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S1. Onshore Seeps (OS) 
 
 
Table S1. Class of CH4 emission attributed to onshore seeps (excluding mud volcanoes) 
 
Emission (tonnes/y) 1-50 100 500 1000 2000-3000 5000-9000 10000-20000 50000-60000 80000 
N. of seeps (tot. 2086) 522 1069 27 419 14 23 9 2 1 
 

 

S1.1 Evaluation of MV emission factors 

MV flux data acquired before 2006, in Azerbaijan, Romania and Italy (Table S2) refer to flux measurements 

based on the accumulation chamber technique using syringe sampling and laboratory analyses. The data 

acquired after 2006, refer to measurements based on new accumulation chambers connected to portable 

gas sensors (semiconductors or laser detectors). It was verified that the flux derivations by discrete syringe 

sampling strongly underestimate the flux. A series of tests performed in seepage sites, using simultaneously 

syringe and online sensor techniques (Etiope, unpublished data), revealed that syringe sampling may 

underestimate the flux up to 90%, especially for high fluxes (e.g., on the same seep, values of 100 and 1000 

kg/day were measured by syringe and online sensors, respectively). The good accuracy and repeatability of 

the closed chamber technique with online sensors, especially those using TDLAS (Tunable Diode Laser 

Adsorption Spectroscopy) sensors (with uncertainty < 10%) are described by Etiope et al. (2017) and 

instrumental manuals (www.westsystems.com). Accordingly, the old flux estimates based on syringe 

sampling are surely significantly underestimated; therefore, they have not been used for the evaluation of the 

miniseepage emission factor. 

 
Table S2. Measured methane flux data from mud volcanoes 
 

 
 

 



The “online sensor” data of Table S2 have been used to draw a regression line of seepage area vs. 

miniseepage (Fig. S2). The line equation has been applied to the OS mud volcano dataset, where the area 

(km2) was estimated for each MV (as described above). So, for each MV the miniseepage emission has 

been estimated. The main uncertainty in this procedure is due to the fact that the measured miniseepage 

data refer to small size MVs (the large MVs of Azerbaijan and Romania were only measured with the old, 

underestimating syringe method), and the miniseepage vs area correlation may be different compared to 

large MVs. 

From Table S2 data, a statistical relationship between miniseepage and macro-seepage has also been 

derived (Fig. S3) and the macro-seepage flux component has been attributed to each MV of the OS dataset. 

It is known from field surveys that the macro- vs. miniseepage correlation actually depends on the size of the 

MV: bigger (generally more active) MVs have a relatively higher macro-seepage. Therefore, two regression 

lines were calculated for MVs smaller and larger than 1 km2, adopting in this case the old data from 

Azerbaijan and Romania. The emission of each MV is therefore the sum of miniseepage and macro-seepage 

flux. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. S2. Correlation between mud volcano area and miniseepage, based on Table S2 data. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. S3. Correlation between mud volcano miniseepage and macro-seepage, based on Table S2 data. Two regression 
lines were calculated for MV smaller (blue diamonds) and larger (white squares) than 1 km2. 

 
 
 
 



Table S3. Extract from the OS dataset showing, as example, the miniseepage flux derived from the area of some mud 
volcanoes in Azerbaiajn, based on the area vs miniseepage relationship shown in Fig. S2, and miniseepage vs macro-
seep flux relationship shown in Fig. S3. 
 

COUNTRY LAT LONG REGION NAME area (km2)
minissepage 

(tonnes/y)
macro-seep 

(tonnes/y) 
Total output 

(tonnes/y)

Azerbaijan 41.15000 48.93333 Pricaspian Khanaga 1 2966 1226 4192

Azerbaijan 41.15000 48.93333 Pricaspian Khydyrzyndy 0.6 1735 42 1777

Azerbaijan 40.71667 49.31667 Pricaspian Kohna-Gady 0.6 1735 42 1777

Azerbaijan 40.71667 49.31667 Pricaspian Kurkachidag 1 2966 1226 4192

Azerbaijan 40.98278 49.15917 Pricaspian Nardaran 0.6 1735 42 1777

Azerbaijan 40.39528 49.88222 Apsheron Chullutepe 0.4 1133 35 1168

Azerbaijan 40.49389 48.92139 Apsheron Damlamaja 0.4 1133 35 1168

Azerbaijan 40.39528 49.88222 Apsheron Girvaalty 0.4 1133 35 1168

Azerbaijan 40.39528 49.88222 Apsheron Gulbakht 0.4 1133 35 1168

Azerbaijan 40.39528 49.88222 Apsheron Gullutepe 0.4 1133 35 1168

Azerbaijan 40.47000 49.71700 Apsheron Kechaldag 1 2966 1226 4192
 
 
 
 

 
 

Fig. S4 Distribution of three classes of value of the stable C isotope composition of methane from onshore seeps. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



S2. Submarine Seepage (SS) 
 
 
Table S4. SS dataset developed for gridding. It includes 15 areas where methane output to the atmosphere was 
estimated, and 16 areas where the emission is unknown. 
 

