
Referee #1 Comments and author response 
 
RCX = referee comment 
ARX = author response 
 
RC1. In the introduction, the authors describe the various emissions inventories for the 
US (page 1, third paragraph). They may wish to mention  
Larkin, N. K., Raffuse, S. M., & Strand, T. M. (2014). Wildland fire emissions, carbon, and 
climate: US emissions inventories. Forest Ecology and Management, 317, 61-69.  
 
Also, the authors may wish to mention the work by Canadians, which follows a similar 
methodology to that presented in this manuscript 
 
De Groot, W.J., Landry, R., Kurz, W.A., Anderson, K.R., Englefield, P., Fraser, R.H., Hall, 
R.J., Banfield, E., Raymond, D.A., Decker, V. and Lynham, T.J., 2007. Estimating direct 
carbon emissions from Canadian wildland fires1. International Journal of Wildland Fire, 
16(5), pp.593-606. 
 
Anderson, K., Simpson, B., Hall, R.J., Englefield, P., Gartrell, M. and Metsaranta, J.M., 
2015. Integrating forest fuels and land cover data for improved estimation of fuel 
consumption and carbon emissions from boreal fires. International Journal of Wildland 
Fire, 24(5), pp.665-679. 
 
AR1. We have added the Larkin et al. reference to P3, line 31. The revised text reads: 
 
“Several biomass burning emission inventories that include CONUS are available (van 
der Werf et al., 2017; Zhang et al., 2017; French et al., 2014; Larkin et al., 2014; 
Wiedinmyer et al., 2011).”   
 
We have also referenced the Canadian wildfire emission inventories at Page 4, Line 1. 
The text now reads: 
 
“MFLEI uses a forest type map and a new forest fuel classification, both of which are 
based on a national forest inventory dataset, providing more accurate fuel loading 
estimates compared to the fuels layer used in WFEIS (Keane et al., 2013).  The 
methodology used to develop MFLEI is similar to that employed to develop carbon 
emission estimates for Canadian wildland fires (Anderson et al., 2015; De Groot et al., 
2007). As a retrospective inventory, MFLEI is able to leverage geospatial fire activity 
information including high spatial resolution burned area and burn severity products that 
are not available for real-time inventories (e.g. FiNN).”  
   
 
RC2.On page 2, line 26, when the authors state “each burned grid cell is burned in its 
entirety”, I assume the authors are referring to spatial extent (ha) and not fuel load 
(tonnes). 
 



AR2. The reviewer is correct. We did not intend to imply that all fuel present was burned. 
The text has been changed to:  
“The inventory assumes that the burning and emissions for each burned grid cell occur 
on the estimated burn day (Sect. 2.3.2).” 
 
 
RC3. Under 2.2 Land cover, are there not several US land cover maps (NFDRS, Hardy, 
LANDFIRE, Ok-Wen, FCCS), that produce different fuel loads? The authors may wish to 
reference these and justify their choice. 
 

AR3. The reviewer is correct, there are several CONUS wide maps of land cover and fuel 
type. The LANDFIRE Project (https://www.landfire.gov/data_overviews.php) has created 
many geospatial data products including fire behavior fuel models (FBFM), which include 
the model used for NFDRS, vegetation type, and surface fuel loading models (FCCS and 
FLM). We assembled our own land cover map so we could use the large dataset (>27,000 
plots) of USFS Forest Inventory and Analysis Program vegetation and fuels data for 
forests and use fuel loading from the Rangeland Vegetation Simulator (RVS) for 
grasslands and shrublands. The RVS map and fuel loading was developed using 
LANDFIRE products along with MODIS NDVI and rangeland productivity data as 
described in Sect. 2.4.2. Our justification for using assembling our own land cover map is 
detailed in following text which has been added to Section 2.2 of the manuscript on Page 
5, Line 4:  

“The LANDFIRE project (LANDFIRE, 2016) provides CONUS wide maps for Fuel 
Characteristics Classification System (FCCS; Ottmar et al., 2007; McKenzie et al., 2012) 
and Fuel Loading Models (FLM, Lutes et al., 2006) fuelbed models, both of which are 
suitable for estimating fuel consumption and emissions. FCCS is used in both the NEI+ 
(Larkin et al., 2014) and WFEIS (French et al., 2014) CONUS fire emission inventories. 
We assembled a new map based on the USFS forest type group map because it provides 
three important benefits over other land cover maps with respect to forests. First, the 
accuracy of the forest type group map is significantly better than either the FCCS or FLM 
maps (Keane et al., 2013). Second, it enabled us to use the Fuels Type Group (FTG) 
surface fuel classification system (Sect. 2.4.1) which provides a more accurate estimate 
of average surface fuel loading than either the FCCS or FLM (Keane et al., 2013). Finally, 
because the USFS forest type group classification is an FIA plot variable, we are able to 
use the large (>27,000 plots) dataset of FIA fuel measurements estimate uncertainty in 
surface fuel loading and emissions (Sect. 2.9).”    
 
  
RC4. Under 2.3.3 Unburned and lightly burned grid cells, the authors describe the 6 BSEV 
categories inside the fire polygon. I am not clear on how a category of increasing green 
would be mapped inside a fire polygon. Presumably this would have described in the 
referenced paper (Eidenshink et al., 2007) but it would be helpful to briefly describe the 
process (perhaps in 2.3.1). 
 

https://www.landfire.gov/data_overviews.php


AR4. The burn severity classification of increased greenness is very rare. During our 
period (2003-2015) only 0.3% of MTBS pixels were classified as increased greenness. 
Given the rare occurrence of the increased greenness classification, it has negligible 
effect on our emission product. The MTBS burn severity class data are derived from 
Landsat imagery by analysis of a pre-fire scene and a post-fire scene to create a 
Differenced Normalized Burn Ratio (dNBR) image (as described in Eidenshink et al., 
2007). For some fires, an increased response in vegetation productivity, results in 
increased greenness. This could results from an area that did not burn and was greener 
at the time of the post-fire scene than it was pre-fire scene. It is not uncommon for the 
pre-fire scene to be from the previous year. In which case an area that did not burn or 
was very lightly burned may have increased greenness compared to the previous year 
due to increased productivity or other factors. The availability of optimal Landsat scenes 
is limited by the 16-day Landsat revisit cycle, atmospheric conditions (clouds, smoke from 
active fires, terrain shadows), and factors such as sun angle and length of growing season 
limit the availability of optimal scenes for analysis (https://www.mtbs.gov/mapping-
methods).   
 
Given the rare occurrence (0.3% of pixels) and negligible effect of the increased 
greenness classification, we believe that an explanation is not warranted in the text. We 
have revised the text clarifying that the increased greenness classification is very rare. In 
Sect. 2.3.3 Unburned and lightly burned pixels, Page 8, line 14, following the sentence 
“We elected to designate BSEV = 1 as unburned, which is consistent with MTBS program 
publications that describe this classification as areas which are either unburned or where 
visible fire effects occupy < 5 % of the site at the time of observation (Schwind, 2008).” 
we have added the text: 
 
“The increased green classification may indicate unburned that exhibited more green at 
the time of the post-fire Landsat scene relative to the pre-fire scene. The increased green 
classification was assigned to just 0.3% of MTBS pixels and thus has a negligible impact 
on our inventory.” 
 

References 

Lutes, D. C., Keane, R. E. and Caratti, J. F.: A surface fuel classification for estimating 
fire effects, Int. J. Wildland Fire, 18(7), 802–814, doi:10.1071/WF08062, 2009. 

McKenzie, D., French, N. H. F. and Ottmar, R. D.: National database for calculating fuel 
available to wildfires, Eos, Transactions American Geophysical Union, 93(6), 57–58, 
doi:10.1029/2012EO060002, 2012. 

 

 

  

https://www.mtbs.gov/mapping-methods
https://www.mtbs.gov/mapping-methods


Referee #2 Comments and author response 

 
Specific comments 
 
RC1. A large number of fuel, fire, and other sources are used when estimating fire 
emissions based on Eq.1. It would be helpful to provide a diagram to summary the major 
sources and connections. 
 
