

1	Depth-to-Bedrock Map of China at a Spatial
2	Resolution of 100 Meters
3	Fapeng Yan ¹ , Wei Shangguan ^{2*} , Jing Zhang ¹ and Bifeng Hu ^{3,4,5}
4	¹ College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
5	² Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, School
6	of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China.
7	³ Unité de Recherche en Science du Sol, INRA, Orléans 45075, France
8	⁴ InfoSol, INRA, US 1106, Orléans F-4075, France
9	⁵ Sciences de la Terre et de l'Univers, Orléans University, 45067 Orleans, France
10	
11	Correspondence to: Wei Shangguan (shgwei@mail.sysu.edu.cn)

1

12 **Abstract.** Depth to bedrock serves as the lower boundary of soil, which influences or controls 13 many of the Earth's physical and chemical processes. It plays important roles in geology, hydrology, 14 land surface processes, civil engineering, and other related fields. This paper describes the materials 15 and methods to produce a high-resolution (100 m) depth-to-bedrock map of China. Observations 16 were interpreted from borehole log data (ca. 6,382 locations) sampled from the Chinese National 17 Important Geological Borehole Database. To fill in large sampling gaps, additional pseudo-18 observations generated based on expert knowledge were added. Then, we overlaid the training 19 points on a stack of 133 covariates including climatic images, DEM-derived parameters, land-cover 20 and land-use maps, MODIS surface reflectance bands, vegetation index images, and the 21 Harmonized World Soil Database. Spatial prediction models were developed using the random 22 forests and gradient boosting tree, and ensemble prediction results were then obtained by these two 23 independently fitted models. Finally, uncertainty estimation was generated by the quantile regression forest model. The 10-fold cross-validation showed that the ensemble models explain 57% 24 25 of the variation in depth to bedrock. Based on comparison with depth-to-bedrock maps of China 26 extracted from previous global predictions, our predictions showed higher accuracy. More 27 observations, especially those in data-sparse areas, should be added to training data, and more 28 covariates with high precision should be used to further improve the accuracy of spatial predictions. 29 The resulting maps of this study are available on Figshare at the following DOI: 30 https://doi.org/10.6084/m9.figshare.7011524.v1. And they are also available for download at http://globalchange.bnu.edu.cn/. 31

32 **1 Introduction**

33 Soil is the loose layer on the surface of the geosphere. It is the foundation of the whole terrestrial 34 ecosystem (van Breemen and Buurman, 2002). The International Union of Soil Sciences (IUSS) 35 divides the soil profile into six main genetic horizons: O (organic horizon), A (humus horizon), E 36 (eluvial horizon), B (illuvial horizon), C (parent rock horizon), and R (hard rock). Of these, the 37 bedrock (i.e., the R horizon) is the consolidated solid rock underlying unconsolidated surface materials, such as soil or other regolith (Jain, 2014). Depth to bedrock (DTB) is the depth to the R 38 39 horizon, which is equivalent to the total thickness of the solum and weathered rocks; DTB controls 40 or influences many physical and chemical processes of the Earth (Jain, 2014).

41 DTB information plays an important role in many fields of Earth system science. In geology, 42 DBT has been used for applications such as mineral exploration, earthquake modeling, and landslide risk assessment (Schenk and Jackson, 2005; Fan et al., 2013). In land surface modeling, DTB is an 43 44 important input parameter that affects the energy, water, and carbon cycles. However, in most land 45 surface models, DTB has been set as a constant value because of a lack of data, which limits the 46 performance of land surface modeling (Gochis et al., 2010). DTB Information is also indispensable 47 to civil engineering in building homes, roads, railways, and bridges (Price, 2009). Furthermore, 48 DTB is of great importance to the study and applications of hydrology, ecology, agriculture, and 49 other relevant fields (Tromp-van Meerveld et al., 2007; Fu et al., 2011).

50 Although DTB is often considered equal to the thickness of the soil, there are great differences 51 between different measurement results. Soil thickness is mostly determined based on soil profiles 52 from soil surveys and borehole profiles from geological surveys. The observed depth of a soil profile 53 is generally less than 2 meters, and the thickness of the soil is therefore recorded as a value lower 54 than 2 meters (Shangguan et al., 2017). However, in reality, the DTB (the depth to the R horizon) 55 ranges from 0 meters to more than 1 kilometer, which is much greater than the average depth of soil 56 profiles. Limited by external factors such as equipment and technological constraints, traditional 57 soil surveys cannot reach bedrock in most cases. However, in contrast to traditional soil surveys, 58 geological borehole drillings usually reach depths of hundreds of meters or even deeper, and most 59 boreholes reach bedrock. Thus, borehole drilling logs are the most effective sources of DTB data. 60 Ground observations of DTB, which include soil profiles from soil surveying and borehole drilling log data such as water well records and other measurements, have been widely used as training data 61 62 to produce spatial predictions of DTB (Tesfa et al., 2009; Shafuque et al., 2011; Miller and White, 63 1998; Hengl et al., 2014; Shangguan et al., 2017). Various mapping methods, which include 64 physically based models, interpolation from samples, and empirical-statistical models (Kuriakose

65 et al., 2009), have been employed for this purpose. Pelletier and Rasmussen (2009) proposed a

66 geomorphically based model that uses digital elevation model data to predict soil thicknesses based

- 67 on a hypothesis that there is a long-term balance between soil production and erosion. Karlsson et
- al. (2013) developed a simplified regolith model modified from a trigonometric approach to estimate
- 69 regolith thickness based on slopes, outcrops, and distance to outcrops in eight directions, and
- 70 compared the results with those of linear regression and inverse distance weighting interpolation.

71 Shafique et al. (2011) proposed a multivariate linear model based on elevation, landform, and 72 distance to stream information to predict regolith thickness in a data-sparse environment. Hengl et 73 al. (2014) used zero-inflated models to predict global depth to bedrock based on a compilation of 74 major international soil profile databases. Dahlke et al. (2009) used a soil landscape model to predict 75 soil depth based on class means of merged spatial explanatory variables. Tesfa et al. (2009) applied 76 generalized additive and random forest models based on topographic and land-cover attributes to 77 predict soil depth at the watershed scale. Shangguan et al. (2017) predicted global depth to bedrock 78 using the random forest and gradient boosting tree models. Based on previous studies, machine 79 learning methods, especially random forest (RF) and gradient boosting tree (GBT) methods, showed 80 better performance than traditional interpolation methods under normal circumstances, and are 81 available in the "randomForest" (Breiman, 2001) and "xgboost" (Chen et al., 2016) packages in the 82 R software.

