
 

1 
 

Depth-to-Bedrock Map of China at a Spatial 1 

Resolution of 100 Meters 2 

Fapeng Yan1, Wei Shangguan2*, Jing Zhang1 and Bifeng Hu3,4,5 3 

1 College of Global Change and Earth System Science, Beijing Normal University, Beijing, China 4 

2 Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, School 5 

of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China. 6 

3 Unité de Recherche en Science du Sol, INRA, Orléans 45075, France 7 

4 InfoSol, INRA, US 1106, Orléans F-4075, France 8 

5 Sciences de la Terre et de l’Univers, Orléans University, 45067 Orleans, France 9 

 10 

Correspondence to: Wei Shangguan (shgwei@mail.sysu.edu.cn)  11 

Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-103

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Discussion started: 13 September 2018
c© Author(s) 2018. CC BY 4.0 License.



 

2 
 

Abstract. Depth to bedrock serves as the lower boundary of soil, which influences or controls 12 

many of the Earth’s physical and chemical processes. It plays important roles in geology, hydrology, 13 

land surface processes, civil engineering, and other related fields. This paper describes the materials 14 

and methods to produce a high-resolution (100 m) depth-to-bedrock map of China. Observations 15 

were interpreted from borehole log data (ca. 6,382 locations) sampled from the Chinese National 16 

Important Geological Borehole Database. To fill in large sampling gaps, additional pseudo-17 

observations generated based on expert knowledge were added. Then, we overlaid the training 18 

points on a stack of 133 covariates including climatic images, DEM-derived parameters, land-cover 19 

and land-use maps, MODIS surface reflectance bands, vegetation index images, and the 20 

Harmonized World Soil Database. Spatial prediction models were developed using the random 21 

forests and gradient boosting tree, and ensemble prediction results were then obtained by these two 22 

independently fitted models. Finally, uncertainty estimation was generated by the quantile 23 

regression forest model. The 10-fold cross-validation showed that the ensemble models explain 57% 24 

of the variation in depth to bedrock. Based on comparison with depth-to-bedrock maps of China 25 

extracted from previous global predictions, our predictions showed higher accuracy. More 26 

observations, especially those in data-sparse areas, should be added to training data, and more 27 

covariates with high precision should be used to further improve the accuracy of spatial predictions. 28 

The resulting maps of this study are available on Figshare at the following DOI: 29 

https://doi.org/10.6084/m9.figshare.7011524.v1. And they are also available for download at 30 

http://globalchange.bnu.edu.cn/. 31 

1 Introduction 32 

Soil is the loose layer on the surface of the geosphere. It is the foundation of the whole terrestrial 33 

ecosystem (van Breemen and Buurman, 2002). The International Union of Soil Sciences (IUSS) 34 

divides the soil profile into six main genetic horizons: O (organic horizon), A (humus horizon), E 35 

(eluvial horizon), B (illuvial horizon), C (parent rock horizon), and R (hard rock). Of these, the 36 

bedrock (i.e., the R horizon) is the consolidated solid rock underlying unconsolidated surface 37 

materials, such as soil or other regolith (Jain, 2014). Depth to bedrock (DTB) is the depth to the R 38 

horizon, which is equivalent to the total thickness of the solum and weathered rocks; DTB controls 39 

or influences many physical and chemical processes of the Earth (Jain, 2014).  40 
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DTB information plays an important role in many fields of Earth system science. In geology, 41 

DBT has been used for applications such as mineral exploration, earthquake modeling, and landslide 42 

risk assessment (Schenk and Jackson, 2005; Fan et al., 2013). In land surface modeling, DTB is an 43 

important input parameter that affects the energy, water, and carbon cycles. However, in most land 44 

surface models, DTB has been set as a constant value because of a lack of data, which limits the 45 

performance of land surface modeling (Gochis et al., 2010). DTB Information is also indispensable 46 

to civil engineering in building homes, roads, railways, and bridges (Price, 2009). Furthermore, 47 

DTB is of great importance to the study and applications of hydrology, ecology, agriculture, and 48 

other relevant fields (Tromp-van Meerveld et al., 2007; Fu et al., 2011). 49 

Although DTB is often considered equal to the thickness of the soil, there are great differences 50 

between different measurement results. Soil thickness is mostly determined based on soil profiles 51 

from soil surveys and borehole profiles from geological surveys. The observed depth of a soil profile 52 

is generally less than 2 meters, and the thickness of the soil is therefore recorded as a value lower 53 

than 2 meters (Shangguan et al., 2017). However, in reality, the DTB (the depth to the R horizon) 54 

ranges from 0 meters to more than 1 kilometer, which is much greater than the average depth of soil 55 

profiles. Limited by external factors such as equipment and technological constraints, traditional 56 

soil surveys cannot reach bedrock in most cases. However, in contrast to traditional soil surveys, 57 

geological borehole drillings usually reach depths of hundreds of meters or even deeper, and most 58 

boreholes reach bedrock. Thus, borehole drilling logs are the most effective sources of DTB data. 59 

