIEWplus 

v3.2 and v4.0 

Prior fluxes  

Biosphere and 

fires 

SiBCASA-GFED4sb No prior ORCHIDEE 

(climatological), GFEDv4 

& GFAS 

Climatological CASA 

with 3-hourly 

downscaling 

Ocean Ocean inversion by 

Jacobson et al. 

(2007) 

pCO2-based ocean 

flux product oc_v1.6 

(update of 

Rödenbeck et al., 

2014) 

Landschützer et al. (2015) Takahashi et al. 

(2009) 

Fossil fuels EDGAR+IER, scaled 

to CDIAC 
CDIAC (extended 

after 2013 with GCP 

totals) 

EDGAR scaled to CDIAC EDGARv4.3.2 (2012 

map after 2013) 

Transport and optimization  

Transport 

model 

TM5 TM3 LMDZ v5A MIROC4-ACTM 

Weather 

forcing 

ECMWF NCEP ECMWF JRA55 

Resolution 

(degrees) 

Global: 3° x 2°, 

Europe: 1° x 1°, 

North America: 1° x 

1° 

Global: 4° x 5° Global: 3.75° x 1.875° Global: 2.8◦ × 2.8◦ 

Optimization Ensemble Kalman 

filter 
Conjugate gradient 

(re-ortho-

normalization)c 

Variational Matrix Method, 84 

regions 
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Table A4 Attribution of fCO2 measurements for the year 2017 included in SOCAT v6 (Bakker et al., 2016) to inform ocean pCO2-based flux 1 
products. 2 

Platform Regions No. of 
samples 

Principal Investigators No. of data sets 
Allure of the Seas Tropical Atlantic 127007 Wanninkhof, R. : Pierrot, D. 51 

Atlantic Cartier North Atlantic 33565 Steinhoff, T. : Koertzinger, A. : Wallace, D. 7 

Aurora Australis Southern Ocean 64481 Tilbrook, B.: Neill, C.: Akl, J. 3 

Benguela Stream North Atlantic; Tropical Atlantic 105517 Schuster, U. : Watson, A.J. 17 

BOBOA_90E_15N Indian Ocean 66 Sutton, A. : O Brien, C. : Hermes, R. 1 

Cap san Lorenzo North Atlantic; Tropical Atlantic 33901 Lefevre, N.: Diverres, D. 7 

Colibri North Atlantic; Tropical Atlantic 9334 Lefevre, N.: Diverres, D. 2 

Discovery North Atlantic 2540 Kitidis, V. 1 

Equinox Tropical Atlantic 114369 Wanninkhof, R. : Pierrot, D. 42 

Finnmaid North Atlantic 128793 Rehder, G. : Glockzin, M. 11 

G.O. Sars North Atlantic 99028 Skjelvan, I. 7 

Gordon Gunter North Atlantic; Tropical Atlantic 60213 Wanninkhof, R. : Pierrot, D. 12 

Henry B. Bigelow North Atlantic 40703 Wanninkhof, R. : Pierrot, D. 7 

Heron Island Tropical Pacific 2775 Tilbrook, B.: van Ooijen, E.: Passmore, A. 2 

Investigator Southern Ocean; Tropical Pacific 98081 Tilbrook, B.: Neill, C.: Akl, J. 6 

Kangaroo Island Southern Ocean 1650 Tilbrook, B.: van Ooijen, E.: Passmore, A. 1 

Laurence M. Gould Southern Ocean 41657 Sweeney, C. : Takahashi, T. : Newberger, T. : Sutherland, S.C. : Munro, D.R. 7 

Maria Island Southern Ocean 3023 Tilbrook, B.: van Ooijen, E.: Passmore, A. 2 

Marion Dufresne Indian Ocean; Southern Ocean 6641 Metzl, N. : Lo Monaco, C. 1 

MSC Marianna North Atlantic; Tropical Atlantic 2823 Gonzalez-Davila, M. : Santana-Casiano, J.M. 1 

