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Abstract. Global climatologies of the seawater CO2 chemistry variables are necessary to assess the marine carbon cycle in 

depth. The climatologies should adequately capture seasonal variability to properly address ocean acidification and similar 

issues related to the carbon cycle. Total alkalinity (AT) is one variable of the seawater CO2 chemistry system involved in ocean 

acidification and frequently measured. We used the Global Ocean Data Analysis Project version 2.2019 (GLODAPv2) to 

extract relationships among the drivers of the AT variability and AT concentration using a neural network (NNGv2) to generate 25 

a monthly climatology. The GLODAPv2 quality-controlled dataset used was modeled by the NNGv2 with a root-mean-squared 
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error (RMSE) of 5.3 µmol kg-1. Validation tests with independent datasets revealed the good generalization of the network. 

Data from five ocean time-series stations showed an acceptable RMSE range of 3-6.2 µmol kg-1. Successful modeling of the 

monthly AT variability in the time-series suggests that the NNGv2 is a good candidate to generate a monthly climatology. The 

climatological fields of AT were obtained passing through the NNGv2 the World Ocean Atlas 2013 (WOA13) monthly 30 

climatologies of temperature, salinity and oxygen and the computed climatologies of nutrients from the previous ones with a 

neural network. The spatiotemporal resolution is set by WOA13: 1ºx1º in the horizontal, 102 depth levels (0-5500m) in the 

vertical, and monthly (0-1500m) to annual (1550-5500m) temporal resolution. The product is distributed through the data 

repository of the Spanish National Research Council (CSIC; http://hdl.handle.net/10261/184460). 

1 Introduction 35 

Because of its interaction with the atmospheric carbon dioxide, the marine carbon cycle has fundamental significance for the 

Earth’s climate (Tanhua et al., 2013). The oceanic capacity to dissolve and store atmospheric CO2, and the subsequent chemical 

speciation, have resulted in approximately 30% less anthropogenic CO2 in the atmosphere (Le Quéré et al., 2017) than it would 

otherwise have. One unfortunate byproduct of this process is ocean acidification (Doney et al., 2009). As the ocean absorbs 

anthropogenic CO2, the seawater pH decreases being the main change in the ocean chemistry which defines ocean acidification. 40 

Combined with other climate change effects (e.g., temperature increase and deoxygenation), this process could have severe 

consequences for marine ecosystems (Orr et al., 2005; Fabry et al., 2008; Hoegh-Guldberg and Bruno, 2010; Kroeker et al., 

2013) and, consequently, for life on our planet. 

Detailed spatiotemporal knowledge about the marine carbon cycle is necessary to understand and evaluate the consequences 

of climate change. There are 4 variables of the seawater CO2 chemistry more frequently measured in carbon chemistry 45 

campaigns: total alkalinity (AT), total dissolved inorganic carbon (TCO2, also known as DIC), partial pressure of CO2 (pCO2) 

and pH. AT is a key variable in the framework of ocean acidification because of what it is associated: the oceanic capacity to 

buffer pH changes. Dickson (1981) defined AT as: 

AT = [HCO3
-] + 2[CO3

2-] + [B(OH)4
-] + [OH-] + [HPO4

2-] +2[PO4
3-] + [SiO(OH)3

-] + [HS-] + 2[S2-] + [NH3] 

         – [H+] – [HSO4
-] – [HF] – [H3PO4]           (1) 50 

The global AT distribution is a result of physical and biogeochemical processes that change the concentration of species in Eq. 

(1) (Wolf-Gladrow et al., 2007). Processes that change salinity are the most influential. The strong linear correlation between 

salinity and AT is well documented (e.g. Millero et al., 1998; Friis et al., 2013; Takahashi et al., 2014). In the surface layer 

precipitation and evaporation are the primary processes that control the AT distribution. Rivers and submarine groundwater 

discharge can affect marine AT locally, with the degree controlled by runoff and the riverine AT (Hoppema, 1990; Anderson, 55 

2004; Schneider et al., 2007; Cooper et al., 2008). The formation and dissolution of carbonate minerals also contribute to AT 
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variability (Fry et al., 2015). Upwelling areas that overlie zones of relatively shallow subsurface carbonate dissolution can also 

have elevated surface AT (Millero et al., 1998; Fine et al., 2017). Organic matter cycling can also contribute to AT changes. 

This mechanism can be reflected through the consumption and regeneration of nutrients and oxygen (Brewer and Goldman, 

1976; Wolf-Gladrow et al., 2007). Finally, hydrothermal vents could modify the concentration of AT locally (Chen, 2002). 60 

In addition to the spatial variability, most of the drivers mentioned above generate seasonal AT variability. Phytoplankton 

blooms (i.e., primary production) and the seasonality in upwelling and river flows are some of the most remarkable processes 

associated with the time variability of AT. Even though AT is the variable of the seawater CO2 chemistry system with the least 

seasonal variability (Lee et al. (2006) estimated a range from near 0 up to 80 µmol kg-1), it is important to account for such 

changes because of the strong connection of AT with oceanic anthropogenic carbon storage (Renforth and Henderson, 2017) 65 

and to buffer seawater pH changes. A monthly AT climatology that captures most of the spatiotemporal variability can be used 

as initial and/or boundary conditions in biogeochemical models, in evaluating the CaCO3 pump (e.g., Carter et al., 2014) or 

computing the ocean inventory of anthropogenic CO2 (e.g., Steinfieldt et al., 2009). 

High-quality data is a crucial first requirement to address the problem. Ocean time-series data represent excellent records to 

study the seasonality of the ocean carbon cycle as well as its inter-annual trends (e.g., Bates et al., 2014). Unfortunately, there 70 

are only a few time-series that include sufficiently precise measurements of the seawater CO2 chemistry at seasonal resolution. 

Alternately, various global data products have been released for public usage in recent years. The main ones for the surface 

ocean are the Surface Ocean CO2 Atlas (SOCAT; Bakker et al., 2016) and the Lamont-Doherty Earth Observatory database 

(LDEO; Takahashi et al., 2016). These two are complementary, offer annual updates and include tens of millions of pCO2 

measurements in the global ocean. For the interior ocean, a comprehensive and global database and data product was recently 75 

made public: Global Ocean Data Analysis Project version 2 2019 (GLODAPv2) (Olsen et al., 2019). This quality-controlled 

collection contains thousands of measured seawater data, including CO2 chemistry variables, over the full water column from 

more than 700 globally distributed cruises over the past four decades and updates the previous version (Key et al., 2015; Olsen 

et al., 2016). 

The logical next step is to generate a globally consistent climatology for the different seawater CO2 chemistry variables that 80 

captures seasonal variability. Different approaches have been used to fill spatial and temporal gaps in AT observations to 

generate a global monthly climatology (Lee et al., 2006; Takahashi et al., 2014). These studies only cover the surface ocean. 

However, a robust climatology extended to deeper depths is necessary to assess more than surface ocean. 