Ground observations of DTB, which include soil profiles from soil surveying and borehole drilling 60 

log data such as water well records and other measurements, have been widely used as training data 61 

to produce spatial predictions of DTB (Tesfa et al., 2009; Shafuque et al., 2011; Miller and White, 62 

1998; Hengl et al., 2014; Shangguan et al., 2017). Various mapping methods, which include 63 

physically based models, interpolation from samples, and empirical-statistical models (Kuriakose 64 

et al., 2009), have been employed for this purpose. Pelletier and Rasmussen (2009) proposed a 65 

geomorphically based model that uses digital elevation model data to predict soil thicknesses based 66 

on a hypothesis that there is a long-term balance between soil production and erosion. Karlsson et 67 

al. (2013) developed a simplified regolith model modified from a trigonometric approach to estimate 68 

regolith thickness based on slopes, outcrops, and distance to outcrops in eight directions, and 69 

compared the results with those of linear regression and inverse distance weighting interpolation. 70 
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Shafique et al. (2011) proposed a multivariate linear model based on elevation, landform, and 71 

distance to stream information to predict regolith thickness in a data-sparse environment. Hengl et 72 

al. (2014) used zero-inflated models to predict global depth to bedrock based on a compilation of 73 

major international soil profile databases. Dahlke et al. (2009) used a soil landscape model to predict 74 

soil depth based on class means of merged spatial explanatory variables. Tesfa et al. (2009) applied 75 

generalized additive and random forest models based on topographic and land-cover attributes to 76 

predict soil depth at the watershed scale. Shangguan et al. (2017) predicted global depth to bedrock 77 

using the random forest and gradient boosting tree models. Based on previous studies, machine 78 

learning methods, especially random forest (RF) and gradient boosting tree (GBT) methods, showed 79 

better performance than traditional interpolation methods under normal circumstances, and are 80 

available in the “randomForest” (Breiman, 2001) and “xgboost” (Chen et al., 2016) packages in the 81 

R software. 82 

Although information about DTB is very important, to date, information about DTB in China is 83 

very deficient, and there is no independent map of depth to bedrock in China. However, researchers 84 

have advanced toward this target. Globally, there are several existing maps of DTB covering the 85 

area of China (FAO, 1996; Hengl et al., 2014; Pelletier et al., 2016, Shangguan et al., 2017). The 86 

earliest global distribution of DTB was produced by the FAO (Food and Agriculture Organization) 87 

(1996); the depth was limited to the uppermost 2 meters and mapped using expert rules, and was 88 

primarily based on soil unit classification, soil phase, and slope class. Hengl et al. (2014) developed 89 

a global depth-to-bedrock map at 1-km resolution based on zero-inflated models using a compilation 90 

of major international soil profile databases and 75 global environmental covariates representing 91 

soil-forming factors. Pelletier et al. (2016) produced a global data set of the average thicknesses of 92 

soil, intact regolith, and sedimentary deposits by representing uplands using soil data and lowlands 93 

using water well data, with topographic, climatic, and geological data used as input. In China, 94 

Shangguan et al. (2013) developed a comprehensive 30 × 30 arc-second resolution gridded data set 95 

of soil characteristics that included soil depth derived from soil profiles and the Soil Map of China 96 

(1:1,000,000), but the soil-depth data quality was relatively low because there were fewer 97 

observations of deep soil. In addition, Shangguan et al. (2017) produced another global map of depth 98 

to bedrock based on machine learning, using soil profile data, borehole data, and pseudo-99 

observations.  100 
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Among above-mentioned maps of DTB, most have relatively coarse resolutions (1 km or 101 

coarser), except the map produced by Shangguan et al. (2017) (250 m resolution). In addition, 102 

observations of DTB (FAO, 1996; Shangguan et al., 2013; Hengl et al., 2014) have been based 103 

solely on soil data; thus, the predictions are often limited to soil surfaces with depths limited to 104 

several meters. This depth is not consistent with the actual distribution of DTB. In addition, most 105 

samples (Pelletier et al., 2016; Shangguan et al., 2017) were located in North America, whereas no 106 

samples or only a small number of samples were located in China, which resulted in high uncertainty 107 

for predictions in China. However, a large number of borehole logs produced by geologists in China 108 

provide DTB information and are now available. In addition, several environmental covariates with 109 

high resolution have been produced, which can be used to produce a high-resolution DTB map of 110 