New Century 2 North Atlantic; North Pacific; Tropical Atlantic; Tropical Pacific 28604 Nakaoka, S. 13 

Nuka Arctica North Atlantic 139842 Becker, M. : Olsen, A.: Johannessen, T. 29 

Polarstern Arctic, North Atlantic, Southern Ocean; Tropical Atlantic 135031 van Heuven, S. : Hoppema, M. 6 

Ronald H. Brown Southern Ocean; Tropical Atlantic, Tropical Pacific 45510 Wanninkhof, R. : Pierrot, D. 4 

S.A. Agulhas II Southern Ocean 8990 Monteiro, P.M.S. : Gregor, L. 1 

Simon Stevin North Atlantic 12189 Gkritzalis, T. : Theetaert, H. 3 

Soyo Maru North Pacific 49613 Ono, T. 3 

TAO110W_0N Tropical Pacific 825 Sutton, A. 2 

Trans Future 5 North Pacific, Southern Ocean; Tropical Pacific 22596 Nakaoka, S. : Nojiri, Y. 21 

Victor Angelescu North Atlantic, Southern Ocean, Tropical Atlantic 4624 Negri, R.: Padin, X.A. 1 

Wakmatha Tropical Pacific 20496 Tilbrook, B.: Neill, C.: Akl, J. 6 

 3 
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Table A5. Funding supporting the production of the various components of the global carbon 1 
budget in addition to the authors’ supporting institutions (see also acknowledgements).  2 
Funder and grant number (where relevant) author initials 
Australia, Great Barrier Reef Foundation BT, CN 
Australia, Integrated Marine Observing System (IMOS) BT, CN 
Australian Government National Environment Science Program (NESP) JGC, VH 
EC H2020 (AtlantOS: grant no 633211) AO, US 
EC H2020 (CRESCENDO: grant no. 641816) MF, PF, RS, TI 
EC H2020 European Research Council (ERC) Synergy grant (IMBALANCE-P; grant no. ERC-
2013-SyG-610028) DSG 

EC H2020 ERC (QUINCY; grant no. 647204). SZ 
EC H2020 (RINGO: grant no. 730944; FixO3: grant no. 312463). US 

EC H2020 project (VERIFY: grant no. 776810) CLQ, GPP, IH, JIK, 
RMA, PP, PC 

FRA, MOE  TO 
French Institut National des Sciences de l’Univers (INSU) and Institut Paul Emile Victor 
(IPEV), Sorbonne Universités (UPMC, Univ Paris 06) NM 

German Federal Ministry for Education and Research (BMBF) GR, MH, TS 
German Federal Ministry of Transport and Digital Infrastructure (BMVI) GR, MH, TS 
German Helmholtz Association in its ATMO programme AA 
German Helmholtz Association Innovation and Network Fund (VH-NG-1301) JH 
German Research Foundation’s Emmy Noether Programme (grant no. PO1751/1-1) JP 

Integrated Carbon Observation System (ICOS) RI  GR, MH, NL, TG, TJ, 
TS, IS, US 

French Institut de Recherche pour le Développement (IRD) NL 
Japan Environment Research and Technology Development Fund of the Ministry of the 
Environment (grant no. 2-1701) PKP 

Japan Fisheries Research and Education Agency (FREA), Ministry of Environment (MOE) TO 
Japan National Institute for Environmental Studies (NIES), Ministry of Environment (MOE) SN 
Netherlands Organization for Scientific Research (NWO; grant no. SH-312, 16666) IvdLL 
Norwegian Research Council (grant no. 229771) JS 
Norwegian Research Council (grant no. ICOS 245927) IS, TJ, BP 
Norwegian Research Council (grant no. 209701) RMA, JIK, GPP 
The Netherlands, Research Foundation – Flanders (FWO contract no. G0H3317N) TG 
The Copernicus Atmosphere Monitoring Service, implemented by the European Centre for 