AR1. We have added a diagram which summarizes the main steps of the inventory 
methodology and highlights the connections of the multiple datasets to the process. The 
diagram has been added as Figure 1. The text in Sect. 2.1 has been revised (Page 4, 
Line 14) with the insertion of the following sentence:  
 
“The MFLEI biomass burning emission model is based on Eq. (1), given below, and the 
implementation and datasets are summarized in Figure 1.”   
 
 
RC2. Comparisons are provided between this inventory and several previous ones in the 
introduction section. It would be useful to briefly compare the results, especially with the 
previous daily inventory. 
 
AC2. We have added a section comparing MFLEI with three other emission inventories 
that are mentioned in the introduction section: GFED, FINN, and WFEIS. The revised text 
is given below. Two figures and two tables have been added as part this revision and are 
provided in this response to reviewer #2, following the references. 
 

3.6 Comparison with other emission inventories    

Next we compare the estimated fuel consumption and PM2.5 emissions of MFLEI with three fire 
emissions inventories: GFED v4.1s (GFED, 2018), FINN v1.5 (FINN, 2018), and WFEIS v0.5 
(WFEIS, 2018).  In this comparison we have excluded fuel consumption and PM2.5 emissions 
associated with agricultural burning from all three inventories.  Regional annual fuel consumption 
from the four inventories is plotted in Figure 21.  Statistics comparing MFLEI regional annual fuel 
consumption versus the other inventories are given in Table 11.  There is significant variability in 
the agreement between MFLEI and the other inventories.  Across the west (NW, CA, SW), MFLEI 
annual fuel consumption is well correlated with both FINN and GFED (Table 11).  MFLEI fuel 
consumption exceeds the mean of FINN, GFED, and WFEIS in nearly all years and is generally 
the highest in Northwest and Southwest regions (Fig. 21a).  In the east regions (SC, SE, NO), 
MFLEI fuel consumption fluctuates about the FINN/GFED/WFEIS mean value (Fig. 21b).  In terms 
of variability and mean absolute relative difference, MFLEI agrees best with GFED.  

Regional annual PM2.5 emissions are shown in Figure 22 and statistics comparing MFLEI 
PM2.5 emissions versus the other inventories are given in Table 12. As with fuel consumption, 
across the west (NW, CA, SW), MFLEI annual PM2.5 emissions are well correlated with both 
FINN and GFED, while correlation with WFEIS is weak in most regions (Table 12).  In the west, 
MFLEI annual PM2.5 emissions are highest among the inventories in most years (Fig. 22a).  The 



greater PM2.5 emissions of MFLEI in the west are partly attributable to the use of a larger 
EFPM2.5 for western forests (22.8 g kg-1, Table 9) compared with FINN (12.9 g kg-1), GFED (12.6 
g kg-1), and WFEIS (11.9 g kg-1). (Because WFEIS uses combustion phase dependent EFs 
applied in a non-transparent manner, we have taken EFPM2.5 as the ratio of the sum of EPM2.5 
to the sum of fuel consumed for all western forests.) MFLEI uses EFPM2.5 from the synthesis of 
Urbanski (2014) that accounts for the lower MCE measured for wildfires in western conifer forests 
(Urbanski, 2013).  FINN and GFED use EFPM2.5 from Akagi et al (2011), with updates from May 
et al. (2014), which are based on emission measurements of prescribed fires, most of which 
occurred in the Southeast US. WFEIS employs EFPM2.5 measured for prescribed burns of 
logging slash.  The higher EFPM2.5 used by MFLEI for wildfires in western forests is consistent 
with recent emission measurements of Lui et al. (2017).  In a study of western US wildfires, Lui et 
al. (2017) reported an average EFPM1 = 26.0 g kg-1 (PM1 = particulate matter with an 
aerodynamic diameter < 1 µm), more than 2 times the EF for prescribed fires.  

 
 
RC3. This new inventory provides daily emissions. Surface fuels at 10- and 1-hr vary at 
this scale. Why fuel moistures of 1000-h and 100-h rather than 10- and 1-hr fuels are 
used? 
 
AC3. We estimated fuel consumption of grass, shrubs, and down dead wood using the 
natural fuel algorithms from the CONSUME model. These CONSUME algorithms 
simulate consumption completeness independent of fuel moisture for grass, shrubs, and 
down dead wood in the 1-h (< 1 cm diameter), 10-h (1-2.5 cm diameter), and 100-h (2.5-
7.6 cm diameter) size classes. The CONSUME algorithms do use 1000-h fuel moisture 
and duff moisture for simulating combustion completeness for down dead wood in the 
1000-h size class. Combustion completeness for litter was based on the FOFEM model, 
which for wildfires estimates litter consumption independent of moisture content. We used 
the 100-h fuel moisture to estimate duff moisture based on Harrington (1982) (Page 13, 
L27 of manuscript). The duff moisture estimated from 100-h fuel moisture was used in the 
FOFEM duff consumption equations and in the CONSUME down dead wood equations 
that used duff moisture as a variable. The 1-h and 10-h fuel moistures are very important 
for estimating/simulating fire spread rates since fuels in these size classes, grasses, litter, 
and fine woody debris, are key drivers of fire spread (Albini 1976; Rothermel, 1972). Since 
MFLEI is a retrospective emission inventory we do not need to predict fire spread and 
therefore 1-h and 10-h are not used.   
 
 
 
RC4. This inventory provides 250-m fire emissions. Fuel moisture is obtained from 
NFDRS station. What is the resolution of the NFDRS station and how could the resolution 
mismatch between the fire emission and NFDRS station affect the emission estimates? 
 
AR4. The NFDRS stations are irregularly spaced (for current locations see 
https://www.wfas.net/index.php/fire-weather-stations-static-maps-43) and some stations 
operate/report data only during the station’s regional fire season. The median distance 
between nearest NFDRS stations was ∼28 km.   

https://www.wfas.net/index.php/fire-weather-stations-static-maps-43


 
If the fuel moisture regime was in error by one category (e.g. fuel consumption was 
modeled using 1000-h and duff moisture of “dry” regime, but actual conditions were 
“moist” regime) the error in total fuel consumption would range between +/- 2% and +/- 
12%, depending on the forest type and direction of error in fuel moisture regime. For all 
years of the inventory, if the fuel moisture regime used was systemically one category 
lower (drier) than the actual moisture regime for all burned forest pixels, the overestimate 
in total forest fuel consumption would be ∼5%. Emission are directly proportional to fuel 
consumption.      
 
 
RC5. It is indicated that MFLEI will be updated, with recent years, as the MTBS burned 
area product becomes available. MFLEI also uses other fire sources such as FOD. What 
would be the impacts if FOD is not updated in the future? 
 
AR5. Dr. Karen Short, creator of FOD will be releasing an update with 2016 and 2017 at 
the end of this year (2018). If FOD is not updated beyond 2017, there would be a minor 
impact on MFLEI. We used FOD to include burned area from wildfires not captured by 
MTBS, GEOMAC, and MCD64. Over 2003-2015, 8% of total MFLEI burned area was 
attributable to FOD. In the future, if FOD is unavailable MFLEI would miss roughly 10% 
of wildfire burned area. MFLEI also used FOD to assign containment dates to MTBS fires 
and discovery dates to GEOMAC fires (recall MCD64 product provides the estimated day 
of burning for each pixel). Fortunately, discovery dates and containment dates are 
available for most MTBS and GEOMAC fires from one of five national databases (USDI 
Wildland Fire Management Information System, FWS Fire Management Information 
System, USFS Fire Statistics, USFA National Fire Incident Reporting System, and 
National Association of State Foresters). (In FOD, the information for ∼80% of all CONUS 
wildfires >10 acres was obtained from one of these five national databases (Short, 2014; 
Short, 2017)). If FOD is unavailable, we will extract much of the needed information from 
the five national fire databases listed above after consultation with Dr. Karen Short who 
developed FOD and is a USFS research colleague of the MFLEI team.   
 
RC6. Subsection 3.5: The title includes “agricultural fires” but they are not discussed in 
this subsection. 
 
AR6. The title of subsection 3.5 has been changed to: “Prescribed fires” since agricultural 
fires are excluded from MFLEI and are not discussed in this section. 
 
 
RC7. Section 5: It is more like a summary than conclusions. 
 