China. These data sources provide the cornerstone for producing a new map of DTB with higher 111 

accuracy and resolution. 112 

In this study, we aim to estimate DTB in China using machine learning methods. Observations 113 

interpreted from geological borehole profiles and pseudo-observations of DTB are used as training 114 

points. An extensive list of remote-sensing-based covariates, including DEM-derived parameters, 115 

climatic images, MODIS products, land cover/land use, and the latest lithological/soil maps of 116 

China are used as covariates. The objective of this paper is to (1) produce a DTB map of China at a 117 

high spatial resolution of 100 meters; (2) compare and evaluate this map with observations and 118 

existing DTB maps; and (3) estimate the uncertainty of the DTB map and discuss the outlook for 119 

generating more accurate DTB maps in the future. 120 

2 Materials and methods 121 

2.1 Borehole data 122 

A total of 6,382 borehole logs sampled from the Chinese National Important Geological Borehole 123 

Database (NIGBD http://zkinfo.cgsi.cn) were used in our study. The NIGBD comprises about 80 124 

million boreholes from across China (except Taiwan province). In every borehole log, geographic 125 

coordinates and detailed lithological records are provided in the form of scanned images. Therefore, 126 

the DTB of each borehole can be interpreted by finding the boundary between the regolith and fresh 127 

bedrock.  128 

2.1.1 Observations sampled from the NIGBD 129 
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The DTB of every borehole must be interpreted manually, and interpreting more than 80 million 130 

boreholes logs therefore demands an immense amount of work and has high costs. However, many 131 

boreholes that are located close to each other have similar DTB and environmental factors. 132 

Therefore, we developed a sampling scheme to take a fraction of borehole drillings from the NIGBD 133 

as the observation data sets in this study. Mapping methods, regardless of methods based on spatial 134 

autocorrelation or soil environmental correlation, have requirements based on the number, 135 

distribution, and typicality of the samples, which ensure global representation of the samples (Zhang 136 

et al., 2012). To obtain representative samples from these boreholes, we used a sampling scheme 137 

similar to stratified sampling to acquire our training points from the NIGBD. 138 

The stratified sampling scheme includes designation of grid shape (such as a square grid, 139 

triangular grid, or hexagonal grid) and grid size. A square grid is the easiest and most effective, and 140 

is most widely used in sampling (Zhang et al., 2012). In general, smaller grid size leads to more 141 

accurate predictions, but with greater sampling costs. Here, we used square grid sampling with a 0.2 142 

× 0.2 arc-degree grid, in consideration of the balance between representativeness and cost. Usually, 143 

one observation or a number of observations are sampled at random locations from each grid. 144 

However, the locations of boreholes in this study were determined in a previous geological survey. 145 

Thus, we have taken one borehole randomly from each grid instead of one borehole from a random 146 

location. 147 

The depths of the boreholes range from 0 meters to more than 1 kilometer. Among these 148 

boreholes, we were unable to determine the DTB from a few boreholes because of the limitations 149 

of the records (see details in Sect. 2.1.2). This constraint resulted in vacancies of many grid cells 150 

after the interpretation of all boreholes from the first sampling. To resolve this problem, we used an 151 

additive sampling method; that is, additional samplings were taken multiple times until no new 152 

observations could be added to the observation data sets. Thus, the latter samplings were aimed at 153 

grids without DTB data based on the previous samplings. After a finite number of additive 154 

samplings, the borehole logs of the NIGBD were considered efficiently used, and samples from all 155 

the samplings were used in our study. The distribution of DTB observations interpreted from 156 

boreholes is shown in Fig. 1. 157 

2.1.2 Interpretation of borehole records 158 

Interpreting DTB from borehole profiles sampled from the NIGBD was one of the crucial aspects 159 
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of this study. Borehole profiles, which were previously recorded by geologists, have longitudinal 160 

verbal descriptions of soil layers and lithological layers with corresponding depths from the land 161 

surface to the top and bottom of each layer. A typical simplified borehole profile diagram is shown 162 

in Fig. 2.  163 

Each borehole profile has several layers. Generally, the top layer of a borehole profile is pedolith, 164 

where pedological processes have destroyed the original bedrock structure, principally through the 165 

weathering of primary bedrock minerals and the formation and re-distribution of secondary 166 

materials (National Committee on Soil and Terrain, 2009). Below is saprolite, referring to the zone 167 

