Referee #1 Comments and author response

RCX = referee comment
ARX = author response

RCA1. In the introduction, the authors describe the various emissions inventories for the
US (page 1, third paragraph). They may wish to mention

Larkin, N. K., Raffuse, S. M., & Strand, T. M. (2014). Wildland fire emissions, carbon, and
climate: US emissions inventories. Forest Ecology and Management, 317, 61-69.

Also, the authors may wish to mention the work by Canadians, which follows a similar
methodology to that presented in this manuscript

De Groot, W.J., Landry, R., Kurz, W.A., Anderson, K.R., Englefield, P., Fraser, R.H., Hall,
R.J., Banfield, E., Raymond, D.A., Decker, V. and Lynham, T.J., 2007. Estimating direct
carbon emissions from Canadian wildland fires1. International Journal of Wildland Fire,
16(5), pp.593-606.

Anderson, K., Simpson, B., Hall, R.J., Englefield, P., Gartrell, M. and Metsaranta, J.M.,
2015. Integrating forest fuels and land cover data for improved estimation of fuel
consumption and carbon emissions from boreal fires. International Journal of Wildland
Fire, 24(5), pp.665-679.

AR1. We have added the Larkin et al. reference to P3, line 31. The revised text reads:

“Several biomass burning emission inventories that include CONUS are available (van
der Werf et al.,, 2017; Zhang et al.,, 2017; French et al., 2014; Larkin et al., 2014;
Wiedinmyer et al., 2011).”

We have also referenced the Canadian wildfire emission inventories at Page 4, Line 1.
The text now reads:

“‘MFLEI uses a forest type map and a new forest fuel classification, both of which are
based on a national forest inventory dataset, providing more accurate fuel loading
estimates compared to the fuels layer used in WFEIS (Keane et al., 2013). The
methodology used to develop MFLEI is similar to that employed to develop carbon
emission estimates for Canadian wildland fires (Anderson et al., 2015; De Groot et al.,
2007). As a retrospective inventory, MFLEI is able to leverage geospatial fire activity
information including high spatial resolution burned area and burn severity products that
are not available for real-time inventories (e.g. FiNN).”

RC2.0n page 2, line 26, when the authors state “each burned grid cell is burned in its
entirety”, | assume the authors are referring to spatial extent (ha) and not fuel load
(tonnes).



AR2. The reviewer is correct. We did not intend to imply that all fuel present was burned.
The text has been changed to:

“The inventory assumes that the burning and emissions for each burned grid cell occur
on the estimated burn day (Sect. 2.3.2).”

RC3. Under 2.2 Land cover, are there not several US land cover maps (NFDRS, Hardy,
LANDFIRE, Ok-Wen, FCCS), that produce different fuel loads? The authors may wish to
reference these and justify their choice.

AR3. The reviewer is correct, there are several CONUS wide maps of land cover and fuel
type. The LANDFIRE Project (https://www.landfire.gov/data_overviews.php) has created
many geospatial data products including fire behavior fuel models (FBFM), which include
the model used for NFDRS, vegetation type, and surface fuel loading models (FCCS and
FLM). We assembled our own land cover map so we could use the large dataset (>27,000
plots) of USFS Forest Inventory and Analysis Program vegetation and fuels data for
forests and use fuel loading from the Rangeland Vegetation Simulator (RVS) for
grasslands and shrublands. The RVS map and fuel loading was developed using
LANDFIRE products along with MODIS NDVI and rangeland productivity data as
described in Sect. 2.4.2. Our justification for using assembling our own land cover map is
detailed in following text which has been added to Section 2.2 of the manuscript on Page
5, Line 4:

“The LANDFIRE project (LANDFIRE, 2016) provides CONUS wide maps for Fuel
Characteristics Classification System (FCCS; Ottmar et al., 2007; McKenzie et al., 2012)
and Fuel Loading Models (FLM, Lutes et al., 2006) fuelbed models, both of which are
suitable for estimating fuel consumption and emissions. FCCS is used in both the NEI+
(Larkin et al., 2014) and WFEIS (French et al., 2014) CONUS fire emission inventories.
We assembled a new map based on the USFS forest type group map because it provides
three important benefits over other land cover maps with respect to forests. First, the
accuracy of the forest type group map is significantly better than either the FCCS or FLM
maps (Keane et al., 2013). Second, it enabled us to use the Fuels Type Group (FTG)
surface fuel classification system (Sect. 2.4.1) which provides a more accurate estimate
of average surface fuel loading than either the FCCS or FLM (Keane et al., 2013). Finally,
because the USFS forest type group classification is an FIA plot variable, we are able to
use the large (>27,000 plots) dataset of FIA fuel measurements estimate uncertainty in
surface fuel loading and emissions (Sect. 2.9).”

RC4. Under 2.3.3 Unburned and lightly burned grid cells, the authors describe the 6 BSEV
categories inside the fire polygon. | am not clear on how a category of increasing green
would be mapped inside a fire polygon. Presumably this would have described in the
referenced paper (Eidenshink et al., 2007) but it would be helpful to briefly describe the
process (perhaps in 2.3.1).


https://www.landfire.gov/data_overviews.php

AR4. The burn severity classification of increased greenness is very rare. During our
period (2003-2015) only 0.3% of MTBS pixels were classified as increased greenness.
Given the rare occurrence of the increased greenness classification, it has negligible
effect on our emission product. The MTBS burn severity class data are derived from
Landsat imagery by analysis of a pre-fire scene and a post-fire scene to create a
Differenced Normalized Burn Ratio (dNBR) image (as described in Eidenshink et al.,
2007). For some fires, an increased response in vegetation productivity, results in
increased greenness. This could results from an area that did not burn and was greener
at the time of the post-fire scene than it was pre-fire scene. It is not uncommon for the
pre-fire scene to be from the previous year. In which case an area that did not burn or
was very lightly burned may have increased greenness compared to the previous year
due to increased productivity or other factors. The availability of optimal Landsat scenes
is limited by the 16-day Landsat revisit cycle, atmospheric conditions (clouds, smoke from
active fires, terrain shadows), and factors such as sun angle and length of growing season
limit the availability of optimal scenes for analysis (https://www.mtbs.gov/mapping-
methods).

Given the rare occurrence (0.3% of pixels) and negligible effect of the increased
greenness classification, we believe that an explanation is not warranted in the text. We
have revised the text clarifying that the increased greenness classification is very rare. In
Sect. 2.3.3 Unburned and lightly burned pixels, Page 8, line 14, following the sentence
“We elected to designate BSEV = 1 as unburned, which is consistent with MTBS program
publications that describe this classification as areas which are either unburned or where
visible fire effects occupy < 5 % of the site at the time of observation (Schwind, 2008).”
we have added the text:

“The increased green classification may indicate unburned that exhibited more green at
the time of the post-fire Landsat scene relative to the pre-fire scene. The increased green
classification was assigned to just 0.3% of MTBS pixels and thus has a negligible impact
on our inventory.”

References

Lutes, D. C., Keane, R. E. and Caratti, J. F.: A surface fuel classification for estimating
fire effects, Int. J. Wildland Fire, 18(7), 802—-814, doi:10.1071/WF08062, 2009.

McKenzie, D., French, N. H. F. and Ottmar, R. D.: National database for calculating fuel
available to wildfires, Eos, Transactions American Geophysical Union, 93(6), 57-58,
doi:10.1029/2012E0060002, 2012.


https://www.mtbs.gov/mapping-methods
https://www.mtbs.gov/mapping-methods

Referee #2 Comments and author response

Specific comments

RC1. A large number of fuel, fire, and other sources are used when estimating fire
emissions based on Eq.1. It would be helpful to provide a diagram to summary the major
sources and connections.

AR1. We have added a diagram which summarizes the main steps of the inventory
methodology and highlights the connections of the multiple datasets to the process. The
diagram has been added as Figure 1. The text in Sect. 2.1 has been revised (Page 4,
Line 14) with the insertion of the following sentence:

“The MFLEI biomass burning emission model is based on Eq. (1), given below, and the
implementation and datasets are summarized in Figure 1.”

RC2. Comparisons are provided between this inventory and several previous ones in the
introduction section. It would be useful to briefly compare the results, especially with the
previous daily inventory.

AC2. We have added a section comparing MFLEI with three other emission inventories
that are mentioned in the introduction section: GFED, FINN, and WFEIS. The revised text
is given below. Two figures and two tables have been added as part this revision and are
provided in this response to reviewer #2, following the references.

3.6 Comparison with other emission inventories

Next we compare the estimated fuel consumption and PM2.5 emissions of MFLEI with three fire
emissions inventories: GFED v4.1s (GFED, 2018), FINN v1.5 (FINN, 2018), and WFEIS v0.5
(WFEIS, 2018). In this comparison we have excluded fuel consumption and PM2.5 emissions
associated with agricultural burning from all three inventories. Regional annual fuel consumption
from the four inventories is plotted in Figure 21. Statistics comparing MFLEI regional annual fuel
consumption versus the other inventories are given in Table 11. There is significant variability in
the agreement between MFLEI and the other inventories. Across the west (NW, CA, SW), MFLEI
annual fuel consumption is well correlated with both FINN and GFED (Table 11). MFLEI fuel
consumption exceeds the mean of FINN, GFED, and WFEIS in nearly all years and is generally
the highest in Northwest and Southwest regions (Fig. 21a). In the east regions (SC, SE, NO),
MFLEI fuel consumption fluctuates about the FINN/GFED/WFEIS mean value (Fig. 21b). Interms
of variability and mean absolute relative difference, MFLEI agrees best with GFED.

Regional annual PM2.5 emissions are shown in Figure 22 and statistics comparing MFLEI
PM2.5 emissions versus the other inventories are given in Table 12. As with fuel consumption,
across the west (NW, CA, SW), MFLEI annual PM2.5 emissions are well correlated with both
FINN and GFED, while correlation with WFEIS is weak in most regions (Table 12). In the west,
MFLEI annual PM2.5 emissions are highest among the inventories in most years (Fig. 22a). The



greater PM2.5 emissions of MFLEI in the west are partly attributable to the use of a larger
EFPM2.5 for western forests (22.8 g kg™, Table 9) compared with FINN (12.9 g kg™'), GFED (12.6
g kg'), and WFEIS (11.9 g kg"). (Because WFEIS uses combustion phase dependent EFs
applied in a non-transparent manner, we have taken EFPM2.5 as the ratio of the sum of EPM2.5
to the sum of fuel consumed for all western forests.) MFLEI uses EFPM2.5 from the synthesis of
Urbanski (2014) that accounts for the lower MCE measured for wildfires in western conifer forests
(Urbanski, 2013). FINN and GFED use EFPM2.5 from Akagi et al (2011), with updates from May
et al. (2014), which are based on emission measurements of prescribed fires, most of which
occurred in the Southeast US. WFEIS employs EFPM2.5 measured for prescribed burns of
logging slash. The higher EFPM2.5 used by MFLEI for wildfires in western forests is consistent
with recent emission measurements of Lui et al. (2017). In a study of western US wildfires, Lui et
al. (2017) reported an average EFPM1 = 26.0 g kg”' (PM1 = particulate matter with an
aerodynamic diameter < 1 um), more than 2 times the EF for prescribed fires.

RC3. This new inventory provides daily emissions. Surface fuels at 10- and 1-hr vary at
this scale. Why fuel moistures of 1000-h and 100-h rather than 10- and 1-hr fuels are
used?

AC3. We estimated fuel consumption of grass, shrubs, and down dead wood using the
natural fuel algorithms from the CONSUME model. These CONSUME algorithms
simulate consumption completeness independent of fuel moisture for grass, shrubs, and
down dead wood in the 1-h (< 1 cm diameter), 10-h (1-2.5 cm diameter), and 100-h (2.5-
7.6 cm diameter) size classes. The CONSUME algorithms do use 1000-h fuel moisture
and duff moisture for simulating combustion completeness for down dead wood in the
1000-h size class. Combustion completeness for litter was based on the FOFEM model,
which for wildfires estimates litter consumption independent of moisture content. We used
the 100-h fuel moisture to estimate duff moisture based on Harrington (1982) (Page 13,
L27 of manuscript). The duff moisture estimated from 100-h fuel moisture was used in the
FOFEM duff consumption equations and in the CONSUME down dead wood equations
that used duff moisture as a variable. The 1-h and 10-h fuel moistures are very important
for estimating/simulating fire spread rates since fuels in these size classes, grasses, litter,
and fine woody debris, are key drivers of fire spread (Albini 1976; Rothermel, 1972). Since
MFLEI is a retrospective emission inventory we do not need to predict fire spread and
therefore 1-h and 10-h are not used.

RC4. This inventory provides 250-m fire emissions. Fuel moisture is obtained from
NFDRS station. What is the resolution of the NFDRS station and how could the resolution
mismatch between the fire emission and NFDRS station affect the emission estimates?

AR4. The NFDRS stations are irregularly spaced (for current locations see
https://www.wfas.net/index.php/fire-weather-stations-static-maps-43) and some stations
operate/report data only during the station’s regional fire season. The median distance
between nearest NFDRS stations was ~28 km.



https://www.wfas.net/index.php/fire-weather-stations-static-maps-43

If the fuel moisture regime was in error by one category (e.g. fuel consumption was
modeled using 1000-h and duff moisture of “dry” regime, but actual conditions were
“‘moist” regime) the error in total fuel consumption would range between +/- 2% and +/-
12%, depending on the forest type and direction of error in fuel moisture regime. For all
years of the inventory, if the fuel moisture regime used was systemically one category
lower (drier) than the actual moisture regime for all burned forest pixels, the overestimate
in total forest fuel consumption would be ~5%. Emission are directly proportional to fuel
consumption.

RCS5. It is indicated that MFLEI will be updated, with recent years, as the MTBS burned
area product becomes available. MFLEI also uses other fire sources such as FOD. What
would be the impacts if FOD is not updated in the future?

ARS. Dr. Karen Short, creator of FOD will be releasing an update with 2016 and 2017 at
the end of this year (2018). If FOD is not updated beyond 2017, there would be a minor
impact on MFLEI. We used FOD to include burned area from wildfires not captured by
MTBS, GEOMAC, and MCD64. Over 2003-2015, 8% of total MFLEI burned area was
attributable to FOD. In the future, if FOD is unavailable MFLEI would miss roughly 10%
of wildfire burned area. MFLEI also used FOD to assign containment dates to MTBS fires
and discovery dates to GEOMAC fires (recall MCDG64 product provides the estimated day
of burning for each pixel). Fortunately, discovery dates and containment dates are
available for most MTBS and GEOMAC fires from one of five national databases (USDI
Wildland Fire Management Information System, FWS Fire Management Information
System, USFS Fire Statistics, USFA National Fire Incident Reporting System, and
National Association of State Foresters). (In FOD, the information for ~80% of all CONUS
wildfires >10 acres was obtained from one of these five national databases (Short, 2014;
Short, 2017)). If FOD is unavailable, we will extract much of the needed information from
the five national fire databases listed above after consultation with Dr. Karen Short who
developed FOD and is a USFS research colleague of the MFLEI team.

RC6. Subsection 3.5: The title includes “agricultural fires” but they are not discussed in
this subsection.

ARG. The title of subsection 3.5 has been changed to: “Prescribed fires” since agricultural
fires are excluded from MFLEI and are not discussed in this section.

RC7. Section 5: It is more like a summary than conclusions.

AR7. We agree with the referee that Section 5 is largely a summary of the paper.
However, we believe the content and tone is appropriate for a conclusion section of a
dataset paper. We have reviewed the conclusion section of several papers published in
ESSD and found ours to similar in content and tone, see for example e.g. Chuvieco et al.,



2018, 10, 2015-2031. We have revised the Section 5 to mention the comparison of MFLEI
with GFED, FINN, and WFEIS. The additional text is:

“A regional comparison of MFLEI with three fire emission inventories, FINN v1.5, GFED
v4.1s, and WFEIS v0.5, showed MFLEI predicted significant greater PM2.5 emissions
across the west, in part due to the use of a larger EFM2.5 for wildfires in forests.”
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Tables and figures added to manuscript in response to referee comments #2

Table 11. Statistics for comparison of annual fuel consumption by region between MFLEI and FINN v1.5, GFED
v4.1s, and WFEIS v0.5. Regions are as defined in Fig. 14a.