AR7. We agree with the referee that Section 5 is largely a summary of the paper. 
However, we believe the content and tone is appropriate for a conclusion section of a 
dataset paper. We have reviewed the conclusion section of several papers published in 
ESSD and found ours to similar in content and tone, see for example e.g. Chuvieco et al., 



2018, 10, 2015-2031. We have revised the Section 5 to mention the comparison of MFLEI 
with GFED, FINN, and WFEIS. The additional text is: 
 
“A regional comparison of MFLEI with three fire emission inventories, FINN v1.5, GFED 
v4.1s, and WFEIS v0.5, showed MFLEI predicted significant greater PM2.5 emissions 
across the west, in part due to the use of a larger EFM2.5 for wildfires in forests.”   
 
 
References 
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Tables and figures added to manuscript in response to referee comments #2 
 
Table 11. Statistics for comparison of annual fuel consumption by region between MFLEI and FINN v1.5, GFED 

v4.1s, and WFEIS v0.5. Regions are as defined in Fig. 14a. 

 
 Region 
 

CONUS NW CA SW NO SC SE 

MFLEI versus FINN v1.5 (2003–2015) 

Mean 

RDa -17% 6% 50% 103% -35% -65% -75% 

Min RD -71% -94% -25% 61% -103% -131% -135% 

Max RD 41% 81% 115% 131% 68% 21% -31% 

rb 0.62 0.90 0.87 0.92 0.57 0.24 0.70 

MFLEI versus GFED 4.1s (2003–2015) 

Mean RD 29% 14% 3% 75% 16% 35% 43% 

Min RD 0% -4% -27% 41% -83% -45% -1% 

Max RD 60% 40% 52% 105% 90% 91% 76% 

r 0.90 0.97 0.96 0.97 0.62 0.79 0.76 

MFLEI versus WFEIS v0.5 (2003–2013) 

Mean RD -2% 30% -26% 130% -99% -51% 40% 

Min RD -41% -110% -177% 35% -161% -175% -104% 

Max RD 56% 137% 112% 196% -17% 121% 181% 

r 0.95 0.43 -0.20 0.88 0.20 -0.34 0.06 
a 

𝑅𝑅𝑅𝑅 = 100 ×
𝑋𝑋(𝑡𝑡)𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑌𝑌(𝑡𝑡)𝑖𝑖

0.5 ∗ (𝑋𝑋(𝑡𝑡)𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑌𝑌(𝑡𝑡)𝑖𝑖)
 

X(t)MFLEI = MFLEI fuel consumed in year = t 

Y(t)i = i fuel consumed in year = t, where i = FINN, GFED, or WFEIS 

 
br = correlation coefficient 

 
 
 
 
 
 
  



Table 12. Statistics for comparison of annual PM2.5 emitted consumption by region between MFLEI and FINN v1.5, 

GFED v4.1s, and WFEIS v0.5. Regions are as defined in Fig. 14a. 

 Region 
 

CONUS NW CA SW NO SC SE 

MFLEI versus FINN v1.5 (2003–2015) 

Mean 

RDa 98% 56% 85% 136% 24% -55% -70% 

Min RD -70% -43% 15% -55% -44% -123% -136% 

Max RD 86% 123% 147% 157% 125% 35% -27% 

rb 0.61 0.90 0.88 0.94 0.52 0.20 0.71 

MFLEI versus GFED 4.1s (2003–2015) 

Mean RD 76% 76% 61% 137% 71% 59% 60% 

Min RD 50% 58% 29% 104% -24% -29% 18% 

Max RD 99% 98% 106% 158% 136% 119% 94% 

r 0.94 0.97 0.98 0.97 0.65 0.70 0.73 

MFLEI versus WFEIS v0.5 (2003–2013) 

Mean RD 49% 98% 96% 151% 66% 103% 82% 

Min RD 19% -59% -154% 63% -118% -174% -86% 

Max RD 104% 167% 161% 198% 59% 122% 183% 

r 0.98 0.42 -0.15 0.90 0.23 -0.33 0.11 
a 

𝑅𝑅𝑅𝑅 = 100 ×
𝑋𝑋(𝑡𝑡)𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑌𝑌(𝑡𝑡)𝑖𝑖

0.5 ∗ (𝑋𝑋(𝑡𝑡)𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑌𝑌(𝑡𝑡)𝑖𝑖)
 

 

X(t)MFLEI = MFLEI PM2.5 emitted in year = t 

Y(t)i = i PM2.5 emitted in year = t, where i = FINN, GFED, or WFEIS 

 
br = correlation coefficient 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 22a. Annual fuel consumption from MFLEI, FINN v1.5, GFED v4.1s, and WFEIS v0.5 for northwest, 
California, and southwest regions.  
 
  



 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22b. Annual fuel consumption from MFLEI, FINN v1.5, GFED v4.1s, and WFEIS v0.5 for north, 
southcentral, and southeast regions.  
 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23a. Annual PM2.5 emitted from MFLEI, FINN v1.5, GFED v4.1s, and WFEIS v0.5 for northwest, 
California, and southwest regions. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23b. Annual PM2.5 emitted from MFLEI, FINN v1.5, GFED v4.1s, and WFEIS v0.5 for north, 
southcentral, and southeast regions.  

 

  



Significant Manuscript Changes 

 
1. We have added the Larkin et al. reference to P3, line 31. The revised text reads: 

 
“Several biomass burning emission inventories that include CONUS are available (van 
der Werf et al., 2017; Zhang et al., 2017; French et al., 2014; Larkin et al., 2014; 
Wiedinmyer et al., 2011).”   
 

2. We have referenced the Canadian wildfire emission inventories at Page 4, Line 1. 
The text now reads: 

 
“MFLEI uses a forest type map and a new forest fuel classification, both of which are 
based on a national forest inventory dataset, providing more accurate fuel loading 
estimates compared to the fuels layer used in WFEIS (Keane et al., 2013).  The 
methodology used to develop MFLEI is similar to that employed to develop carbon 
emission estimates for Canadian wildland fires (Anderson et al., 2015; De Groot et al., 
2007). As a retrospective inventory, MFLEI is able to leverage geospatial fire activity 
information including high spatial resolution burned area and burn severity products that 
are not available for real-time inventories (e.g. FiNN).”  
On page 2, line 26, when the authors state “each burned grid cell is burned in its entirety”, 
I assume the authors are referring to spatial extent (ha) and not fuel load (tonnes). 
 

3. At page 2, line 5 the text has been changed to:  
“The inventory assumes that the burning and emissions for each burned grid cell occur 
on the estimated burn day (Sect. 2.3.2).” 
 

4. The following text which has been added to Section 2.2 of the manuscript on Page 
5, Line 4:  

“The LANDFIRE project (LANDFIRE, 2016) provides CONUS wide maps for Fuel 
Characteristics Classification System (FCCS; Ottmar et al., 2007; McKenzie et al., 2012) 
and Fuel Loading Models (FLM, Lutes et al., 2006) fuelbed models, both of which are 
suitable for estimating fuel consumption and emissions. FCCS is used in both the NEI+ 
(Larkin et al., 2014) and WFEIS (French et al., 2014) CONUS fire emission inventories. 
We assembled a new map based on the USFS forest type group map because it provides 
three important benefits over other land cover maps with respect to forests. First, the 
accuracy of the forest type group map is significantly better than either the FCCS or FLM 
maps (Keane et al., 2013). Second, it enabled us to use the Fuels Type Group (FTG) 
surface fuel classification system (Sect. 2.4.1) which provides a more accurate estimate 
of average surface fuel loading than either the FCCS or FLM (Keane et al., 2013). Finally, 
because the USFS forest type group classification is an FIA plot variable, we are able to 
use the large (>27,000 plots) dataset of FIA fuel measurements estimate uncertainty in 
surface fuel loading and emissions (Sect. 2.9).”    
 

5. In Sect. 2.3.3 Unburned and lightly burned pixels, Page 8, line 14, following the 
sentence “We elected to designate BSEV = 1 as unburned, which is consistent 



with MTBS program publications that describe this classification as areas which 
are either unburned or where visible fire effects occupy < 5 % of the site at the time 
of observation (Schwind, 2008).” we have added the text: 
 
“The increased green classification may indicate unburned that exhibited more 
green at the time of the post-fire Landsat scene relative to the pre-fire scene. The 
increased green classification was assigned to just 0.3% of MTBS pixels and thus 
has a negligible impact on our inventory.” 