Medium-Range Weather Forecasts (ECMWF) on behalf of the European Commission FC 

Swiss National Science Foundation (grant no. 200020_172476) SL 
UK BEIS/Defra Met Office Hadley Centre Climate Programme (grant no. GA01101) CDJ 
UK Natural Environment Research Council (SONATA: grant no. NE/P021417/1) CLQ, US 
UK NERC (RAGNARoCC: grant no. NE/K002473/1) US 
UK Newton Fund, Met Office Climate Science for Service Partnership Brazil (CSSP Brazil) AW 
USA Climate Program Office of NOAA (grant no. NA13OAR4310219) LR 
USA Department of Agriculture, National Institute of Food and Agriculture (grants no. 
2015-67003-23489 and 2015-67003-23485) DLL 

USA Department of Commerce, NOAA/OAR’s Global Ocean Monitoring & Observing 
Program AS, LB, DP 

USA Department of Commerce, NOAA/OAR’s Ocean Acidification Program AS, DP, LB 
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USA Department of Energy, Oak Ridge National Laboratory (contract no. DE-AC05-
00OR22725) APW 

USA Department of Energy, Office of Science and BER prg. (grant no. DE-SC000 0016323) ATJ 
USA Department of Energy (grants no. DE-FC03-97ER62402/A010 and DE-SC0012972) DLL 
USA NASA Interdisciplinary Research in Earth Science Program. BP 
Computing resources 

 

Norway UNINETT Sigma2, National Infrastructure for High Performance Computing and  
Data Storage in Norway (NN2980K/NS2980K) 

JS 

TGCC under allocations 2017-A0030102201 and 2017-A0030106328 made by GENCI FC, NV 
Japan National Institute for Environmental Studies computational resources EK 
UEA High Performance Computing Cluster, UK RW, CLQ 
Support for aircraft measurements in Obspack  
L. V. Gatti, M. Gloor, J.B. Miller: AMAZONICA consorcium project was funded by NERC (NE/F005806/1), FAPESP 
(08/58120-3), GEOCARBON project (283080) 
Joshua DiGangi, NASA Langley Research Center, principal investigator of the airborne instrument that collected all 
of the CO2 observations during the Atmospheric Carbon and Transport – America campaigns. 
Observations from the The Atmospheric Carbon and Transport (ACT) - America Earth Venture Suborbital mission 
were funded by NASA’s Earth Science Division (Grant NNX15AG76G to Penn State) 
Jeff Peischl of the University of Colorado/CIRES for the NOAA WP-3D aircraft vertical profile data 
 1 
  2 
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Table A6. Aircraft measurement programs archived by Cooperative Global Atmospheric Data 1 
Integration Project (CGADIP, 2017) that contribute to the evaluation of the atmospheric inversions 2 
(Figure B3). 3 

Measurement program name in Obspack Specific doi Data providers 

Airborne Aerosol Observatory, Bondville, 
Illinois  Wanninkhof, R. : Pierrot, D. 

Alaska Coast Guard  Sweeney, C.; McKain, K.; Karion, A.; 
Dlugokencky, E.J. 

Atmospheric Carbon and Transport - 
America 

https://doi.org/10.333
4/ORNLDAAC/1556 Davis, K.J.; Digangi, J.P.; Yang, M. 

Atmospheric Carbon and Transport - 
America  Davis, K.J.; Sweeney, C.; Dlugokencky, 

E.J.; Yang, M. 
Alta Floresta  Gatti, L.V.; Gloor, E.; Miller, J.B.; 
Aircraft Observation of Atmospheric trace 
gases by JMA  ghg_obs@met.kishou.go.jp 

Aerosol, Radiation, and Cloud Processes 
affecting Arctic Climate 2008 (air 
campaign) 

 Ryerson, T.B.; Peischl, J.; Aikin, K.C. 

LARC - NASA Langley Research Center 
Aircraft Campaign 

https://doi.org/10.333
4/ORNLDAAC/1556 Chen, G.; Digangi, J.P. 