Region

CONUS NwW CA SW NO SC SE

MFLEI versus FINN v1.5 (2003-2015)

Mean

RD® -17% 6% 50% 103% -35% -65% -75%
Min RD -71% -94% -25% 61%  -103%  -131%  -135%
Max RD 41% 81% 115% 131% 68% 21% -31%
™ 0.62 0.90 0.87 0.92 0.57 0.24 0.70

MFLEI versus GFED 4.1s (2003-2015)

Mean RD 29% 14% 3% 75% 16% 35% 43%
Min RD 0% -4% -27% 41% -83% -45% -1%
Max RD 60% 40% 52% 105% 90% 91% 76%

T 0.90 0.97 0.96 0.97 0.62 0.79 0.76

MFLEI versus WFEIS v0.5 (2003-2013)

Mean RD 2% 30% -26% 130% -99% -51% 40%
Min RD “41%  -110%  -177% 35%  -161%  -175%  -104%
Max RD 56% 137% 112% 196% -17% 121% 181%

r 0.95 0.43 -0.20 0.88 0.20 -0.34 0.06

X(Omrrer — Y (0);
0.5 * (X(©OmrLer + Y (1)
X(t)mrLer = MFLEI fuel consumed in year =t
Y(t); =i fuel consumed in year = t, where i = FINN, GFED, or WFEIS

RD =100 x

br = correlation coefficient



Table 12. Statistics for comparison of annual PM, s emitted consumption by region between MFLEI and FINN v1.5,
GFED v4.1s, and WFEIS v0.5. Regions are as defined in Fig. 14a.

Region

CONUS NwW CA SW NO SC SE

MFLEI versus FINN v1.5 (2003-2015)

Mean

RD? 98% 56% 85% 136% 24% -55% -70%
Min RD -70% -43% 15% -55% -44%  -123%  -136%
Max RD 86% 123% 147% 157% 125% 35% -27%
rb 0.61 0.90 0.88 0.94 0.52 0.20 0.71

MFLEI versus GFED 4.1s (2003-2015)
Mean RD 76% 76% 61% 137% 71% 59% 60%

Min RD 50% 58% 29% 104% -24% -29% 18%
Max RD 99% 98% 106% 158% 136% 119% 94%
r 0.94 0.97 0.98 0.97 0.65 0.70 0.73

MFLEI versus WFEIS v0.5 (2003-2013)
Mean RD 49% 98% 96% 151% 66% 103% 82%

Min RD 19% -59%  -154% 63%  -118%  -174% -86%
Max RD 104% 167% 161% 198% 59% 122% 183%
r 0.98 0.42 -0.15 0.90 0.23 -0.33 0.11

X(t)MFLEI - Y(t)l

RD = 100 X
0.5 * (X () mprer + Y (£);)

X(t)mrLer = MFLEI PM; 5 emitted in year =t
Y(t); =1 PMas emitted in year = t, where i = FINN, GFED, or WFEIS

br = correlation coefficient
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Figure 22a. Annual fuel consumption from MFLEI, FINN v1.5, GFED v4.1s, and WFEIS v0.5 for northwest,
California, and southwest regions.
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Figure 22b. Annual fuel consumption from MFLEIL, FINN v1.5, GFED v4.1s, and WFEIS v0.5 for north,
southcentral, and southeast regions.
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Figure 23a. Annual PM;s emitted from MFLEI, FINN v1.5, GFED v4.1s, and WFEIS v0.5 for northwest,
California, and southwest regions.
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Figure 23b. Annual PM; s emitted from MFLEI, FINN v1.5, GFED v4.1s, and WFEIS v0.5 for north,
southcentral, and southeast regions.



Significant Manuscript Changes

1. We have added the Larkin et al. reference to P3, line 31. The revised text reads:

“Several biomass burning emission inventories that include CONUS are available (van
der Werf et al.,, 2017; Zhang et al.,, 2017; French et al., 2014; Larkin et al., 2014;
Wiedinmyer et al., 2011).”

2. We have referenced the Canadian wildfire emission inventories at Page 4, Line 1.
The text now reads:

“‘MFLEI uses a forest type map and a new forest fuel classification, both of which are
based on a national forest inventory dataset, providing more accurate fuel loading
estimates compared to the fuels layer used in WFEIS (Keane et al., 2013). The
methodology used to develop MFLEI is similar to that employed to develop carbon
emission estimates for Canadian wildland fires (Anderson et al., 2015; De Groot et al.,
2007). As a retrospective inventory, MFLEI is able to leverage geospatial fire activity
information including high spatial resolution burned area and burn severity products that
are not available for real-time inventories (e.g. FiNN).”

On page 2, line 26, when the authors state “each burned grid cell is burned in its entirety”,
| assume the authors are referring to spatial extent (ha) and not fuel load (tonnes).

3. At page 2, line 5 the text has been changed to:
“The inventory assumes that the burning and emissions for each burned grid cell occur
on the estimated burn day (Sect. 2.3.2).”

4. The following text which has been added to Section 2.2 of the manuscript on Page
5, Line 4:

“The LANDFIRE project (LANDFIRE, 2016) provides CONUS wide maps for Fuel
Characteristics Classification System (FCCS; Ottmar et al., 2007; McKenzie et al., 2012)
and Fuel Loading Models (FLM, Lutes et al., 2006) fuelbed models, both of which are
suitable for estimating fuel consumption and emissions. FCCS is used in both the NEI+
(Larkin et al., 2014) and WFEIS (French et al., 2014) CONUS fire emission inventories.
We assembled a new map based on the USFS forest type group map because it provides
three important benefits over other land cover maps with respect to forests. First, the
accuracy of the forest type group map is significantly better than either the FCCS or FLM
maps (Keane et al., 2013). Second, it enabled us to use the Fuels Type Group (FTG)
surface fuel classification system (Sect. 2.4.1) which provides a more accurate estimate
of average surface fuel loading than either the FCCS or FLM (Keane et al., 2013). Finally,
because the USFS forest type group classification is an FIA plot variable, we are able to
use the large (>27,000 plots) dataset of FIA fuel measurements estimate uncertainty in
surface fuel loading and emissions (Sect. 2.9).”

5. In Sect. 2.3.3 Unburned and lightly burned pixels, Page 8, line 14, following the
sentence “We elected to designate BSEV = 1 as unburned, which is consistent



with MTBS program publications that describe this classification as areas which
are either unburned or where visible fire effects occupy <5 % of the site at the time
of observation (Schwind, 2008).” we have added the text:

“The increased green classification may indicate unburned that exhibited more
green at the time of the post-fire Landsat scene relative to the pre-fire scene. The
increased green classification was assigned to just 0.3% of MTBS pixels and thus
has a negligible impact on our inventory.”

6. We have added a diagram which summarizes the main steps of the inventory
methodology and highlights the connections of the multiple datasets to the
process. The diagram has been added as Figure 1. The text in Sect. 2.1 has been
revised (Page 4, Line 14) with the insertion of the following sentence:

“The MFLEI biomass burning emission model is based on Eq. (1), given below, and the
implementation and datasets are summarized in Figure 1.”

7. We have added a section comparing MFLEI with three other emission inventories
that are mentioned in the introduction section: GFED, FINN, and WFEIS. The
revised text is given below. Two figures and two tables have been added as part
this revision and are provided above, immediately following the references in the
response to reviewer #2.

3.6 Comparison with other emission inventories

Next we compare the estimated fuel consumption and PM2.5 emissions of MFLEI with three fire
emissions inventories: GFED v4.1s (GFED, 2018), FINN v1.5 (FINN, 2018), and WFEIS v0.5
(WFEIS, 2018). In this comparison we have excluded fuel consumption and PM2.5 emissions
associated with agricultural burning from all three inventories. Regional annual fuel consumption
from the four inventories is plotted in Figure 21. Statistics comparing MFLEI regional annual fuel
consumption versus the other inventories are given in Table 11. There is significant variability in
the agreement between MFLEI and the other inventories. Across the west (NW, CA, SW), MFLEI
annual fuel consumption is well correlated with both FINN and GFED (Table 11). MFLEI fuel
consumption exceeds the mean of FINN, GFED, and WFEIS in nearly all years and is generally
the highest in Northwest and Southwest regions (Fig. 21a). In the east regions (SC, SE, NO),
MFLEI fuel consumption fluctuates about the FINN/GFED/WFEIS mean value (Fig. 21b). Interms
of variability and mean absolute relative difference, MFLEI agrees best with GFED.

Regional annual PM2.5 emissions are shown in Figure 22 and statistics comparing MFLEI
PM2.5 emissions versus the other inventories are given in Table 12. As with fuel consumption,
across the west (NW, CA, SW), MFLEI annual PM2.5 emissions are well correlated with both
FINN and GFED, while correlation with WFEIS is weak in most regions (Table 12). In the west,
MFLEI annual PM2.5 emissions are highest among the inventories in most years (Fig. 22a). The
greater PM2.5 emissions of MFLEI in the west are partly attributable to the use of a larger
EFPM2.5 for western forests (22.8 g kg™, Table 9) compared with FINN (12.9 g kg™), GFED (12.6
g kg'), and WFEIS (11.9 g kg'). (Because WFEIS uses combustion phase dependent EFs
applied in a non-transparent manner, we have taken EFPM2.5 as the ratio of the sum of EPM2.5



to the sum of fuel consumed for all western forests.) MFLEI uses EFPM2.5 from the synthesis of
Urbanski (2014) that accounts for the lower MCE measured for wildfires in western conifer forests
(Urbanski, 2013). FINN and GFED use EFPM2.5 from Akagi et al (2011), with updates from May
et al. (2014), which are based on emission measurements of prescribed fires, most of which
occurred in the Southeast US. WFEIS employs EFPM2.5 measured for prescribed burns of
logging slash. The higher EFPM2.5 used by MFLEI for wildfires in western forests is consistent
with recent emission measurements of Lui et al. (2017). In a study of western US wildfires, Lui et
al. (2017) reported an average EFPM1 = 26.0 g kg (PM1 = particulate matter with an
aerodynamic diameter < 1 ym), more than 2 times the EF for prescribed fires.

8. The title of subsection 3.5 has been changed to: “Prescribed fires” since
agricultural fires are excluded from MFLEI and are not discussed in this section.

9. We have revised the Section 5 to mention the comparison of MFLEI with GFED,
FINN, and WFEIS. The additional text is:

“A regional comparison of MFLEI with three fire emission inventories, FINN v1.5, GFED
v4.1s, and WFEIS v0.5, showed MFLEI predicted significant greater PM2.5 emissions
across the west, in part due to the use of a larger EFM2.5 for wildfires in forests.”
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Abstract. Wildfires are a major source of air pollutants in the United States. Wildfire smoke can trigger severe pollution episodes
with substantial impacts on public health. In addition to acute episodes, wildfires can have a marginal effect on air quality at
significant distances from the source presenting significant challenges to air regulators’ efforts to meet National Ambient Air
Quality Standards. Improved emission estimates are needed to quantify the contribution of wildfires to air pollution and thereby
inform decision making activities related to the control and regulation of anthropogenic air pollution sources.

To address the need of air regulators and land managers for improved wildfire emission estimates we developed the Missoula
Fire Lab Emission Inventory (MFLEI), a retrospective, daily wildfire emission inventory for the contiguous United States
(CONUS). MFLEI was produced using multiple datasets of fire activity and burned area, a newly developed wildland fuels map
and an updated emission factor database. Daily burned area is based on a combination of Monitoring Trends in Burn Severity
(MTBS) data, Moderate Resolution Imaging Spectroradiometer (MODIS) burned area and active fire detection products, incident
fire perimeters, and a spatial wildfire occurrence database. The fuel type classification map is a merger of a national forest type
map, produced by the USDA Forest Service (USFS) Forest Inventory and Analysis (FIA) program and the Geospatial Technology
and Applications Center (GTAC), with a shrub and grassland vegetation map developed by the USFS Missoula Forestry Sciences
Laboratory. Forest fuel loading is from a fuel classification developed from a large set (> 26,000 sites) of FIA surface fuel
measurements. Herbaceous fuel loading is estimated using site specific parameters with normalized differenced vegetation index
from MODIS. Shrub fuel loading is quantified by applying numerous allometric equations linking stand structure and composition
to biomass and fuels, with the structure and composition data derived from geospatial data layers of the LANDFIRE Project.
MEFLEI provides estimates of CONUS daily wildfire burned area, fuel consumption, and pollutant emissions at a 250 m x 250 m
resolution for 2003-2015. A spatially aggregated emission product (10 km x 10 km, 1 d) with uncertainty estimates is included to
provide a representation of emission uncertainties at a spatial scale pertinent to air quality modelling. MFLEI will be updated, with
recent years, as the MTBS burned area product becomes available. The data associated with this article can be found at

https://doi.org/10.2737/RDS-2017-0039.
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1 Introduction

Annually, open biomass fires are estimated to burn in excess of three million km? (Giglio et al., 2013) and emit 46.6 Tg of
particulate matter (36.6 Tg of fine particulate matter, PM»s) (van der Werf et al., 2017). Globally, the dominant biomass burning
regions are sub-Saharan Africa, Brazil, and Equatorial Asia (van der Werf et al., 2017; Wiedinmyer et al., 2011), regions where
fire ignitions are driven by human activity (Andela et al., 2017). In many regions across the globe, biomass fires are a significant
source of air pollution and can be a major hazard to public health (Johnston et al., 2012). Fresh biomass smoke is a rich mixture
containing hundreds of gases (Hatch et al., 2015; Urbanski, 2014) and particulate matter diverse in size, composition, and
morphology (Reid et al., 2005a; Reid et al., 2005b). Fine particulate matter (PM> s) is the smoke constituent presenting the primary
public health hazard (Reisen et al., 2015). In addition to PM> s, the photochemical processing of the volatile organic compounds
and nitrogen oxides present in smoke can also produce ozone (O3) (Jaffe and Widger, 2012; Lindaas et al., 2017), another air
pollutant which poses a public health threat (Nuvolone et al., 2018). The health impacts associated with exposure to wildfire
smoke include increases in respiratory and cardiovascular morbidity and mortality (Fisk and Chan, 2017; Liu et al., 2015;
Williamson et al., 2016).

‘While biomass burning in the contiguous United States (CONUS) is a small contributor to emissions globally, it is a significant
source of air pollution in the US. Wildfire smoke has created severe air pollution episodes with substantial impacts on public
health (Fann et al., 2018; Kochi et al., 2012; Rappold et al., 2014). In addition to public health impacts, wildfire smoke presents
challenges for air regulators and land managers. Under the US federal Clean Air Act (CAA), the Environmental Protection Agency
(EPA) has established National Ambient Air Quality Standards (NAAQS) to protect public health and the environment (USEPA,
2018a). The NAAQS include standards for PM,s (24 h and annual) and O3 (8 h). The CAA requires states to adopt plans to
achieve NAAQS and control emissions that may impact air quality in downwind states (USEPA, 2013). Thus identifying the
contribution of wildfires to air pollution, even marginal impacts at long distances from the fires, is important for air regulatory
efforts. For example, Liui et al. (2016) have estimated that on days that exceed regulatory PM, s levels in the western US, wildfires
account for >70% of total PM, s loading. Ozone production from wildfires impacting both rural and urban areas has been reported.
At remote monitoring sites in the intermountain west US, Lu et al. (2016) found that 31% of summertime Oz exceedances (days
when O3 exceeded the 8 h NAAQS) were attributable to wildfires. However, given the complex processes involved in Os
formation, quantifying the amount attributable to fire emissions in urban areas is particularly difficult (Gong et al., 2017; Brey and
Fischer, 2016; Jaffe and Wigder, 2012). Air regulators need accurate emission inventories to quantify the contribution of wildfires
to air pollution and thereby develop effective and efficient strategies to control anthropogenic air emission sources. Accurate
emission inventories also improve the ability of state air regulators to properly identify wildfire induced NAAQS exceedances,
which qualify for treatment under the EPA exceptional events rule (USEPA, 2018b).