 
6. We have added a diagram which summarizes the main steps of the inventory 

methodology and highlights the connections of the multiple datasets to the 
process. The diagram has been added as Figure 1. The text in Sect. 2.1 has been 
revised (Page 4, Line 14) with the insertion of the following sentence:  

 
“The MFLEI biomass burning emission model is based on Eq. (1), given below, and the 
implementation and datasets are summarized in Figure 1.”   
 

7. We have added a section comparing MFLEI with three other emission inventories 
that are mentioned in the introduction section: GFED, FINN, and WFEIS. The 
revised text is given below. Two figures and two tables have been added as part 
this revision and are provided above, immediately following the references in the 
response to reviewer #2. 

 

3.6 Comparison with other emission inventories    

Next we compare the estimated fuel consumption and PM2.5 emissions of MFLEI with three fire 
emissions inventories: GFED v4.1s (GFED, 2018), FINN v1.5 (FINN, 2018), and WFEIS v0.5 
(WFEIS, 2018).  In this comparison we have excluded fuel consumption and PM2.5 emissions 
associated with agricultural burning from all three inventories.  Regional annual fuel consumption 
from the four inventories is plotted in Figure 21.  Statistics comparing MFLEI regional annual fuel 
consumption versus the other inventories are given in Table 11.  There is significant variability in 
the agreement between MFLEI and the other inventories.  Across the west (NW, CA, SW), MFLEI 
annual fuel consumption is well correlated with both FINN and GFED (Table 11).  MFLEI fuel 
consumption exceeds the mean of FINN, GFED, and WFEIS in nearly all years and is generally 
the highest in Northwest and Southwest regions (Fig. 21a).  In the east regions (SC, SE, NO), 
MFLEI fuel consumption fluctuates about the FINN/GFED/WFEIS mean value (Fig. 21b).  In terms 
of variability and mean absolute relative difference, MFLEI agrees best with GFED.  

Regional annual PM2.5 emissions are shown in Figure 22 and statistics comparing MFLEI 
PM2.5 emissions versus the other inventories are given in Table 12. As with fuel consumption, 
across the west (NW, CA, SW), MFLEI annual PM2.5 emissions are well correlated with both 
FINN and GFED, while correlation with WFEIS is weak in most regions (Table 12).  In the west, 
MFLEI annual PM2.5 emissions are highest among the inventories in most years (Fig. 22a).  The 
greater PM2.5 emissions of MFLEI in the west are partly attributable to the use of a larger 
EFPM2.5 for western forests (22.8 g kg-1, Table 9) compared with FINN (12.9 g kg-1), GFED (12.6 
g kg-1), and WFEIS (11.9 g kg-1). (Because WFEIS uses combustion phase dependent EFs 
applied in a non-transparent manner, we have taken EFPM2.5 as the ratio of the sum of EPM2.5 



to the sum of fuel consumed for all western forests.) MFLEI uses EFPM2.5 from the synthesis of 
Urbanski (2014) that accounts for the lower MCE measured for wildfires in western conifer forests 
(Urbanski, 2013).  FINN and GFED use EFPM2.5 from Akagi et al (2011), with updates from May 
et al. (2014), which are based on emission measurements of prescribed fires, most of which 
occurred in the Southeast US. WFEIS employs EFPM2.5 measured for prescribed burns of 
logging slash.  The higher EFPM2.5 used by MFLEI for wildfires in western forests is consistent 
with recent emission measurements of Lui et al. (2017).  In a study of western US wildfires, Lui et 
al. (2017) reported an average EFPM1 = 26.0 g kg-1 (PM1 = particulate matter with an 
aerodynamic diameter < 1 µm), more than 2 times the EF for prescribed fires. 

 

 

8. The title of subsection 3.5 has been changed to: “Prescribed fires” since 
agricultural fires are excluded from MFLEI and are not discussed in this section. 

 

 
9. We have revised the Section 5 to mention the comparison of MFLEI with GFED, 

FINN, and WFEIS. The additional text is: 
 
“A regional comparison of MFLEI with three fire emission inventories, FINN v1.5, GFED 
v4.1s, and WFEIS v0.5, showed MFLEI predicted significant greater PM2.5 emissions 
across the west, in part due to the use of a larger EFM2.5 for wildfires in forests.”   
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Abstract. Wildfires are a major source of air pollutants in the United States.  Wildfire smoke can trigger severe pollution episodes 

with substantial impacts on public health.  In addition to acute episodes, wildfires can have a marginal effect on air quality at 

significant distances from the source presenting significant challenges to air regulators’ efforts to meet National Ambient Air 

Quality Standards.  Improved emission estimates are needed to quantify the contribution of wildfires to air pollution and thereby 

inform decision making activities related to the control and regulation of anthropogenic air pollution sources.   5 

To address the need of air regulators and land managers for improved wildfire emission estimates we developed the Missoula 

Fire Lab Emission Inventory (MFLEI), a retrospective, daily wildfire emission inventory for the contiguous United States 

(CONUS).  MFLEI was produced using multiple datasets of fire activity and burned area, a newly developed wildland fuels map 

and an updated emission factor database.  Daily burned area is based on a combination of Monitoring Trends in Burn Severity 

(MTBS) data, Moderate Resolution Imaging Spectroradiometer (MODIS) burned area and active fire detection products, incident 10 

fire perimeters, and a spatial wildfire occurrence database.  The fuel type classification map is a merger of a national forest type 

map, produced by the USDA Forest Service (USFS) Forest Inventory and Analysis (FIA) program and the Geospatial Technology 

and Applications Center (GTAC), with a shrub and grassland vegetation map developed by the USFS Missoula Forestry Sciences 

Laboratory.  Forest fuel loading is from a fuel classification developed from a large set (> 26,000 sites) of FIA surface fuel 

measurements.  Herbaceous fuel loading is estimated using site specific parameters with normalized differenced vegetation index 15 

from MODIS.  Shrub fuel loading is quantified by applying numerous allometric equations linking stand structure and composition 

to biomass and fuels, with the structure and composition data derived from geospatial data layers of the LANDFIRE Project.  

MFLEI provides estimates of CONUS daily wildfire burned area, fuel consumption, and pollutant emissions at a 250 m × 250 m 

resolution for 2003–2015.  A spatially aggregated emission product (10 km × 10 km, 1 d) with uncertainty estimates is included to 

provide a representation of emission uncertainties at a spatial scale pertinent to air quality modelling. MFLEI will be updated, with 20 

recent years, as the MTBS burned area product becomes available. The data associated with this article can be found at 

https://doi.org/10.2737/RDS-2017-0039. 
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1 Introduction  

Annually, open biomass fires are estimated to burn in excess of three million km2 (Giglio et al., 2013) and emit 46.6 Tg of 

particulate matter (36.6 Tg of fine particulate matter, PM2.5) (van der Werf et al., 2017).  Globally, the dominant biomass burning 

regions are sub-Saharan Africa, Brazil, and Equatorial Asia (van der Werf et al., 2017; Wiedinmyer et al., 2011), regions where 

fire ignitions are driven by human activity (Andela et al., 2017).  In many regions across the globe, biomass fires are a significant 5 

source of air pollution and can be a major hazard to public health (Johnston et al., 2012).  Fresh biomass smoke is a rich mixture 

containing hundreds of gases (Hatch et al., 2015; Urbanski, 2014) and particulate matter diverse in size, composition, and 

morphology (Reid et al., 2005a; Reid et al., 2005b).  Fine particulate matter (PM2.5) is the smoke constituent presenting the primary 

public health hazard (Reisen et al., 2015).  In addition to PM2.5, the photochemical processing of the volatile organic compounds 

and nitrogen oxides present in smoke can also produce ozone (O3) (Jaffe and Widger, 2012; Lindaas et al., 2017), another air 10 

pollutant which poses a public health threat (Nuvolone et al., 2018).  The health impacts associated with exposure to wildfire 

smoke include increases in respiratory and cardiovascular morbidity and mortality (Fisk and Chan, 2017; Liu et al., 2015; 

Williamson et al., 2016).  