83 Although information about DTB is very important, to date, information about DTB in China is 84 very deficient, and there is no independent map of depth to bedrock in China. However, researchers 85 have advanced toward this target. Globally, there are several existing maps of DTB covering the 86 area of China (FAO, 1996; Hengl et al., 2014; Pelletier et al., 2016, Shangguan et al., 2017). The 87 earliest global distribution of DTB was produced by the FAO (Food and Agriculture Organization) 88 (1996); the depth was limited to the uppermost 2 meters and mapped using expert rules, and was 89 primarily based on soil unit classification, soil phase, and slope class. Hengl et al. (2014) developed 90 a global depth-to-bedrock map at 1-km resolution based on zero-inflated models using a compilation 91 of major international soil profile databases and 75 global environmental covariates representing 92 soil-forming factors. Pelletier et al. (2016) produced a global data set of the average thicknesses of 93 soil, intact regolith, and sedimentary deposits by representing uplands using soil data and lowlands 94 using water well data, with topographic, climatic, and geological data used as input. In China, 95 Shangguan et al. (2013) developed a comprehensive 30 × 30 arc-second resolution gridded data set 96 of soil characteristics that included soil depth derived from soil profiles and the Soil Map of China 97 (1:1,000,000), but the soil-depth data quality was relatively low because there were fewer 98 observations of deep soil. In addition, Shangguan et al. (2017) produced another global map of depth 99 to bedrock based on machine learning, using soil profile data, borehole data, and pseudo-100 observations.

101	Among above-mentioned maps of DTB, most have relatively coarse resolutions (1 km or
102	coarser), except the map produced by Shangguan et al. (2017) (250 m resolution). In addition,
103	observations of DTB (FAO, 1996; Shangguan et al., 2013; Hengl et al., 2014) have been based
104	solely on soil data; thus, the predictions are often limited to soil surfaces with depths limited to
105	several meters. This depth is not consistent with the actual distribution of DTB. In addition, most
106	samples (Pelletier et al., 2016; Shangguan et al., 2017) were located in North America, whereas no
107	samples or only a small number of samples were located in China, which resulted in high uncertainty
108	for predictions in China. However, a large number of borehole logs produced by geologists in China
109	provide DTB information and are now available. In addition, several environmental covariates with
110	high resolution have been produced, which can be used to produce a high-resolution DTB map of
111	China. These data sources provide the cornerstone for producing a new map of DTB with higher
112	accuracy and resolution.
113	In this study, we aim to estimate DTB in China using machine learning methods. Observations
114	interpreted from geological borehole profiles and pseudo-observations of DTB are used as training
115	points. An extensive list of remote-sensing-based covariates, including DEM-derived parameters,
116	climatic images, MODIS products, land cover/land use, and the latest lithological/soil maps of
117	China are used as covariates. The objective of this paper is to (1) produce a DTB map of China at a

high spatial resolution of 100 meters; (2) compare and evaluate this map with observations and existing DTB maps; and (3) estimate the uncertainty of the DTB map and discuss the outlook for generating more accurate DTB maps in the future.

121 **2 Materials and methods**

122 2.1 Borehole data

A total of 6,382 borehole logs sampled from the Chinese National Important Geological Borehole Database (NIGBD <u>http://zkinfo.cgsi.cn</u>) were used in our study. The NIGBD comprises about 80 million boreholes from across China (except Taiwan province). In every borehole log, geographic coordinates and detailed lithological records are provided in the form of scanned images. Therefore, the DTB of each borehole can be interpreted by finding the boundary between the regolith and fresh bedrock.

129 2.1.1 Observations sampled from the NIGBD

130 The DTB of every borehole must be interpreted manually, and interpreting more than 80 million 131 boreholes logs therefore demands an immense amount of work and has high costs. However, many 132 boreholes that are located close to each other have similar DTB and environmental factors. 133 Therefore, we developed a sampling scheme to take a fraction of borehole drillings from the NIGBD 134 as the observation data sets in this study. Mapping methods, regardless of methods based on spatial 135 autocorrelation or soil environmental correlation, have requirements based on the number, 136 distribution, and typicality of the samples, which ensure global representation of the samples (Zhang 137 et al., 2012). To obtain representative samples from these boreholes, we used a sampling scheme 138 similar to stratified sampling to acquire our training points from the NIGBD. 139 The stratified sampling scheme includes designation of grid shape (such as a square grid,

140 triangular grid, or hexagonal grid) and grid size. A square grid is the easiest and most effective, and 141 is most widely used in sampling (Zhang et al., 2012). In general, smaller grid size leads to more 142 accurate predictions, but with greater sampling costs. Here, we used square grid sampling with a 0.2 143 \times 0.2 arc-degree grid, in consideration of the balance between representativeness and cost. Usually, 144 one observation or a number of observations are sampled at random locations from each grid. 145 However, the locations of boreholes in this study were determined in a previous geological survey. 146 Thus, we have taken one borehole randomly from each grid instead of one borehole from a random 147 location.

148 The depths of the boreholes range from 0 meters to more than 1 kilometer. Among these 149 boreholes, we were unable to determine the DTB from a few boreholes because of the limitations 150 of the records (see details in Sect. 2.1.2). This constraint resulted in vacancies of many grid cells 151 after the interpretation of all boreholes from the first sampling. To resolve this problem, we used an 152 additive sampling method; that is, additional samplings were taken multiple times until no new 153 observations could be added to the observation data sets. Thus, the latter samplings were aimed at 154 grids without DTB data based on the previous samplings. After a finite number of additive samplings, the borehole logs of the NIGBD were considered efficiently used, and samples from all 155 156 the samplings were used in our study. The distribution of DTB observations interpreted from 157 boreholes is shown in Fig. 1.