In this study, we present a global monthly climatology for AT in a 1ºx1º grid in the upper 57 standard depth levels (between 0 

and 1500m) of the World Ocean Atlas 2013 (WOA13) and an annual one in the following 45 depth levels (1550-5500m) 85 

designed using a neural network approach. Other studies have demonstrated the capacity of these techniques to reconstruct 

global pCO2 variability at monthly resolution over the last few decades (e.g., Landschützer et al., 2013, 2014). Our AT 
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climatology uses available high-quality measurements and the neural network ability to capture natural variability. We were 

able to reduce the errors obtained by the previous efforts to build a monthly AT climatology (Lee et al., 2006; Takahashi et al., 

2014) and to extend the climatology through the water column. 90 

2 Methodology 

2.1 Neural network design 

A feed-forward neural network was configured to compute AT globally at monthly resolution. It was selected based on the 

ability to learn the relationships between AT and the variables related to its spatiotemporal variability as shown in Velo et al. 

(2013). 95 

Feed-forward neural networks are composed of layers: the input layer, a variable number of hidden layers and the output layer 

(Fig. 1). The input layer is a matrix representing the entry to the network of the data from which the outputs will be obtained. 

The hidden and output layers are composed of neurons. The number of these elements in the hidden layers is adjustable and 

in the output layer is dependent on the number of network outputs. The neurons are formed by a series of weights, a bias, a 

summation, and a transfer function (Russell and Norvig, 2010). They are the connections between the layers. A neuron receives 100 

all outputs from the previous layer and multiplies them by a matrix of weights. These results are summed and a bias is added. 

Finally, the transfer function is applied over the sum and an output is obtained from each neuron. 

The ability of the network to produce a reasonable output stems from a training process. Given a set of inputs and their targets, 

the network is trained to learn the relationships between both sets. The training process is possible due to a backpropagation 

training algorithm (Rumelhart et al., 1986). Generally, the network is initialized with random values of weights and biases and 105 

an output is obtained. This output is compared with the target through a cost function, that typically is the mean squared error. 

Then, the algorithm “backpropagates” this error through the network and iteratively adjusts the weights and biases to minimize 

the cost function. The minimization is commonly based on the Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 

1963). Once the network is trained, output values can be obtained from a set of inputs with unknown targets. The more accurate 

and generalized the training data, the more accurate the output values. 110 

The feed-forward neural network used in this study has a two-layer architecture. The first layer has a sigmoid transfer function 

and the second layer a linear transfer function (Fig. 1). This choice of functions allows both the linear and non-linear 

relationships between AT and its predictors to be represented. This network configuration can approximate most functions 

arbitrarily well (Hagan et al., 2014). In the Atlantic Ocean, this arrangement has been shown to accurately estimate AT from 

diverse predictors (Velo et al., 2013). 115 
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The GLODAPv2 discrete data were used to train the network. Input variables (left hand in Fig. 1) were selected based on their 

potential influence on AT following Velo et al. (2013). They include the sampling position (coordinates and depth), 

temperature, salinity, nutrients (phosphate, nitrate and silicate) and dissolved oxygen. Position was included to help the 

network learn characteristic patterns associated with this input when the other variables cannot fully explain the AT variability. 

Takahashi et al. (2014) and Lee et al. (2006) showed how the relations between AT and the predictor variables used in these 120 

studies are different depending on the ocean area. The periodicity of the input longitude was represented by the equations used 

by Zeng et al. (2014): 

                                                                         𝑐𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 = cos (
𝜋

180
· 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒)       (2) 

                                                                         𝑠𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 = sin (
𝜋

180
· 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒)      (3) 

 125 

Our approach only uses measured inputs from GLODAPv2, that is, those input data derived from the same Rosette sample 

bottle as the AT value. Other studies with a similar approach take the inputs from reanalysis products or satellite data (e.g., 

Landschützer et al. 2013), that are inherently less accurate than direct measurements. The relations created by the network in 

the training procedure are likely to be more realistic using in situ measured values for the input variables.  

The samples where all input variables and AT were measured were selected from GLODAPv2 130 

(https://www.nodc.noaa.gov/ocads/oceans/GLODAPv2_2019/). From these, we removed the data were QC was not done in 

all the variables (for a neural network trained with all data see Broullón et al. (2018)). However, we keep all data from the 

Mediterranean Sea to represent it in the climatology. The final dataset contained 251,687 samples. “GLODAPv2” hereinafter 

refers to the subset used in this study unless otherwise indicated. 

Two different training techniques were tested: the Levenberg-Marquardt method (lm) and the Bayesian Regularization (br) 135 

(both detailed in Hagan et al., 2014). In a similar study, Velo et al. (2013) demonstrated that these techniques give the best 

network performance among those they tested. Except for the number of neurons, the two algorithms were implemented with 

the default options of the MATLAB functions trainlm and trainbr (detailed in Beale et al., 2017). These two functions prevent 

overfitting in different ways. The trainlm function usually needs to be fed with the data divided in three sets: a training set to 

obtain the relationships between variables, a validation set to prevent overfitting and a test set to compare different networks. 140 

Here, the training was stopped when the error in the validation set increased during 6 consecutive iterations of the training 

process to avoid overfitting. This process is known as early stopping (Hagan et al., 2014). The final values of the network 

weights and biases are those reached before the first of these iterations. The trainbr function adds a regularization parameter 

to the cost function to make the fit smoother in order to avoid overfitting. The validation set is not present in this technique. 

The end of the training is based on network convergence through parameter stabilization by an automatic process known as 145 
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automated Bayesian Regularization (Hagan et al., 2014; Beale et al., 2017). See Beale et al. (2017) and references therein for 

a detailed description of the two functions tested. 

The number of network neurons is problem dependent with no fixed criterion for establishment. It is related to the complexity 

of the input-output mapping, the amount of training data available and their noise (Gardner and Dorling, 1998). Using too few 

neurons will not enable to learn complex relations. Using too many neurons could overfit the data, that is, the network might 150 

model the uncertainty of the data used in the training. We determined the optimal number of neurons through a trade-off 

between the root-mean-squared error (RMSE) of the computed values and the generalization of the network. This last concept 

refers to network performance when a set of unused inputs is passed through the network to obtain an output. If the RMSE in 

this set is of the same order of magnitude as the RMSE in the training set, there is no substantial overfitting and the network 

generalizes well. 155 

The training procedure was carried out in MATLAB. We tested 16, 32, 64, 128 and 256 neurons in the hidden layer based on 

the results of Velo et al. (2013). For each number of neurons, we trained 10 networks always using the same 90% of 

GLODAPv2 for training (Fig. 2, First level). The remaining 10% was used as an independent test set (Fig. 2, First level). Both 

subsets contained samples randomly distributed in the ocean to evaluate the maximum possible relationships between the input 

variables and AT through all oceanographic regimes, that is, to capture most of the variability in all the variables and not 160 

restricting the sets to specific areas. Each of the 10 networks starts the training procedure with random weight and bias values 

and a division of the training dataset into two portions: 85% for training and 15% for validation (Fig. 2, Second level). The 

different starting points of the training process in the high dimensional weight-error space make the minimization of the cost 

function different for each network. As each network is different, keeping all the sets allow one to determine which network 

best generalizes in the same test set. The selected network is the one that produces the lowest RMSE in the training data (Fig. 165 

2, First level) and in the test data, considering a non-significant difference between both RMSEs to prevent overfitting. The 

network derived from this process will be referred as NNGv2. 