While biomass burning in the contiguous United States (CONUS) is a small contributor to emissions globally, it is a significant 

source of air pollution in the US.  Wildfire smoke has created severe air pollution episodes with substantial impacts on public 15 

health (Fann et al., 2018; Kochi et al., 2012; Rappold et al., 2014).  In addition to public health impacts, wildfire smoke presents 

challenges for air regulators and land managers.  Under the US federal Clean Air Act (CAA), the Environmental Protection Agency 

(EPA) has established National Ambient Air Quality Standards (NAAQS) to protect public health and the environment (USEPA, 

2018a).  The NAAQS include standards for PM2.5 (24 h and annual) and O3 (8 h).  The CAA requires states to adopt plans to 

achieve NAAQS and control emissions that may impact air quality in downwind states (USEPA, 2013).  Thus identifying the 20 

contribution of wildfires to air pollution, even marginal impacts at long distances from the fires, is important for air regulatory 

efforts.  For example, Liui et al. (2016) have estimated that on days that exceed regulatory PM2.5 levels in the western US, wildfires 

account for >70% of total PM2.5 loading.  Ozone production from wildfires impacting both rural and urban areas has been reported. 

At remote monitoring sites in the intermountain west US, Lu et al. (2016) found that 31% of summertime O3 exceedances (days 

when O3 exceeded the 8 h NAAQS) were attributable to wildfires.  However, given the complex processes involved in O3 25 

formation, quantifying the amount attributable to fire emissions in urban areas is particularly difficult (Gong et al., 2017; Brey and 

Fischer, 2016; Jaffe and Wigder, 2012).  Air regulators need accurate emission inventories to quantify the contribution of wildfires 

to air pollution and thereby develop effective and efficient strategies to control anthropogenic air emission sources.  Accurate 

emission inventories also improve the ability of state air regulators to properly identify wildfire induced NAAQS exceedances, 

which qualify for treatment under the EPA exceptional events rule (USEPA, 2018b).  30 

Several biomass burning emission inventories that include CONUS are available (van der Werf et al., 2017; Zhang et al., 2017; 

Wiedinmyer et al., 2011; French et al., 2014;  Larkin et al., 2014; Wiedinmyer et al., 2011Zhang et al., 2017).  Of these, the global 

inventories Global Fire Emissions Database (GFED; van der Werf et al., 2017) and Fire INventory from NCAR (FIiNN; 

Wiedinmyer et al., 2011) are probably the most widely used in atmospheric chemistry and air quality modelling.  The Wildland 

Fire Emissions Information System (WFEIS; French et al., 2014) provides daily fire emission estimates for CONUS for 2001–35 

2013.  Given many options, why develop another emission inventory? In terms of wildfire emission estimates for CONUS, we 

believe the emission inventory presented in this paper, the Missoula Fire Lab Emission Inventory (MFLEI), may improve upon 

currently available inventories.  We are able to employ comprehensive datasets on the distribution and assemblage of vegetation 

cover and fuel loading (biomass available for combustion) that are available only for CONUS. MFLEI uses a forest type map and 

a new forest fuel classification, both of which are based on a national forest inventory dataset, providing more accurate fuel loading 40 
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estimates compared to the fuels layer used in WFEIS (Keane et al., 2013).  The methodology used to develop MFLEI is similar to 

that employed to develop carbon emission estimates for Canadian wildland fires (Anderson et al., 2015; De Groot et al., 2007). As 

a retrospective inventory, MFLEI is able to leverage geospatial fire activity information including high spatial resolution burned 

area and burn severity products that are not available for real-time inventories (e.g. FIiNN).  Additionally, much of the fire activity 

data used in MFLEI is produced by US land management agencies and is available only for US territory, and therefore is not used 5 

in global inventories.  Our inventory is also able to use a large and growing body of published emission factor data to craft emission 

factors specifically for fire prone CONUS ecosystems.  

Improved CONUS emission estimates will help quantify the contribution of wildfires to air pollution and thereby inform 

decision making activities related to the control and regulation of anthropogenic air pollution sources.  The ability of states to 

properly identify wildfire induced NAAQS exceedances, which qualify for treatment under the EPA exceptional events rule 10 

(USEPA, 2018b), may also be enhanced with an improved inventory.  Further, given the benefit of improved fire activity 

information, retrospective emission inventories may help identify and diminish deficiencies of real-time emission inventories, 

which are used to forecast smoke impacts on air quality and reduce risks to public health.   

2 Methods 

2.1 Biomass burning emission model 15 

MFLEI provides estimates of daily emissions of CO2, CO, CH4, and PM2.5 from wildland fires for CONUS.  The MFLEI biomass 

burning emission model is based on Eq. (1), given below, and the implementation and datasets are summarized in Figure 1.  The 

inventory has a spatial resolution of 250 m which is established by the MFLEI land cover map (Sect. 2.2).  Burned pixels are 

identified and assigned nominal burn dates using a spatially resolved burned area dataset developed from four fire activity datasets 

(Sect. 2.3).  The land cover classifications of the MFLEI map are used to assign fuel loading (biomass per unit area available for 20 

combustion) and combustion completeness to burned pixels.  Fuel loading of forested pixels is based on a fuel classification system 

developed from forest inventory measurements (Sect. 2.4.1).  A spatially explicit rangeland fuels map supplies fuel loading for 

pixels of herbaceous and shrub cover types (Sect. 2.4.2). The inventory estimates emission intensities for each 250 m grid cell (k) 

and day (t) using Eq. (1): 

𝐸𝐸𝑖𝑖(k, t) = EF(i, k) × ∑ 𝐹𝐹(𝑘𝑘, 𝑡𝑡, 𝑗𝑗) ×𝑗𝑗 𝐶𝐶(𝑘𝑘, 𝑡𝑡, 𝑗𝑗),           (1) 25 

where Ei is the emission intensity of species i for grid cell k on day t in units of kg-i m-2 day-1.  The driving variables in Eq. 1 are 

the pre-fire dry fuel loading for fuel component j (F; kg m-2), combustion completeness, which is the fraction of fuel component j 

consumed by fire on the day the grid cell burned (C; day-1), and the emission factor for species i, which is the mass of i emitted per 

mass dry fuel consumed (EF; kg-i kg-1).  The inventory assumes that the burning and emissions for each burned grid cell occuris 

burned in its entirety on the estimated burn day (Sect. 2.3.2).  Fuel loading (F), combustion completeness (C), and emission factors 30 

(EF) all depend on grid cell properties. F is assigned based on a grid cell’s forest type group or taken from a rangeland fuel loading 

map in the case of herbaceous and shrub cover types. C depends on fuel type and also on fuel moisture regime and burn severity 

classification for forest pixels (Sect. 2.6).  EF depend on the fuel type (Sect. 2.7).  The mass of species i emitted on the day a grid 

cell burned (EMi; kg-i day-1) is the product of the emission intensity (Ei) from Eq. 1 and the grid cell area (A), which is 62,500 m2.  
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2.2 Land cover map  

The MFLEI land cover map was created by combining a 250 m spatial resolution CONUS forest type group map with a rangelands 

map.  The forest type group map, the USDA Forest Service (USFS) National Forest Type Dataset (Ruefenacht et al., 2008; available 

at https://data.fs.usda.gov/geodata/rastergateway/forest_type/), was used as the base map for the MFLEI land cover map. The forest 

classification accuracy of the USFS forest type group map is generally around 60 to 70 percent (Keane et al., 2013; Ruefenacht et 5 

al., 2008) with a forest/non-forest classification accuracy ranging from 80 to 98 percent (Blackard et al., 2008).  Pixels mapped as 

non-forest in the forest type group map were then assigned a cover type of shrub, herbaceous, or non-fuel using the CONUS 

rangelands product of Reeves and Mitchell (2011). The MFLEI cover type map is shown in Fig. 21 and the cover type descriptions 

are provided in Table 1.  The LANDFIRE project (LANDFIRE, 2016) provides CONUS wide maps for Fuel Characteristics 