158 **2.1.2 Interpretation of borehole records**

159 Interpreting DTB from borehole profiles sampled from the NIGBD was one of the crucial aspects

of this study. Borehole profiles, which were previously recorded by geologists, have longitudinal verbal descriptions of soil layers and lithological layers with corresponding depths from the land surface to the top and bottom of each layer. A typical simplified borehole profile diagram is shown in Fig. 2.

164 Each borehole profile has several layers. Generally, the top layer of a borehole profile is pedolith, 165 where pedological processes have destroyed the original bedrock structure, principally through the 166 weathering of primary bedrock minerals and the formation and re-distribution of secondary 167 materials (National Committee on Soil and Terrain, 2009). Below is saprolite, referring to the zone 168 where the bedrock fabric is largely isovolumetrically weathered but primary bedrock structures are 169 still recognized. At the bottom is the unweathered bedrock. Because different boreholes were drilled 170 by different geological teams at different times, the details of stratification in the profiles often differ, 171 and the lithological description of each layer may be detailed or vague. These differences result in 172 inconsistencies or uncertainties in the borehole database, which were propagated into our DTB 173 observations.

174 To interpret the DTB from a borehole profile in the form of a scanned picture, we must manually 175 determine the boundary between the regolith and fresh bedrock based on lithological descriptions 176 and the dip angle of the borehole. The dip angles of a minority of boreholes whose dip angle were not given were about 90° . Then, the DTB was calculated as the product of boundary depth and sine 177 178 of the dip angle. DTB can be interpreted from most sampled boreholes. However, some boreholes 179 are too shallow (several meters or less than 1 m) to reach the bedrock, and some have lithological 180 records that are unclear, which can make it is very difficult to determine the DTB (as described in 181 Sect. 2.1.1). Therefore, we used additive samplings. Because a number of boreholes went to depths 182 of more than 100 meters but still did not reach the bedrock, we could not obtain accurate DTB data 183 from these borehole profiles either. In this case, we regarded the depths of those boreholes as 184 approximations of the real DTB value. In addition, most research and applications focus on 185 relatively shallow depths.

186 2.2 Pseudo-observations

187 As shown in Fig. 1, DTB observations interpreted from borehole logs cover an extensive area across 188 China, except for the Qinghai-Tibet Plateau where boreholes are difficult to drill. Any purely data-189 driven model fitted with large gaps in the covariate space is most likely to result in considerable

190	omissions, especially for areas that are often inaccessible or not of interest to soil surveys or
191	geological exploration. Therefore, we used pseudo-observations added to training data to fill such
192	gaps, which will avoid extrapolation for these areas (e.g., deserts and steep mountainous areas).
193	Deserts consist mainly of sand, and the DTB of such areas could be found in some publications.
194	Steep-slope areas without vegetation typically have very shallow or zero DTB; that is, rock outcrop.
195	Therefore, we used the following data sources to generate pseudo-observations to add to the training
196	points:
197	(1) The distribution map of deserts in China from the Data Center of Environmental and
198	Ecological Science in Western China (http://zgsm.westgis.ac.cn).
199	(2) Steep, bare surface areas generated using a slope map of China and remote-sensing-based
200	data.
201	(3) Previously published detailed geological maps reporting DTB or bedrock outcrops.
202	We generated a certain number of points in random positions within deserts based on the
203	distribution map of China's deserts. The DTB values of these points were obtained from existing
204	material and previous studies of the sand thickness of the deserts. We must note that the number of
205	points was limited to less than 10% of the whole number of observations to prevent adding too many
206	soft observations, and we only used points whose values had high credibility. In addition, several
207	points located in high-slope areas (> 60°) were added to the observations with DTB values that
208	varied between 0 and 0.1 m.
209	2.3 Environmental covariates
210	In our study, a total of 133 related environmental layers, which cover five types of factors (climate,
211	topography, living organisms, water dynamics, and parent material) and represent the factors of soil
212	formation according to Jenny (1994), were selected to generate a DTB map of China. These
213	predictors were generalized into seven predictive "scorpan" factors (McBratney et al., 2003). The
214	133 covariates classified as "scorpan" factors included:
215	(1) Harmonized soil database images: percent coverage of Andosols, Histosols, and dozens of

- other soil types.
- (2) Climatic images: images indicating the values of 8-day MODIS day-time and night-time
 local standard time (LST), long-term and monthly precipitation data, etc.
- 219 (3) Land use and land cover images: including vegetation maps, land cover and land use

Science Used Data

220	classifications, biomass and yield maps, etc.
221	(4) Relief data, mainly derived from digital elevation models: slope maps, the topographic
222	wetness index, the topographic openness index, physiographic landform units, elevation and
223	secondary terrain attributes, etc.
224	(5) Geological and parent material maps: geological ages based on surface geology.
225	The complete list of the 133 environmental covariates is given in Supplement File A.
226	2.4 Spatial prediction model
227	The framework of our research is shown in Fig. 3. This framework consists of four main processes:
228	1. Overlaying observations of DTB and covariates to generate a regression matrix for modeling
229	2. Obtaining the best parameters for modeling using cross-validation;
230	3. Fitting the prediction models based on the whole regression matrix;
231	4. Applying spatial prediction models using covariates and comparing the prediction with
232	existing maps.
233	2.4.1 Model fitting
234	In this study, we overlaid observations of DTB and covariates under the same coordinate reference
235	to generate a matrix including DTB and covariate columns. The matrix was used as input data for
236	machine learning. Then, we separately used RF and GBT to fit the prediction models. Finally, the
237	spatial predictions were generated using an ensemble model based on the two models. RF and GBT
238	are decision-tree-based ensemble methods. The RF model uses fully grown decision trees and
239	reduces error by reducing variance (Breiman, 2001). The GBT model uses shallow trees and reduces
240	error mainly by reducing bias, and to some extent by reducing variance by aggregating the outputs
241	from many models (Chen and Guestrin, 2016). RF and GBT were implemented respectively in the
242	"randomForest" and "xgboost" packages in the R environment. Parallel computing was employed
243	to improve data processing efficiency.
244	2.4.2 Model validation and evaluation
245	Ten-fold cross-validation was used to evaluate prediction accuracy. Comparison with previously
246	existing DTB maps was then employed to evaluate our results.
247	In cross validation, samples were divided into a training set (5,740 samples) and validation set
248	(642 samples). The training set was used to fit models, and the validation set was used to validate
249	model performance. Some widely used indicators such as the coefficient of determination (R^2 or the