where the bedrock fabric is largely isovolumetrically weathered but primary bedrock structures are 168 

still recognized. At the bottom is the unweathered bedrock. Because different boreholes were drilled 169 

by different geological teams at different times, the details of stratification in the profiles often differ, 170 

and the lithological description of each layer may be detailed or vague. These differences result in 171 

inconsistencies or uncertainties in the borehole database, which were propagated into our DTB 172 

observations. 173 

To interpret the DTB from a borehole profile in the form of a scanned picture, we must manually 174 

determine the boundary between the regolith and fresh bedrock based on lithological descriptions 175 

and the dip angle of the borehole. The dip angles of a minority of boreholes whose dip angle were 176 

not given were about 90°. Then, the DTB was calculated as the product of boundary depth and sine 177 

of the dip angle. DTB can be interpreted from most sampled boreholes. However, some boreholes 178 

are too shallow (several meters or less than 1 m) to reach the bedrock, and some have lithological 179 

records that are unclear, which can make it is very difficult to determine the DTB (as described in 180 

Sect. 2.1.1). Therefore, we used additive samplings. Because a number of boreholes went to depths 181 

of more than 100 meters but still did not reach the bedrock, we could not obtain accurate DTB data 182 

from these borehole profiles either. In this case, we regarded the depths of those boreholes as 183 

approximations of the real DTB value. In addition, most research and applications focus on 184 

relatively shallow depths.  185 

2.2 Pseudo-observations 186 

As shown in Fig. 1, DTB observations interpreted from borehole logs cover an extensive area across 187 

China, except for the Qinghai-Tibet Plateau where boreholes are difficult to drill. Any purely data-188 

driven model fitted with large gaps in the covariate space is most likely to result in considerable 189 
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omissions, especially for areas that are often inaccessible or not of interest to soil surveys or 190 

geological exploration. Therefore, we used pseudo-observations added to training data to fill such 191 

gaps, which will avoid extrapolation for these areas (e.g., deserts and steep mountainous areas). 192 

Deserts consist mainly of sand, and the DTB of such areas could be found in some publications. 193 

Steep-slope areas without vegetation typically have very shallow or zero DTB; that is, rock outcrop. 194 

Therefore, we used the following data sources to generate pseudo-observations to add to the training 195 

points: 196 

(1) The distribution map of deserts in China from the Data Center of Environmental and 197 

Ecological Science in Western China (http://zgsm.westgis.ac.cn). 198 

(2) Steep, bare surface areas generated using a slope map of China and remote-sensing-based 199 

data. 200 

(3) Previously published detailed geological maps reporting DTB or bedrock outcrops. 201 

We generated a certain number of points in random positions within deserts based on the 202 

distribution map of China’s deserts. The DTB values of these points were obtained from existing 203 

material and previous studies of the sand thickness of the deserts. We must note that the number of 204 

points was limited to less than 10% of the whole number of observations to prevent adding too many 205 

soft observations, and we only used points whose values had high credibility. In addition, several 206 

points located in high-slope areas (> 60°) were added to the observations with DTB values that 207 

varied between 0 and 0.1 m.  208 

2.3 Environmental covariates 209 

In our study, a total of 133 related environmental layers, which cover five types of factors (climate, 210 

topography, living organisms, water dynamics, and parent material) and represent the factors of soil 211 

formation according to Jenny (1994), were selected to generate a DTB map of China. These 212 

predictors were generalized into seven predictive “scorpan” factors (McBratney et al., 2003). The 213 

133 covariates classified as “scorpan” factors included: 214 

(1) Harmonized soil database images: percent coverage of Andosols, Histosols, and dozens of 215 

other soil types. 216 

(2) Climatic images: images indicating the values of 8-day MODIS day-time and night-time 217 

local standard time (LST), long-term and monthly precipitation data, etc. 218 

(3) Land use and land cover images: including vegetation maps, land cover and land use 219 
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classifications, biomass and yield maps, etc. 220 

(4) Relief data, mainly derived from digital elevation models: slope maps, the topographic 221 

wetness index, the topographic openness index, physiographic landform units, elevation and 222 

secondary terrain attributes, etc. 223 

(5) Geological and parent material maps: geological ages based on surface geology. 224 

The complete list of the 133 environmental covariates is given in Supplement File A. 225 

2.4 Spatial prediction model 226 

The framework of our research is shown in Fig. 3. This framework consists of four main processes: 227 