Several biomass burning emission inventories that include CONUS are available (van der Werfet al., 2017; Zhang et al., 2017;
Wiedinmyeretal; 20 French et al., 2014; -Larkin et al., 2014; Wiedinmyer et al., 201 1Zhansetal;2617). Of these, the global
inventories Global Fire Emissions Database (GFED; van der Werf et al., 2017) and Fire INventory from NCAR (FLiNN;

Wiedinmyer et al., 2011) are probably the most widely used in atmospheric chemistry and air quality modelling. The Wildland
Fire Emissions Information System (WFEIS; French et al., 2014) provides daily fire emission estimates for CONUS for 2001—
2013. Given many options, why develop another emission inventory? In terms of wildfire emission estimates for CONUS, we
believe the emission inventory presented in this paper, the Missoula Fire Lab Emission Inventory (MFLEI), may improve upon
currently available inventories. We are able to employ comprehensive datasets on the distribution and assemblage of vegetation
cover and fuel loading (biomass available for combustion) that are available only for CONUS. MFLEI uses a forest type map and

anew forest fuel classification, both of which are based on a national forest inventory dataset, providing more accurate fuel loading
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estimates compared to the fuels layer used in WFEIS (Keane et al., 2013). The methodology used to develop MFLEI is similar to

that employed to develop carbon emission estimates for Canadian wildland fires (Anderson et al., 2015; De Groot et al., 2007). As

a retrospective inventory, MFLEI is able to leverage geospatial fire activity information including high spatial resolution burned
area and burn severity products that are not available for real-time inventories (e.g. FIiNN). Additionally, much of the fire activity
data used in MFLEI is produced by US land management agencies and is available only for US territory, and therefore is not used
in global inventories. Our inventory is also able to use a large and growing body of published emission factor data to craft emission
factors specifically for fire prone CONUS ecosystems.

Improved CONUS emission estimates will help quantify the contribution of wildfires to air pollution and thereby inform
decision making activities related to the control and regulation of anthropogenic air pollution sources. The ability of states to
properly identify wildfire induced NAAQS exceedances, which qualify for treatment under the EPA exceptional events rule
(USEPA, 2018b), may also be enhanced with an improved inventory. Further, given the benefit of improved fire activity
information, retrospective emission inventories may help identify and diminish deficiencies of real-time emission inventories,

which are used to forecast smoke impacts on air quality and reduce risks to public health.

2 Methods
2.1 Biomass burning emission model

MFLEI provides estimates of daily emissions of CO,, CO, CHs, and PM> 5 from wildland fires for CONUS. The MFLEI biomass

burning emission model is based on Eq. (1), given below. and the implementation and datasets are summarized in Figure 1. The

inventory has a spatial resolution of 250 m which is established by the MFLEI land cover map (Sect. 2.2). Burned pixels are
identified and assigned nominal burn dates using a spatially resolved burned area dataset developed from four fire activity datasets
(Sect. 2.3). The land cover classifications of the MFLEI map are used to assign fuel loading (biomass per unit area available for
combustion) and combustion completeness to burned pixels. Fuel loading of forested pixels is based on a fuel classification system
developed from forest inventory measurements (Sect. 2.4.1). A spatially explicit rangeland fuels map supplies fuel loading for
pixels of herbaceous and shrub cover types (Sect. 2.4.2). The inventory estimates emission intensities for each 250 m grid cell (k)

and day (t) using Eq. (1):
E;(kt) = EF(,K) x X; F(k,t,j) X C(k,t, ), (1)

where E; is the emission intensity of species i for grid cell k on day t in units of kg-i m? day!. The driving variables in Eq. 1 are
the pre-fire dry fuel loading for fuel component j (F; kg m?2), combustion completeness, which is the fraction of fuel component j
consumed by fire on the day the grid cell burned (C; day'), and the emission factor for species i, which is the mass of i emitted per
mass dry fuel consumed (EF; kg-i kg!). The inventory assumes that the burning and emissions for each burned grid cell occuris
burned-in-its-entirety on the estimated burn day (Sect. 2.3.2). Fuel loading (F), combustion completeness (C), and emission factors
(EF) all depend on grid cell properties. F is assigned based on a grid cell’s forest type group or taken from a rangeland fuel loading
map in the case of herbaceous and shrub cover types. C depends on fuel type and also on fuel moisture regime and burn severity
classification for forest pixels (Sect. 2.6). EF depend on the fuel type (Sect. 2.7). The mass of species i emitted on the day a grid
cell burned (EM;; kg-i day™) is the product of the emission intensity (E;) from Eq. 1 and the grid cell area (A), which is 62,500 m?.
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2.2 Land cover map

The MFLEI land cover map was created by combining a 250 m spatial resolution CONUS forest type group map with a rangelands
map. The forest type group map, the USDA Forest Service (USFS) National Forest Type Dataset (Ruefenacht et al., 2008; available
at https://data.fs.usda.gov/geodata/rastergateway/forest_type/), was used as the base map for the MFLEI land cover map. The forest

classification accuracy of the USFS forest type group map is generally around 60 to 70 percent (Keane et al., 2013; Ruefenacht et
al., 2008) with a forest/non-forest classification accuracy ranging from 80 to 98 percent (Blackard et al., 2008). Pixels mapped as
non-forest in the forest type group map were then assigned a cover type of shrub, herbaceous, or non-fuel using the CONUS
rangelands product of Reeves and Mitchell (2011). The MFLEI cover type map is shown in Fig. 24 and the cover type descriptions
are provided in Table 1. The LANDFIRE project (LANDFIRE, 2016) provides CONUS wide maps for Fuel Characteristics
Classification System (FCCS; Ottmar et al., 2007; McKenzie et al., 2012) and Fuel Loading Models (FLM, Lutes et al., 2009)

fuelbed models, both of which are suitable for estimating fuel consumption and emissions. FCCS is used in both the NEI+ (Larkin

et al., 2014) and WFEIS (French et al., 2014) CONUS fire emission inventories. We assembled a new map based on the USFS

forest type group map because it provides three important benefits over other land cover maps with respect to forests. First, the

accuracy of the forest type group map is significantly better than either the FCCS or FLM maps (Keane et al., 2013). Second, it

enabled us to use the Fuels Type Group (FTG) surface fuel classification system (Sect. 2.4.1) which provides a more accurate

estimate of average surface fuel loading than either the FCCS or FLM (Keane et al., 2013). Finally, because the USFS forest type

group classification is an FIA plot variable, we are able to use the large (>27,000 plots) dataset of FIA fuel measurements estimate

uncertainty in surface fuel loading and emissions (Sect. 2.9). During burned area mapping (Sect. 2.3.1) the land cover type codes

of the MFLEI are used to assign the fuel codes listed in Table 1 to burned pixels. Three of the mapped cover types were forest type
groups for which there was insufficient data to develop a fuel loading classification (Sect. 2.4.1). Therefore, during the burned
area processing, the fuel codes associated with these cover types, 1380, 1980, and 1990, were recoded as 1360, 1950, and 1950,
respectively. Also during processing of the burned area data, the fuel codes of forest pixels in the eastern US that were classified
as 1180, 1700, 1900, and 1950 were recoded to 2180, 2700, 2900, and 2950, respectively. This was done because the forest
inventory surface fuels dataset used to develop fuel classifications (Sect. 2.4.1) indicated substantially different fuel loadings
between eastern and western (11 western states) forests for these forest type groups. Burned grid cells classified as non-fuel in the
land cover map were assigned a fuel load = 0 and did not produce emissions. In post-emission processing of the dataset, the non-
fuel, zero emission burned pixels were assigned a cover type classification from the National Land Cover Database 2011 (NLCD)
(Homer et al., 2015). This was done to track wildfire impacts on agricultural and developed lands or identify possible agricultural
burning. Pixels that were not classified as forest or rangeland in the MFLEI land cover map were fixed as ‘No Data’ when the
NLCD dataset classification was forest, herb, or shrub.

The focus of MFLEI is wildfires, which are fires resulting from unplanned ignitions (e.g. lightning, arson, accidents). The other
types of open biomass burning common in CONUS are prescribed fires and agricultural fires. We define agricultural fires as the
burning of crop residue or preparation of fields for planting. Croplands are classified as non-fuel in the MFLEI land cover map
and are assigned zero emissions in the inventory. Prescribed fires are intentionally ignited to achieve land management objectives
(e.g. hazardous fuel reduction, ecosystem restoration, and preparation of rangeland for grazing). Prescribed fires are not excluded

from MFLEI, although given the focus on wildfires they are certainly underrepresented as discussed in Section 3.5.

2.3 Burned area

Burned area was derived from MODIS and Landsat based burned area products, a dataset of fire perimeter polygons mapped to

support fire management activities, and a fire occurrence database. Burn dates were primarily assigned based on the MODIS burned

5
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area product and active fire detection products from MODIS and the Visible Infrared Imaging Radiometer Suite (VIIRS). When a
burn date could not be assigned from MODIS or VIIRS data, it was estimated from generalized fire activity cycles and the fire size

and duration obtained from the fire occurrence database or other administrative records.

2.3.1 Burned area mapping

On an annual basis, potentially burned grid cells of the MFLEI land cover map were identified by an overlay of burned area
polygons and rasters in ArcMap. Four burned area/fire activity datasets were used to extract potentially burned pixels: Monitoring
Trends in Burn Severity (MTBS) fire boundaries (MTBS, 2017a; Eidenshink et al., 2007), the MODIS active fire based Direct
Broadcast Monthly Burned Area Product MCD64A1 (MCD64) (MCD64A1, 2016; Giglio et al., 2009), incident fire perimeters
from the Geospatial Multi-Agency Coordination Wildland Fire Support archive (GEOMAC, 2015), and a spatial wildfire
occurrence database (FOD) (Short, 2017).

The MTBS project maps fire boundaries and burn severity for large fires (> 404 ha in the west and > 202 ha in the east) across
the US from 1984 to the present (Eidenshink et al., 2007; MTBS, 2017c). MTBS fire boundaries are polygons representing burned
area detected from post-fire Landsat TM/ETM/OLI imagery (Eidenshink et al., 2007). The polygon attributes for each MTBS
boundary include a unique fire ID, fire start date, and fire name. The MTBS fire ID attribute was used to aggregate burned grid
cells by fire event and to filter the FOD point dataset to avoid double counting of fires. The primary MTBS product is thematic
burn severity rasters, which classify burn severity within the fire boundaries (Eidenshink et al., 2007; MTBS, 2017b). We used the
MTBS burn severity rasters to identify unburned regions within MTBS fire boundaries and to develop scaling factors to
approximate unburned patches for burned area mapped using MCD64, GEOMAC, and FOD, as described in Sect. 2.3.3.

The MCD64 product maps burned areas using 500 m MODIS imagery coupled with 1 km MODIS active fire detections (Giglio
et al., 2009). MCD64 is a monthly, 500 m resolution raster product that provides an estimated burn date for each pixel identified
as burned. We used MODIS Collection 5.1 of MCD64A1 (MCD64A1, 2016). The most recent version of the MCD64 A1 product,
Collection 6, became available in January 2017 (Giglio et al., 2015). The MCD64 product is the primary burned area data source
for the Global Fire Emission Database (GFED) (Giglio et al., 2013) during the MODIS era. Details for accessing the product can
be found on the GFED website: http://www.globalfiredata.org/ (last access: June 4, 2018).

The GEOMAC dataset is a collection of fire perimeter polygons. For large fire events, fire perimeters are periodically mapped
by incident management teams, typically using airborne infrared imagery. These incident perimeter polygons are produced to
support fire management activities. Since their purpose is identifying the fire perimeter, not mapping the actual area burned, the
area within a perimeter typically includes unburned regions. We attempt to compensate for this as discussed in Sect. 2.3.3. For
these reasons, we give the MTBS dataset precedence over the GEOMAC. Further discussion regarding the use of incident
perimeters as ‘ground-truth’ burned area may be found in Urbanski et al. (2009) and Key and Benson (2006). Final fire perimeters
from the GEOMAC dataset were checked against the MTBS fire boundaries using the products’ fire name attributes to remove
GEOMAC perimeters for fires present in the MTBS dataset.

FOD is a spatial database of wildfires that occurred in the United States from 1992-2015 generated from wildfire records
acquired from the reporting systems of federal, state, and local fire organizations (Short, 2017). FOD provides a point location for
each fire, not a spatial object that maps burned area. Other FOD dataset attributes used in our analysis include final fire area,
discovery date, containment date, fire name, fire code, and the MTBS fEire ID attribute from the MTBS perimeter dataset (MTBS
fires only). We used the FOD dataset to capture fires not included in the MTBS, GEOMAC, or MCD64 datasets. We filtered the
FOD dataset for fires contained in either the MTBS or GEOMAC datasets using the MTBS fFire ID or the fire name and fire code

attributes (for GEOMAC) from the datasets. Fires <4 ha in size were also removed due to their minor contribution to total burned
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area; while fires <4 ha accounted for 86 % of all fires in the FOD database for 2003—2015, they only comprised 1.5 % of total fire
area. Finally, FOD fires with locations that fell within a distance Dy (Dy = 2/A/m , where A is the FOD fire area) of any grid cell
identified as burned by either the MCD64 or GEOMAC datasets were removed. Following these filtering actions, MFLEI land

cover map grid cells within a distance D /2 of an FOD fire location were flagged as burned.

2.3.2 Burn date assignment

Of the four datasets used to map burned area, only MCD64 provides an estimated burn date, and these were assigned to MFLEI
grid cells identified as burned by the MCD64 product. Grid cells identified as burned by the MTBS, GEOMAC, or FOD datasets
were assigned an estimated burn date as follows. First, all grid cells (non-MCD64 sourced) were assigned a fire start date and,
when available a fire containment date, on a fire event basis. The MTBS, GEOMAC, and FOD datasets include fire event identifiers
and fire start dates (or discovery dates) which were added as attributes to burned grid cells. The FOD dataset also includes a
containment date for many fire events and it was added as an attribute to burned MFLEI grid cells when available. Most of the
fires in the MTBS and GEOMAC dataset are also included in FOD. Fire event identifiers, MTBS Fire ID, and the fire name and
fire code attributes from GEOMAC, were used to associate MTBS and GEOMAC sourced burned pixels with FOD fire events and
thereby assign containment dates when available. Next, grid cells identified as burned by the MTBS, GEOMAC, or FOD datasets

were assigned an estimated burn date using one of the following methods in order of precedence:
1) Grid cells within 500 m of a MCD64 sourced pixel were assigned that pixel’s burn date.

2) Grid cell burn dates were assigned from MODIS active fire detections (MCD14) (Giglio et al., 2003) using spatial and
temporal proximity criteria to associate active fire detections with burned grid cells. We assigned each active fire detection a
spatial buffer, Xy, which defines the maximum distance at which it can be associated with a MFLEI grid cell for purposes of
ascribing a burn date. MCD14 pixels have nominal dimensions of 1 km % 1 km; however, the actual size and location of a
detected active fire is unknown. In consideration of this spatial uncertainty, we assigned X, a default value of 2 km. The
dimensions of MCD14 pixels are 1 km x 1 km at nadir, but increase with distance off nadir, reaching 4.8 km (scan direction)
x 2 km (track direction) on the edges of the MODIS scanning swath (Nishihama et al., 1997). For off nadir pixels, X, was set
to the dimension of the scan direction when > 2 km (pixel dimensions were among the attributes of the MCD14 product used
in analysis). For each burned grid cell, we identified the nearest active fire detection located within a distance Xy and falling in
the time frame: (Dgtart — 3 days) to (Deont + 3 days), where D and Deone are the grid cell’s fire start date and fire containment
date attributes. The temporal criteria was used to eliminate any active fire detections from an unrelated fire that occurred during
a different time period. For the years 2014 and 2015, VIIRS I-band active fire detections (Schroeder et al., 2014) were also
used to assign pixel burn dates. The procedure was similar to that used with the MCD14 product, except that the VIIRS active
fire detection spatial buffer, Xp, was set to 750 m, which is twice the spatial resolution (375 m) of VIIRS I-band pixels at nadir.
Because the VIIRS I-band active fire detection product has significantly superior mapping capabilities compared to the MCD14
product (Schroeder et al., 2014), it was given precedence over MCD14 for assigning pixel burn dates. Burned grid cells not
associated with MCD64 were assigned a burn date equal to the date of the nearest active fire detection meeting the above spatial
and temporal criteria. The MCD14 and VIIRS I-band active fire data used was obtained from the USDA Forest Service Remote
Sensing Application Center’s Active Fire Mapping Program (https:/fsapps.nwcg.gov/afm/gisdata.php).
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3) Event based extrapolation. Following burn date assignment steps 1 and 2, 28% of the burned grid cells were without burn
dates. Forty-six percent of these undated grid cells were associated with fire events which had some grid cells that did have
burn dates. For these fire events, grid cells without burn dates were assigned the burn date of the nearest grid cell with a burn

date.