Classification System (FCCS; Ottmar et al., 2007; McKenzie et al., 2012) and Fuel Loading Models (FLM, Lutes et al., 2009) 10 

fuelbed models, both of which are suitable for estimating fuel consumption and emissions. FCCS is used in both the NEI+ (Larkin 

et al., 2014) and WFEIS (French et al., 2014) CONUS fire emission inventories. We assembled a new map based on the USFS 

forest type group map because it provides three important benefits over other land cover maps with respect to forests. First, the 

accuracy of the forest type group map is significantly better than either the FCCS or FLM maps (Keane et al., 2013). Second, it 

enabled us to use the Fuels Type Group (FTG) surface fuel classification system (Sect. 2.4.1) which provides a more accurate 15 

estimate of average surface fuel loading than either the FCCS or FLM (Keane et al., 2013). Finally, because the USFS forest type 

group classification is an FIA plot variable, we are able to use the large (>27,000 plots) dataset of FIA fuel measurements estimate 

uncertainty in surface fuel loading and emissions (Sect. 2.9). During burned area mapping (Sect. 2.3.1) the land cover type codes 

of the MFLEI are used to assign the fuel codes listed in Table 1 to burned pixels. Three of the mapped cover types were forest type 

groups for which there was insufficient data to develop a fuel loading classification (Sect. 2.4.1).  Therefore, during the burned 20 

area processing, the fuel codes associated with these cover types, 1380, 1980, and 1990, were recoded as 1360, 1950, and 1950, 

respectively.  Also during processing of the burned area data, the fuel codes of forest pixels in the eastern US that were classified 

as 1180, 1700, 1900, and 1950 were recoded to 2180, 2700, 2900, and 2950, respectively. This was done because the forest 

inventory surface fuels dataset used  to develop fuel classifications (Sect. 2.4.1) indicated substantially different fuel loadings 

between eastern and western (11 western states) forests for these forest type groups.  Burned grid cells classified as non-fuel in the 25 

land cover map were assigned a fuel load = 0 and did not produce emissions. In post-emission processing of the dataset, the non-

fuel, zero emission burned pixels were assigned a cover type classification from the National Land Cover Database 2011 (NLCD) 

(Homer et al., 2015).  This was done to track wildfire impacts on agricultural and developed lands or identify possible agricultural 

burning. Pixels that were not classified as forest or rangeland in the MFLEI land cover map were fixed as ‘No Data’ when the 

NLCD dataset classification was forest, herb, or shrub.   30 

The focus of MFLEI is wildfires, which are fires resulting from unplanned ignitions (e.g. lightning, arson, accidents). The other 

types of open biomass burning common in CONUS are prescribed fires and agricultural fires. We define agricultural fires as the 

burning of crop residue or preparation of fields for planting.  Croplands are classified as non-fuel in the MFLEI land cover map 

and are assigned zero emissions in the inventory.  Prescribed fires are intentionally ignited to achieve land management objectives 

(e.g. hazardous fuel reduction, ecosystem restoration, and preparation of rangeland for grazing).  Prescribed fires are not excluded 35 

from MFLEI, although given the focus on wildfires they are certainly underrepresented as discussed in Section 3.5. 

2.3 Burned area 

Burned area was derived from MODIS and Landsat based burned area products, a dataset of fire perimeter polygons mapped to 

support fire management activities, and a fire occurrence database. Burn dates were primarily assigned based on the MODIS burned 

https://data.fs.usda.gov/geodata/rastergateway/forest_type/
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area product and active fire detection products from MODIS and the Visible Infrared Imaging Radiometer Suite (VIIRS). When a 

burn date could not be assigned from MODIS or VIIRS data, it was estimated from generalized fire activity cycles and the fire size 

and duration obtained from the fire occurrence database or other administrative records. 

2.3.1 Burned area mapping   

On an annual basis, potentially burned grid cells of the MFLEI land cover map were identified by an overlay of burned area 5 

polygons and rasters in ArcMap. Four burned area/fire activity datasets were used to extract potentially burned pixels: Monitoring 

Trends in Burn Severity (MTBS) fire boundaries (MTBS, 2017a; Eidenshink et al., 2007), the MODIS active fire based Direct 

Broadcast Monthly Burned Area Product MCD64A1 (MCD64) (MCD64A1, 2016; Giglio et al., 2009), incident fire perimeters 

from the Geospatial Multi-Agency Coordination Wildland Fire Support archive (GEOMAC, 2015), and a spatial wildfire 

occurrence database (FOD) (Short, 2017).   10 

The MTBS project maps fire boundaries and burn severity for large fires (> 404 ha in the west and > 202 ha in the east) across 

the US from 1984 to the present (Eidenshink et al., 2007; MTBS, 2017c). MTBS fire boundaries are polygons representing burned 

area detected from post-fire Landsat TM/ETM/OLI imagery (Eidenshink et al., 2007).  The polygon attributes for each MTBS 

boundary include a unique fire ID, fire start date, and fire name.  The MTBS fire ID attribute was used to aggregate burned grid 

cells by fire event and to filter the FOD point dataset to avoid double counting of fires. The primary MTBS product is thematic 15 

burn severity rasters, which classify burn severity within the fire boundaries (Eidenshink et al., 2007; MTBS, 2017b). We used the 

MTBS burn severity rasters to identify unburned regions within MTBS fire boundaries and to develop scaling factors to 

approximate unburned patches for burned area mapped using MCD64, GEOMAC, and FOD, as described in Sect. 2.3.3.   

The MCD64 product maps burned areas using 500 m MODIS imagery coupled with 1 km MODIS active fire detections (Giglio 

et al., 2009). MCD64 is a monthly, 500 m resolution raster product that provides an estimated burn date for each pixel identified 20 

as burned. We used MODIS Collection 5.1 of MCD64A1 (MCD64A1, 2016). The most recent version of the MCD64A1 product, 

Collection 6, became available in January 2017 (Giglio et al., 2015).  The MCD64 product is the primary burned area data source 

for the Global Fire Emission Database (GFED) (Giglio et al., 2013) during the MODIS era. Details for accessing the product can 

be found on the GFED website: http://www.globalfiredata.org/ (last access: June 4, 2018).  

The GEOMAC dataset is a collection of fire perimeter polygons. For large fire events, fire perimeters are periodically mapped 25 

by incident management teams, typically using airborne infrared imagery. These incident perimeter polygons are produced to 

support fire management activities. Since their purpose is identifying the fire perimeter, not mapping the actual area burned,  the 

area within a perimeter typically includes unburned regions. We attempt to compensate for this as discussed in Sect. 2.3.3.  For 

these reasons, we give the MTBS dataset precedence over the GEOMAC.  Further discussion regarding the use of incident 

perimeters as ‘ground-truth’ burned area may be found in Urbanski et al. (2009) and Key and Benson (2006).  Final fire perimeters 30 

from the GEOMAC dataset were checked against the MTBS fire boundaries using the products’ fire name attributes to remove 

GEOMAC perimeters for fires present in the MTBS dataset.  

FOD is a spatial database of wildfires that occurred in the United States from 1992–2015 generated from wildfire records 

acquired from the reporting systems of federal, state, and local fire organizations (Short, 2017). FOD provides a point location for 

each fire, not a spatial object that maps burned area. Other FOD dataset attributes used in our analysis include final fire area, 35 

discovery date, containment date, fire name, fire code, and the MTBS fFire ID attribute from the MTBS perimeter dataset (MTBS 

fires only).  We used the FOD dataset to capture fires not included in the MTBS, GEOMAC, or MCD64 datasets.  We filtered the 

FOD dataset for fires contained in either the MTBS or GEOMAC datasets using the MTBS fFire ID or the fire name and fire code 

attributes (for GEOMAC) from the datasets.  Fires < 4 ha in size were also removed due to their minor contribution to total burned 

http://www.globalfiredata.org/
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area; while fires < 4 ha accounted for 86 % of all fires in the FOD database for 2003–2015, they only comprised 1.5 % of total fire 

area.  Finally, FOD fires with locations that fell within a distance 𝐷𝐷𝑓𝑓 (𝐷𝐷𝑓𝑓 = 2�𝐴𝐴 𝜋𝜋⁄  , where A is the FOD fire area) of any grid cell 

identified as burned by either the MCD64 or GEOMAC datasets were removed. Following these filtering actions, MFLEI land 

cover map grid cells within a distance 𝐷𝐷𝑓𝑓/2 of an FOD fire location were flagged as burned. 