2.2 Comparison of methods 

The relations proposed by Lee et al. (2006) and Takahashi et al. (2014) to generate a monthly surface climatology of AT from 

different predictors were applied over GLODAPv2. Lee et al. (2006) grouped AT data (< 20-30 m depth) into 5 oceanographic 170 

regimes and obtained a best fit to a quadratic function of sea surface temperature (SST) and sea surface salinity (SSS) in each 

basin. Takahashi et al. (2014) divided the global ocean into 33 hydrographic provinces and expressed the potential alkalinity 

(PALK = AT + NO3
- , < 50 m depth) as a linear regression of salinity in 27 of them. PALK was used instead of AT for the 

purpose of eliminating seasonal biological effects, and the inter-province variation reflected differences in CaCO3 production 

in the mixed layer as well as the contributions of lateral and vertical mixing of waters. The analysis was carried out in the areas 175 

defined in the two studies. 
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The recent methods to compute AT proposed by Carter et al. (2018) and Bittig et al. (2018) (LIARv2 and CANYON-B 

respectively) were also compared to the one proposed here. LIARv2 is based on multilinear regressions (MLRs) including the 

same predictors used in the present study, excluding phosphate (sample position, salinity (S), potential temperature (θ), nitrate 

(N), apparent oxygen utilization (AOU) and silicate (Si)). This method is composed of 16 equations with a different 180 

combination of the input variables, always maintaining the salinity input in each one. The computations with LIARv2 were 

obtained by the equation with the lowest uncertainty estimate in each sample that this method determines (Carter et al., 2018). 

CANYON-B is based on a Bayesian neural network derived from GLODAPv2 data including position, time, salinity, 

temperature and dissolved oxygen as predictors. The two methods were applied on the GLODAPv2 dataset and analyzed in 

the areas defined by Lee et al. (2006) and Takahashi et al. (2014). 185 

2.3 Validation 

To illuminate the complexity of neural networks, several methods to determine the contribution of each predictor variable in 

the output were proposed in different studies (see Gevrey et al. (2003) and Olden et al. (2004)). We used the Connection 

Weight Approach (Olden and Jackson, 2002) to evaluate if the network properly associates the AT variability with the predictor 

variables. This method was proposed to be the most accurate (Olden et al., 2004). It uses the weights obtained in the training 190 

stage to extract the influence of each predictor variable in fitting the AT values. The expression followed was: 

  𝐶𝑖 = ∑ 𝑤𝑖𝑘 ·  𝑤𝑘
𝐻
𝑘=1         (4) 

where 𝐶𝑖 is the relative importance of the predictor variable i, H is the number of neurons in the hidden layer, 𝑤𝑖𝑘 is the weight 

of the connection between the variable i and the neuron k of the hidden layer and 𝑤𝑘 is the weight of the connection between 

the neuron k of the hidden layer and the final output, that is, the computed AT. Finally, the absolute value of 𝐶𝑖 was expressed 195 

as a percentage of the sum of all 𝐶𝑖. 

In addition to the test in the GLODAPv2 independent set, the network potential was tested on five ocean time-series in different 

oceanographic regimes that were not included in GLODAPv2: Hawaii Ocean Time-Series (HOT), Bermuda Atlantic Time-

Series Study (BATS), European Station for Time-Series in the Ocean at the Canary Islands (ESTOC), Kyodo North Pacific 

Ocean Time-Series (KNOT) and K2. Data of all time-series used in this study were obtained from 200 

https://www.nodc.noaa.gov/ocads/oceans/time_series_moorings.html. 

GLODAPv2 contains quality-controlled measurements in all ocean basins from the 1970s until 2017 (Olsen et al., 2019). 

However, winter data are scarce to absent in some high latitude regions because adverse weather conditions prevents field 

activities in that season (Fig. S1). In surface ocean, this temporal bias can be avoided with the help of the subsurface data from 
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seasons with sufficient samples. Vázquez-Rodríguez et al. (2012) demonstrated how the subsurface ocean layer in the Atlantic 205 

Ocean can retain the footprint of the water mass formation from the preceding winter in the following months and, therefore, 

of the surface conditions. The winter relationship between inputs and AT needed to produce an all-season surface climatology 

are mostly preserved in this subsurface layer. The validity of this hypothesis was tested in other regions (Fig. S1) following 

Vázquez-Rodríguez et al. (2012). These areas were chosen based on the non-availability of AT data in two or more consecutive 

months in the same oceanographic regime as the colored area in Fig. S1. 210 

To reinforce the previous test and to assess the ability of the neural network in overcoming the lack of winter data in other 

depths, a neural network (NNGv2_nowinter) was trained excluding all winter data in GLODAPv2 (GLODAPv2_nowinter) 

and tested in the excluded and independent winter dataset (GLODAPv2_winter). The procedure to create and to train the 

network was the same as described previously. 

2.4 Climatology 215 

Finally, we generated a 1ºx1º global (monthly: 0-1500m; annual: 1550-5500m) climatology of AT from the objectively 

analyzed climatological fields of temperature, salinity and oxygen (see Appendix A for oxygen climatology) from WOA13 

(Locarini et al., 2013; Zweng et al., 2013; Garcia et al., 2014a) and the nutrients resulted from passing the previous fields 

through CANYON-B (Appendix A). This choice of nutrients was made to extend the monthly resolution up to 1500m, since 

WOA13 only offers it up to 500m (García et al., 2014b). This final product was compared with the monthly sea surface 220 

climatologies of AT of Lee et al. (2006) and Takahashi et al. (2014). Furthermore, the annual mean was compared with the 

annual mapped climatology by Lauvset et al. (2016) since it also comes from GLODAPv2. The availability in Lauvset et al. 

(2016) of the climatologies of the variables used as inputs in the network were used to test how the network represents their 

climatology of AT and to evaluate the sources of the possible differences. 

3 Results and discussion 225 

3.1 Neural network analysis 

The lowest RMSE was reached in the training and in the test sets when 128 neurons were used (Fig. S2). The same RMSE 

values for both sets (5.3 µmol kg-1; Fig. 3 and Fig. S2) showed that no overfitting occurred, and that the network generalizes 

well. The two training techniques did not show significant differences. The Levenberg-Marquardt algorithm was selected for 

its higher computing speed. 230 

Samples with residuals (differences between measured and computed AT) beyond ±3RMSE are 1% of the GLODAPv2 dataset. 

The spatial distribution of these samples (Fig. S3) shows that they are confined to certain areas, mainly in the ocean surface 

(Fig. 4). Most are in the Northern Hemisphere (Fig. S3 and Fig. 4). Specifically, 40% are from latitudes north of 60ºN (Table 
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S1). In this area, 5% of GLODAPv2 samples have residuals beyond ±3RMSE and 75% of these samples are from the upper 

100m (Table S2). In these depth and latitude ranges, the samples with high residuals make up 13% of the GLODAPv2 samples 235 

here and they typically have salinities lower than 34 (Table S3; Fig. S3). A monthly analysis in the previously indicated ranges 

shows that the largest number of samples with residuals beyond ±3RMSE are from the summer months. About 12-20% of all 

GLODAPv2 samples from this season in this area have residuals higher than ±3RMSE (Table S4). 