Beaver Crossing, Nebraska  Sweeney, C.; Dlugokencky, E.J. 
California Nexus 2010 (air campaign)  Ryerson, T.B.; Peischl, J.; Aikin, K.C. 
Briggsdale, Colorado  Sweeney, C.; Dlugokencky, E.J. 
Cape May, New Jersey  Sweeney, C.; Dlugokencky, E.J. 
CONTRAIL (Comprehensive Observation 
Network for TRace gases by AIrLiner) 

http://dx.doi.org/10.17
595/20180208.001 

Machida, T.; Matsueda, H.; Sawa, Y.  
Niwa, Y. 

Carbon in Arctic Reservoirs Vulnerability 
Experiment (CARVE)  Sweeney, C.; Karion, A.; Miller, J.B.; 

Miller, C.E.; Dlugokencky, E.J. 
LARC - NASA Langley Research Center 
Aircraft Campaign 

https://doi.org/10.333
4/ORNLDAAC/1556 Chen, G.; Digangi, J.P.; Beyersdorf, A. 

LARC - NASA Langley Research Center 
Aircraft Campaign 

https://doi.org/10.333
4/ORNLDAAC/1556 Chen, G.; Digangi, J.P.; Yang, M. 

Dahlen, North Dakota  Sweeney, C.; Dlugokencky, E.J. 
Estevan Point,  British Columbia  Sweeney, C.; Dlugokencky, E.J. 
East Trout Lake, Saskatchewan  Sweeney, C.; Dlugokencky, E.J. 
Molokai Island, Hawaii  Sweeney, C.; Dlugokencky, E.J. 
Homer, Illinois  Sweeney, C.; Dlugokencky, E.J. 

HIPPO (HIAPER Pole-to-Pole Observations) https://doi.org/10.333
4/CDIAC/HIPPO_010 

Wofsy, S.C.; Stephens, B.B.; Elkins, J.W.; 
Hintsa, E.J.; Moore, F. 

INFLUX (Indianapolis Flux Experiment)  Sweeney, C.; Dlugokencky, E.J.; Shepson, 
P.B.; Turnbull, J. 

Park Falls, Wisconsin  Sweeney, C.; Dlugokencky, E.J. 
Mid Continent Intensive  Sweeney, C.; Dlugokencky, E.J. 
Marcellus Pennsylvania  Sweeney, C.; Dlugokencky, E.J. 
Worcester, Massachusetts  Sweeney, C.; Dlugokencky, E.J. 
ORCAS (O2/N2 Ratio and CO2 Airborne 
Southern Ocean Study) 

https://doi.org/10.506
5/D6SB445X 

Stephens, B.B.; Sweeney, C.; McKain, K.; 
Kort, E.A. 

Poker Flat, Alaska  Sweeney, C.; Dlugokencky, E.J. 
Rio Branco  Gatti, L.V.; Gloor, E.; Miller, J.B. 
Rarotonga  Sweeney, C.; Dlugokencky, E.J. 
Montzka  Sweeney, C.; Dlugokencky, E.J. 
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Santarem  Sweeney, C.; Dlugokencky, E.J. 
Charleston, South Carolina  Sweeney, C.; Dlugokencky, E.J. 
LARC - NASA Langley Research Center 
Aircraft Campaign 

https://doi.org/10.333
4/ORNLDAAC/1556 Chen, G.; Digangi, J.P.; Beyersdorf, A. 

Southeast Nexus 2013 (air campaign)  Ryerson, T.B.; Peischl, J.; Aikin, K.C. 

Southern Great Plains, Oklahoma  Sweeney, C.; Dlugokencky, E.J.; Biraud, 
S. 

Shale Oil and Natural Gas Nexus 2015 (air 
campaign)  Ryerson, T.B.; Peischl, J.; Aikin, K.C. 