- amount of variation explained by the model), mean error (ME), and root mean square error (RMSE)
- 251 were used to evaluate model performance. Of these indicators, the coefficient of determination is
- calculated by:

253
$$R^{2} = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}},$$
(1)

where SSR is the regression sum of squares, SST is the total variation sum of squares, and SSE is the residual sum of squares, which is the difference of SST and SSR. The variable y_i is the measured target value, \hat{y} is the prediction of each point, y_{-} is the average of the measurements, and *n* is number of validation points. The value of R^2 is usually between 0 and 1; a value close to 1 indicates a perfect model, and values around 0 indicate a failed model. The RMSE, which is also called standard error, is calculated by:

260
$$\operatorname{RMSE} = \sqrt{MSE} = \sqrt{SSE / n}, \qquad (2)$$

where MSE is the mean squared error. RMSE estimates the deviation between predictions andobserved values. A smaller RMSE indicates a better prediction.

Different covariates have different importance to DTB. Covariates with no or weak relations with DTB may produce noise in fitted models. This noise results in higher error of predictions. Our results based on modeling with different covariates showed that the noise has a certain degree of influence on the accuracy of the models, especially for the gradient boosting tree model. Therefore, we removed some covariates with low importance based on the random forests model to reduce prediction errors. The covariates we ultimately used are marked in Supplement File A. In addition, to verify whether our predictions are more accurate than existing DTB maps of China,

270 we compared our predictions with existing DTB maps using the validation set.

271 2.4.3 Model prediction and uncertainty estimation

272 The final model was fitted based on all samples with parameters selected by cross-validation. The

- 273 final spatial predictions were generated using an ensemble model based on random forests and the
- 274 gradient boosting tree method, which can avoid the overshooting effect (Sollich and Krogh, 1996).
- 275 To predict DTB in China at 100 m resolution, we used the available environmental covariates at 100
- 276 m resolution.

- 277 Because any model for digital soil mapping inevitably suffers from different sources of error, it
- 278 is important to quantify the uncertainty associated with the produced maps (Poggio et al., 2016).
- 279 Analyzing and evaluating help data users to understand its existence and also can help to improve
- 280 decision quality (Liang et al., 2018). In this study, we used quantile regression forests to estimate
- 281 the uncertainty of estimations. Quantile regression forests are a tree-based ensemble algorithm for
- 282 estimation of conditional quantiles. This method is particularly suitable for high-dimensional data.
- 283 Quantile regression forests were implemented via the R environment in the "quantregForest"
- 284 package (Meinshausen, 2014). To estimate the uncertainty of predictions at every location, we
- 285 generated the uncertainty map of predictions by:

286
$$uncertainty = \frac{qp_{0.9} - qp_{0.1}}{qp_{0.5}}$$

where $qp_{0.9}$ is the 0.9 quantile prediction of DTB, $qp_{0.1}$ is the 0.1 quantile prediction of DTB, and

- 288 $qp_{0.5}$ is the 0.5 quantile prediction of DTB. The uncertainty map is the reference when using the 289 DTB map of China.
- All code used to generate predictions is available from the Github channels(https://github.com/yanfp/DTB100China).

292 **3 Results**

293 **3.1 Model input statistical summary**

- A summary of the DTB statistics is provided in Table 1. The DTB ranged from 0 to 1,106.91 m,
- with a mean DTB of 36.62 m and a median value of 8.24 m. Fig. 4(a) shows the histogram of DTB
- 296 within 100 m. The DTB after logarithmic transformation had a distribution similar to a normal
- 297 distribution but with many zero values (i.e., outcrops) (Fig. 4(b)).

3.2 Model accuracy and variable importance

- As is shown in Table 2, the GBT model had good ability to estimate DTB and yielded relatively
- 300 higher R^2 (0.81) and lower RMSE than the RF model (Table 2) based on the training set.
- 301 The importance of covariates measured based on the residual sum of squares of the random
- 302 forests model is shown in Fig. 5. The four most important covariates for DTB in this study were the
- 303 topographic wetness index, physiographic landform units, the topographic openness index, and
- 304 slope. In contrast, the most important covariate for the DTB according to Pelletier et al. (2016) and
- 305 Shangguan et al. (2017) was precipitation. The relationships between DTB and four important

306 covariates are shown in Fig. 6. This figure shows that DTB had a positive correlation with the 307 topographic wetness index. The topographic wetness index is a secondary terrain attribute related 308 to the geomorphometry of the surface or landform classification. In addition, DTB showed a positive 309 correlation with the topographic openness index and elevation, and a negative correlation with the 310 slope. These relations are consistent with our knowledge about DTB. 311 **3.3 Estimation accuracy** The cross-validation summary statistics of interpolation for models based on RF and GBT are shown 312 313 in Table 3 and Fig. 7. These statistics show that RF produced more accurate estimations than GBT. 314 Because the GBT model showed relatively higher R^2 and lower RMSE than the RF model based on the training set (Sect. 3.2), this result means that the GBT model had a large degree of overfitting. 315

Our results showed significant overestimation in lower values of DTB, which is a common problem
in regression, especially when the model is not able to explain > 50% of variability in the target

318 variable (Shangguan et al., 2017).

319 **3.4 Prediction results**

320 Output estimations of DTB by the ensemble model based on RF and GBT at 100 meters resolution 321 are shown in Fig. 8. Our estimated results reveal that the predicted mean DTB was 54.42 m. High 322 values of DTB were mainly distributed in desert areas, the North China Plain (including areas in 323 Hebei province, Henan province, and Jiangsu province) and the Northeast China Plain (including 324 areas in Heilongjiang province, Jilin province, and Liaoning province). Relatively lower values of 325 DTB were mainly located in hilly and mountainous areas, such as Sichuan province, Chongqing 326 city, Guangxi province, and the mountainous areas of Northeast China. The spatial pattern of the 327 DTB map of this study is similar to those of the maps produced by Pelletier et al. (2016) and 328 Shangguan et al. (2017).