4) The final step for assigning burn dates addressed burned grid cells of “dateless” fire events, those without any burn date
associated with the grid cells. In order to assign estimated burn dates to these grid cells, which comprised 15% of all the grid
cells, we developed what we refer to as “burn day distributions”. These are empirical distributions of the fraction of event total
burned area as a function of days since ignition. One set of burn day distributions was derived using MTBS fire events which
had a containment date and also had > 95% of grid cells assigned a burn date in steps 1 or 2 above. From these fire events,
burn day distributions were created according to six fire size classes (in ha): 200-625, 625-1250, 1250-3125, 3125-6250,
6250-12,500, 12,500-25,000. The burn day distribution for the 12,500-25,000 ha size class is shown in Fig. Al and the
distributions for all six size classes are provided in the dataset supplement (file\Supplements\BurnDayDist.csv, see Sect. 4).
The burned grid cells of dateless fire events > 200 ha in size were assigned burn dates using the burn day distribution for the
appropriate size class. For fire events with a containment date, the burn day distribution was truncated to correspond to the fire
duration (containment date - fire start date) and normalized. When a dateless fire event was < 200 ha and had a containment
date, grid cell burn dates were assigned one at time cycling through the days between the fire start date and the containment
date in chronological order until all grid cells were assigned. Fire events <200 ha and without containment dates were assigned
durations using Table Al and the burned grid cells were distributed one per burn day by cycling through the burn days in

chronological order until all grid cells were assigned.

2.3.3 Unburned and lightly burned grid cells

Wildfires typically do not impact fuels uniformly across the landscape and it is not unusual for significant area within a fire
perimeter to be unburned or only lightly burned (Kolden et al., 2012). MTBS burn severity thematic classifications were used to
account for unburned or lightly burned regions (MTBS, 2017b). The MTBS burn severity thematic classifications were developed
to represent fire effects on above-ground biomass (Eidenshink et al., 2007; Schwind-, 2008). MTBS assigns six burn severity
classifications (BSEV) to pixels within fire boundaries: 1) unburned to low burn severity, 2) low burn severity, 3) moderate burn
severity, 4) high burn severity, 5) increased green, 6) no data. We elected to designate BSEV = 1 as unburned, which is consistent
with MTBS program publications that describe this classification as areas which are either unburned or where visible fire effects

occupy < 5 % of the site at the time of observation (Schwind, 2008). The increased green classification may indicate unburned

that exhibited more green at the time of the post-fire Landsat scene relative to the pre-fire scene. The increased green classification

was assigned to just 0.3% of MTBS pixels and thus has a negligible impact on our inventory. MFLEI burned grid cells associated

with a fire analyzed by the MTBS project were compared against a coarse scale MTBS thematic burn severity map (30 m original
resampled to the MFLEI 250 m grid using majority sampling). Coarse scale MTBS pixels classified as BSEV = 5 or BSEV = 6,
increased green or no data, respectively, were randomly re-assigned a value between 1 and 4. This reassignment was conducted
on a fire event basis in proportion to the frequency of pixels originally classified BSEV 1-4. MFLEI grid cells classified as BSEV
=1, “unburned to low severity”, in the coarse scale MTBS product were flagged as unburned. MFLEI burned grid cells not
associated with a fire analyzed by the MTBS project were randomly assigned a BSEV value based on a generic cover type-BSEV
empirical distribution developed from the CONUS wide MTBS thematic classification maps for 2003—2013. The cover type—
BSEYV distribution is shown in Table 2.
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2.4 Fuel loading

Fuel loading was represented with the 14 fuel components in Table 3. Models of forest fuel loading were developed using data
from the USFS Forest Inventory and Analysis (FIA) National Program as described in Sect. 2.4.1. The rangeland fuel product
(Sect. 2.4.2) provided spatially explicit fuel loadings for grassland and shrub ecosystems.

2.4.1 Forest fuel loading

Surface fuel loadings

We developed an expanded version of the Fuels Type Group (FTG) fuel classification system assembled by Keane et al. (2013)
using recently available FIA fuels data and also including plot data from the eastern US. The FIA inventory is comprised of three
phases of data collection as described in Bechtold and Patterson (2005). The inventory is designed to cover forested land (10 %
stocked with tree species, see Bechtold and Patterson (2005)), of all ownership across the US. Phase 1 sampling provides
information to stratify inventory ground plots and improve the precision of estimates of population totals (Bechtold and Patterson,
2005). In Phase 2, measurements are taken on the standard FIA base grid which has a density of approximately 1 sample location
per ~ 2428 ha (6000 acres). Phase 2 collects information such as height and diameter of standing trees and physiographic class
and land ownership. Phase 3 involves sampling of forest health indicators, such as the down woody material (DWM) indicator.
The DWN indicator estimates dead organic materials including downed woody debris, litter, and duff (Woodall and Monleon,
2008). The DWM indicator was used to estimate plot level surface fuel loading as described below. Phase 3 sampling is conducted
on a subset of Phase 2 plots (approximately 1/16 of Phase 2 plots). In the western US, the FIA units began collecting the DWM
indicator on all of their Phase 2 plots in the early 2000°s (Keane et al., 2013), thus the density of surface fuel plots used to assemble
the FTG classification is significantly higher in the west. Fig. 32 maps the locations of the FIA plots used to develop the expanded
FTG surface fuel classification for MFLEIL.

Our FTG classification is based on 27,124 plots compared with 13,138 used in Keane et al. (2013). We used only single
condition plots, plots where all four subplots were the same condition (land class, reserved status, owner group, forest type, stand-
size class, regeneration status, and stand density) (O’Connell et al., 2016). The FTG classification summarizes fuelbed component
loadings (Table 3) by FIA forest type groups using fuels data from the FIA Database acquired from the FIA DataMart website
(https://www.fia.fs.fed.us/tools-data; FIA, 2015). Five tables were accessed from the FIA dataset: REF_FOREST TYPE, COND,
PLOT, COND_DWM_CALC, and DWM_COARSE _WOODY_DEBRIS. A detailed description of these tables is provided by

O’Connell et al. (2016). For an in-depth description of the FIA sampling design, estimation, and analysis procedures see Woodall
and Monleon, 2008, O’Connell et al., 2016, and Woodall et al., 2013, and for an abbreviated summary see Keane et al. (2013).
Data assembled from the COND DWM_CALC table included loading (biomass per unit area) of fine woody debris by three size
classes: small, medium, and large (Table 3), duff loading and depth, and litter loading and depth. Data from the
DWM COARSE WOODY DEBRIS table was assembled to provide loadings of coarse woody debris by eight size/decay class
combinations (Table 3) following the methods described in Woodall and Monleon (2008). Best estimate loadings of the surface
fuel components were taken as the average values of all plots for each fuel classification and are shown in Table 4. The surface
fuel loading data for the 27,124 plots used to develop Table 4 and to derive uncertainty estimates in the emission modeling (Section
2.9) are included in the MFLEI dataset (file \Supplements\Fuel Load Plot Data.csv, see Sect. 4). The MFLEI land cover type
map assigns an FTG to all forest pixels. Four FTG, 180, 700, 900, and 950, had significant fuel loading differences between
western (11 western states) and eastern plots. Therefore, separate fuel classifications, west and east, were made for these FTG and
they are differentiated by the fuel code (Table 1) which is assigned during burned area mapping as described in Sect. 2.2. As
discussed in Keane et al. (2013), the variability of surface fuel loading within FTGs is quite large. Figure 43 plots the distribution
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of surface fuel loading for the FIA plots of three FTG, Loblolly/shortleaf pine (160), Douglas-fir (200), and California mixed
conifer (370). The surface fuel loading plot data have a log-normal like distribution with long tails. The high variability in surface

fuel loading is the primary source of uncertainty in the emission estimates for forest fires (Section 2.9).

Understory fuels

The loading of forest understory fuels, shrubs (vascular plants with woody stems that are not defined as trees by FIA Phase 2) and
herbs (non-woody vascular plants including but not limited to ferns, moss, lichens, sedges, and grasses), was derived from raster
maps of forest understory carbon (Wilson et al., 2013). The raster maps of forest understory carbon were combined with the USFS
FIA Forest Type Group map (Ruefenacht et al., 2008) to derive empirical distributions of understory fuel loading for each FTG
class (assuming a biomass carbon content of 50%). The fuel loading distributions were used to provide uncertainty estimates for
the emission modeling (Sect. 2.9). Partitioning of the understory fuel loading between shrubs and herbs was based on herb to
shrub ratios from the Fuel Characteristics Classification System (FCCS) and First Order Fire Effects Model (FOFEM) reference
fuel models (Ottmar et al., 2007; Riccardi et al., 2007; Lutes, 2016a). The empirical distributions of understory fuel loading for
all FTG classes are included in the MFLEI dataset (file \Supplements\Understory Fuel Dist.csv, see Sect. 4). Best estimate
loadings for herb and shrub fuel components were taken as the average values of all plots for each fuel classification and are shown
in Table 4.

Canopy fuels

Auvailable canopy fuel (ACF), the dry mass of canopy fuels likely to be consumed in a fully active crown fire (needles, lichen,
moss, and live and dead branch wood < 6 mm in diameter) (Scott and Reinhardt, 2001), was derived from FIA plot Treelist tables.
FIA Treelist tables (which are named TREE in the FIA database) provide a detailed inventory of trees on FIA plots (O’Connell et
al., 2017). FIA plots with Treelists are based on Phase 2 sampling which are far more numerous than the Phase 3 plots used to
derive surface fuel loadings (see above). We used the Treelist table variables: species code (SPCD), diameter (D), crown class
code (CCLCD), tree status (STATUSCD), and tree density (TPA) to estimate ACF associated with each Treelist table entry using
empirical equations from the literature following the approach outlined in the FuelCalc User’s Guide (Lutes, 2016b). FuelCalc is
a fuel management software system which can be used to calculate forest canopy characteristics at an inventory plot. For each of

363,060 FIA plots with a Treelist, stand level ACF was calculated using Eq. 2:
ACFstang = X1 (acf; X TPA)), 2

where the subscript i is the index for the softwood tree species in the stand and acf; and TPA; are tree level available canopy fuel
and tree density. acf; and TPA; are calculated as described in the Supplement. ACFg;,,q Were aggregated by FTG (an FIA plot
variable) and the mean was taken as the best estimate which are listed in Table 4. The ACF;,,4 aggregated by FTG were fit to
Weibull probability distribution functions to derive uncertainty estimates for the emissions modeling (Sect. 2.9). Best estimate

ACF and optimized parameters for fits to Weibull probability distribution functions (PDF) are provided in Table B1.

Total forest fuel loading

Average forest fuel loading is dominated by the surface fuels for all forest fuel types (25 FTG plus 4 eastern variants (see Sect.
2.2)), as shown in Figure 54. Greater than 70% of total fuel loading resides in the surface fuels for 25 of the 29 forest fuel types.
Surface fuel components (Table 3) are often grouped into litter, fine woody debris (fwd; down dead wood with diameter < 7.62

cm), coarse woody debris (cwd; down dead wood with diameter >=7.62 cm), and duff. These groupings reflect the surface to
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volume ratio of the fuel particles, an important determinant in the rate of fire spread (Scott and Burgan, 2005) as well as the
combustion characteristic of the fuels. Litter and fine woody debris tend to favor flaming combustion while coarse woody debris,
and duff especially, favor smoldering combustion processes (Urbanski, 2014). Figure 65 plots the fraction of total fuel load

residing in duff, litter, fine woody debris, and coarse woody debris for the 29 forest fuel types.

2.4.2 Rangeland fuel loading

Rangeland fuels were estimated using the Rangeland Vegetation Simulator (RVS) (Reeves, 2016) and began with delineating the
spatial domain of rangelands in CONUS (land cover type codes 1 and 2 in Figure 21), as described in Reeves and Mitchell (2011),
and constrained using the forest type map developed by Blackard et al. (2008). If a forest type was indicated for a given pixel in
the Blackard et al. (2008) map, no rangeland fuel data were estimated for that pixel. The vegetation form (herbaceous or shrub)
and type (e.g. Chihuahuan Mixed Desert and Thornscrub) were assigned from the Landfire Project (LF) Existing Vegetation Type
(EVT) geospatial data layer (LANDFIRE, 2016). Different methods were used to quantify woody and herbaceous fuels (Figure
76).

Shrub
The derivation of shrub fuel loading used two LF products in addition to EVT as input: Existing Vegetation Height (EVH) and
Existing Vegetation Cover (EVC). The height estimates at each pixel in the EVH product are thematic classes representing a range
of potential heights (Table C1). The range of potential heights provided by the EVH enables three values of shrub fuels to be
estimated at each pixel (median, maximum, and minimum). EVC represents the vertically projected percent cover of the live
canopy.

Generation of shrub fuel loading data involves several steps (Fig. 76) which are briefly described here. Details of the approach
are illustrated in Appendix C. First, crown dimensions are derived from EVH and the projected crown area on a horizontal surface

(PCH), the latter of which is estimated using Eq. 3 (Frandsen, 1983):

10g16(PCH) = —0.8471 + 2.2953l0g,(HT), 3)

where PCH is in cm? and HT is the estimated height class of shrubs in cm at each pixel (from the EVH product). Crown dimensions
are then used in one of 31 species specific equations from the RVS allometric library to estimate per stem biomass (PSB; kg stem-
1). Next, the estimate of stem density (SD) at each pixel, (stem ha') is used to expand PSB to a per-area basis. SD is estimated

as:
SD=(PCH/ 10%) * EVC 4)

where SD is stem density, and the value 108 converts cm? to a per hectare basis. In effect, the number of times PCH can be divided
into a hectare is scaled by the canopy cover (EVC). The total shrub biomass (TSB; kg ha'!') is the product of PSB and SD. This
four step process was conducted at each pixel using the minimum, maximum, and median shrub heights from EVH (Table C1) to

provide lower, upper, and middle estimates of fuel loading, respectively.
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Herb

The derivation of herb fuel loading used the EVT and MODIS growing season maximum Normalized Difference Vegetation Index
(NDVI), and the Soil Survey Geographic (SSURGO) annual productivity map, which consists of polygons with estimates of
rangeland productivity (dry-weight/area/year) for normal, favourable, and unfavourable production years (Soil Survey Staff,
20165). The SSURGO productivity data were derived from the USDA National Resource Conservation Service soil survey
geographic database (Soil Survey Staff, 20165). Herbaceous biomass is estimated as a function of the annual maximum NDVI
across 51 grassland vegetation types. The three SSURGO production values reported at each soil polygon were paired with the
average, minimum, and maximum NDVI values (from 2000-2016) for each of the 51 vegetation types dominated by herbaceous
species (Fig. 87). When this relationship is applied for each year in the time series between 2000 and 2016, an annual estimate of
rangeland production can be made at every pixel. The present year’s herbaceous production (from 2000-2016) is added to estimated
standing dead herbaceous vegetation (‘holdover”) resulting from previous growth (see below). Annual production added to the
holdover from previous years creates the ‘herbaceous loading’ pool (HL; Fig. 76).