1. Overlaying observations of DTB and covariates to generate a regression matrix for modeling; 228 

2. Obtaining the best parameters for modeling using cross-validation; 229 

3. Fitting the prediction models based on the whole regression matrix; 230 

4. Applying spatial prediction models using covariates and comparing the prediction with 231 

existing maps. 232 

2.4.1 Model fitting 233 

In this study, we overlaid observations of DTB and covariates under the same coordinate reference 234 

to generate a matrix including DTB and covariate columns. The matrix was used as input data for 235 

machine learning. Then, we separately used RF and GBT to fit the prediction models. Finally, the 236 

spatial predictions were generated using an ensemble model based on the two models. RF and GBT 237 

are decision-tree-based ensemble methods. The RF model uses fully grown decision trees and 238 

reduces error by reducing variance (Breiman, 2001). The GBT model uses shallow trees and reduces 239 

error mainly by reducing bias, and to some extent by reducing variance by aggregating the outputs 240 

from many models (Chen and Guestrin, 2016). RF and GBT were implemented respectively in the 241 

“randomForest” and “xgboost” packages in the R environment. Parallel computing was employed 242 

to improve data processing efficiency. 243 

2.4.2 Model validation and evaluation 244 

Ten-fold cross-validation was used to evaluate prediction accuracy. Comparison with previously 245 

existing DTB maps was then employed to evaluate our results. 246 

In cross validation, samples were divided into a training set (5,740 samples) and validation set 247 

(642 samples). The training set was used to fit models, and the validation set was used to validate 248 

model performance. Some widely used indicators such as the coefficient of determination (R2 or the 249 
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amount of variation explained by the model), mean error (ME), and root mean square error (RMSE) 250 

were used to evaluate model performance. Of these indicators, the coefficient of determination is 251 

calculated by: 252 

            


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SSR
,                  (1) 253 

where SSR is the regression sum of squares, SST is the total variation sum of squares, and SSE is 254 

the residual sum of squares, which is the difference of SST and SSR. The variable yi is the measured 255 

target value, ŷ is the prediction of each point, y  is the average of the measurements, and n is 256 

number of validation points. The value of R2 is usually between 0 and 1; a value close to 1 indicates 257 

a perfect model, and values around 0 indicate a failed model. The RMSE, which is also called 258 

standard error, is calculated by: 259 

                           nSSEMSE /RMSE  ,                    (2) 260 

where MSE is the mean squared error. RMSE estimates the deviation between predictions and 261 

observed values. A smaller RMSE indicates a better prediction. 262 

Different covariates have different importance to DTB. Covariates with no or weak relations 263 

with DTB may produce noise in fitted models. This noise results in higher error of predictions. Our 264 

results based on modeling with different covariates showed that the noise has a certain degree of 265 

influence on the accuracy of the models, especially for the gradient boosting tree model. Therefore, 266 

we removed some covariates with low importance based on the random forests model to reduce 267 

prediction errors. The covariates we ultimately used are marked in Supplement File A. 268 

In addition, to verify whether our predictions are more accurate than existing DTB maps of China, 269 

we compared our predictions with existing DTB maps using the validation set. 270 

2.4.3 Model prediction and uncertainty estimation 271 

The final model was fitted based on all samples with parameters selected by cross-validation. The 272 

final spatial predictions were generated using an ensemble model based on random forests and the 273 

gradient boosting tree method, which can avoid the overshooting effect (Sollich and Krogh, 1996). 274 

To predict DTB in China at 100 m resolution, we used the available environmental covariates at 100 275 

m resolution. 276 
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Because any model for digital soil mapping inevitably suffers from different sources of error, it 277 

is important to quantify the uncertainty associated with the produced maps (Poggio et al., 2016). 278 

Analyzing and evaluating help data users to understand its existence and also can help to improve 279 

decision quality (Liang et al., 2018). In this study, we used quantile regression forests to estimate 280 

the uncertainty of estimations. Quantile regression forests are a tree-based ensemble algorithm for 281 

estimation of conditional quantiles. This method is particularly suitable for high-dimensional data. 282 

Quantile regression forests were implemented via the R environment in the “quantregForest” 283 

package (Meinshausen, 2014). To estimate the uncertainty of predictions at every location, we 284 

generated the uncertainty map of predictions by: 285 

𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 ൌ
𝑞𝑝଴.ଽ െ 𝑞𝑝଴.ଵ

𝑞𝑝଴.ହ
 286 

where qp0.9 is the 0.9 quantile prediction of DTB, qp0.1 is the 0.1 quantile prediction of DTB, and 287 

qp0.5 is the 0.5 quantile prediction of DTB. The uncertainty map is the reference when using the 288 