The previous results show that the Arctic Ocean is the region with the largest RMSE, although the network computes well 

most of the measured AT in this area. However, the low availability of winter data, the ice-sea dynamics and the transport of 240 

AT by the rivers (Fig. S4) could alter the presence of the surface winter conditions in the summer subsurface layer shown by 

Vázquez-Rodríguez et al. (2012) in other areas and generate a temporal bias in the climatology. The high discharge of high AT 

waters by the rivers in the summer (Cooper et al., 2008; Shiklomanov et al., 2018; Fig. S5) generates the greatest errors and 

shows how the network fails to model riverine AT. 

In further detail, many of the samples with residuals beyond ±3RMSE are located in the Beaufort Sea (66°N - 80°N, 140°W- 245 

180°W). Here, Takahashi et al. (2014) also found a large RMSE of 60.5 µmol kg-1 (40.7 µmol kg-1 applying their regressions 

on GLODAPv2) of their SSS-PALK relations in the upper 50m of the water column. This area is specifically complex to 

model surface AT because of significant river runoff having high and possibly variable AT concentrations (Fig. S4 and S5; 

Anderson et al. 2004; Cooper et al. 2008). Labrador Sea also presents high errors because of the entering of river runoff from 

Arctic Ocean transported through the Canadian Arctic Archipelago (Anderson et al., 2004). Therefore, in spite of the good 250 

reproduction of AT for the most samples, one should be cautious with the results in these zones and for the entire Arctic Ocean. 

When the GLODAPv2 data where QC was not done is analyzed, the North Sea also shows many samples with large residuals. 

Those samples shallower than 100m and close to the coasts surrounding this sea do not have an accurately computed AT (Fig. 

S4). Some studies have shown the complexity of the processes occurring in this shallow sea where the high river runoff also 

has elevated levels of AT (Fig. S4; e.g., Hoppema, 1990; Artioli et al. 2012). Hence, the same caveats as for the Arctic Ocean 255 

should be made.  

In general, the network mainly fails to compute AT in some samples of areas with rivers carrying significant amounts of AT to 

the ocean. The inclusion of predictors related to riverine AT (and probably to ice melt) could improve the computation in these 

areas. Although one should be cautious, these zones still should be considered and be represented in the climatology since 

most of the samples have a well-computed AT. 260 

In the global ocean surface layer, the RMSE obtained with the neural network approach is lower than that obtained by previous 

studies on generation of monthly climatologies (Table 1 and Table 2). In the past, relationships between SST and SSS with AT 

by Lee et al. (2006) have been shown to produce the lowest RMSE (area-weighted RMSE of 8.1 µmol kg-1) in the AT 
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computation to create a monthly climatology. However, applying the relations of that study to GLODAPv2, the obtained 

weighted RMSE is higher than the ones from NNGv2, LIARv2 and CANYON-B (Table 1). NNGv2 approach obtained the 265 

best fit in all the areas defined in the study of Lee et al. (2006) (Table 1). The newest methods in AT computation improve the 

results of Lee et al. (2006) in all the areas except for Equatorial Upwelling Pacific (CANYON-B) and Subtropics (LIARv2) 

(Table 1). 

Similar to the previous case, the error analysis in the areas defined in Takahashi et al. (2014) also shows a lower error of the 

NNGv2 in most of the areas (20 of 26; Table 2). The weighted RMSE shows that NNGv2 and CANYON-B are the best 270 

methods to compute AT in the 0-50m depth range in GLODAPv2. Although the analysis by area shows non-significant 

differences in general between this two methods, there are 7 areas with more than 300 samples where NNGv2 computes AT 

with 1 or more unit of RMSE less than CANYON-B. The AT computed in some zones defined in the Arctic and Subarctic 

(Beaufort Sea and Labrador Sea) presents the highest RMSEs in all the approaches (Table 2) probably to the high riverine AT 

discharge as discussed before. 275 

In depths below those previously analyzed, the error is progressively reduced for NNGv2, LIARv2 and CANYON-B (Table 

3). Although NNGv2 shows the lowest RMSE in all the depth ranges analyzed, the differences with CANYON-B are non-

significant. Nonetheless, LIARv2 shows higher errors than NNGv2 (between 1.3-2.6 µmol kg-1; Table 3). 

The previous analyses show how the newest methods to compute AT (LIARv2, CANYON-B and NNGv2) produce lower 

errors than the previous ones used to generate a monthly climatology (Lee at al., 2006; Takahashi et al., 2014). The non-linear 280 

nature of the neural networks is probably the main reason for the best results obtained with CANYON-B and NNGv2. 

Furthermore, these methods have the advantage of obtaining the computed AT anywhere in the ocean in only one step. No 

“patches” or smoothing are needed between different zones in the climatology as there are in previous studies. Finally, the 

NNGv2 has been chosen to generate the climatology because of both the previous reasons and the inclusion of data of recent 

cruises (Olsen et al., 2019) in the training and testing steps of the neural network approach. 285 

The NNGv2 seems to qualitatively associate the AT variability to the predictor variables in coherence with the processes that 

contribute to it. The relative importance of these variables depicted in Fig. 5 shows that salinity is the most influential variable, 

followed by nutrients. In the surface layer, where AT variability is the largest, different studies showed how changes in salinity 

are highly correlated with this variability (Millero et al., 1998; Takahashi et al., 2014). The organic matter cycle also has a 

significant component in the AT variability (Kim and Lee, 2009). The formation and degradation of organic matter is reflected 290 

through both oxygen and nutrients variations. NNGv2 seems to capture the AT variability because of the organic matter cycle 

giving a second place in importance to nutrients. The third group of variables in the ranking of importance is comprised by 

position and temperature. The depth variable could be associated to the AT variability accounting for the variation produced 

by the CaCO3 cycle and the processes acting through the global ocean circulation. The horizontal sampling position variables 
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could help to separate the different relations shown by previous studies in different ocean areas (Lee et al., 2006; Takahashi et 295 

al., 2014). Finally, temperature has also been associated to the AT variability as a proxy of both the CaCO3 and the organic 

matter cycles (Lee et al., 2006). 

3.2 Time-series validation 

The network can compute AT well at 5 different ocean time-series stations. Low RMSEs (Table 4) and high coefficients of 

determination (r2) (data not shown) were obtained. The bias is relatively low in the three time-series with the highest number 300 

of data (HOT, BATS and ESTOC). The AT computed by the NNGv2 in KNOT and K2 is slightly higher than the measured 

one, probably because of the influence in the AT variability of some variable not included as an input of the network (although 

an offset in the measurements of any of the inputs could also give this result). Summed to the previous test, the statistics 

obtained in this independent test with a good seasonal time resolution shows the good generalization of the NNGv2. 