 
 
Note: δ13C values in italic are theoretically attributed (see main text). In the grid text files, the value -9999 for δ13C is replaced by the 
emission-weighted average δ13C value resulting from the first 15 seepage zones (-59 ‰). 
 
 
 
 
 

 
 
Fig. S5  Microbial (blue) and thermogenic (yellow) CH4 attributed to the SS areas. Red refers to the areas where, lacking 

measured or estimated isotopic data, the global weighted-average SS isotopic value is used. See Fig.5 for the 
identification of the sites. 

 
 
 



S3. Microseepage (MS) 
 

S3.1 Global petroleum field area (PFA)  

The spatial distribution of petroleum fields is taken from the “Petrodata” dataset of Päivi et al. (2007; see 

Sources of datasets in the Supplement). This dataset includes 891 polygons that represent onshore oil and 

gas fields from 114 countries. Päivi et al. (2007) created the polygons by grouping proximate original oil and 

gas locations digitised by geo-referenced maps (from USGS, 2000) in order to represent the clusters. The 

construction of the polygons was realised by applying a buffer of 30 km around each point location (i.e. this 

method assumes that each data point represents an area with a 30 km radius); overlapping polygons were 

then dissolved (to obtain one polygon) and clipped by using the country borders. The reasons why Päivi et al. 

(2007) used a 30 km buffer are not clear. We have compared the area of the Petrodata polygons with the 

actual area of petroleum fields mapped (PFM) in six main petroliferous regions: Siberia, USA, Iran, 

Venezuela, Turkmenistan and Iraq-Saudi Arabia. Gas and oil fields were digitized from geo-referenced maps 

published by different sources. We observed that the polygonal area of petroleum fields (resulting from the 

30 km buffer) is, on average, 40% higher than the actual petroleum field area reported in the specific maps. 

We have then re-sized the polygons: 

- using the observed polygon/PFM ratio for each of the 6 regions used as test (variable from 0.9 to 6.8),  

- using the average polygon/PFM ratio (1.67) for all other fields.  

This process resulted in a global Petroleum Field Area (PFA; Fig. S6) of 13,033,755 km2 (about 9.7 million 

km2 , i.e. ~43%, smaller than the area derivable from the polygons of Päivi et al. 2007).  

 

S3.2 Global area including macro-seeps outside PFA (OS area, OSA) 

The existence of macro-seeps (OS) in a given region implies a high probability that the region is also 

characterized by diffuse MS, which is not directly related to the gas flow of specific seeps (i.e., it is not a halo 

surrounding the macro-seeps, a process called miniseepage; Etiope, 2015). MS would occur, in other words, 

in areas surrounding OS and within OS clusters, regardless the presence of petroleum fields (we have in fact 

verified that 779 OS fall outside the PFA). We call this area of influence “OS area - OSA”. The OSA was built 

creating a buffer of 5 km (radius) around each OS that falls outside PFA and enveloping OS clusters. The 

resulting global OSA is 85,900 km2. The radius of 5 km reflects the average distance between seeps within 

small-scale clusters, and covers therefore the minimum area where seepage may occur. The average 

distance between seeps was calculated using the nearest neighbor index (NNI) for 16 OS clusters in 

different regions. Cluster identification was based on Hot Spot Analysis by using Zonal Nearest Neighbor 

Hierarchical spatial clustering (ZNNH). The total potential MS area (PMA) is therefore PFA+OSA = 

13,033,000 + 85,900 = 13,118,900 km2. 

 

 

 

 

 

 

 
 



 
 

Fig. S6  Global distribution of the petroleum field area (PFA), based on “Petrodata” dataset from Päivi et al. (2007) 
 
 
 
 
Table S5. Statistics of microseepage data (values are in mg m-2 d-1) 
 
 N. Mean Median G.Mean Min Max Std.Dev. 

Total 1509 111.8 0.20 - -40.99 7078.7 548.8 

Positive flux (>0.01) 871 194.8 2.73 4.02 0.01 7078.7 711.1 

 
G.Mean: geometric mean; Min: minimum value; Max: maximum value, Std.Dev.:, standard deviation 
 
 
 

 

 
Fig. S7  Statistical elaboration of the microseepage data from Table S5. 