DTB map of China. 289 

All code used to generate predictions is available from the Github channels 290 

(https://github.com/yanfp/DTB100China). 291 

3 Results 292 

3.1 Model input statistical summary 293 

A summary of the DTB statistics is provided in Table 1. The DTB ranged from 0 to 1,106.91 m, 294 

with a mean DTB of 36.62 m and a median value of 8.24 m. Fig. 4(a) shows the histogram of DTB 295 

within 100 m. The DTB after logarithmic transformation had a distribution similar to a normal 296 

distribution but with many zero values (i.e., outcrops) (Fig. 4(b)). 297 

3.2 Model accuracy and variable importance 298 

As is shown in Table 2, the GBT model had good ability to estimate DTB and yielded relatively 299 

higher R2 (0.81) and lower RMSE than the RF model (Table 2) based on the training set. 300 

The importance of covariates measured based on the residual sum of squares of the random 301 

forests model is shown in Fig. 5. The four most important covariates for DTB in this study were the 302 

topographic wetness index, physiographic landform units, the topographic openness index, and 303 

slope. In contrast, the most important covariate for the DTB according to Pelletier et al. (2016) and 304 

Shangguan et al. (2017) was precipitation. The relationships between DTB and four important 305 
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covariates are shown in Fig. 6. This figure shows that DTB had a positive correlation with the 306 

topographic wetness index. The topographic wetness index is a secondary terrain attribute related 307 

to the geomorphometry of the surface or landform classification. In addition, DTB showed a positive 308 

correlation with the topographic openness index and elevation, and a negative correlation with the 309 

slope. These relations are consistent with our knowledge about DTB. 310 

3.3 Estimation accuracy 311 

The cross-validation summary statistics of interpolation for models based on RF and GBT are shown 312 

in Table 3 and Fig. 7. These statistics show that RF produced more accurate estimations than GBT. 313 

Because the GBT model showed relatively higher R2 and lower RMSE than the RF model based on 314 

the training set (Sect. 3.2), this result means that the GBT model had a large degree of overfitting. 315 

Our results showed significant overestimation in lower values of DTB, which is a common problem 316 

in regression, especially when the model is not able to explain > 50% of variability in the target 317 

variable (Shangguan et al., 2017). 318 

3.4 Prediction results 319 

Output estimations of DTB by the ensemble model based on RF and GBT at 100 meters resolution 320 

are shown in Fig. 8. Our estimated results reveal that the predicted mean DTB was 54.42 m. High 321 

values of DTB were mainly distributed in desert areas, the North China Plain (including areas in 322 

Hebei province, Henan province, and Jiangsu province) and the Northeast China Plain (including 323 

areas in Heilongjiang province, Jilin province, and Liaoning province). Relatively lower values of 324 

DTB were mainly located in hilly and mountainous areas, such as Sichuan province, Chongqing 325 

city, Guangxi province, and the mountainous areas of Northeast China. The spatial pattern of the 326 

DTB map of this study is similar to those of the maps produced by Pelletier et al. (2016) and 327 

Shangguan et al. (2017). 328 

In addition, estimations of three percentiles (0.1 (Fig. 9(a)), 0.50 (Fig. 9(b), and 0.9 (Fig. 9(c)) 329 

were produced by the quantile regression forests model. The mean values of the estimated DTB for 330 

the three percentiles were 4.95 m, 31.22 m, and 99.56 m, respectively. The maps show that the 331 

spatial pattern of DTB predicted by the quantile regression forests model was similar to that of the 332 

ensemble model based on the random forest and gradient boosting tree methods. 333 

The uncertainty map of the prediction of DTB is shown in Fig. 10. The uncertainty in the 334 

predictions in part depends on the density of sampling (Zhou et al., 2018). In our study it was low 335 
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in deserts, sandy areas, the North China Plain, and the Northeast China Plain, where the topography 336 

is relatively simple and sampling was relatively dense. In the Tibetan Plateau and western Inner 337 

Mongolia, where sampling was sparse and DTB is low, the uncertainty was high. The uncertainty 338 

was also relatively high in the Yun-Gui Plateau where the topography is complex with widespread 339 

karst landforms. 340 

3.5 Comparison with existing study results 341 

We compared our results with existing maps produced by Pelletier et al. (2016) and Shangguan et 342 

al (2017). Our results show similar spatial patterns with these maps. Of course, DTB values in 343 

deserts, sandy areas, and the North China Plain were relatively high, and values in hilly and 344 

mountainous areas, such as Chongqing City and Yunnan province, were relatively low in the map 345 

of this study and in maps from global predictions. The estimated mean DTB was 54.42 m in our 346 