The LIARv2 and CANYON-B methods to compute AT also model the time-series data quite well (Table 4). Significant 305 

differences among the three methods are obtained in HOT and ESTOC. In HOT, NNGv2 and CANYON-B reach a better fit 

of AT than LIARv2 suggesting that a non-linear technique is more adequately to model AT in this area (Table 4). CANYON-

B presents a higher bias in ESTOC than the other two methods, suggesting that here the inclusion of nutrients as predictors 

results in an accurate computation of AT. The error obtained in BATS, ESTOC, K2 and KNOT does not have significant 

differences between methods. Finally, LIARv2 and CANYON-B also have a considerable bias in K2 and KNOT (Table 4) 310 

that reinforce the two reasons suggested previously for NNGv2. 

The ability of NNGv2 to capture surface AT variability is exemplified in Fig. 6 for BATS. The other largest time-series also 

show a good agreement between the computed and the measured seasonal AT in the same depth range (RMSE HOT: 5 µmol 

kg-1; RMSE ESTOC: 2.6 µmol kg-1). In general, AT measured in each month of the year are well modeled by NNGv2 (inner 

charts in Fig. 6). The same holds for other depth layers (Fig. 7, panels in left column). Only some extreme values are not fully 315 

captured but almost all the trends between months are well represented. The differences may be caused by bias in measured 

AT or some of the input variables; they may also be due to an under/overestimation of the network. Furthermore, the time-

series areas are not fully represented in all months in GLODAPv2 so that NNGv2 might not represent seasonality well. 

However, the network computes AT in any month with a very low error. This shows again the potential of the generalization 

of a well-designed neural network. 320 

The NNGv2 also has the capacity to increase the number of AT data in the time-series. In many samples, AT was not measured 

but the other input variables needed for the NNGv2 are available. Therefore, the computed AT has a higher temporal and spatial 

resolution than observations only. This enables the computation of more reliable trends than with the less frequently measured 

AT and allows the identification of possible high frequency changes. The improvement in resolution is especially visible in the 
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longer time-series: HOT and BATS (Fig. 7). In the former we increased the number of AT data from 4006 to 14907 and in the 325 

latter from 3033 to 11342 (Fig. 7, panels in central column). 

3.3 Subsurface Layer Hypothesis 

We found that the optimal depth range of the subsurface layer defined by Vázquez-Rodríguez et al. (2012) for the North 

Atlantic Ocean (100-200 m) must be modified in other regions. In the area analyzed in the Indian Ocean (Fig. S1), the 

subsurface layer hypothesis is verified in the same depth range of that study. However, the other areas (Fig. S1) show that the 330 

range of the subsurface layer is in the range of 50-100 m. The different strengths of deep mixing and convection in winter 

could explain this fact. 

The properties analyzed in the four areas defined in Fig. S1 show, as expected, a higher monthly variability in the ocean surface 

than in the subsurface layers. The seasonal variability depicted in Fig. 8 will likely be typical of a larger region within a similar 

oceanographic regime for each defined area. The surface winter conditions of the analyzed properties are quite similar to those 335 

in the subsurface layer during, at least, one of the four consecutive months following winter in all areas (Fig. 8). 

The optimal number of neurons in the network trained with GLODAPv2_nowinter dataset to reinforce the subsurface layer 

hypothesis and to assess the layers below surface ocean was 100. The reduction of the number of neurons compared to the 

previous networks was because this new dataset contains less data. Thus, maintaining or increasing the number of neurons 

would produce overfitting. NNGv2_nowinter provides statistics in the GLODAPv2_nowinter dataset similar to those of the 340 

NNGv2 in GLODAPv2 dataset (5.5 vs 5.3 µmol kg-1 respectively). But, of greater importance are the statistics resulted from 

the GLODAPv2_winter dataset which reinforce the subsurface layer hypothesis (Table 5). The low error reached in this 

independent winter dataset and the low differences with that from NNGv2 in each depth layer (Table 5) shows how the network 

is able to obtain the winter relations in any depth from the function fitted with data from other seasons. Therefore, the lack of 

winter data in different regions does not automatically mean that the climatology will be biased towards the more sampled 345 

seasons. 

3.4 Climatology 

The monthly climatology of AT is based on the relations obtained in the training procedure of NNGv2 applied to the WOA13 

and CANYON-B derived monthly climatological fields (Appendix A). We have demonstrated that the AT computed by 

NNGv2 agrees reasonable with the measured AT when the inputs associated to it are passed through the network, i.e. the 350 

relations obtained from GLODAPv2 in the training stage are robust. Therefore, the AT patterns in the climatology are forced 

by the patterns of the WOA13 variables and CANYON-B derived ones used as inputs. The climatology can be found in a 

netCDF file at the data repository of the Spanish National Research Council (CSIC; http://hdl.handle.net/10261/184460) 

together with a video of the monthly variation at the surface and in three longitudinal sections of the three main oceans. 



13 

The distribution of the surface annual mean AT (Fig. 9) is similar to that shown in previous climatologies (e.g., Lee et al. 2006; 355 

Takahashi et al. 2014; Lauvset et al. 2016). Not surprisingly, there is a high correlation with the salinity distribution and, 

consequently, with the evaporation-precipitation patterns. The largest values in the surface layer occur in the Mediterranean 

Sea, Red Sea, and in the subtropical gyres of the Atlantic and South Pacific Oceans, all of them prevailing throughout the year 

in the monthly climatology. At depth, these maxima are all present at least up to 150m (Fig. 9). Below 700m, the Pacific and 

Indian Oceans show higher AT concentrations than the younger waters of the Atlantic (Fig. 9). Furthermore, features such as 360 

the high-AT Mediterranean Water entering the Atlantic Ocean are captured in the climatology (Fig. 9, 1000m chart, black 

circle). In general, the patterns agree with the main ocean processes responsible for the AT variability as explained previously. 

The seasonal amplitude of sea surface AT (Fig. 10) is generally in agreement with that obtained by Lee et al. (2006). The 

highest amplitudes are in the north equatorial zone, in the Arctic Ocean and in coastal zones, i.e., at locations where there are 

rivers with a large water discharge (like the Amazonas, Congo, La Plata or Arctic rivers). The seasonal amplitude of the surface 365 

salinity (Fig. S6) can explain most of the variability in the seasonal amplitude of AT. In areas with a large seasonal amplitude 

of salinity (more than 1 unit; mainly the Arctic Ocean and coastal zones near rivers with high discharge), this variable linearly 

explains 79% of the seasonal amplitude AT variability. However, the seasonal amplitude in the Arctic Ocean should be taken 

with caution due to the difficulty to accurately model this complex zone, as discussed previously. Despite the presence of high 

levels of AT in some river mouths in the melting months, the AT carried by the rivers could be not represented in the climatology 370 

and this can enhance the seasonal cycle due to an underestimated value in low salinity waters with high riverine AT. On the 

other hand, in areas with a low seasonal amplitude of salinity (less than 1 unit; mainly oceanic areas and coastal regions without 

rivers with high discharge) about 62% of variability is linearly explained. This result shows the importance of the inclusion of 

other predictors besides salinity in the network and the non-linearity of the method proposed in this study to explain nearly all 

the AT variability. 375 

The seasonal amplitude of AT is progressively reduced at depth (Fig. S7). The changes in the variables which influence the 

changes in AT are smaller than in the surface layer or null causing this reduction. The seasonality disappears almost completely 

below 400m depth, although some patches of variability are present likely because of a conjunction of the error of the network 

and the seasonal variability in the climatological input variables. In addition, these patches could also come from the learning 

stage since the training data of AT present monthly variations of up to ~15 µmol kg-1 for some areas, even at depths greater 380 

than 1000m. 