- In addition, estimations of three percentiles (0.1 (Fig. 9(a)), 0.50 (Fig. 9(b), and 0.9 (Fig. 9(c)) were produced by the quantile regression forests model. The mean values of the estimated DTB for the three percentiles were 4.95 m, 31.22 m, and 99.56 m, respectively. The maps show that the spatial pattern of DTB predicted by the quantile regression forests model was similar to that of the ensemble model based on the random forest and gradient boosting tree methods.
- The uncertainty map of the prediction of DTB is shown in Fig. 10. The uncertainty in the predictions in part depends on the density of sampling (Zhou et al., 2018). In our study it was low

in deserts, sandy areas, the North China Plain, and the Northeast China Plain, where the topography
is relatively simple and sampling was relatively dense. In the Tibetan Plateau and western Inner
Mongolia, where sampling was sparse and DTB is low, the uncertainty was high. The uncertainty
was also relatively high in the Yun-Gui Plateau where the topography is complex with widespread
karst landforms.

341 **3.5 Comparison with existing study results**

342 We compared our results with existing maps produced by Pelletier et al. (2016) and Shangguan et 343 al (2017). Our results show similar spatial patterns with these maps. Of course, DTB values in 344 deserts, sandy areas, and the North China Plain were relatively high, and values in hilly and 345 mountainous areas, such as Chongqing City and Yunnan province, were relatively low in the map 346 of this study and in maps from global predictions. The estimated mean DTB was 54.42 m in our 347 study, whereas the mean values predicted by Pelletier et al. (2016) (Fig. 11 (a)) and Shangguan et al. (2017) (Fig. 11 (b)) were 11.81 m and 26.64 m. The correlation coefficient between DTB 348 349 observations and predictions in our study is 0.75, which is significantly higher than the estimation 350 results of Pelletier et al. (2016) and Shangguan et al. (2017) (Table 4). In addition, compared with 351 the prediction results of Pelletier et al. (2016) and Shangguan et al. (2017), our estimation results 352 had obviously lower RMSE (47.57) and ME (1.82).

353 In addition, our prediction result shows similar spatial patterns to the maps produced by Pelletier 354 et al. (2016) and Shangguan et al. (2017), but revealed more detailed information than previous 355 predictions. There are more jumping points in the map of Shangguan et al. (2017) than others, and 356 the map predicted by Pelletier et al. (2016) shows low continuity in space with high values and low 357 values in a wide range. From the comparison in a typical region in the North China Plain (Fig. 12), 358 our map revealed more spatial details, especially in high DTB areas, than the maps by Shangguan 359 et al. (2017) and Pelletier et al. (2016) (Fig. 12(a)). In contrast, the map estimated by Pelletier et al. 360 (2016) shows abrupt change between highland and lowland areas (Fig. 12(c)).

361 **4 Data availability**

362 The resulting available Figshare the following DOI: maps are on at 363 https://doi.org/10.6084/m9.figshare.7011524.v1. And they are also available for download at 364 http://globalchange.bnu.edu.cn/.

365 **5 Discussion**

366 5.1 Success and limitations of the data set

367 Our training observations were selected by using square grid sampling with a 0.2×0.2 arc-degree 368 grid. We sampled at least one observation within each grid cell. Under this condition, the training 369 data are most representative under the current sampling method, which will produce the most 370 accurate predictions. However, boreholes have uneven spatial distribution. Very few boreholes were 371 located in inhospitable areas such as deserts and mountainous areas (Fig. 13). In addition, we were 372 unable to interpret the DTB from some borehole profiles. These limitations resulted in vacancies of 373 observations in many grid cells. Lack of observations will increase the uncertainty of predictions in 374 these areas.

The reliability of training data and covariates together determines the accuracy of predictions. 375 376 Although observations in this study were less heavily distributed in western China, which may limit 377 the accuracy of our predictions, the number of observations in China is far greater than that in other 378 studies. In addition, the DTB values interpreted from borehole profiles were more accurate than 379 those from soil profiles. Therefore, the DTB maps produced from borehole profiles were also more 380 accurate than maps solely based on soil profiles, especially for deep-DTB areas. In addition, the 381 predictions show a higher correlation coefficient with observations than did previous DTB maps 382 based on the validation set. The amount of variation explained by models for the DTB is about 57%, 383 which means that more than half of the variation is explained. We produced the DTB maps of China 384 at a resolution of 100 m. Although only a few covariates had spatial resolution of 100 m because of 385 the lack of data, the spatial resolution of most covariates was about 1 kilometer. Thus, spatial 386 variation at 100-meter scale may not be fully explained. However, covariates with high correlation 387 with DTB, such as DEM-derived parameters and land cover, have high resolutions (Fig. 5 and 6). 388 More observations and more covariates with high precision should be used in the future to improve 389 prediction accuracy.

390 5.2 Error from interpretation of borehole records

As described above, the DTB observations were visually interpreted from every borehole profile.
Because different borehole profiles were mapped by different organizations, the basis of layer
stratification differed slightly for different profiles. This issue contributes to the disunity of DTB

- 394 observations. In addition, the level of detail for different borehole profile stratifications is discrepant
- 395 because of their original uses. Furthermore, lithological records of some borehole profiles that give
- 396 vague information about soil and lithology were not distinct enough for us to interpret the DTB
- 397 accurately. All these factors contributed to errors in our DTB observations.

398 **5.3 Models built from different topographic partitions**

399 The DTB was determined based on many covariates including factors of topography, climate, 400 geology, vegetation, age, and human activity. Soils at the surface of the Earth are formed under the 401 combined effects of those factors (Zhou et al., 2016). However, the mechanisms of soil formation 402 and the importance of each covariate still are not completely clear (Li et al., 2004). The most 403 important covariates related to the DTB may be different in different geographic partitions. 404 Therefore, a model based on observations over the whole area of China may not be able to capture 405 the major factors in some regional areas. Models built from regional partitions may produce more accurate predictions than global models within the partitions. Pelletier et al. (2016) distinguished 406 407 global land surfaces into three landform components, upland hillslope, upland valley bottom, and 408 lowland, and used different models for each component to estimate the DTB. Peng et al. (2018) 409 divided training data into subsets according to the similarity of the predicted variables and attain the 410 independent prediction model, which improved the prediction accuracy. In the future, different 411 models should be built and spatial predictions should be applied separately in different topographic 412 partitions.