study, whereas the mean values predicted by Pelletier et al. (2016) (Fig. 11 (a)) and Shangguan et 347 

al. (2017) (Fig. 11 (b)) were 11.81 m and 26.64 m. The correlation coefficient between DTB 348 

observations and predictions in our study is 0.75, which is significantly higher than the estimation 349 

results of Pelletier et al. (2016) and Shangguan et al. (2017) (Table 4). In addition, compared with 350 

the prediction results of Pelletier et al. (2016) and Shangguan et al. (2017), our estimation results 351 

had obviously lower RMSE (47.57) and ME (1.82). 352 

In addition, our prediction result shows similar spatial patterns to the maps produced by Pelletier 353 

et al. (2016) and Shangguan et al. (2017), but revealed more detailed information than previous 354 

predictions. There are more jumping points in the map of Shangguan et al. (2017) than others, and 355 

the map predicted by Pelletier et al. (2016) shows low continuity in space with high values and low 356 

values in a wide range. From the comparison in a typical region in the North China Plain (Fig. 12), 357 

our map revealed more spatial details, especially in high DTB areas, than the maps by Shangguan 358 

et al. (2017) and Pelletier et al. (2016) (Fig. 12(a)). In contrast, the map estimated by Pelletier et al. 359 

(2016) shows abrupt change between highland and lowland areas (Fig. 12(c)).  360 

4 Data availability 361 

The resulting maps are available on Figshare at the following DOI: 362 

https://doi.org/10.6084/m9.figshare.7011524.v1. And they are also available for download at 363 

http://globalchange.bnu.edu.cn/. 364 
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5 Discussion 365 

5.1 Success and limitations of the data set 366 

Our training observations were selected by using square grid sampling with a 0.2 × 0.2 arc-degree 367 

grid. We sampled at least one observation within each grid cell. Under this condition, the training 368 

data are most representative under the current sampling method, which will produce the most 369 

accurate predictions. However, boreholes have uneven spatial distribution. Very few boreholes were 370 

located in inhospitable areas such as deserts and mountainous areas (Fig. 13). In addition, we were 371 

unable to interpret the DTB from some borehole profiles. These limitations resulted in vacancies of 372 

observations in many grid cells. Lack of observations will increase the uncertainty of predictions in 373 

these areas. 374 

The reliability of training data and covariates together determines the accuracy of predictions. 375 

Although observations in this study were less heavily distributed in western China, which may limit 376 

the accuracy of our predictions, the number of observations in China is far greater than that in other 377 

studies. In addition, the DTB values interpreted from borehole profiles were more accurate than 378 

those from soil profiles. Therefore, the DTB maps produced from borehole profiles were also more 379 

accurate than maps solely based on soil profiles, especially for deep-DTB areas. In addition, the 380 

predictions show a higher correlation coefficient with observations than did previous DTB maps 381 

based on the validation set. The amount of variation explained by models for the DTB is about 57%, 382 

which means that more than half of the variation is explained. We produced the DTB maps of China 383 

at a resolution of 100 m. Although only a few covariates had spatial resolution of 100 m because of 384 

the lack of data, the spatial resolution of most covariates was about 1 kilometer. Thus, spatial 385 

variation at 100-meter scale may not be fully explained. However, covariates with high correlation 386 

with DTB, such as DEM-derived parameters and land cover, have high resolutions (Fig. 5 and 6). 387 

More observations and more covariates with high precision should be used in the future to improve 388 

prediction accuracy.  389 

5.2 Error from interpretation of borehole records 390 

As described above, the DTB observations were visually interpreted from every borehole profile. 391 

Because different borehole profiles were mapped by different organizations, the basis of layer 392 

stratification differed slightly for different profiles. This issue contributes to the disunity of DTB 393 
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observations. In addition, the level of detail for different borehole profile stratifications is discrepant 394 

because of their original uses. Furthermore, lithological records of some borehole profiles that give 395 

vague information about soil and lithology were not distinct enough for us to interpret the DTB 396 

accurately. All these factors contributed to errors in our DTB observations. 397 

5.3 Models built from different topographic partitions 398 

The DTB was determined based on many covariates including factors of topography, climate, 399 

geology, vegetation, age, and human activity. Soils at the surface of the Earth are formed under the 400 

combined effects of those factors (Zhou et al., 2016). However, the mechanisms of soil formation 401 

and the importance of each covariate still are not completely clear (Li et al., 2004). The most 402 

important covariates related to the DTB may be different in different geographic partitions. 403 