Although it was shown that the neural network can accurately compute AT in both GLODAPv2 and time-series datasets, the 

quality of WOA13 data (and that of the input climatologies generated in this study) also determines the robustness of the 

climatology. Unfortunately, WOA13 does not offer uncertainty fields associated to the objectively analyzed climatologies to 

compute a coherent estimation of the uncertainty in the AT climatology. Therefore, the climatological values offered in this 385 

study should be evaluated by comparing them with observations in a monthly average over many years. This can only be done 
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at the locations of time-series with representative amounts of data; Fig. 11 shows this analysis at surface. At both the BATS 

and HOT time-series, the differences between the averaged measured AT and the climatology are quite low. The comparisons 

are better when AT is computed by NNGv2 using as inputs the measured values in the time-series (data not shown), showing 

the importance of the quality of the input variables. 390 

The previous results hold true also for other depth layers. A comparison of monthly profiles up to about 500m between the AT 

climatology obtained from WOA13 and CANYON-B derived climatological fields and the one from the averaging of the time-

series data shows low differences (Fig. S8). In BATS, the RMSE of this comparison ranges between 1.4 and 3.6 µmol kg-1 

(mean RMSE of 2.2 µmol kg-1) and the bias between -0.2 and 4.3 µmol kg-1 for all months. In HOT, the RMSE of this 

comparison ranges between 3.6 and 9.7 µmol kg-1 (mean RMSE of 6.3 µmol kg-1) and the bias between -1.7 and 3.1 µmol kg-395 

1 for all months. The climatological measured data are for the periods between 1991 and 2015 (BATS) and 1989 and 2018 

(HOT) and WOA13 data are supposed to cover a larger range. Despite this time difference, the AT climatology represents quite 

accurately the measured values averaged in each month. 

Compared to the other climatologies, the surface annual mean AT of this study is closer to that of Lee et al. (2006) (Table 6). 

This is likely because temperature and salinity are included as non-linear predictors of AT. In Takahashi et al. (2014), AT 400 

derives from the linear regression between PALK and one predictor (salinity) and in the Lauvset et al. (2016) study, DIVA 

(Data-Interpolating Variational Analysis; Troupin et al., 2010) was used. Furthermore, the transfer of our climatology to the 

coarser grid of Takahashi et al. (2014) for the comparisons may enhance dissimilarities. 

The comparison of the monthly values of our climatology and the other climatologies available at the same time frequency 

(Table 7) shows the greatest similarity of ours and that of Lee et al. (2006). The reasons given above may also hold here. In 405 

addition, part of the differences between the comparisons may originate from the different versions of the WOA used in each 

study (Lee et al., 2006: temperature and salinity from WOA01; Takahashi et al., 2014: salinity from WOA09 and nitrate from 

WOA94; this study: temperature, salinity and oxygen (filtered) from WOA13 and nutrients derived from CANYON-B 

(Appendix A)). 

In general, the surface spatial patterns of the differences between the annual mean of our AT climatology and the three other 410 

ones under consideration are not correlated (Fig. S9). Compared to Takahashi et al. (2014), the largest differences are in the 

Beaufort Sea and in three zonal bands: 54-60º S, 8-28º N and 40-60º N (Fig. S9a). The Pacific Ocean has the highest 

dissimilarities in these three bands. In general, the Atlantic Ocean and the Indian Ocean have the smallest differences. The 

largest differences in these two ocean basins are mainly located close to the river mouths. It shows how the different 

parametrizations of the AT diverge highly at low salinities. On the other hand, the major differences with Lee et al. (2006) (Fig. 415 

S9b) are surrounding North America’s Pacific coast, the area of influence of the Amazon river, the zone between both the 

Niger and the Congo rivers and the North Sea. In the open ocean there are some wide areas where the differences are 



15 

remarkably high. They are mainly in the South Pacific. It should also be noted that the transition zone between the 1 

((sub)tropics) and 2 (equatorial upwelling Pacific) areas defined in the study of Lee et al. (2006) generates a discontinuity in 

the difference map. Finally, the largest differences with Lauvset et al. (2016) (Fig. S9c) are less localized. The Arctic Ocean 420 

and the Pacific sector of the Southern Ocean are the areas where there is a large spatial continuity in the differences. 

An important cause of the differences between the climatologies stems from the use of different inputs to generate them. As 

an example, this can be seen when the climatologies of Lauvset et al. (2016) are used as input variables to compute AT with 

NNGv2 instead of the WOA13 data. In the surface layer, a considerable reduction of the RMSE (12.9 to 9.9 µmol kg-1) and 

an increase of the r2 from 0.94 to 0.96 are obtained. In the deeper layers, the differences are progressively decreasing. The 425 

values of the RMSE of the comparisons below 250m are in the range of 4 to 6 µmol kg-1 and the improvement caused by the 

inputs usage is reduced to around 1 µmol kg-1. This last result shows an increasing similarity between Lauvset et al. (2016) 

climatologies and those used in the present study with increasing depth. However, and to be consistent, it is recommended to 

use the AT climatology corresponding with the other inputs used in the studies that arise from these products (e.g., 

biogeochemical modeling studies). 430 

4 Data availability 

The climatologies of AT, oxygen and nutrients (see Appendix A) and the NNGv2 designed in this study are available at the 

data repository of the Spanish National Research Council (CSIC; http://hdl.handle.net/10261/184460). 

5 Conclusions 

A neural network to compute AT anywhere in the ocean has been presented. As evaluated by the RMSE between the measured 435 

and the computed data, the neural network approach presented in this study offers increased precision compared to most of the 

approaches in previous studies. Furthermore, the global relationship between AT and input variables was obtained from a 

higher number of quality-controlled data than before in the generation of a monthly climatology, with a greater temporal and 

spatial resolution. We have demonstrated how one single global algorithm is able to compute AT satisfactorily for the entire 

global ocean. This has enabled us to generate a monthly climatology without the need to use smoothing techniques between 440 

different oceanic areas. 

The validation using different independent datasets demonstrates the good network generalization. In addition, the 

spatiotemporal AT variability is well captured by the network as shown in time-series validation. Therefore, the obtained 

climatology using WOA13 inputs and those of oxygen and nutrients climatologies created in this study should reflect this 

variability due to the good network performance to new independent data. 445 
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We offer this global monthly climatology of AT to the scientific community for advancing the understanding of the ocean 

carbon cycle. Our new climatology may particularly be useful as input to modeling efforts. It is worthwhile mentioning that 

the network offered here are also useful to obtain AT values for samples where the inputs for the neural network are present. 