Estimating the previous year’s standing dead or herbaceous litter material is based upon experimental (Irisarri et al. 2016) and
anecdotal observations. This topic is not widely studied across multiple ecosystems and it is difficult and time consuming to derive
experiments that track the fate of herbaceous growth, senescence and decomposition across multiple vegetation types. The paucity
of suitable plot data for estimating the amount of standing dead material is therefore based on observations of various vegetation
stands with significant herbaceous components throughout the western US. In addition, the USDA Agricultural Research Service
(ARS) recently provided results from 10 years of grassland observations on shortgrass steppe near Cheyenne, Wyoming and
standing dead values averaged 22% across treatments. This means that, on average, in shortgrass steppe, standing crop of the
present year includes 22% of the previous year’s production plus the present annual production. The function used in the RVS to
estimate the standing dead material is y = 100e"!4>%, which yields values of 22% at year 1 and 5% at year 2.

To capture the range of variability of the herbaceous response, the coefficient of variation (C.V. = mean / standard deviation
of the annual production between 2000 and 2016) was applied at each pixel dominated by herbaceous lifeforms. This yields three
potential values of herbaceous loading at each pixel (mean, mean +/- C.V.). Likewise the range of standing dead values over
2000-2016 was estimated using the mean +/- C.V. At this stage herbaceous loading (HL) and total shrub biomass loading (TSB)
have been produced and are mosaicked together to form a seamless depiction of fuels and are available for simulation of fuel
consumption and emissions. Raster files of the herbaceous C.V. and the shrub minimum and maximum are included in the MFLEI

dataset.

2.4.3 Total fuel loading

Best estimate total fuel loading of both forests and rangelands are mapped in Figure 98. Forest fuel loadings range from 1.3 to
13.3 kg m2 (Table 4, Fig. 54). Fuel loadings are considerably less for rangelands, varying from ~0.1 to 5.2 kg m, with a median
value of 1.8 kg m?2. Regions without a mapped fuel loading are classified as non-fuel and are largely agriculture, barren, developed

lands or water.

2.5 Fuel conditions

Fuel moisture content is a key driver of fuel consumption, especially for coarse woody debris and duff. The National Fire Danger
Rating System (NFDRS; Cohen and Deeming, 1985) provides fuel moisture models that classify dead fuels by time lag intervals
which are proportional to the fuel particle diameter. The NFDRS classifications for dead fuel moisture are 1 h, 10 h, 100 h, and
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1000 h corresponding to diameters of < 0.64, 0.64-2.54, 2.54-7.62, > 7.62 cm. The algorithms used to simulate surface fuel
consumption require fuel moisture content for 1000 h time lag fuels and duff. Surface fuel consumption was simulated for the four
fuel moisture regimes shown in Table 5. In the emission modeling, MFLEI grid cells were assigned the 1000 h time lag or 100 h
time lag fuel moisture content of the nearest NFDRS station for day of concern. 1000 h fuel moisture content is considered a proxy
for coarse woody debris (see Table 3). Data for NFDRS stations was obtained from the USFS Wildland Fire Assessment System
(WFAS) (Wildland Fire Assessment System, 2015) data archive. Missing values were filled by linear interpolation across days.

Duff moisture content was estimated using the 100 h fuel moisture content and empirical relationships of Harrington (1982).

2.6 Fuel consumption

Best estimates and ranges of consumption (i.e. combustion completeness), for forest surface and understory fuels for the four
moisture regimes used in the emission inventory are shown in Table 6. The best estimate values are based on simulations using
algorithms from the fire effects models CONSUME (Prichard et al., 2006) and FOFEM (Lutes, 2016a). The ranges, which were
used to estimate uncertainty in the fuel consumption simulations, were assigned as 10-20%. The best estimate and range for the
fraction of forest canopy fuel consumed was based on each pixels’ burn severity classification (Table 7), which were assigned as
described in Sect. 2.3.3. Fuel consumption for shrub and herbaceous grid cells used the natural fuel equations from CONSUME
(Prichard et al., 2006). The rangeland fuel consumption equations used do not include fuel moisture content and therefore were

independent of the moisture regime.

2.7 Emission factors

The composition and intensity of emissions produced by biomass burning varies with the relative mix of flaming and smoldering
combustion. Modified combustion efficiency (MCE), the molar ratio of emitted CO; to the sum of emitted CO, and CO (MCE
=ACO,/(ACO; + ACO)), is a widely used measure of the relative mix of flaming and smoldering combustion. Because the emission
factors (EF) of many species are correlated with MCE, it is a useful metric for extrapolating emissions factors from one set of
combustion conditions to another (Urbanski, 2014; Akagi et al., 2011). The MCE observed for wildland fires varies significantly
across fire types, for example average MCE values are around 0.94 and 0.93 for rangeland and southeastern forest fires,
respectively, but ~0.88 for wildfires in western forests (Urbanski, 2014). This difference in fire properties was accounted for in
the emission inventory by using three sets of EF (southern forests, western and northern forests, and rangelands). Data from several
field studies (Table S4) was used to model EF as a linear function of MCE for forest and rangeland fires (Table 8). The linear
functions were combined with best estimate MCE values to derive the EF used in the inventory (Table 9). Since the focus of
MFLEI is wildfires, the best estimate MCE used for western and northern forests is based on western wildfires. Sufficient field
measurement data of MCE and EF for southern wildfires could not be found in the literature. Therefore, the EF used for southern
forest fires are based on the large body of prescribed fire studies in the literature. The linear functions and their standard errors in
Table 8 were combined with MCE values, sampled from a normal distribution to account for within fuel group uncertainty (Table

9), to provide an estimate of the uncertainty in the EF which was used in the emission modeling uncertainty analysis (Sect. 2.9).

2.8 Emission estimates

The best estimates of fuel loading for the 14 fuel components (Fyj, Table 3) were assigned to forest pixels using the mapped forest
type group and associated fuel code (Sect. 2.2) and the FTG fuel classification system (Table 4). The fuel code, fuel moisture
regime, and burn severity classification were used to designate combustion completeness by fuel component for each pixel (Cy;)

using the best estimates from Table 6 and Table 7. Fuel loading for herbaceous and shrub pixels (Fy ;) was taken from the rangeland
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fuels map (Sect. 2.4.2). Herbs and shrubs were treated as single component fuels with a combustion completeness that is
independent of fuel moisture regime and burn severity classification. EFy;, were selected from Table 9 based on the fuel type and

then the best estimate emission intensities for CO,, CO, CHs, and PM> 5 were calculated using Eq. 1.

2.9 Uncertainty estimates

A Monte Carlo style analysis following the general approach outlined in the IPCC Guidelines for National Greenhouse Gas
Inventories (Eggleston et al., 2006) was used to estimate the uncertainty in emission intensities (kg m?) at the pixel level. The
method involved randomly selecting a sample of N input values (Xi, Xi+1,...,Xn) for the emission model (Eq. 1) and calculating
emission intensities (Ei, Ei+1,...,En), where Xi is the array of input values needed for a single emission calculation: fuel loading by
component (Table 3), combustion completeness (Tables 6 & 7), and EF (EFCO,, EFCO, EFCH4, EFPM,35), and Ei is the array of
emission intensities for CO,, CO, CHy4, and PM,s. The samples of input variables were generated based on each pixel’s fuel code
using the methods summarized in Table 10 and described in more detail below. The value of N was 500 for rangeland pixels. For
forest pixels, N was taken as the greatest of 500 or Npiots, Where Npiors is the number of plots in the FIA dataset for a given pixel’s
forest fuel code (Table 4). Next, quantiles (q = .05, .10, .25, .50, .75, .90, .95) of the emissions (Eq,) were calculated and saved.
The process was repeated B times, yielding Eqy,...Eqs and mean values (X5 E;/B) were calculated to provide uncertainty
estimates of the emissions. Convergence of the distributions was achieved with B =2000.

Forest surface fuels were generated by using fuel loading arrays sampled from the FIA plot data (included in the MFLEI dataset:
file\Supplements\Fuel Load_Plot Data.csv, see Sect. 4), i.e. each element i used surface fuel components from a single FIA plot.
This approach was chosen to preserve any correlations among surface fuel components. Uncertainty in the assigned moisture
regime and burn severity classification, which are used to determine surface and canopy fuel consumption, respectively, were not
considered in this analysis. Therefore, uncertainty analysis produced 464 sets of quantiles for forest pixels (29 forest fuel codes,
four moisture regimes, and four burn severity classifications). Burned forest pixels were assigned sets of quantiles based on forest
fuel code, moisture regime and burn severity classification.

The variability in pixel level shrub fuel loading was simulated using means and standard deviations based on the maps of the
mean, minimum, and maximum loading (Sect. 2.4.2); with the standard deviation in loading estimated as half the range in
maximum and minimum loading at each pixel. To reduce computational demands, shrub pixels were aggregated into bins of mean
loading in 50 g m2 increments (50 to 5500 g m2). For each 50 g m increment in mean loading, simulations were conducted using
25 increments of standard deviation each corresponding to 10 percentage points of the mean loading value (10% to 250%), resulting
in 2750 fuel loading elements (pairs of p and o). Similarly, pixel level variability in herbaceous fuel loading was simulated based
on pixel specific mean and standard deviation from the maps of the mean and the coefficient of variation (C.V. = o/p) of loading
(Sect. 2.4.2). As with the shrub fuel loading, the herbaceous pixels were aggregated to reduce computational demands. Herbaceous
pixels were grouped according to mean loading by 25 g m? increments (25 to 500 g m?). For each 25 g m? increment in mean
loading, simulations were conducted using 22 increments of standard deviation corresponding 5 percentage points of the mean
loading value from 5% to 110%, providing 440 fuel loading elements (pairs of u and ). Using the general approach described in
the first paragraph of this section, a set of emission quantiles were produced for each of the 2750 shrub and 440 herbaceous fuel
elements, with fuel loading simulated using a truncated normal distribution with the element’s p and o, and the combustion
completeness and EF using probability distributions described in Table 10. Since rangeland fuel consumption was estimated
independent of moisture regime and burn severity classification, these variables were not considered in the uncertainty analysis.
Each burned rangeland pixel was assigned a set of emission quantiles from the simulations based on its cover type (herb or shrub),

fuel loading, and fuel load uncertainty.
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The spatial and temporal resolutions required of fire emission inventory systems depend on the specific applications for which
they are being used. For regulatory related air quality modeling the EPA recommends a horizontal grid resolution of < 12 km for
O3 and PM, s NAAQS (USEPA, 2007). Therefore the uncertainty estimation approach described above was applied aggregating
burned pixels to a 10 km x 10 km grid. The resultant dataset at 1 d and 10 km spatial resolution provides a more relevant
representation of the uncertainties of the emissions when used in typical air quality applications. The approach followed that
outlined above, except that the emission intensities for each sample, Ei, were the sum of emission intensities for all pixels within
each 10 km x 10 km grid cell on a given day. Only grid cell days with > 4 burned pixels were considered for this uncertainty

analysis, this excluded 9% of burned area over the 2003-2015 period.

3. Results
3.1 Annual, seasonal, and monthly

The MFLEI annual burned area, fuel consumed, and PM: s emitted for 2003-2015 are shown in Figure 109. The average area
burned was 22,891 km? y'!; forest accounted for 44% of burned area with the balance split between herb (29%) and shrub (27%)
cover types. The maximum annual burned was 40,714 km? in 2011 which was >5 times the minimum of 7688 km? in 2004. Fuel
consumed averaged 41.4 Tg y'!, with extremes of 16.6 Tg in 2004 and 61.2 Tg in 2012. The annual rank in fuel consumed differed
from burned area due to the far greater fuel loading of forests (Sect. 2.4.3). While forest comprised only 44% of burned area over
the period, they accounted for 87% of fuel consumed. Average PM, s emissions were 733 Gg y! and, as with fuel consumed, 2004
and 2012 were the extreme years at 270 Gg and 1216 Gg, respectively. There are slight differences in the ranking of annual fuel
consumption and PM; 5 emitted resulting from the different EFPM, 5 used for southern and western/northern forests (Table 9).
Maps of annual burned area, fuel consumed, and PM; s emitted averaged over 20032015 are shown in Figure 110. In the eastern
two-thirds of the domain, fire activity and emissions are spread broadly across the southern tier while being comparatively sparse
in the north. In the west (western 11 states), fire activity has no latitudinal split, but there are large pockets where emissions are
limited or absent. Much of the area in the west without emissions are in desert regions of the southwest with sparse vegetation.
The monthly distributions of burned area, fuel consumption, and PM, 5 emitted over 2003-2015, broken down by cover type,
are plotted in Figure 12+. Burned area has a bimodal distribution with peaks in April and August. Summer (June, July, August)
and spring (March, April, May) accounted for 49% and 31% of burned area, respectively. The ratio of herb and shrub to forest
burned area was similar for summer (1.3) and spring (1.5), but differs considerably between the peak months of April (2.7) and
August (1.0). August was the most significant month for emissions, accounting for 32% PM 5 emitted, more than twice the share
of the next highest month, which was July at 15%. While April had the third highest burned area (15% of total), it accounted for
only 6.7% of PM, s emitted. The geographic distribution of emissions varies considerably by season as may be seen in Figure 132.
Understanding the spatiotemporal distribution of emissions is aided by aggregating the emissions according to six regions in
Figure 143. Roughly 8% of fuel consumption and 6% of PM,.s emissions occurred in the winter months (Fig. 124) and were largely
limited to the southeast and southcentral regions (Figs. 132). Winter PMa s emissions comprised 25% and 16% of total PM, s
emissions in the southeast and southcentral, respectively (Fig. 154). In the southeast, 74% of winter emissions resulted from fire
activity in Florida and along the gulf coast. The majority of southeast (52%) and southcentral (62%) emissions occurred in the
spring. Fires in the Flint Hills region of eastern Kansas and northeast Oklahoma accounted for 44% of southcentral spring
emissions over the 13 year period. Summer was the most significant season for fuel consumption and emissions due to fire activity
in the west (Fig. 132). The majority of CONUS wide fuel consumption (51%) and PM2 s emissions (59%) occurred during the

summer. On a regional basis, southwest emissions peaked during June (46%) and during August in both the northwest (59%) and
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California (40%). Northwest emissions were concentrated July — September (95%), while California emissions were spread

symmetrically across June—October (Fig. 154).

3.2 Daily

‘While regional level summaries on a seasonal or monthly basis are useful for understanding the general spatiotemporal distribution
of wildfire emissions, daily emissions are more relevant for appreciating the potential air quality impacts of fires. For instance,
US NAAQS includes a 24 h standard for PMys and an 8 h standard for Os (the latter of which can be produced through
photochemcial processing of VOC and NOx present in smoke plumes (Jaffe and Wigder, 2012). Wildfires are highly episodic and
even though they may persist for weeks, a significant share of a wildfire’s emissions generally occur on a handful of days. For
example, consider the typical large (> 2000 ha) wildfire in the west, our inventory indicates more than half-half of its total PMy s
emissions occur on a single day. In the west, 1171 fires > 2000 ha in size accounted for ~85% of burned area and PM, s emission
from 2003-2015. To characterize wildfire temporal intensity, emissions of PM, s were summed by region for each of the 4748
days of the inventory. Figure 165 plots the fraction of regional, 2003—2015 PM, s emissions released on peak emission days, the
top first, second, and fifth quantile of days. Since the north accounted for only 3% of total wildfire emissions, it has been excluded
from this analysis to simplify the discussion. Figure 165 shows that a small fraction of days (5%) are responsible for the majority
of wildfire PM,.s emissions in all regions except the southeast. In fact, the percent of PM, s emissions during just the top 1% of
days was > 33% in California and the northwest, > 25% in the southcentral and southwest, and ~13% in the southeast. The
spatiotemporal concentration of emissions is further illustrated in Figure 176, which plots the cumulative distribution of daily PM> 5
emissions aggregated on a 10 km x 10 km grid. Five percent of the grid cell days produced 69% of total PM» s emitted, and 10%
of grid cell days were responsible for 82% of total PM, s emitted. This analysis highlights the importance of quantifying wildfire
emissions on a daily time step when assessing the potential impacts of wildfires on regional air pollution; assessments based on

emissions aggregated seasonal, monthly, or even weekly may significantly understate the likelihood of acute pollution episodes.

3.3 Comparison with non-fire emission sources

Next we compare our wildfire PM» s emissions with those from other sources as estimated in the EPA 2014 National Emission

Inventory (NEI14; USEPA, 2014). We focus on the west (the 11 states of the northwest, southwest, and California regions, Fig.