413 **6** Conclusions

414 In this study, we demonstrated the use of an ensemble model to produce a DTB map of China at a 415 resolution of 100 meters using the most reliable ground observations of DTB interpreted from 416 borehole profiles. This study provides the final prediction map of DTB as well as an uncertainty 417 estimation map for China. The cross-validation showed that the R^2 of the ensemble model was 0.57, 418 and the comparison showed that our DTB map is more accurate than existing DTB maps. Even 419 though the shortage of data used in this study, including DTB observations and environmental 420 covariates, limited the precision of the DTB map at a scale of 100 meters, this data set provides 421 more accurate information for Earth system researches compared with previous maps of DTB. 422 Based on the spatial prediction framework, data processing, model fitting, and spatial prediction are

- 423 fully automated and can be updated easily. By adding more DTB observations and using more
- 424 accurate covariates, we will be able to produce more accurate DTB maps of China in the future.

425 Author contributions.

- 426 Wei Shangguan, Jing Zhang, and Fapeng Yan designed the experiment and control the planning.
- 427 Fapeng Yan collected and compiled DTB observation data, prepared a part of environmental
- 428 covariate data, built models and implemented the spatial prediction, and wrote the paper. Wei
- 429 Shangguan prepared the other part of environmental covariate data. Bifeng Hu contributed to the
- 430 process on the data compilation and data validation. Jing Zhang initiated and coordinated the work.
- 431 All authors contributed to the scientific discussion of the results, the editing, and revision of the
- 432 paper.

433 **Competing interests.**

434 The authors declare that they have no conflict of interest.

435 Acknowledgments

- 436 This work was supported by the Natural Science Foundation of China under grants 41575072 and
- 437 the National Key Research and Development Program of China under grants 2017YFA0604303.

438 **References**

- 439 Boer, M., Barrio, G. D., and Puigdefiibregas, J.: Mapping soil depth classes in dry Mediterranean areas
- 440 using terrain attributes derived from a digital elevation model, Geoderma, 72, 99-118, 1996.
- 441 Breemen;, N. v., and Buurman, P.: Soil formation, Springer Science & Business Media, The Netherlands,
- 442 2002.
- 443 Breiman, L.: Random forests, Machine learning, 45, 5-32, 2001.
- 444 Chen, J., Li, M., and Wang, W.: Statistical Uncertainty Estimation Using Random Forests and Its
- 445 Application to Drought Forecast, Mathematical Problems in Engineering, 2012, 1-12,
- 446 10.1155/2012/915053, 2012.
- 447 Chen, T., and Guestrin, C.: Xgboost: A scalable tree boosting system, Proceedings of the 22nd acm sigkdd
- international conference on knowledge discovery and data mining, 785-794, 10.1145/2939672.2939785,
 2016.
- 450 Dahlke, H. E., Behrens, T., Seibert, J., and Andersson, L.: Test of statistical means for the extrapolation

- 451 of soil depth point information using overlays of spatial environmental data and bootstrapping techniques,
- 452 Hydrological Processes, 23, 3017-3029, 10.1002/hyp.7413, 2009a.
- 453 Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G. B., Ribeiro, E., Samuel-Rosa,
- 454 A., Kempen, B., Leenaars, J. G., Walsh, M. G., and Gonzalez, M. R.: SoilGrids1km--global soil
- 455 information based on automated mapping, PLoS One, 9, e105992, 10.1371/journal.pone.0105992, 2014.
- 456 Hengl, T., Mendes de Jesus, J., Heuvelink, G. B., Ruiperez Gonzalez, M., Kilibarda, M., Blagotic, A.,
- 457 Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R.,
- 458 MacMillan, R. A., Batjes, N. H., Leenaars, J. G., Ribeiro, E., Wheeler, I., Mantel, S., and Kempen, B.:
- 459 SoilGrids250m: Global gridded soil information based on machine learning, PLoS One, 12, e0169748,
- 460 10.1371/journal.pone.0169748, 2017.
- 461 Jain, S.: Fundamentals of Physical Geology, Springer, New Delhi, 2014.
- 462 Jie, P., Asim, B., Qingsong, J., Ruiying, Z., Jie, H., Bifeng, H., Zhou, S., Estimating soil salinity from
- 463 remote sensing and terrain data in southern Xinjiang Province, China,
- 464 https://doi.org/10.1016/j.geoderma.2018.08.006, 2018.
- 465 Karlsson, C. S. J., Jamali, I. A., Earon, R., Olofsson, B., and Mörtberg, U.: Comparison of methods for
- 466 predicting regolith thickness in previously glaciated terrain, Stockholm, Sweden, Geoderma, 226-227,
- 467 116-129, 10.1016/j.geoderma.2014.03.003, 2014.
- 468 Kuriakose, S. L., Devkota, S., Rossiter, D. G., and Jetten, V. G.: Prediction of soil depth using
- 469 environmental variables in an anthropogenic landscape, a case study in the Western Ghats of Kerala,
- 470 India, Catena, 79, 27-38, 10.1016/j.catena.2009.05.005, 2009.
- 471 Li, T., Zhao, Y., Zhang, K., Zheng, Y., and Wang, Y.: Soil geography, China, 2004.
- 472 McBratney, A. B., Mendonça Santos, M. L., and Minasny, B.: On digital soil mapping, Geoderma, 117,
- 473 3-52, 10.1016/s0016-7061(03)00223-4, 2003.
- 474 Meinshausen, N.: Quantregforest: quantile regression forests, R package, 2014.
- 475 Miller, D. A., and White, R. A.: A Conterminous United States Multilayer Soil Characteristics Dataset
- 476 for Regional Climate and Hydrology Modeling, American Meteorological Society, 2, 1-26, 1998.
- 477 Osborne, J. W.: Improving your data transformations: Applying the Box-Cox transformation, Practical
- 478 Assessment, Research & Evaluation, 15, 2, 2010.
- 479 Pelletier, J. D., and Rasmussen, C.: Geomorphically based predictive mapping of soil thickness in upland
- 480 watersheds, Water Resources Research, 45, 10.1029/2008wr007319, 2009.