 
 
 
 
 
 
 
 



 
 

Fig. S8  Global distribution of major fault zones (see Sources of databases below) 
 
 

 
 

Fig. S9  Global distribution of earthquakes (period 2005-2017, M>4.5) (see Sources of databases below) 
 
 
Table S6. Results of microseepage gridding (0.05° x 0.05°) 
 

 N. cells Area 
(km2) 

MS         
(mg m-2 d-1) 

MS 
(tonnes km-2 y-1) 

Tot output   
(tonnes year-1) 

Gridded EMA 192,166 8,588,634   24,006,755 
Gridded Level 1 169,338 7,652,785 1.3 0.4745 3,631,246 
Gridded Level 2 20,518 840,772 31.14 11.366 9,556,200 
Gridded Level 3 1094 45,059 110 40.15 1,809,156 
Gridded Level 4 1216 50,016 493.5 180.13 9,010,153 
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Fig. S10  Block diagram of the MS modeling. PFA: Petroleum Field Area; OSA: Onshore Seep Area; EMA: Effective 

Microseepage Area; NPP: Normal Probability Plot (see also explanation of the abbreviations in Section 6.1) 
 



 
 

Fig. S11 Gridded map of MS methane δ13C values. This map refers to the csv file “MS_13C” 
 
 
 
S3.3 MS modeling sensitivity 
The sensitivity of the MS modeling was checked by changing the emission factor (using the geometric mean 

of MS levels, instead of the median; varying the four microseepage levels by the 95% confidence interval for 

the median) and activity (varying ± 20% the area of the four levels). The several combinations and results 

are summarized in Table 7. The resulting emissions range from ~15 to ~32.7 Tg year-1, with an average of 

23 Tg year-1, which matches the first estimate (combination n. 1 in Table S7) considered for the text file.  

 

 
Table S7. Variability of the MS modeling results in relation to different combinations of activity and emission factors 
 

Combination 
n. 

Activity  Emission factor Total emission 
(Tg year-1) 

1 EMA median 24.0 
2 EMA geom. median 21.9 
3 EMA 20% smaller median 18.9 
4 EMA 20% smaller geom. mean 17.5 
5 EMA 20% higher median 28.4 
6 EMA 20% higher geom. mean 26.3 
7 EMA  lower 95% confid. limit median 18.8 
8 EMA  upper 95% confid. limit median 27.3 
9 EMA 20% smaller lower 95% confid. limit median 15.0 
10 EMA 20% higher upper 95% confid. limit median 32.7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



4. Geothermal manifestations (GM) 
 
 

 
 

Fig. S12 Global distribution of onshore volcanic and geothermal sites (see Sources of databases below) 
 
 

 
 

Fig. S13  Map of sedimentary basins (see Sources of databases below) 
 

Table S8. Descriptive statistical data of GM δ13C-CH4 values (‰) 
 

 N. mean min max Std. Dev. 
GM outside sedimentary basins 68 -24.3 -28.9 -16.6 3.6 
GM within sedimentary basins 26 -32.3 -38 -29.1 2.9 

 
 
 
 
 
 
 
 
 
 
 

Fig. S14  Normal Probability Plot and frequency histogram of the GM δ13C-CH4 data 
 
Table S9. Results of GM gridding 

 Emission level          
(tonnes year-1) 

N. sites N. cells Tot output       
(tonnes year-1) 

GM outside sedimentary basins 500 1513 526 1,636,500 
GM within sedimentary basins 
(outside petroleum basins) 

5000 832 409 3,761,205 

GM within petroleum basins  10000 33 24 310,500 
Total  2378 959 5,708,205 
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Sedimentary basins world map (CGG data services)  
http://www.datapages.com/gis-map-publishing-program/gis-open-files/global-framework/robertson-tellus-sedimentary-basins-of-the-
world-map 
 
 
Petroleum fields 
 
“Petrodata” from Päivi et al. (2007) by PRIO (Peace Research Institute Oslo), http://www.prio.org 
 
 
Volcanoes/geothermal sites 
 
Global Volcanism Program (2013) http://www.volcano.si.edu/ 
 