143a) since this region accounts for 72% of total wildfire PM, s emissions (Fig. 143b) and the emissions are produced with a high
temporal intensity (Figs. 154 & 165) and have resulted in severe air pollution episodes (Fann et al., 2018; Kochi et al., 2012;
Rappold et al., 2014). Non-fire PM, s emission estimates for the western states were extracted from the NEI14 Tier 3 summary
state level data (USEPA, 2018c). The NEI14 PM, s emissions were limited to non-fire sources by excluding the Tier 3 source
categories of “agricultural fires”, “forest wildfires”, and “prescribed burning”. The NEI14 provides annual emission estimates for
2014, which are plotted with the annual sum of MFLEI PM: s emissions for the west for 2003-2015, in Figure 187. The 2003—
2015 annual average western wildfire PM, s emitted is 525 Gg y! (range 126-1034 Gg y!) compared with the non-fire source
strength of 657 Gg y! in 2014. As discussed above, when inferring possible air quality impacts of wildfire emissions, 1 d is an
appropriate time scale. Assuming the NEI14 emissions are a reasonable proxy for annual non-fire emissions across 2003-2015,
and neglecting the seasonal variability of emissions, daily non-fire PM, s emissions are 1.80 Gg d!. For all 4748 days of MFLEI
period, we calculated the wildfire to non-wildfire PM> 5 emission ratio; the number of days the ratio exceeds certain thresholds is
shown in Figure 198. Across the west, wildfire emissions greatly exceed non-fire sources on active fire days. On ~-10% of days,

wildfires emissions are more than twice non-fire sources and on 60 days they were >10 times non-fire sources.
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3.4 Uncertainty

The MFLEI pixel level best estimates of fuel consumption (FC) and emissions (ECO,, ECO, ECH4, EPM>5) were derived as
described in Sect. 2.8 and the uncertainty in these estimates were characterized with quantiles (q=.05, .10, .25, .50, .75, .90, .95)
derived from Monte Carlo style simulations (Sect. 2.9). Here we summarize the pixel level uncertainty in terms of the relative
interquartile range: RIQR = (q75 — q25)/X, where 75 and qas are the 75% and 25% quantiles and X is the best estimate of FC or
EPM, 5; the distributions are shown in Figure 2049. The mean RIQR of both FC and EPM; 5 are ~ 67% for forest cover type and ~
47% for herb/shrub. At the pixel level, the uncertainty is driven by the variability in fuel loading. The difference in the uncertainty
estimates between forest and herb/shrub cover types results primarily from the high variability in forest fuel loading (Fig. 43). The
mean RIQR are nearly 50% higher for forest compared with herb/shrub; however, the latter does have a long positive tail with ~
11% of pixels having RIQR > 90%. These high uncertainty non-forest pixels are shrub vegetation with low fuel consumption (<
350 g m?).

As discussed in Sect 3.2, CONUS wildfire emissions are temporally and spatially concentrated. ~Considering this
spatiotemporal concentration of emissions and the grid spacing typical of regional and national scale air quality modeling (4 to 12
km; USEPA, 2007; NOAA, 2018), we also estimated the uncertainty in daily MFLEI emissions aggregated on 10 km x 10 km grid
(Sect. 2.9). For purposes of air quality modeling and air regulatory activities, the uncertainty of these spatially aggregated
emissions provides a more relevant metric than the pixel level uncertainty presented above. Uncertainty in the daily, aggregated
FC and PM, s emissions are shown in Figs. 210a-b, expressed in terms of the RIQR (calculated using the quantiles and best
estimates for the spatially aggregated data). Compared with the pixel level data, the RIQR is reduced for the aggregated emissions
and a difference emerges between FC and EPM, 5, the mean RIQR is 17% for FC and 26% for EPM.s. For the aggregated data
we also show, in Figs. 218¢-d, the distribution of relative interdecile range, RIDR = (qoo — qi0)/X, where qi0 and qoo are the 10%
and 90% quantiles (Monte Carlo style simulations, Sect. 2.9) and X is the best estimate for FC or EPMy;s. The mean RIDR is 32%
for FC and 50% for EPM:s.

3.5 Prescribed and-agriculturalfires

While the focus of MFLEI is wildfires, it does include an unquantified contribution from prescribed fires — fires intentionally
ignited to achieve land management objectives. The MTBS product does contain large (> 404 ha the west and > 202 ha elsewhere)
prescribed fires, over 2003-2015 ~ 13% of the MTBS burned area was due to fires classified as prescribed or unknown.
Additionally, the MODIS burned area product (Giglio et al., 2015) used to supplement MTBS does not distinguish between
wildfires and prescribed fires and likely includes some prescribed fire burned area. Information on prescribed fires by federal and
state agencies indicate an average fire size of ~ 60 ha (NIFC, 2018). Considering the large fire focus of MTBS and the fact that
prescribed fires are often low intensity understory burns, which are difficult to detect by satellite (Hawbaker et al., 2008), we
believe prescribed fires account for a small share of total MFLEI emissions. Unfortunately, there is not a nationwide database that
inventories prescribed fire on federal, state, and private lands. The 2015 National Prescribed Fire Use Survey Report (Melvin,
2016), based on a 2014 comprehensive survey conducted by state forestry agencies, summarizes prescribed fire activity at national
and regional levels. Melvin reported CONUS prescribed fire burned area as 35,222 km? in 2014. For the same year, the MTBS
prescribed fire burned area was 11,954 km? (prior to reduction for unburned to low burn severity patches as described Sect. 2.3.3),
suggesting MFLEI may be be missing up to two-thirds of CONUS prescribed fire burned area. The regional summary in Melvin
reports prescribed fire burned area of 25,049 km? in their southeast region (the southeast and southcentral regions used in our study,
excluding Kansas and Missouri). The 2014 MTBS data reports only 4651 km? of prescribed fire burned area for the same region,

indicating most of MFLEI underrepresentation in prescribed fire emissions occurs in these southern states.
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3.6 Comparison with other emission inventories % Formatted [—i
Formatted [—ﬂ

Next we compare the estimated fuel consumption and PMp 5 emissions of MFLEI with three fire emissions inventories: GFED Formatted [ﬂ
v4.1s (GFED, 2018), FINN v1.5 (FINN, 2018), and WFEIS v0.5 (WFEIS, 2018). In this comparison, we have excluded fuel Formatted [—j
consumption and PM, 5 emissions associated with agricultural burning from all three inventories. Regional annual fuel /{ Formatted [—i
consumption from the four inventories is plotted in Figure 22, Statistics comparing MFLEI regional annual fuel consumption \[ Formatted ﬁ
versus the other inventories are given in Table 11. There is significant variability in the agreement between MFLEI and the other \[ :::::t:: Q
inventories. Across the west (NW, CA, SW), MFLEI annual fuel consumption is well correlated with both FINN and GFED (Table /; Formatted [_i
11). MFLEI fuel consumption exceeds the mean of FINN, GFED, and WFEIS in nearly all years and is generally the highest in Formatted [—i
northwest and southwest regions (Fig. 22a). In the east regions (SC, SE, NO), MFLEI fuel consumption fluctuates about the Formatted [ﬂ
FINN/GFED/WFEIS mean value (Fig. 22b). In terms of variability and mean absolute relative difference, MFLEI agrees best with / Formatted [—i
GFED. Formatted [—ﬂ
Regional annual PMp s emissions are shown in Figure 23 and statistics comparing MFLEI PMp s emissions versus the other% Formatted ﬁ
inventories are given in Table 12. As with fuel consumption, across the west (NW, CA, SW), MFLEI annual PM, s emissions are ?{{ ::::::: Q
well correlated with both FINN and GFED, while correlation with WFEIS is weak in most regions (Table 12). In the west, MFLEI /{ Formatted [—j
annual PM, 5 emissions are highest among the inventories in most years (Fig. 23a). The greater PM2.5 emissions of MFLET in the //[ Formatted [j
west are partly attributable to the use of a larger EFPM2.5 for western forests (22.8 g kg'!, Table 9) compared with FINN (129 g \{ Formatted [—}
kg), GFED (12.6 g kg'!), and WFEIS (11.9 g kg'!). Because WFEIS uses combustion phase dependent EFs applied in a non- \( Formatted [—ﬂ
transparent manner, we have taken EFPM, s as the ratio of the sum of EPM; s to the sum of fuel consumed for all western forests Formatted ﬁ
MFLEI uses EFPM; 5, from the synthesis of Urbanski (2014) that accounts for the lower MCE measured for wildfires in western Formatted ﬁ
conifer forests (Urbanski, 2013). FINN and GFED use EFPM, 5 from Akagi et al (2011), with updates from May et al. (2014), Formatted [—i
which are based on emission measurements of prescribed fires, most of which occurred in the sputheast US. WFEIS employs :::::2: [[;j
EFPM, 5 measured for prescribed burns of logging slash. The higher EFPM, 5 used by MFLEI for wildfires in western forests is Formatted [_i
consistent with recent emission measurements of Liu et al. (2017). In a study of western US wildfires, Liu et al. (2017) reported Formatted [—i
an average EFPM,, = 26.0 g kg'!, (PM,, = particulate matter with an aerodynamic diameter < 1 um), more than 2 times the EF for Formatted [ﬂ
prescribed fires. Formatted [—i
) Formatted [—i
Formatted [—j
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Formatted [—ﬂ

4. Data Availability Formatted =
. . . . . . . Formatted [—i

MFLEI is archived and publicly available at the USDA Forest Service Research Data Archive with the DOI number Formatted [ﬂ
https://doi.org/10.2737/RDS-2017-0039. Formatted [—ﬂ
Formatted [ﬂ

5. Conclusions :::::E Q
We have presented the Missoula Fire Lab Wildfire Emission Inventory (MFLEI), a retrospective, wildfire emission inventory for Formatted [—j
CONUS. MFLEI was developed from multiple datasets of fire activity and burned area, a newly developed wildland fuels map Formatted [—j
and an updated emission factor database. Daily burned area was constructed using a combination of Landsat-based burn severity Formatted [ﬂ
data (MTBS), MODIS burned area and active fire detection products, VIIRS active fire detections, incident fire perimeters, and a Formatted [ﬁ
Formatted [—ﬂ
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spatial wildfire occurrence database. Forest fuel loading was based on a large set (> 27,000 sites) of forest inventory surface fuel
measurements. Herbaceous fuel loading was estimated using site specific parameters from a soil survey database with NDVI from
MODIS. Shrub fuel loading was quantified by applying numerous allometric equations linking stand structure and composition
to biomass and fuels, with the structure and composition data derived from geospatial data layers of the LANDFIRE Project.
MFLEI provides estimates of daily wildfire burned area, fuel consumption, and pollutant emissions at a 250 m x 250 m resolution
for 2003-2015. The inventory includes a spatially aggregated emission product (10 km x 10 km, 1 d) with uncertainty estimates
to provide a more relevant representation of emission uncertainties for use in air quality modelling. MFLEI will be updated with
recent years as the MTBS data become available. The focus of MFLEI is wildfires and does not include most prescribed fire
activity. In the southeast, where prescribed fire burned area is estimated to greatly exceed that of wildfires on average, the
prescribed fire emissions not included in MFLEI are likely to be substantial.

MFLEI CONUS average wildfire fuel consumption and PM, s emissions were estimated to be 41.4 Tg y' and 733 Gg y',
respectively over 2003-2015. Annual CONUS PM, s emissions showed significant variability with a coefficient of variation =
0.41 and a maximum to minimum ratio of 4.5. Summer was the most active season, over half (59%) of total PM, s emissions
occurred in the summer (June-August), with August alone accounting for 32% of the total. Emissions were highly concentrated
both temporally and spatially. Just 5% of days accounted for 57% of total PM, s emitted over 2003—2015. At the spatial scale of
10 km x 10 km grid, 69% of total PM, 5 originated from 5% of grid cell days with fire activity. Fires in the west (western 11 states)
accounted for 56% of burned area, 60% of fuel consumption, and 72% of PM, s emitted over 2003—2015. The southeast and south
central regions were largely responsible for the balance of burned area and emissions. The northern tier states across central and
eastern CONUS produced < 3 % of total PM, s emissions. In the west, wildfire PM, s emissions dwarfed those from non-fire
sources during active fire periods. Comparison of MFLEI PM> s emissions with the EPA 2014 National Emission Inventory
indicated that in the west, wildfires exceeded all non-fire primary sources of PM, s by a factor of > 5 on nearly 200 days over
2003-2015. Quantified with the relative interdecile range, the uncertainties in daily fuel consumption and PM, s emissions, at the

spatial scale of 10 km x 10 km, were estimated to be 32% and 50% respectively. A regional comparison of MFLEI with three fire

emission inventories, FINN v1.5, GFED v4.1s, and WFEIS v0.5, showed MFLEI predicted significant greater PMp s emissions ——| Formatted: Subscript

/{ Formatted: Subscript

across the west, in part due to the use of a larger EFM, s for wildfires in forests.

Appendix A

Table Al. Average small fire duration based the fire discovery and containment dates from years 2003-2015 of the Fire Occurrence
Database (Short, 2017).

Appendix B

Table B1. Available canopy fuel (ACF) best estimates (see Sect. 2.4.1) and optimized parameters for Weibull pdf fits. Parameters

predict ACF in units of ton acre-!

Appendix C

This appendix demonstrates the four step process used to estimate shrub fuel loading. Three LF existing vegetation products are
used: EVT, EVC, and EVH. The height estimates at each pixel in the EVH product are thematic classes representing a range of

potential heights (Table C1) which enables three values of shrub fuels to be estimated at each pixel (average, maximum, and
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minimum). Likewise, the EVC product is thematic classes which providing a 10 percentage point range in potential vegetation
cover (Table C2). However, the shrub fuel loading calculation simply uses the median value vegetation cover range. To illustrate,
consider a pixel with an EVT of class of Big Sagebrush shrubland, an EVH class of 105, and an EVC class of 112 the fuel loading
proceed as follows:

First, the crown volume is derived from the three EVH estimates (0.5, 0.75, and 1.0 m) as the product of these EVH values and

the projected crown area on a horizontal surface (PCH), the latter of which is estimated using Eq. C1 (Frandsen, 1983):

10g16(PCH) = —0.8471 + 2.2953l0g(HT), (1)

where PCH is the projected horizontal crown area in cm? and HT is the estimated shrub height in cm (from the EVH product). Per
stem above ground biomass estimates are then derived from the crown volume estimates using an allometric equation for Sagebrush

shrubs from the RVS allometry library:
PSB = 201.4062 + 1.162 x VOL, (C2)

where PSB is per stem biomass (g stem™!) and VOL is crown volume (dm?). Next, the pixel stem density, SD, (stem ha!) is

estimated to expand PSB to a per-area basis:

1.0e8
PCH

SD = ( ) x CC, (C3)

where SD is stem density, CC is the fractional canopy cover from EVC (Table C2), and the value 1.0¢} converts cm? to a per

hectare basis. The total shrub biomass (TSB; kg ha™') is the product of PSB and SD. Figure C1 shows the TSB estimates for the
pixel used in this example. This process was conducted at each pixel with a shrub EVT using the range of heights from EVH to
provide lower, upper, and middle estimates of fuel loading. The allometric equation used to estimate PSB depends on the pixel

EVT and is selected from 31 available in the RVS allometry library.