Harvard University Aircraft Campaign  Wofsy, S.C. 
Tabatinga  Gatti, L.V.; Gloor, E.; Miller, J.B. 
Sinton, Texas  Sweeney, C.; Dlugokencky, E.J. 
Trinidad Head, California  Sweeney, C.; Dlugokencky, E.J. 
Atmospheric Tomography Mission (ATom)  McKain, K.; Sweeney, C. 
Ulaanbaatar  Sweeney, C.; Dlugokencky, E.J. 
West Branch, Iowa  Sweeney, C.; Dlugokencky, E.J. 

 1 
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Figure Captions 1 

 2 
Figure 1. Surface average atmospheric CO2 concentration (ppm). The 1980-2018 monthly data are 3 

from NOAA/ESRL (Dlugokencky and Tans, 2018) and are based on an average of direct 4 

atmospheric CO2 measurements from multiple stations in the marine boundary layer (Masarie and 5 

Tans, 1995). The 1958-1979 monthly data are from the Scripps Institution of Oceanography, based 6 

on an average of direct atmospheric CO2 measurements from the Mauna Loa and South Pole 7 

stations (Keeling et al., 1976). To take into account the difference of mean CO2 and seasonality 8 

between the NOAA/ESRL and the Scripps station networks used here, the Scripps surface average 9 

(from two stations) was deseasonalised and harmonised to match the NOAA/ESRL surface average 10 

(from multiple stations) by adding the mean difference of 0.542 ppm, calculated here from 11 

overlapping data during 1980-2012.  12 
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Figure 2. Schematic representation of the overall perturbation of the global carbon cycle caused 

by anthropogenic activities, averaged globally for the decade 2008-2017. See legends for the 

corresponding arrows and units. The uncertainty in the atmospheric CO2 growth rate is very small 

(±0.02 Gt C yr-1) and is neglected for the figure. The anthropogenic perturbation occurs on top of 

an active carbon cycle, with fluxes and stocks represented in the background and taken from Ciais 

et al. (2013) for all numbers, with the ocean fluxes updated to 90 GtC yr-1 to account for the 

increase in atmospheric CO2 since publication, and except for the carbon stocks in coasts which is 

from a literature review of coastal marine sediments (Price and Warren, 2016).  
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 1 

Figure 3. Combined components of the global carbon budget illustrated in Fig. 2 as a function of 2 

time, for fossil CO2 emissions (EFF; grey) and emissions from land-use change (ELUC; brown), as well 3 

as their partitioning among the atmosphere (GATM; purple), ocean (SOCEAN; blue), and land (SLAND; 4 

green). The partitioning is based on nearly independent estimates from observations (for GATM) 5 

and from process model ensembles constrained by data (for SOCEAN and SLAND), and does not 6 

exactly add up to the sum of the emissions, resulting in a budget imbalance which is represented 7 

by the difference between the bottom pink line (reflecting total emissions) and the sum of the 8 

ocean, land and atmosphere. All time series are in GtC yr-1. GATM and SOCEAN prior to 1959 are 9 

based on different methods. EFF are primarily from Boden et al. (2017), with uncertainty of about 10 

±5% (±1σ); ELUC are from two bookkeeping models (Table 2) with uncertainties of about ±50%; 11 

GATM prior to 1959 is from Joos and Spahni (2008) with uncertainties equivalent to about ±0.1-0.15 12 

GtC yr-1, and from Dlugokencky and Tans (2018) from 1959 with uncertainties of about ±0.2 GtC 13 

yr-1; SOCEAN prior to 1959 is averaged from Khatiwala et al. (2013) and DeVries (2014) with 14 

uncertainty of about ±30%, and from a multi-model mean (Table 4) from 1959 with uncertainties 15 

of about ±0.5 GtC yr-1; SLAND is a multi-model mean (Table 4) with uncertainties of about ±0.9 GtC 16 

yr-1. See the text for more details of each component and their uncertainties.  17 
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 1 

Figure 4. Components of the global carbon budget and their uncertainties as a function of time, 2 

presented individually for (a) fossil CO2 emissions (EFF), (b) emissions from land-use change (ELUC), 3 