- 481 Pelletier, J. D., Broxton, P. D., Hazenberg, P., Zeng, X., Troch, P. A., Niu, G.-Y., Williams, Z., Brunke,
- 482 M. A., and Gochis, D.: A gridded global data set of soil, intact regolith, and sedimentary deposit
- 483 thicknesses for regional and global land surface modeling, Journal of Advances in Modeling Earth
- 484 Systems, 8, 41-65, 10.1002/2015ms000526, 2016.
- 485 Piskin, K., and Bergstorm, R. E.: Glacial Drift in Illinois Thickness and Character, 1975.
- 486 Poggio, L., Gimona, A., Spezia, L., and Brewer, M. J.: Bayesian spatial modelling of soil properties and
- 487 their uncertainty: The example of soil organic matter in Scotland using R-INLA, Geoderma, 277, 69-82,
- 488 10.1016/j.geoderma.2016.04.026, 2016.
- 489 Richard, S. M., Shipman, T. C., Greene, L. C., and Harris, R. C.: Estimated Depth to Bedrock in Arizona,
- 490 Arizona Geological Survey, Digital Geologic Map DGM-52, layout scale, 1, 2007.
- 491 Roesset, J. M., Stokoe II, K. H., and Seng, C.-R.: Determination of Depth to Bedrock from Falling Weight
- 492 Deflectometer Test Data, Transportation Research Record, 1995.
- 493 Rue, H., and Martino, S.: Approximate Bayesian inference for latent Gaussian models by using integrated
- 494 nested Laplace approximations, Royal Statistical Society, 71, 319-392, 2009.
- 495 Shafique, M., der Meijde, M. v., and Rossiter, D. G.: Geophysical and remote sensing-based approach to
- 496 model regolith thickness in a data-sparse environment, Catena, 87, 11-19, 10.1016/j.catena.2011.04.004,
- 497 2011a.
- 498 Shangguan, W., Dai, Y., Liu, B., Zhu, A., Duan, Q., Wu, L., Ji, D., Ye, A., Yuan, H., Zhang, Q., Chen, D.,
- 499 Chen, M., Chu, J., Dou, Y., Guo, J., Li, H., Li, J., Liang, L., Liang, X., Liu, H., Liu, S., Miao, C., and
- 500 Zhang, Y.: A China data set of soil properties for land surface modeling, Journal of Advances in Modeling
- 501 Earth Systems, 5, 212-224, 10.1002/jame.20026, 2013.
- 502 Shangguan, W., Hengl, T., Jesus, J. S. M. d., and Dai, Y.: Mapping the global depth to bedrock for land
- 503 surface modeling, Advances in Modeling Earth Systems, 9, 65-88, 2016.
- 504 Sollich, P., and Krogh', A.: Learning with ensembles: How over-fitting can be useful, Advances in Neural
- 505 Information Processing Systems, 190-196, 1995.
- 506 Tesfa, T. K., Tarboton, D. G., Chandler, D. G., and McNamara, J. P.: Modeling soil depth from
- 507 topographic and land cover attributes, Water Resources Research, 45, 10.1029/2008wr007474, 2009a.
- 508 Wilford, J.: A weathering intensity index for the Australian continent using airborne gamma-ray
- 509 spectrometry and digital terrain analysis, Geoderma, 183, 124-142, 10.1016/j.geoderma.2010.12.022,
- 510 2012.

- 511 Y. Zhou, R. Webster, R.A. Viscarra Rossel, Z. Shi, and Chen, S.: Baseline map of soil organic carbon in
- 512 Tibet and its uncertainty in the 1980s, Geoderma, 334, 124-133, 2018.
- 513 Yin Z., Asim B., Zhiqiang M., Yanli L., Qiuxiao C., and Shi, Z.: Revealing the scale-specific controls of
- 514 soil organic matter at large scale in Northeast and North China Plain, Geoderma, 271, 71-79, 2016.
- 515 Zhang, S., Zhu, A., Liu, j., and Yang, L.: Summarization of Digital Soil Attribute Mapping Methods and
- 516 Sample Design Based on Samples, Soils, 44, 917-923, 2012.
- 517 Zongzheng, L., Songchao C., Yuanyuan Y., Ruiying Z., Zhou S., and Rossel, R. A. V.: Baseline map of
- 518 soil organic matter in China and its associated uncertainty, Geoderma, 335, 47-56, 2018.
- 519
- 520

Table 1: Summary statistics of depth to bedrock in meters

DTB	Number
=0	1026
0~2.00	585
2.00~10.00	1833
10.00~50.00	1768
50.00~100.00	427
100.00~300.00	630
>300.00	113

521 522

Model	Unit	R ²	RMSE	ME
Random forests	М	0.575	47.48	1.75
Gradient boosting tree	М	0.811	31.43	2.13

- 5	2	4
	~	-

5	2	Λ	
J	7	4	

Table 3: Mapping	nerformance	for the depth	to bedrock
rable 5. Mapping	periormanee	ioi me depm	to beurber.

			1	-	
	Unit	R ²	RMSE	ME	
Random forests	М	0.573	47.57	1.82	
Gradient boosting tree	М	0.547	49.53	2.18	
Ensemble	М	0.566	48.57	2.50	

_	Table 4: Corre	lation index l	oetween observa	ations and predictio	ns
	Study	Unit	R	RMSE	ME
_	This study	m	0.752	47.57	1.82
	Pellertier et al. (2016)	m	0.486	81.98	36.52

- 530 R denotes the correlation coefficient
- 531

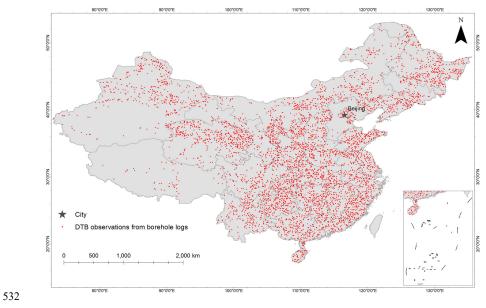
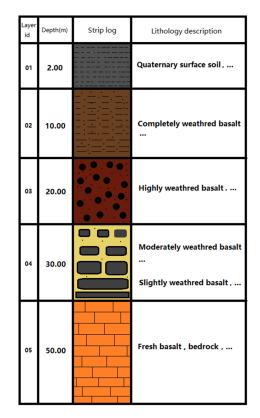


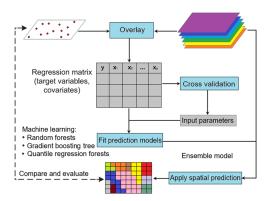
Figure 1: Distribution of DTB observations interpreted from boreholes.