Supplement link provided by journal.
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Tables

Table 1. MFLEI cover types and fuel codes

Coxézii‘t:ype Fuel code Cover type Generalized cover type

-99 0 Non-fuel Non-fuel

1 1 Herbaceous Herbaceous

2 2 Shrub / scrub Shrub
100 1100 White / red / jack pine group Northern conifer
120 1120 Spruce / fir group Northern conifer
140 1140 Longleaf/ slash pine group Southern conifer
160 1160 Loblolly / shortleaf pine group Southern conifer
180 1180 /2180 Pinyon / juniper group Pinyon juniper
200 1200 Douglas-fir group Western conifer / softwood
220 1220 Ponderosa pine group Western conifer / softwood
240 1240 Western white pine group Western conifer / softwood
260 1260 Fir / spruce / mountain hemlock group Western conifer / softwood
280 1280 Lodgepole pine group Western conifer / softwood
300 1300 Hemlock / Sitka spruce group Western conifer / softwood
320 1320 Western larch group Western conifer / softwood
340 1340 Redwood group Western conifer / softwood
360 1360 Other western softwoods group Western conifer / softwood
370 1370 California mixed conifer group Western conifer / softwood
380 1380 Exotic softwoods group Western conifer / softwood
400 1400 Oak / pine group Hardwood
500 1500 Oak / hickory group Hardwood
600 1600 Oak / gum / cypress group Hardwood
700 1700/2700 Elm / ash / cottonwood group Hardwood
800 1800 Maple / beech / birch group Hardwood
900 1900/2900 Aspen / birch group Western hardwood
910 1910 Alder / maple group Western hardwood
920 1920 Western oak group Western hardwood
940 1940 Tanoak / laurel group Western hardwood
950 1950/2950 Other western hardwoods group Western hardwood
980 1980 Tropical hardwoods group Western hardwood
990 1990 Exotic hardwoods group Western hardwood
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Table 2. MTBS burn severity class percent distribution by generalized cover types for 2003-2013.

Generalized Cover Type BSEV=1 BSEV=2 BSEV=3 BSEV =4
Herbaceous 18 68 11 3
Shrub 17 57 22 4
Northern conifer 18 34 19 29
Southern conifer 25 61 12 2
Pinyon juniper 24 43 25 8
Western conifer / softwood 25 32 22 21
Hardwood 27 62 10 1
Western hardwood 18 38 25 19
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Table 3. Description of fuel components

General fuel type Fuel component Strata Description
Loose, freshly fallen plant material found on the top surface of
Litter Litter Surface the forest floor which includes needles, leaves, cones, and dead
herbaceous stems.!
Duf Duff Surface Layer just below the litter consisting of partially decomposed
biomass whose origins cannot be determined.!
Down dead wood 1 h (small woody) Surface <1 cm diameter
10 h (medium woody) Surface 1-2.5 cm diameter
100 h (large woody) Surface 2.5-7.6 cm diameter
s3t09 (coarse woody debris) Surface Sound? logs 7.6-22.9 ¢cm diameter
s9t020 (coarse woody debris) Surface Sound? logs 22.9-50.8 cm diameter
sgt20 (coarse woody debris) Surface Sound? logs >50.8 cm diameter
13t09 (coarse woody debris) Surface Rotten? logs 7.6-22.9 cm diameter
r9t020 (coarse woody debris) Surface Rotten? logs 22.9-50.8 cm diameter
rgt20r (coarse woody debris) Surface Rotten? logs >50.8 cm diameter
Herb Herb Understory Herbs (above ground portion)
Shrub Shrub Understory Woody shrubs (above ground portion)
Canopy Available Canopy Fuel (ACF) Canopy Foliage and twigs < 6 mm diameter

'0’Connell et al. (2016)

2Sound logs are logs assigned FIA decay classes 1, 2, or 3 and rotten logs are logs assigned FIA decay class 4 or 5 (O’Connell et al., 2016)
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Table 4. Fuel loading (kg m?) by fuel component for the Fuel Type Group (FTG) Classification. Litter and duff depth in cm. See Table 3 for descriptions.

Fuel FTG No. - Litter Duff
Code Code Plots Litter depth 1 hr 10 hr 100 hr  s3t09 $9t020 sgt20 r3to9 19t020 rgt20 Duff depth Herb Shrub ACF

1100 100 45 2.34 0.44 0.03 0.14 0.36 0.38 0.21 0.05 0.04 0.04 0.00 4.12 0.30 0.06 0.23 0.50
1120 120 100 0.65 0.34 0.02 0.10 0.32 0.48 0.18 0.01 0.10 0.05 0.00 10.21 2.08 0.03 0.28 091

1140 140 79 3.14 0.59 0.01 0.09 0.17 0.11 0.04 0.00 0.02 0.01 0.00 3.26 0.24 0.05 0.47 0.29
1160 160 266 3.06 0.56 0.01 0.10 0.28 0.12 0.06 0.00 0.05 0.02 0.00 2.64 0.19 0.03 0.49 0.16
1180 180 5626 043 0.12 0.02 0.06 0.16 0.10 0.07 0.01 0.02 0.03 0.00 0.38 0.04 0.10 0.31 0.68
1200 200 3558 0.64 0.34 0.04 0.14 0.50 043 0.50 0.45 0.10 0.29 0.28 1.39 0.28 0.07 0.42 1.18

1220 220 2163 1.19 0.34 0.01 0.09 0.26 0.26 0.24 0.11 0.04 0.09 0.08 1.30 0.15 0.10 0.30 0.46
1240 240 30 0.78 023 0.01 0.06 0.19 0.25 0.42 0.56 0.07 0.11 0.09 1.33 0.15 0.24 0.36 0.41

1260 260 3000 0.53 0.27 0.03 0.12 0.42 0.58 0.84 0.31 0.15 0.41 0.22 1.74 0.35 0.06 0.36 1.23
1280 280 1334 0.86 0.25 0.02 0.09 0.38 0.89 0.49 0.06 0.18 0.24 0.07 222 0.25 0.20 0.20 0.67
1300 300 521 0.66 0.35 0.03 0.16 0.53 0.67 1.35 1.88 0.18 0.71 0.94 2.66 0.54 0.25 0.31 1.38
1320 320 159 1.37 0.40 0.04 0.17 0.65 1.24 0.90 0.17 0.14 0.35 0.05 3.29 0.37 0.46 0.05 0.63
1340 340 63 3.00 0.87 0.03 0.16 0.52 0.55 0.74 2.03 0.12 0.37 0.71 273 0.31 0.09 0.49 1.66
1360 360 796 0.52 0.15 0.01 0.05 0.15 0.15 0.17 0.05 0.03 0.07 0.05 0.68 0.08 0.13 0.20 0.39
1370 370 894 1.70 0.49 0.02 0.15 0.43 0.40 0.48 0.60 0.06 0.21 0.37 1.85 0.21 0.14 0.32 1.04

1400 400 133 2.68 0.49 0.01 0.12 0.43 0.22 0.12 0.00 0.06 0.04 0.00 2.58 0.18 0.05 0.42 0.13
1500 500 1375 1.79 0.39 0.01 0.09 0.32 0.24 0.13 0.01 0.04 0.03 0.01 1.22 0.10 0.00 0.37 0.06
1600 600 129 1.37 0.30 0.01 0.10 0.29 0.15 0.15 0.03 0.04 0.09 0.00 328 0.28 0.00 0.39 0.33
1700 700 50 1.14 0.36 0.03 0.15 0.85 0.32 0.39 0.04 0.04 0.12 0.12 2.40 0.29 0.01 0.25 022
1800 800 336 1.97 0.44 0.02 0.14 0.44 0.54 0.37 0.06 0.09 0.09 0.00 3.39 0.29 0.07 0.22 0.21
1900 900 619 1.25 0.25 0.02 0.09 0.47 0.47 0.33 0.04 0.11 0.13 0.03 3.31 0.26 0.03 0.30 0.34
1910 910 222 2.07 0.46 0.02 0.14 0.47 0.38 0.59 0.95 0.08 0.26 0.48 333 0.29 0.05 0.47 0.40
1920 920 907 1.73 0.37 0.02 0.10 0.28 0.21 0.17 0.11 0.03 0.06 0.05 0.99 0.08 0.10 0.40 0.24

1940 940 263 2.23 0.48 0.03 0.16 0.49 0.46 0.44 0.62 0.06 0.20 0.32 2.53 0.21 0.09 0.54 0.48
1950 950 1590 0.93 0.20 0.02 0.07 0.17 0.11 0.09 0.04 0.02 0.03 0.01 0.94 0.08 0.06 0.31 0.41
2180 180 759 0.45 0.13 0.00 0.03 0.13 0.02 0.00 0.00 0.01 0.00 0.00 0.30 0.03 0.10 0.31 0.40

2700 700 202 0.79 0.25 0.01 0.11 0.37 0.21 0.12 0.04 0.04 0.05 0.00 0.47 0.06 0.01 0.25 0.17
2900 900 92 2.39 0.49 0.01 0.11 0.31 0.39 0.20 0.01 0.10 0.04 0.00 3.59 0.28 0.03 0.30 0.18
2950 950 1813 0.47 0.10 0.01 0.05 0.13 0.02 0.00 0.00 0.00 0.00 0.00 0.09 0.01 0.06 0.31 0.13
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Table 5. Fuel moisture regimes used for simulating fuel consumption.

. NFDRS station Moisture content used in fuel
Regime data moisture L .
consumption simulations
content range
1000 h 1000 h duff
(%) (%) (%)
very dry <=10 10 20
dry > 10 and <=25 20 40
moderate >25 and <= 35 30 60
moist >35 40 80
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Table 6. Best estimates and ranges of the combustion completeness by fuel component according to moisture regime and forest
type group. Best estimates are based on cited references. Low and high ranges assigned as approximately +/- 20 %.

con’f:(‘)iem' Moisture regime
Very dry Dry Moderate Moist
esltgi:;te low  high es})ifs;te Low  high estbifs:tne low  high es:)i:;te low  high Reference
Western and Northern Forest Type Groups (All forests EXCEPT Fuel Codes 1140,1160,1400,1500, and 1600)
Shrub 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80  1.00 0.90 0.80  1.00 a
Herb 0.90 0.80  1.00 0.90 0.80  1.00 0.90 0.80  1.00 0.90 0.80  1.00 b
HR1 0.95 0.90 1.00 0.95 0.90 1.00 0.95 0.90  1.00 0.95 0.90 1.00 c
HR10 0.86 0.72  1.00 0.86 0.72  1.00 0.86 072 1.00 0.86 072 1.00 c
HR100 0.78 0.62 094 0.78 0.62  0.94 0.78 0.62 094 0.78 0.62 094 c
Litter 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80  1.00 0.90 0.80  1.00 d
Duff 0.75 0.60  0.90 0.67 0.54  0.80 0.58 046  0.70 0.50 040  0.60 e
s3t09 0.93 0.86  1.00 0.88 0.76  1.00 0.81 0.65 097 0.71 0.56  0.85 c
$9t020 0.60 048 0.72 0.50 0.40  0.60 0.41 033 049 0.32 025 038 c
sgt20 0.50 0.40  0.60 0.41 032 049 0.32 025 038 0.24 0.19 029 c
r3t09 0.96 092 1.00 0.88 0.76  1.00 0.70 0.56 0.84 0.43 034 052 c
9t020 0.78 0.62 094 0.59 047 071 0.38 030 046 0.20 0.16 0.24 c
rgt20 0.57 046  0.68 0.43 034 0.52 0.31 025 037 0.21 0.17 025 c
Southern Forest Type Groups (Fuel Codes 1140,1160,1400,1500, and 1600)
Shrub 0.90 0.80  1.00 0.90 0.80  1.00 0.90 0.80  1.00 0.90 0.80  1.00 a
Herb 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80  1.00 0.90 0.80 1.00 b
HRI 0.95 0.90 1.00 0.95 0.90 1.00 0.95 0.90  1.00 0.95 0.90 1.00 f
HR10 0.86 072 1.00 0.86 0.72  1.00 0.86 072 1.00 0.86 072 1.00 f
HR100 0.40 032 048 0.40 032 048 0.40 032 048 0.40 032 048 f
Litter 0.90 0.80  1.00 0.90 0.80  1.00 0.90 0.80  1.00 0.90 0.80  1.00 d
Duff 0.15 012 0.18 0.10 0.08 0.12 0.05 0.00  0.10 0.05 0.00 0.10 g
s3t09 0.33 0.26 0.40 0.18 0.14 022 0.10 0.08 0.12 0.05 0.04  0.06 f
$9t020 0.33 026 040 0.18 0.14 022 0.10 0.08  0.12 0.05 0.04  0.06 f
sgt20 0.33 0.26  0.40 0.18 0.14 022 0.10 0.08 0.12 0.05 0.04  0.06 f
r3to9 0.41 033 049 0.27 022 032 0.11 0.09 0.13 0.05 0.04  0.06 f
9t020 0.41 033 049 0.27 022 032 0.11 0.09 0.13 0.05 0.04  0.06 f
gt20 0.41 033 049 0.27 022 032 0.11 0.09 0.13 0.05 0.04  0.06 f
Rangeland
Herb 0.93 0.86  1.00 0.93 0.86  1.00 0.93 0.86  1.00 0.93 0.86 1.00 b
Shrub 0.90 0.80  1.00 0.90 0.80 1.00 0.90 0.80  1.00 0.90 0.80  1.00 a

'See Table 3 for description
References:

a)  CONSUME natural fuels algorithm shrub stratum, adjusted to 0.90 (Prichard et al., 2006)

b) CONSUME natural fuels algorithm non-woody stratum, adjusted to 0.90 (Prichard et al., 2006)
c¢)  CONSUME natural fuels algorithm — western woody equations (Prichard et al., 2006)

d) FOFEM default reduced to 0.90 (Lutes, 2016a)

e) Equation 10 of Brown et al. (1985)

f)  CONSUME natural fuels algorithm — southern woody equations (Prichard et al., 2006)

g)  Hough (1978)

h)  CONSUME natural fuels algorithm non-woody stratum (Prichard et al., 2006)
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Table 7. Fraction of forest canopy consumed according to burn severity classification. After Miller and Yool (20023).
Burn

Severity Burn Severity Thematic Class Fraction of canopy consumed
Code
Best Lower Upper
estimate range range
1 Unburned to low severity 0 0 0
2 Low severity 0.125 0.05 0.20
3 Moderate severity 0.60 0.50 0.70
4 High severity 1 1 1
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Table 8. Statistics for the linear regression of EF as a function of MCE for field data from 78 forest fires and 20 rangeland fires
(Table S4 and Figs. S1 and S2)

Standard
Intercept Slope  R?
Error

Forest
EFCO; -476 2304 0.87 23
EFCO 1088 -1084  0.99 2.5
EFCH4 96.2 -100.7  0.79 1.4
EFPM,s  209.0 -211.3 0.53 4.9

Rangeland
EFCO> -673 2505 0.89 17
EFCO 1105 -1103  1.00 1
EFCH4 62.9 -642  0.79 0.6
EFPM; 5 76 -70.1  0.07 4.8
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Table 9. Best estimate MCE and EF (g kg™') for generalized fire types from multiple field studies. The standard deviation for MCE

is provided in parentheses. EF are based on the linear fits in Table 8 at the fire type average MCE value. The MCE values are from

Urbanski (2014).
General Fuel Type MCE EFCO, EFCO EFCH4 EFPM, 5
Southern Forests' 0.933 (0.013) 1674 77 2.5 11.9
Western & Northern
Forests? 0.881 (0.031) 1554 133 7.5 22.8
Rangeland? 0.938 (0.020) 1677 70 2.7 10.2

'Fuel codes 1140, 1160, 1400, 1500, and 1600
2All forest fuel codes except 1140, 1160, 1400, 1500, and 1600
3Fuel codes 1 and 2
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Table 10. Sample generation methods employed in Monte Carlo style simulation of emission intensity uncertainty

Fuel Component

Sample Generation

Details

Surface Fuel Loading

Understory Fuel Loading

Available Canopy Fuel
Herbaceous Fuel Loading
Shrub Fuel Loading
Fraction of Fuel Consumed
Emission Factors

Sampling of surface fuel data from FIA
plots

Empirical distribution

Weibull distribution
Normal Distribution
Normal Distribution
Uniform distribution
Normal or truncated normal distribution

Supplemental dataset
Fuel Load Plot Data.csv

Supplemental dataset
Understory_Fuel Dist.csv
Table B4

See text

See text

Table 6 and Table 7

Table 8 and Table 9. See text.
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Table 11. Statistics for comparison of annual fuel consumption by region between MFLEI and FINN v1.5, GFED v4.1s, and

WEFEIS v0.5. Regions are as defined in Fig. 14a.