6 Appendix A 

The relevance of a well-represented seasonal variability in the predictor variables used to create the monthly AT climatology 450 

is very important to obtain a well-represented AT seasonal variability. Analyzing the variability in the WOA13 variables, we 

have found some remarkable aspects that have led us to modify and generate new climatologies for some of the predictor 

variables.  

A strange variability in WOA13 climatologies were observed when comparing its variability with the one in time-series with 

enough data to obtain climatological values. In general, the monthly climatologies of oxygen and nutrients present some high 455 

peaks of seasonal variability at different depths in relation to the neighboring depths around all the ocean. These peaks also 

occur at time-series showing a discrepancy regarding the measured climatological seasonal variability (Fig. A1 and Fig. A2).  

The profile of oxygen seasonal variability at ESTOC clearly shows this fact at depths around 750m and 1200m (Fig. A1). The 

same happens at ICELAND around 800m, although with a smaller magnitude (Fig. A1). To avoid the disruptions in the profiles 

of oxygen seasonal variability, we applied a fifth-order one-dimensional median filter through the depth dimension to the 460 

WOA13 oxygen monthly climatology. In general, the results show a reduction of the peaks, and the trends and magnitude of 

the profiles are more similar to those of the measured data (Fig. A1). 

In the case of nutrients, we took advantage of the recent publication of CANYON-B method (Bittig et al., 2018) which allows 

to compute phosphate, nitrate and silicate from temperature, salinity, oxygen, position and time. Therefore, the monthly 

climatologies of temperature and salinity from WOA13 and the one of oxygen created in this study were used as inputs of 465 

CANYON-B to obtain monthly climatologies of nutrients up to 1500m (this depth is the maximum depth up to which WOA13 

offers monthly climatologies of temperature, salinity and oxygen). In general, the results show a reduction of the peaks showed 

by WOA13 and a higher similarity with the measured profiles (Fig. A2). 

The monthly climatologies of oxygen and nutrients from WOA13 probably present the mentioned disruptions of the seasonal 

variability because of a combination of low data availability in certain areas and the method used for mapping. Therefore, the 470 

monthly climatology of AT obtained using as inputs of the NNGv2 the climatologies created here, should represent a more 

realistic seasonal variability than if all WOA13 ones were used. 
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Figure 1: Neural network configuration. The notation is in agreement with Hagan et al. (2014). p: input vectors; W: weight matrix; 650 
b: bias matrix; ∑: sum; f: transfer function; a: output matrix. The superscripts indicate the number of the layer. The c and s 

preceding month and longitude variables represent cosine and sine (see Eq. (2) and Eq. (3))). The dimensions of the matrices are for 

an individual sample. Modified from Hagan et al. (2014). 
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Figure 2. Division of the data for the training of the network and its testing. The percentages in each level are relative to the previous 655 
one. 

 

Figure 3: Regression between AT computed by NNGv2 and AT from GLODAPv2. The graph is divided in pixels. The color of each 

pixel is determined by the number of points inside it. Each pixel has a size of 4 by 4 µmol kg-1. Note the logarithmic scale to account 

for the large amount of data. Training data chart contains the data in the first level training set (see Fig. 2). Testing data chart 660 
contains the data in the second level test set (see Fig. 2). 
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Figure 4: The absolute differences between GLODAPv2 AT and NNGv2 AT. (a) samples in the layer 0-30m. (b) samples in the layer 

2950-3050m. 

 665 

Figure 5: The relative importance of the predictor variables for NNGv2. lat: latitude; clon: Eq. (3); slon: Eq. (4); temp: temperature; 

sal: salinity; phosp: phosphate; nit: nitrate; sil: silicate; oxy: oxygen. 
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Figure 6: Comparison of measured and computed AT with NNGv2 for the depth range 0-10 m at time-series station BATS. The 

RMSE in that depth range for the whole time-period is 5.6 µmol kg-1. The years 1996-1997 and 2007-2008 are amplified to show the 670 
monthly variations because they are the years with AT measurements in all the months. 
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Figure 7: Left column: Computed AT for the upper 550m of the water column at the BATS and HOT time-series stations. Central 

column: Difference between measured and computed AT. Colored dots show samples where AT was measured. Black dots show 

samples where AT was not measured but the network inputs were. Right column: Difference between measured and computed AT 675 
interpolated with Data-Interpolating Variational Analysis (DIVA; Troupin et al., 2010). This figure was made with Ocean Data View 

(Schlitzer, 2016). 
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Figure 8: Monthly variability of temperature, salinity, NO = 9*NO3 + O2 and PO = 135*PO4 + O2 (defined according to Broecker, 680 
1974) for different ocean basins. Temperature, salinity from WOA13 objectively analyzed monthly climatologies, oxygen, nitrate 



29 

and phosphate from WOA13+CANYON-B (see Appendix A) and AT from computed by NNGv2 using the previous inputs, were 

averaged for each area defined in Figure S1. Each zone is displaced in each graph for a certain constant quantity of the variable for 

a better visualization, that is, the data shown are not the real values. Indian Ocean: 100-200m; South Atlantic, South Pacific and 

North Pacific: 50-100m. 685 

 

Figure 9: Annual mean climatology of AT at 3 depths. Black circle in 1000m panel points out the area of influence of the 

Mediterranean Water in the Atlantic Ocean. This figure was made with Ocean Data View (Schlitzer, 2016). 
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Figure 10: Seasonal amplitude of sea surface AT. This figure was made with Ocean Data View (Schlitzer, 2016). 690 

 

Figure 11: Monthly variation of AT at BATS (0-10m) and HOT (0-30m) time-series locations of climatological measured data (red 

line) and the monthly climatology of AT computed with NNGv2 (black line). The shading represents the standard deviation of the 

average of the measured data. 

 695 
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Figure A1: Profiles of oxygen seasonal amplitude at different time-series locations obtained from WOA13 oxygen monthly 

climatology (WOA13 original), from WOA13 original after a median filtering (WOA13 filt depth) and from measured data averaged 

by month (Measured). It should be considered that profiles at ESTOC, ICELAND and IRMINGER do not come from a quantity of 

data as high as those of HOT and BATS and cannot be considered a pure climatology. Units of seasonal amplitude are µmol kg-1. 700 
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Figure A2: Profiles of nutrients seasonal amplitude at different time-series locations obtained from WOA13 monthly climatologies 

(WOA13 original), CANYON-B derived climatologies (CANYON-B) and from measured data averaged by month (Measured). It 

should be considered that profiles at ESTOC, ICELAND and IRMINGER do not come from a quantity of data as high as those of 

HOT and BATS and cannot be considered a pure climatology. 705 

 

Table 1: RMSE obtained by the relations of Lee et al. (2006), NNGv2, LIARv2 and CANYON-B over GLODAPv2. In bold the lowest 

RMSE in each area defined in Lee et al. (2006). To be consistent with the surface layer defined in Lee et al. (2006) the samples 

evaluated here are from above 20m (subtropics) and 30m (the rest). 

 
RMSE (µmol kg-1) 

 
Areas defined in Lee et al. 

(2006) 

Lee et al. 