(c) the budget imbalance that is not accounted for by the other terms, (d) growth rate in 4 

atmospheric CO2 concentration (GATM), and (e) the land CO2 sink (SLAND, positive indicates a flux 5 

from the atmosphere to the land), (f) the ocean CO2 sink (SOCEAN, positive indicates a flux from the 6 

atmosphere to the ocean). All time series are in GtC yr-1 with the uncertainty bounds representing 7 

±1σ in shaded colour. Data sources are as in Fig. 3. The black dots in (a) show values for 2015-8 

2017 that originate from a different data set to the remainder of the data (see text). The dashed 9 

line in (b) identifies the pre-satellite period before the inclusion of peatland burning.  10 
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 1 

Figure 5. Fossil CO2 emissions for (a) the globe, including an uncertainty of ± 5% (grey shading), 2 

and the emissions extrapolated using BP energy statistics (black dots), (b) global emissions by fuel 3 

type, including coal (salmon), oil (olive), gas (turquoise), and cement (purple), and excluding gas 4 

flaring which is small (0.6% in 2013), (c) territorial (solid lines) and consumption (dashed lines) 5 

emissions for the top three country emitters (USA - olive; China - salmon; India - purple) and for 6 

the European Union (EU; turquoise for the 28 member states of the EU as of 2012), and (d) per-7 

capita emissions for the top three country emitters and the EU (all colours as in panel (c)) and the 8 

world (black). In (b-c), the dots show the data that were extrapolated from BP energy statistics for 9 

2014-2016. All time series are in GtC yr-1 except the per-capita emissions (d), which are in tonnes 10 

of carbon per person per year (tC person-1 yr-1). Territorial emissions are primarily from Boden et 11 

al. (2017) except national data for the USA and EU28 (the 28 member states of the EU) for 1990-12 

2016, which are reported by the countries to the UNFCCC as detailed in the text; consumption-13 

based emissions are updated from Peters et al. (2011a). See Sect. 2.1.1 for details of the 14 

calculations and data sources.  15 
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 1 

Figure 6. CO2 exchanges between the atmosphere and the terrestrial biosphere as used in the 2 

global carbon budget (black with ±1σ uncertainty in grey shading), for (a) CO2 emissions from 3 

land-use change (ELUC), showing also individually the two bookkeeping models (two brown lines) 4 

and the DGVM model results (green) and their multi-model mean (dark green). The dashed line 5 

identifies the pre-satellite period before the inclusion of peatland burning; (b) Land CO2 sink 6 

(SLAND) with individual DGVMs (green); (c) Total land CO2 fluxes (b minus a) with individual DGVMs 7 

(green) and their multi-model mean (dark green).  8 
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 1 

Figure 7. Comparison of the anthropogenic atmosphere-ocean CO2 flux showing the budget values 2 

of SOCEAN (black; with ±1σ uncertainty in grey shading), individual ocean models (blue), and the two 3 

ocean pCO2-based flux products (dark blue; see Table 4). Both pCO2-based flux products were 4 

adjusted for the preindustrial ocean source of CO2 from river input to the ocean, which is not 5 

present in the ocean models, by adding a sink of 0.78 GtC yr-1 (Resplandy et al., 2018), to make 6 

them comparable to SOCEAN. This adjustment does not take into account the anthropogenic 7 

contribution to river fluxes (see Sect. 2.7.3).   8 
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 2 

Figure 8. CO2 fluxes between the atmosphere and the surface (SOCEAN + SLAND – ELUC) by latitude 3 

bands for the (top) globe (2nd row) north (north of 30°N), (3rd row) tropics (30°S-30°N), and 4 

(bottom) south (south of 30°S), and (left) total, (middle) land only (SLAND – ELUC) and (right) ocean 5 

only. Positive values indicate a flux from the atmosphere to the land and/or ocean.  6 