>

Region ‘><% Formatted: Font: (Default) +Body (Times New Roman)
CONUS NW CA SW NO sC SE \{ Formatted Table

Formatted: Font: (Default) +Body (Times New Roman)

o )

MFLEI versus FINN v1.5 (2003-2015) 4[ Formatted: Font: (Default) +Body (Times New Roman)
Mean /{ Formatted: Font: (Default) +Body (Times New Roman)
RD* -17% 6% 50% 103% -35%
Min RD -711% -94% -25% 61% -103% /[ Formatted: Font: (Default) +Body (Times New Roman)
Max RD 41% 81% 115% 131% 68% /[ Formatted: Font: (Default) +Body (Times New Roman)
rﬁ 0.62 0.90 0.87 0.92 0.57 /[ Formatted: Font: (Default) +Body (Times New Roman)
MFLEI versus GFED 4.1s (2003-2015) /[ Formatted: Font: (Default) +Body (Times New Roman)
Mean RD 29% 14% 3% 75% 16% Formatted: Font: (Default) +Body (Times New Roman)
Min RD 0% A% 27% 41%  -83% Formatted Table
Max RD 60% 40% 500, 105% 90% \[ Formatted: Font: (Default) +Body (Times New Roman)
2 2 2 2 - ‘[ Formatted: Font: (Default) +Body (Times New Roman)
L 0.90 0.97 0.96 0.97 0.62 /{ Formatted: Font: (Default) +Body (Times New Roman)
MFLEI versus WFEIS v0.5 (2003-2013) /[ Formatted: Font: (Default) +Body (Times New Roman)
Mean RD 2% 30% -26% 130% -99% -51% 40% /[ Formatted: Font: (Default) +Body (Times New Roman)
Min RD -41% -110% -177% 35% -161% -175% -104% /[ Formatted: Font: (Default) +Body (Times New Roman)
Max RD 56% 137% 112% 196% -17% 121% 181% /[ Formatted: Font: (Default) +Body (Times New Roman)
L 0.95 0.43 -0.20 0.88 0.20 -0.34 0.06 /[ Formatted: Font: (Default) +Body (Times New Roman)

e 0 ) LU A J L L L JUL

s

X(t)MF'LEl - y(t)l
0.5 * (X(Omprer + Y ()0
X(t)mrLer = MFLEI fuel consumed in year =t
Y (t); = i fuel consumed in year = t, where i = FINN, GFED, or WFEIS

RD =100 x

br = correlation coefficient
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Table 12. Statistics for comparison of annual PM, s emitted consumption by region between MFLEI and FINN v1.5, GFED v4.1s /{ Formatted: Subscript

and WFEIS v0.5. Regions are as defined in Fig. 14a.

N Region

‘><% Formatted: Font: (Default) +Body (Times New Roman)
CONUS NW CA SW NO Nel SE \{ Formatted Table

MFLEI versus FINN v1.5 (2003-2015)

Formatted:

Font: (Default) +Body (Times New Roman)

4{ Formatted:

Font: (Default) +Body (Times New Roman)

/{ Formatted:

Font: (Default) +Body (Times New Roman)

(D D W

/[ Formatted:

Font: (Default) +Body (Times New Roman)

/[ Formatted:

Font: (Default) +Body (Times New Roman)

/[ Formatted:

Font: (Default) +Body (Times New Roman)

/[ Formatted:

Font: (Default) +Body (Times New Roman)

/[ Formatted:

Font: (Default) +Body (Times New Roman)

/[ Formatted:

Font: (Default) +Body (Times New Roman)

/[ Formatted:

Font: (Default) +Body (Times New Roman)

/[ Formatted:

Font: (Default) +Body (Times New Roman)

/[ Formatted:

Font: (Default) +Body (Times New Roman)

/[ Formatted:

Font: (Default) +Body (Times New Roman)

/[ Formatted:

Font: (Default) +Body (Times New Roman)

/[ Formatted:

Font: (Default) +Body (Times New Roman)

/[ Formatted:

Mean
RD? 98% 56% 85%  136% 24% -55% -70%
Min RD -70% -43% 15% -55% -44%  -123%  -136%
Max RD 86% 123% 147% 157% 125% 35% -27%
MFLEI versus GFED 4.1s (2003-2015)
Mean RD 76% 76% 61% 137% 1% 59% 60%
Min RD 50% 58% 29% 104% -24% -29% 18%
Max RD 99% 98% 106% 158% 136% 119% 94%
MFLEI versus WFEIS v0.5 (2003-2013)
Mean RD 49% 98% 96% 151% 66% 103% 82%
Min RD 19% -59%  -154% 63%  -118%  -174% -86%
Max RD 104% 167% 161% 198% 59% 122% 183%
RD = 100 x X(®)mrrer — Y (O);

0.5 * (X(Omprer + Y ()0

X(twmrLer = MFLET PMp 5 emitted in year =t

Font: (Default) +Body (Times New Roman)

e e L L J L Ju JC J 0 J L I )L

Y ()i =i PMp s emitted in year = t, where i = FINN, GFED, or WFEIS

/[ Formatted:

Subscript

/[ Formatted:

A

Subscript

/{ Formatted:

br = correlation coefficient
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Table Al. Average small fire duration based the fire discovery and containment dates from years 2003 — 2015 of the Fire
Occurrence Database (Short, 2017).

A durati Standard Deviati
Fire size (ha) Number of fires verage duration andard Deviation

(d) of duration (d)

0-31 43915 2 7
31-62 6894 4 12
6294 2673 5 13
94—125 1704 7 16
125-156 962 8 17
156188 838 8 18
188 — 625 216 9 17
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Table B1. Available canopy fuel (ACF) best estimates (see Sect. 2.4.1) and optimized parameters for Weibull PDF fits. Parameters

predict ACF in units of ton acre™’.

Fuel N! Best est. ACF BZSE‘;SL Shape Scale
Code (kg m?) (ton acre!) parameter parameter
1100 12199 0.50 2.23 1.73 2.48
1120 21990 091 4.05 1.33 4.40
1140 21443 0.29 1.28 1.30 1.38
1160 61276 0.16 0.71 1.33 0.77
1170 1582 0.36 1.60 1.55 1.77
1180 19045 0.68 3.02 1.56 3.37
1200 15112 1.18 5.25 1.70 5.85
1220 9554 0.46 2.06 1.66 2.30
1240 90 0.41 1.85 1.54 2.04
1260 10886 1.23 5.48 1.80 6.14
1280 5425 0.67 2.99 1.59 3.32
1300 2002 1.38 6.16 1.56 6.82
1320 684 0.63 2.80 1.48 3.07
1340 239 1.66 7.39 2.29 8.29
1360 2573 0.39 1.75 1.19 1.86
1370 2173 1.04 4.62 1.91 5.19
1380 543 0.63 2.80 1.01 2.82
1400 34528 0.13 0.57 1.03 0.57
1500 58266 0.06 0.25 0.85 0.23
1600 17157 0.33 1.48 0.62 0.98
1700 134 0.22 0.97 091 0.93
1800 25727 0.21 0.92 091 0.88
1900 1736 0.34 1.50 1.03 1.51
1910 945 0.40 1.76 1.02 1.78
1920 1564 0.24 1.05 0.80 0.93
1940 774 0.48 2.13 1.19 2.26
1950 294 0.41 1.81 1.02 1.82
1970 2119 0.18 0.82 1.05 0.83
1980 166 0.10 0.43 1.04 0.44
1990! 0 0.10 0.43 1.04 0.44
2180 1257 0.40 1.79 1.36 1.96
2700 6859 0.17 0.77 0.82 0.69
2900 18279 0.18 0.79 0.92 0.75
2950 690 0.13 0.57 0.91 0.55

'N = number of FIA plots used in deriving best estimate ACF and Weibull PDF fits.
5 2Values for fuel code 1990 set to those of fuel code 1980 due to lack of data
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Table C1. Thematic classes representing shrub heights in the Landfire EVH product and the associated height values represented
in the RVS fuel modelling system.

EVH Class
EVH Classes RVS shrub height (m)
Code
Minimum Median Maximum
104 Shrub height 0 to 0.5 m 0.1 0.25 0.5
105 Shrub height 0.5 to 1.0 m 0.5 0.75 1
106 Shrub height 1.0 to 3.0 m 1 2 3
107 Shrub height > 3.0 m 3 4 5
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Table C2. Thematic classes representing shrub canopy in the Landfire EVC product and the associated canopy cover used in the

RVS fuel modelling system.

EVC RVS

Class EVC Classes canopy

Code cover

%

111 Shrub cover >= 10 and < 20 15
112 Shrub cover >= 20 and < 30 25
113 Shrub cover >= 30 and <40 35
114 Shrub cover >= 40 and < 50 45
115 Shrub cover >= 50 and < 60 55
116 Shrub cover >= 60 and < 70 65
117 Shrub cover >= 70 and < 80 75
118 Shrub cover >= 80 and < 90 85
119 Shrub cover >= 90 and <= 100 95
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Figure captions

Figure 1. Diagram of MFLEI biomass burning emission model methodology and datasets.

Figure 2+. MFLEI land cover type map. White regions are non-fuel cover type. Cover type codes are described in Table 1.
Figure 32. Location of FIA plots used to develop surface fuel loading classifications.

Figure 43. The distribution of surface fuel loading for the FIA plots of three FTG:; Loblolly/shortleaf pine (160), Douglas-fir
(200), and California mixed conifer (370).

Figure 54. Best estimate (Table 4) forest fuel loading in canopy, understory, and surface fuels by fuel type.
Figure 65. Fraction of best estimate (Table 4) total forest fuel loading in surface fuel loading groups by fuel type.

Figure 76. Abbreviated flow of data and actions in RVS to produce rangeland fuel loadings. EVT, EVC and EVH are Existing
Vegetation Type, Existing Vegetation Cover, and Existing Vegetation Height from the Landfire Project.

Figure 87. Relationship between annual production and annual maximum NDVI on 51 grassland vegetation types.
Figure 98. Map of best estimate fuel loading for forest and rangelands in g m2.

Figure 109. Annual burned area, fuel consumed, and PM; 5 emitted for 2003-2015.

Figure 110. Annual burned area, fuel consumed, and PM, s emitted averaged over 2003-2015.

Figure 12+. Monthly distributions of burned area, fuel consumption, and PM> 5 emitted over 2003-2015, broken down by cover
type.

Figure 132. Seasonal PM, 5 emitted average over 2003-2015.

Figure 143. Top panel: geographic regions. Bottom panel: Burned area, fuel consumption, and PM; 5 emitted by region.
Figure 154. Monthly PM, 5 emitted averaged over 2003-2015.

Figure 165. Fraction of regional, 2003-2015 PM, 5 emissions released on peak days.

Figure 176. Cumulative distribution of daily PM, s emissions aggregated on a 10 km x 10 km grid. Dashed line and dashed —
dotted line mark 5% and 10% of grid cell days with emissions.

Figure 187. Annual PM> s emitted in the west.

Figure 198. Number of days over 2003-2015 when the wildfire to non-wildfire PM, s emission ratio in the west exceeds
thresholds of 2, 5, 10, 15, and 20.

Figure 2049. Distribution of relative interquartile range from pixel level Monte Carlo style simulations.

Figure 216. Distribution of relative interquartile range (top panels) and relative interdecile range (bottom panels) from 10 km x
10 km gridded Monte Carlo style simulations.

Figure 22a. Annual fuel consumption from MFLEIL FINN v1.5, GFED v4.1s, and WFEIS v0.5 for northwest, California, and
southwest regions.

Figure 22b. Annual fuel consumption from MFLEI, FINN v1.5, GFED v4.1s, and WFEIS v0.5 for north, southcentral, and
southeast regions.
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Figure 23a. Annual PM, s emitted from MFLEI, FINN v1.5, GFED v4.1s, and WFEIS v0.5 for northwest, California, and /{ Formatted: Subscript

southwest regions.

Figure 23b. Annual PM; s emitted from MFLEL FINN v1.5, GFED v4.1s, and WFEIS v0.5 for north, southcentral, and southeast/{ Formatted: Subscript
regions.

Figure Al. The burn day distribution for the 12,500-25.,000 ha size class. Distributions for all six size classes are provided in the
dataset supplement (file\Supplements\BurnDayDist.csv).

Figure C1. Total shrub biomass estimates for a pixel with EVT class of Big Sagebrush shrubland, EVH class of 105, and EVC
class of 112 (see text).
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| 5 Figure 24. MFLEI land cover type map. White regions are non-fuel cover type. Cover type codes are described in Table 1.
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Figure 32. Location of FIA plots used to develop surface fuel loading classifications.
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Figure 54. Best estimate (Table 4) forest fuel loading in canopy, understory, and surface fuels by fuel type.
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Figure 65. Fraction of best estimate total forest fuel loading in surface fuel loading groups (Table 4) by fuel type.
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Shrub Inputs Herb Inputs
EVT NDVI
EVC
EVH
A 4

Annual production (AP)
Crown Dimensions current year (t=0)
PCH = f(EVH) AP = f(maxNDVI)

4

Holdover (HO)

Per stem biomass
(PSB)
HO(t=0) = 0.22xAP(t = -1) +

RVS allometric library 0.05%AP(t= -2)
PSB = f(PCH,EVH)
) A 4
Stem density (SD) Herbaceous loading (HL)
SD =f(PCH, EVC) — Current year (t=0)
HL=AP + HO

Total shrub
biomass (TSB)
TSB =PSB x SD

y

Rangeland Fuel Loading

> Shrub: mean, low, high estimates

Herb: mean + standard deviation

5 Figure 76. Abbreviated flow of data and actions in RVS to produce rangeland fuel loadings. EVT, EVC and EVH are Existing
Vegetation Type, Existing Vegetation Cover, and Existing Vegetation Height from the Landfire Project.
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Figure 87. Relationship between annual production and annual maximum NDVI on 51 grassland vegetation types.
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Figure 98. Map of best estimate fuel loading for forest and rangelands in g m2.
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Figure 109. Annual burned area, fuel consumed, and PM: 5 emitted for 2003-2015.
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(a) Area burned
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Figure 110. Annual burned area, fuel consumed, and PM; 5 emitted averaged over 2003-2015.
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Figure 12+. Monthly distributions of burned area, fuel consumption, and PM, s emitted over 2003-2015, broken down by cover
type.
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(b) Mar-Apr-May
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Figure 132. Seasonal PM, 5 emitted average over 2003-2015.
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Figure 143. Top panel: geographic regions. Bottom panel: Burned area, fuel consumption, and PM» s emitted by region.
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Figure 154. Monthly PM, 5 emitted averaged over 2003-2015.
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Fraction of PM, 5 emitted on peak emission days
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Figure 165. Fraction of regional, 2003-2015 PM; s emissions released on peak days.
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Figure 176. Cumulative distribution of daily PM» s emissions aggregated on a 10 km x 10 km grid. Dashed line and dashed —
5 dotted line mark 5-% and 10-% of grid cell days with emissions.
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Annual PM, 5 emitted in the west
by wildfire and non-fire sources
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| 5 Figure 187. Annual PM; s emitted in west.
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| Figure 198. Number of days over 2003-2015 when the wildfire to non-wildfire PM, s emission ratio in the west exceeds
5 thresholds of 2, 5, 10, 15, and 20.
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(a) Fuel consumption, forest
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5 Figure 2049. Distribution of relative interquartile range from pixel level Monte Carlo style simulations.
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Distribution of relative interquartile range
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| Figure 210. Distribution of relative interquartile range (top panel) and relative interdecile range (bottom panels) from 10 km x 10
5 km gridded Monte Carlo style simulations.
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Figure 22a. Annual fuel consumption from MFLEI, FINN v1.5, GFED v4.1s, and WFEIS v0.5 for northwest, California, and
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Figure 22b. Annual fuel consumption from MFLEI, FINN v1.5, GFED v4.1s, and WFEIS v0.5 for north, southcentral, and
southeast regions.
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Figure Al. The burn day distribution for the 12,500-25,000 ha size class. Distributions for all six size classes are provided in the
dataset supplement (file\Supplements\BurnDayDist.csv).
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5 Figure Cl1. Total shrub biomass estimates for a pixel with EVT class of Big Sagebrush shrubland, EVH class of 105, and EVC
class of 112 (see text).
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