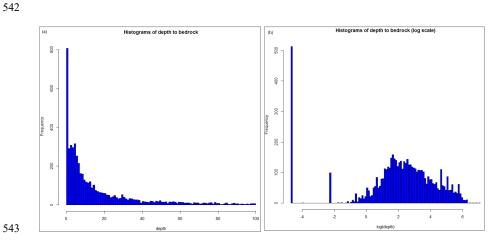
535 Figure 2: A typical borehole log sketch column. A borehole log describes the materials, color,

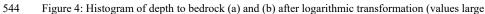
original logs are in Chinese.

- and composition of each layer, and provides the depth, dip, and other relevant information. The
- 537
- 538



- 539
- 540 Figure 3: The spatial prediction framework used to fit models and apply spatial prediction of DTB
- 541

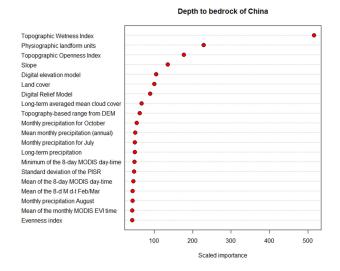




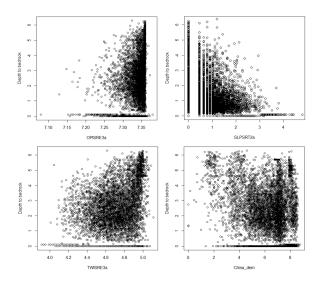
than 100 m are not shown).

545

546



548 Figure 5: Importance of covariates for the depth to bedrock based on the random forest model.



549

550 Figure 6: Relationships for target variables and the most important covariates (logarithmic scale).

551 (TWISRE3a is the SAGA Topographic Wetness Index; SLPSRT2a is a slope map in percent;

552 OPISRE3a is the SAGA Topographic Openness Index; China_dem is a digital elevation model of

- 553 China.)
- 554

Absolute depth to bedrock(in m) (CV R-squared: 0.57)

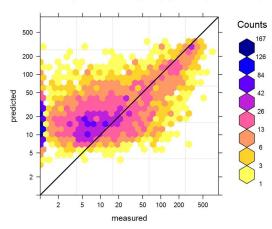
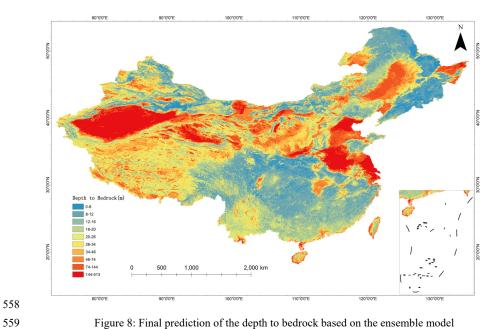
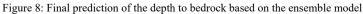


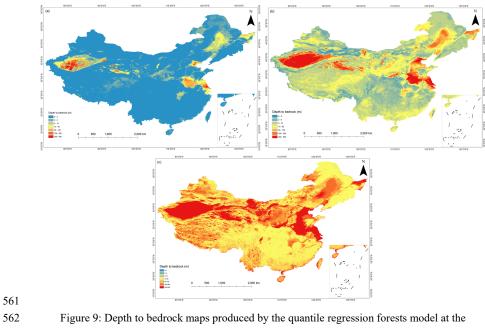
Figure 7: Plot showing cross-validation results for depth to bedrock on a logarithmic scale; R^2

557

is calculated using Eq. (1).

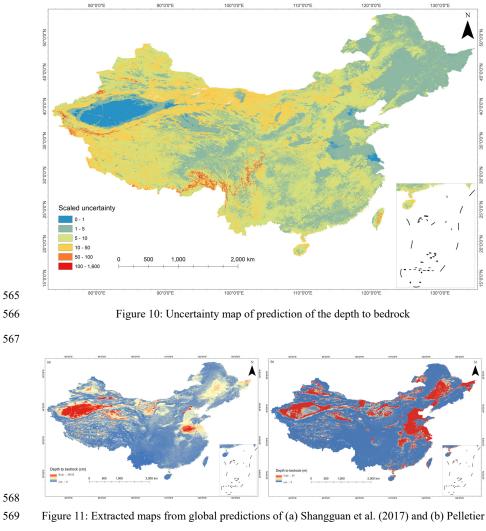






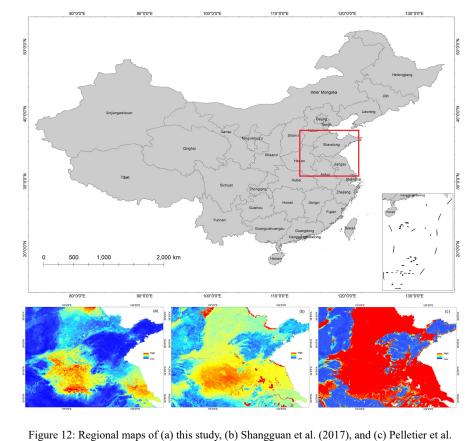
percentiles of 0.1 (a), 0.50 (b), and 0.9 (c).

563 564



570

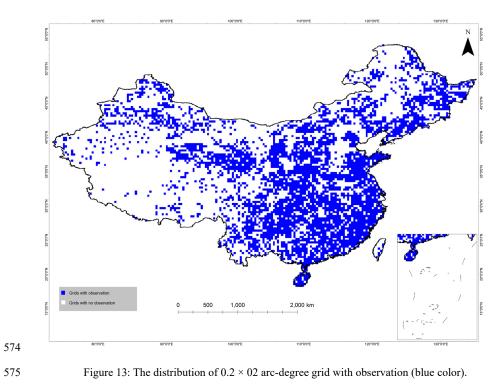
et al. (2016)



572 573

571

(2016).



576