Therefore, a model based on observations over the whole area of China may not be able to capture 404 

the major factors in some regional areas. Models built from regional partitions may produce more 405 

accurate predictions than global models within the partitions. Pelletier et al. (2016) distinguished 406 

global land surfaces into three landform components, upland hillslope, upland valley bottom, and 407 

lowland, and used different models for each component to estimate the DTB. Peng et al. (2018) 408 

divided training data into subsets according to the similarity of the predicted variables and attain the 409 

independent prediction model, which improved the prediction accuracy. In the future, different 410 

models should be built and spatial predictions should be applied separately in different topographic 411 

partitions. 412 

6 Conclusions 413 

In this study, we demonstrated the use of an ensemble model to produce a DTB map of China at a 414 

resolution of 100 meters using the most reliable ground observations of DTB interpreted from 415 

borehole profiles. This study provides the final prediction map of DTB as well as an uncertainty 416 

estimation map for China. The cross-validation showed that the R2 of the ensemble model was 0.57, 417 

and the comparison showed that our DTB map is more accurate than existing DTB maps. Even 418 

though the shortage of data used in this study, including DTB observations and environmental 419 

covariates, limited the precision of the DTB map at a scale of 100 meters, this data set provides 420 

more accurate information for Earth system researches compared with previous maps of DTB. 421 

Based on the spatial prediction framework, data processing, model fitting, and spatial prediction are 422 
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fully automated and can be updated easily. By adding more DTB observations and using more 423 

accurate covariates, we will be able to produce more accurate DTB maps of China in the future. 424 
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 519 

Table 1: Summary statistics of depth to bedrock in meters 520 

DTB Number 

=0 1026 

0~2.00 585 

2.00~10.00 1833 

10.00~50.00 1768 

50.00~100.00 427 

100.00~300.00 630 

>300.00 113 

 521 

Table 2: Model fitting results for the depth to bedrock. 522 

Model Unit R2 RMSE ME 

Random forests M 0.575 47.48 1.75 

Gradient boosting tree M 0.811 31.43 2.13 

 523 

Table 3: Mapping performance for the depth to bedrock. 524 

 Unit R2 RMSE ME 

Random forests M 0.573 47.57 1.82 

Gradient boosting tree M 0.547 49.53 2.18 

Ensemble M 0.566 48.57 2.50 
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 525 

 526 

 527 

 528 

Table 4: Correlation index between observations and predictions 529 

Study Unit R RMSE ME 

This study m 0.752 47.57 1.82 

Pellertier et al. (2016) m 0.486 81.98 36.52 

Shangguan et al. (2017) m 0.475 67.32 14.71 

R denotes the correlation coefficient 530 

 531 

 532 

Figure 1: Distribution of DTB observations interpreted from boreholes. 533 
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 534 

Figure 2: A typical borehole log sketch column. A borehole log describes the materials, color, 535 

and composition of each layer, and provides the depth, dip, and other relevant information. The 536 

original logs are in Chinese. 537 

 538 

 539 

Figure 3: The spatial prediction framework used to fit models and apply spatial prediction of DTB 540 

in China at 100 m resolution. 541 
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 542 

 543 

Figure 4: Histogram of depth to bedrock (a) and (b) after logarithmic transformation (values large 544 

than 100 m are not shown). 545 

 546 

 547 

Figure 5: Importance of covariates for the depth to bedrock based on the random forest model. 548 
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 549 

Figure 6: Relationships for target variables and the most important covariates (logarithmic scale). 550 

(TWISRE3a is the SAGA Topographic Wetness Index; SLPSRT2a is a slope map in percent; 551 

OPISRE3a is the SAGA Topographic Openness Index; China_dem is a digital elevation model of 552 

China.) 553 

 554 

 555 

Figure 7: Plot showing cross-validation results for depth to bedrock on a logarithmic scale; R2 556 

is calculated using Eq. (1). 557 
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 558 

Figure 8: Final prediction of the depth to bedrock based on the ensemble model 559 

 560 

 561 

Figure 9: Depth to bedrock maps produced by the quantile regression forests model at the 562 

percentiles of 0.1 (a), 0.50 (b), and 0.9 (c).  563 

 564 
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 565 

Figure 10: Uncertainty map of prediction of the depth to bedrock 566 

 567 

 568 

Figure 11: Extracted maps from global predictions of (a) Shangguan et al. (2017) and (b) Pelletier 569 

et al. (2016) 570 
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 571 

Figure 12: Regional maps of (a) this study, (b) Shangguan et al. (2017), and (c) Pelletier et al. 572 

(2016). 573 
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 574 

Figure 13: The distribution of 0.2 × 02 arc-degree grid with observation (blue color). 575 

 576 
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