2.3.2 Burn date assignment 5 

Of the four datasets used to map burned area, only MCD64 provides an estimated burn date, and these were assigned to MFLEI 

grid cells identified as burned by the MCD64 product. Grid cells identified as burned by the MTBS, GEOMAC, or FOD datasets 

were assigned an estimated burn date as follows. First, all grid cells (non-MCD64 sourced) were assigned a fire start date and, 

when available a fire containment date, on a fire event basis. The MTBS, GEOMAC, and FOD datasets include fire event identifiers 

and fire start dates (or discovery dates) which were added as attributes to burned grid cells. The FOD dataset also includes a 10 

containment date for many fire events and it was added as an attribute to burned MFLEI grid cells when available. Most of the 

fires in the MTBS and GEOMAC dataset are also included in FOD. Fire event identifiers, MTBS Fire ID,  and the fire name and 

fire code attributes from GEOMAC, were used to associate MTBS and GEOMAC sourced burned pixels with FOD fire events and 

thereby assign containment dates when available. Next, grid cells identified as burned by the MTBS, GEOMAC, or FOD datasets 

were assigned an estimated burn date using one of the following methods in order of precedence:  15 

 

1) Grid cells within 500 m of a MCD64 sourced pixel were assigned that pixel’s burn date. 

 

2) Grid cell burn dates were assigned from MODIS active fire detections (MCD14) (Giglio et al., 2003) using spatial and 

temporal proximity criteria to associate active fire detections with burned grid cells. We assigned each active fire detection a 20 

spatial buffer, Xb, which defines the maximum distance at which it can be associated with a MFLEI grid cell for purposes of 

ascribing a burn date. MCD14 pixels have nominal dimensions of 1 km × 1 km; however, the actual size and location of a 

detected active fire is unknown. In consideration of this spatial uncertainty, we assigned Xb a default value of 2 km. The 

dimensions of MCD14 pixels are 1 km × 1 km at nadir, but increase with distance off nadir, reaching 4.8 km (scan direction) 

× 2 km (track direction) on the edges of the MODIS scanning swath (Nishihama et al., 1997).  For off nadir pixels, Xb was set 25 

to the dimension of the scan direction when > 2 km (pixel dimensions were among the attributes of the MCD14 product used 

in analysis). For each burned grid cell, we identified the nearest active fire detection located within a distance Xb and falling in 

the time frame: (Dstart – 3 days) to (Dcont + 3 days), where Dstart and Dcont are the grid cell’s fire start date and fire containment 

date attributes. The temporal criteria was used to eliminate any active fire detections from an unrelated fire that occurred during 

a different time period. For the years 2014 and 2015, VIIRS I-band active fire detections (Schroeder et al., 2014) were also 30 

used to assign pixel burn dates. The procedure was similar to that used with the MCD14 product, except that the VIIRS active 

fire detection spatial buffer, Xb, was set to 750 m, which is twice the spatial resolution (375 m) of VIIRS I-band pixels at nadir.  

Because the VIIRS I-band active fire detection product has significantly superior mapping capabilities compared to the MCD14 

product (Schroeder et al., 2014), it was given precedence over MCD14 for assigning pixel burn dates. Burned grid cells not 

associated with MCD64 were assigned a burn date equal to the date of the nearest active fire detection meeting the above spatial 35 

and temporal criteria. The MCD14 and VIIRS I-band active fire data used was obtained from the USDA Forest Service Remote 

Sensing Application Center’s Active Fire Mapping Program (https://fsapps.nwcg.gov/afm/gisdata.php).  

 

https://fsapps.nwcg.gov/afm/gisdata.php
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3) Event based extrapolation.  Following burn date assignment steps 1 and 2, 28% of the burned grid cells were without burn 

dates. Forty-six percent of these undated grid cells were associated with fire events which had some grid cells that did have 

burn dates. For these fire events, grid cells without burn dates were assigned the burn date of the nearest grid cell with a burn 

date.   

 5 

4) The final step for assigning burn dates addressed burned grid cells of “dateless” fire events, those without any burn date 

associated with the grid cells. In order to assign estimated burn dates to these grid cells, which comprised 15% of all the  grid 

cells, we developed what we refer to as “burn day distributions”. These are empirical distributions of the fraction of event total 

burned area as a function of days since ignition. One set of burn day distributions was derived using MTBS fire events which 

had a containment date and also had > 95% of grid cells assigned a burn date in steps 1 or 2 above.  From these fire events, 10 

burn day distributions were created according to six fire size classes (in ha): 200–625, 625–1250, 1250–3125, 3125–6250, 

6250–12,500, 12,500–25,000. The burn day distribution for the 12,500–25,000 ha size class is shown in Fig. A1 and the 

distributions for all six size classes are provided in the dataset supplement (file\Supplements\BurnDayDist.csv, see Sect. 4).  

The burned grid cells of dateless fire events > 200 ha in size were assigned burn dates using the burn day distribution for the 

appropriate size class. For fire events with a containment date, the burn day distribution was truncated to correspond to the fire 15 

duration (containment date - fire start date) and normalized. When a dateless fire event was < 200 ha and had a containment 

date, grid cell burn dates were assigned one at time cycling through the days between the fire start date and the containment 

date in chronological order until all grid cells were assigned. Fire events < 200 ha and without containment dates were assigned 

durations using Table A1 and the burned grid cells were distributed one per burn day by cycling through the burn days in 

chronological order until all grid cells were assigned.  20 

2.3.3 Unburned and lightly burned grid cells 

Wildfires typically do not impact fuels uniformly across the landscape and it is not unusual for significant area within a fire 

perimeter to be unburned or only lightly burned (Kolden et al., 2012).  MTBS burn severity thematic classifications were used to 

account for unburned or lightly burned regions (MTBS, 2017b). The MTBS burn severity thematic classifications were developed 

to represent fire effects on above-ground biomass (Eidenshink et al., 2007; Schwind , 2008).  MTBS assigns six burn severity 25 

classifications (BSEV) to pixels within fire boundaries: 1) unburned to low burn severity, 2) low burn severity, 3) moderate burn 

severity, 4) high burn severity, 5) increased green, 6) no data.  We elected to designate BSEV = 1 as unburned, which is consistent 

with MTBS program publications that describe this classification as areas which are either unburned or where visible fire effects 

occupy < 5 % of the site at the time of observation (Schwind, 2008).  The increased green classification may indicate unburned 

that exhibited more green at the time of the post-fire Landsat scene relative to the pre-fire scene. The increased green classification 30 

was assigned to just 0.3% of MTBS pixels and thus has a negligible impact on our inventory. MFLEI burned grid cells associated 

with a fire analyzed by the MTBS project were compared against a coarse scale MTBS thematic burn severity map (30 m original 

resampled to the MFLEI 250 m grid using majority sampling).  Coarse scale MTBS pixels classified as BSEV = 5 or BSEV = 6, 

increased green or no data, respectively, were randomly re-assigned a value between 1 and 4.  This reassignment was conducted 

on a fire event basis in proportion to the frequency of pixels originally classified BSEV 1–4.  MFLEI grid cells classified as BSEV 35 

= 1, “unburned to low severity”, in the coarse scale MTBS product were flagged as unburned.  MFLEI burned grid cells not 

associated with a fire analyzed by the MTBS project were randomly assigned a BSEV value based on a generic cover type–BSEV 

empirical distribution developed from the CONUS wide MTBS thematic classification maps for 2003–2013. The cover type–

BSEV distribution is shown in Table 2.  
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2.4 Fuel loading  

Fuel loading was represented with the 14 fuel components in Table 3.  Models of forest fuel loading were developed using data 

from the USFS Forest Inventory and Analysis (FIA) National Program as described in Sect. 2.4.1.  The rangeland fuel product 

(Sect. 2.4.2) provided spatially explicit fuel loadings for grassland and shrub ecosystems.   