(2006) NNGv2 LIARv2 CANYON-B n 

North Atlantic 15.1 11.4 13.8 11.8 3571 

North Pacific 15.5 6.3 7.4 7.0 2529 
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Equatorial Upwelling Pacific 7.2 5.0 5.0 13.5 280 

Subtropics 18.9 14.1 19.1 14.4 4874 

Southern Ocean 9.1 4.5 5.1 5.2 4842 

Weighted RMSE 14.4 9.2 11.7 9.9 16096 

 710 

 

Table 2: RMSE obtained by the relations of Takahashi et al. (2014), NNGv2, LIARv2 and CANYON-B over GLODAPv2. In bold 

the lowest RMSE in each area defined in Takahashi et al. (2014). To be consistent with the surface layer defined in Takahashi et al. 

(2014) the samples evaluated here are from above 50m. 

 
RMSE (µmol kg-1)  

Areas defined in Takahashi 

et al. (2014) 

Takahashi et 

al. (2014) NNGv2 LIARv2 CANYON-B n 

West GIN Seas 27.8 8.7 15.6 9.7 679 

East GIN Seas 10.1 7.2 9.2 7.3 729 

High Arctic 35.6 12.5 20.8 18.0 747 

Beaufort Sea 40.7 22.6 37.7 25.9 631 

Labrador Sea 33.6 29.7 32.4 29.8 487 

Subarctic Atlantic 9.8 6.9 7.2 8.1 896 

North Atlantic Drift 7.6 6.6 7.6 6.3 1527 

Central Atlantic 22.4 15.7 21.4 16.0 3489 

South Atlantic Transition Zone 6.8 5.7 6.7 5.8 328 

Antarctic (Atlantic) 7.8 5.7 5.9 6.2 684 

Kuroshio-Alaska Gyre 15.3 6.4 7.8 6.9 1284 

North Central Pacific 12.3 6.7 6.8 7.5 1203 

Okhotsk Sea 6.0 8.9 4.0 7.1 20 

Central Tropical North Pacific 7.0 5.4 5.7 5.7 1926 

Tropical East North Pacific 14.5 5.4 5.7 20.8 306 

Central South Pacific 9.0 4.7 4.5 5.1 2051 

East Central South Pacific 9.6 4.3 6.2 7.6 174 

Subpolar South Pacific 8.4 4.0 4.5 4.7 419 

Antarctic (Pacific) 5.3 3.1 3.2 4.5 596 

Main North Indian 7.0 4.9 5.5 5.0 578 

Red Sea 6.6 11.4 53.9 8.0 17 

Bengal Basin 9.1 7.6 8.3 6.3 97 

Main South Indian 8.9 7.1 8.0 6.3 2613 

South Indian Transition 3.8 2.6 3.4 3.5 231 

Antarctic (Indian) 7.3 3.5 3.7 4.5 1384 

Circumpolar Southern Ocean 8.8 4.2 4.3 5.0 2290 
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Weighted RMSE 13.4 8.1 10.2 8.9 25386 

 715 

Table 3: RMSE at different depth ranges obtained with NNGv2, LIARv2 and CANYON-B. In bold the lowest RMSE in each depth 

range. 

 
RMSE (µmol kg-1) 

Depth range (m) NNGv2 LIARv2 CANYON-B 

50-200 5.7 7.4 6.1 

200-500 4.1 6.8 4.4 

500-1000 4.0 5.3 4.2 

>1000 3.8 6.1 4.0 

 

Table 4: RMSE and bias between measured AT in HOT, BATS, ESTOC, KNOT and K2 and the computed AT with NNGv2, LIARv2 

and CANYON-B. The comparison was done for all the samples where all the input variables for NNGv2 and the AT were measured 720 
in the same water sample. 

 
RMSE (bias) (µmol kg-1) 

Time-series NNGv2 LIARv2 CANYON-B n 

HOT 5.8 (-0.4) 6.6 (-0.6) 5.8 (-0.6) 4006 

BATS 6.2 (-0.1) 6.3 (0.1) 6.0 (-0.4) 3033 

ESTOC 3.0 (-0.8) 3.4 (0.7) 3.2 (2.2) 1700 

KNOT 4.5 (-6.9) 4.8 (-6.6) 4.5 (-7.2) 1234 

K2 3.3 (-3.4) 3.0 (-3.0) 3.0 (-3.3) 561 

 

Table 5: RMSE and bias obtained with NNGv2 and NNGv2 in different depth ranges and datasets of GLODAPv2. 

Depth range (m) Dataset Statistic NNGv2 NNGv2_nowinter 

0-50 

No winter 
RMSE 11.0 11.0 

bias -0.2 0.1 

Winter 
RMSE 4.8 5.8 

bias -0.4 -0.4 

50-150 

No winter 
RMSE 6.2 6.2 

bias -0.2 0.0 

Winter 
RMSE 4.6 5.4 

bias 0.1 0.4 

150-500 

No winter 
RMSE 4.3 4.4 

bias -0.3 0.0 

Winter 
RMSE 4.0 4.4 

bias 0.3 0.8 

500-1000 
No winter 

RMSE 4.0 4.0 

bias -0.2 0.0 

Winter RMSE 3.8 4.1 
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bias 0.1 0.5 

1000-2000 

No winter 
RMSE 3.8 3.8 

bias -0.2 -0.1 

Winter 
RMSE 3.5 3.9 

bias 0.2 0.6 

2000-3000 

No winter 
RMSE 3.8 3.8 

bias -0.2 0.1 

Winter 
RMSE 3.4 4.0 

bias 0.0 0.4 

 

Table 6: Comparison of four annual mean surface climatologies of AT. *The domain analyzed is the same as Lee et al. (2006) for 725 
coherency reasons. 

RMSE (µmol kg-1)\r2 NNGv2 Lauvset et al. 2016* Takahashi et al. 2014 Lee et al. 2006 

NNGv2  0.94 0.93 0.97 

Lauvset et al. 2016* 12.9  0.90 0.92 

Takahashi et al. 2014 14.4 17.8  0.93 

Lee et al. 2006 7.7 14.4 12.4  

 

Table 7: Comparison between the three monthly climatologies of AT. 

Month 

Lee et al. (2006) vs 

NNGv2 

Takahashi et al. (2014) 

vs NNGv2 

Lee et al. (2006) vs 

Takahashi et al. (2014) 

RMSE 

(µmol kg-1) r2 

RMSE 

(µmol kg-1) r2 

RMSE 

(µmol kg-1) r2 

January 10.9 0.95 16.0 0.92 14.2 0.92 

February 10.5 0.95 16.4 0.90 14.7 0.91 

March 11.1 0.95 16.4 0.90 14.3 0.91 

April 11.2 0.95 17.8 0.89 15.0 0.91 

May 11.4 0.94 17.2 0.89 13.8 0.92 

June 11.4 0.94 17.5 0.89 14.3 0.91 

July 11.5 0.94 31.3 0.78 14.8 0.91 

August 12.8 0.93 19.0 0.90 14.8 0.91 

September 11.2 0.95 17.3 0.92 14.9 0.91 

October 11.3 0.95 14.5 0.93 13.1 0.93 

November 10.7 0.95 15.7 0.92 12.8 0.93 

December 10.8 0.95 16.3 0.92 13.9 0.92 

 