Estimates from the combination of the process models for the land and oceans are shown (black 7 

for the total, green for the land, blue for the ocean) with ±1σ of the model ensemble (in grey). 8 

Results from the atmospheric inversions are also shown (pink lines), and from the pCO2-based flux 9 

products (dark blue lines).  10 
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 2 

Figure 9. Cumulative changes during 1870-2017 and mean fluxes during 2008-2017 for the 3 
anthropogenic perturbation as defined in the legend.  4 
  5 
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Appendix B. Supplementary figures.  1 

 2 

Figure B1. Evaluation of the GOBMs and flux products using the interannual mismatch metric for 3 

the period 1985 to 2017, as proposed by Rödenbeck et al. (2015) and the SOCAT v6 database, 4 

versus the amplitude of the annual variability (taken as the annual standard deviation). Results are 5 

presented for the globe, north (>30°N), tropics (30°S-30°N), and south (<30°S) for the GOBMs 6 

(circles) and for the pCO2-based flux products (star symbols). The two pCO2-based flux products 7 

use the SOCAT database and therefore are not fully independent from the data (See section 8 

2.4.1).  9 
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Figure B2. Evaluation of the DGVM using the International Land Model Benchmarking system 3 

(ILAMB; Collier et al., 2018). (left) absolute skill scores, (right) skill scores relative to other models. 4 

The benchmarking is done with observations for vegetation biomass (Saatchi et al., 2011; and 5 

GlobalCarbon unpublished data;Avitabile et al., 2016), GPP (Jung et al., 2010;Lasslop et al., 2010), 6 

leaf area index (De Kauwe et al., 2011;Myneni et al., 1997), net ecosystem exchange (Jung et al., 7 

2010;Lasslop et al., 2010), ecosystem respiration (Jung et al., 2010;Lasslop et al., 2010), soil 8 

carbon (Hugelius et al., 2013;Todd-Brown et al., 2013), evapotranspiration (De Kauwe et al., 9 

2011), and runoff (Dai and Trenberth, 2002). For each model-observation comparison a series of 10 

error metrics are calculated, scores are then calculated as an exponential function of each error 11 

metric, finally for each variable the multiple scores from different metrics and observational data 12 

sets are combined to give the overall variable scores shown in the left panel. The set of error 13 

metrics vary with data set and can include metrics based on the period mean, bias, root mean 14 

squared error, spatial distribution, interannual variability and seasonal cycle. The relative skill 15 

score shown in the right panel is a Z-score, which indicates in units of standard deviation the 16 

model scores relative to the multi-model mean score for a given variable. Grey boxes represent 17 

missing model data. 18 

 19 
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 1 

Figure B3. Evaluation of the atmospheric inversion products. The mean of the absolute model 2 

minus observed is shown for four latitude bands. The four models are compared to independent 3 

CO2 measurements made onboard aircraft over many places of the world between 1 and 7 km 4 

above sea level.  All data between 2008 and 2016 archived in Cooperative Global Atmospheric 5 

Data Integration Project (CGADIP, 2017) have been used to compute the biases of the differences 6 

in four 45-degree latitude bins. Land of ocean data are used without distinction. The number of 7 

data for each latitude band is: 16,000 (90°S-45°S), 53,000 (45°S-0), 64,000 (0-45°N), 122,000 8 

(45°N-90°N), rounded off to nearest thousand.  9 
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 2 

Figure B4. Comparison of global carbon budget components released annually by GCP since 2006. 3 

CO2 emissions from (a) fossil CO2 emissions (EFF), and (b) land-use change (ELUC), as well as their 4 

partitioning among (c) the atmosphere (GATM), (d) the land (SLAND), and (e) the ocean (SOCEAN). See 5 

legend for the corresponding years, and Table 3 for references. The budget year corresponds to 6 

the year when the budget was first released. All values are in GtC yr-1. Grey shading shows the 7 

uncertainty bounds representing ±1σ of the current global carbon budget.  8 
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