2.4.1 Forest fuel loading 5 

Surface fuel loadings 

We developed an expanded version of the Fuels Type Group (FTG) fuel classification system assembled by Keane et al. (2013) 

using recently available FIA fuels data and also including plot data from the eastern US.  The FIA inventory is comprised of three 

phases of data collection as described in Bechtold and Patterson (2005).  The inventory is designed to cover forested land (10 % 

stocked with tree species, see Bechtold and Patterson (2005)), of all ownership across the US. Phase 1 sampling provides 10 

information to stratify inventory ground plots and improve the precision of estimates of population totals (Bechtold and Patterson, 

2005).  In Phase 2, measurements are taken on the standard FIA base grid which has a density of approximately 1 sample location 

per ∼ 2428 ha (6000 acres).  Phase 2 collects information such as height and diameter of standing trees and physiographic class 

and land ownership.  Phase 3 involves sampling of forest health indicators, such as the down woody material (DWM) indicator. 

The DWN indicator estimates dead organic materials including downed woody debris, litter, and duff (Woodall and Monleon, 15 

2008).  The DWM indicator was used to estimate plot level surface fuel loading as described below.  Phase 3 sampling is conducted 

on a subset of Phase 2 plots (approximately 1/16 of Phase 2 plots).  In the western US, the FIA units began collecting the DWM 

indicator on all of their Phase 2 plots in the early 2000’s (Keane et al., 2013), thus the density of surface fuel plots used to assemble 

the FTG classification is significantly higher in the west.  Fig. 32 maps the locations of the FIA plots used to develop the expanded 

FTG surface fuel classification for MFLEI.   20 

Our FTG classification is based on 27,124 plots compared with 13,138 used in Keane et al. (2013).  We used only single 

condition plots, plots where all four subplots were the same condition (land class, reserved status, owner group, forest type, stand-

size class, regeneration status, and stand density) (O’Connell et al., 2016).  The FTG classification summarizes fuelbed component 

loadings (Table 3) by FIA forest type groups using fuels data from the FIA Database acquired from the FIA DataMart website 

(https://www.fia.fs.fed.us/tools-data; FIA, 2015).  Five tables were accessed from the FIA dataset: REF_FOREST_TYPE, COND, 25 

PLOT, COND_DWM_CALC, and DWM_COARSE_WOODY_DEBRIS.  A detailed description of these tables is provided by 

O’Connell et al. (2016). For an in-depth description of the FIA sampling design, estimation, and analysis procedures see Woodall 

and Monleon, 2008, O’Connell et al., 2016, and Woodall et al., 2013, and for an abbreviated summary see Keane et al. (2013). 

Data assembled from the COND_DWM_CALC table included loading (biomass per unit area) of fine woody debris by three size 

classes: small, medium, and large (Table 3), duff loading and depth, and litter loading and depth.  Data from the 30 

DWM_COARSE_WOODY_DEBRIS table was assembled to provide loadings of coarse woody debris by eight size/decay class 

combinations (Table 3) following the methods described in Woodall and Monleon (2008).  Best estimate loadings of the surface 

fuel components were taken as the average values of all plots for each fuel classification and are shown in Table 4.  The surface 

fuel loading data for the 27,124 plots used to develop Table 4 and to derive uncertainty estimates in the emission modeling (Section 

2.9) are included in the MFLEI dataset (file \Supplements\Fuel_Load_Plot_Data.csv, see Sect. 4).  The MFLEI land cover type 35 

map assigns an FTG to all forest pixels.  Four FTG, 180, 700, 900, and 950, had significant fuel loading differences between 

western (11 western states) and eastern plots.  Therefore, separate fuel classifications, west and east, were made for these FTG and 

they are differentiated by the fuel code (Table 1) which is assigned during burned area mapping as described in Sect. 2.2. As 

discussed in Keane et al. (2013), the variability of surface fuel loading within FTGs is quite large.  Figure 43 plots the distribution 

https://www.fia.fs.fed.us/tools-data
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of surface fuel loading for the FIA plots of three FTG, Loblolly/shortleaf pine (160), Douglas-fir (200), and California mixed 

conifer (370).  The surface fuel loading plot data have a log-normal like distribution with long tails.  The high variability in surface 

fuel loading is the primary source of uncertainty in the emission estimates for forest fires (Section 2.9). 

 

Understory fuels 5 

The loading of forest understory fuels, shrubs (vascular plants with woody stems that are not defined as trees by FIA Phase 2) and 

herbs (non-woody vascular plants including but not limited to ferns, moss, lichens, sedges, and grasses), was derived from raster 

maps of forest understory carbon (Wilson et al., 2013).  The raster maps of forest understory carbon were combined with the USFS 

FIA Forest Type Group map (Ruefenacht et al., 2008) to derive empirical distributions of understory fuel loading for each FTG 

class (assuming a biomass carbon content of 50%).  The fuel loading distributions were used to provide uncertainty estimates for 10 

the emission modeling (Sect. 2.9).  Partitioning of the understory fuel loading between shrubs and herbs was based on herb to 

shrub ratios from the Fuel Characteristics Classification System (FCCS) and First Order Fire Effects Model (FOFEM) reference 

fuel models (Ottmar et al., 2007; Riccardi et al., 2007; Lutes, 2016a).  The empirical distributions of understory fuel loading for 

all FTG classes are included in the MFLEI dataset (file \Supplements\Understory_Fuel_Dist.csv, see Sect. 4).  Best estimate 

loadings for herb and shrub fuel components were taken as the average values of all plots for each fuel classification and are shown 15 

in Table 4. 

 

Canopy fuels 

Available canopy fuel (ACF), the dry mass of canopy fuels likely to be consumed in a fully active crown fire (needles, lichen, 

moss, and live and dead branch wood ≤ 6 mm in diameter) (Scott and Reinhardt, 2001), was derived from FIA plot Treelist tables.  20 

FIA Treelist tables (which are named TREE in the FIA database) provide a detailed inventory of trees on FIA plots (O’Connell et 

al., 2017).  FIA plots with Treelists are based on Phase 2 sampling which are far more numerous than the Phase 3 plots used to 

derive surface fuel loadings (see above).  We used the Treelist table variables: species code (SPCD), diameter (D), crown class 

code (CCLCD), tree status (STATUSCD), and tree density (TPA) to estimate ACF associated with each Treelist table entry using 

empirical equations from the literature following the approach outlined in the FuelCalc User’s Guide (Lutes, 2016b).  FuelCalc is 25 

a fuel management software system which can be used to calculate forest canopy characteristics at an inventory plot.  For each of 

363,060 FIA plots with a Treelist, stand level ACF was calculated using Eq. 2: 

𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ (𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑁𝑁
𝑖𝑖 × 𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖),           (2) 

where the subscript i is the index for the softwood tree species in the stand and acfi and TPAi are tree level available canopy fuel 

and tree density. acfi and TPAi are calculated as described in the Supplement.  𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 were aggregated by FTG (an FIA plot 30 

variable) and the mean was taken as the best estimate which are listed in Table 4.  The 𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 aggregated by FTG were fit to 

Weibull probability distribution functions to derive uncertainty estimates for the emissions modeling (Sect. 2.9).  Best estimate 

ACF and optimized parameters for fits to Weibull probability distribution functions (PDF) are provided in Table B1.  

 

Total forest fuel loading  35 

Average forest fuel loading is dominated by the surface fuels for all forest fuel types (25 FTG plus 4 eastern variants (see Sect. 

2.2)), as shown in Figure 54.  Greater than 70% of total fuel loading resides in the surface fuels for 25 of the 29 forest fuel types. 

Surface fuel components (Table 3) are often grouped into litter, fine woody debris (fwd; down dead wood with diameter < 7.62 

cm), coarse woody debris (cwd; down dead wood with diameter >=7.62 cm), and duff.  These groupings reflect the surface to 
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volume ratio of the fuel particles, an important determinant in the rate of fire spread (Scott and Burgan, 2005) as well as the 

combustion characteristic of the fuels.  Litter and fine woody debris tend to favor flaming combustion while coarse woody debris, 

and duff especially, favor smoldering combustion processes (Urbanski, 2014).  Figure 65 plots the fraction of total fuel load 

residing in duff, litter, fine woody debris, and coarse woody debris for the 29 forest fuel types.   

2.4.2 Rangeland fuel loading 5 

Rangeland fuels were estimated using the Rangeland Vegetation Simulator (RVS) (Reeves, 2016) and began with delineating the 

spatial domain of rangelands in CONUS (land cover type codes 1 and 2 in Figure 21), as described in Reeves and Mitchell (2011), 

and constrained using the forest type map developed by Blackard et al. (2008).  If a forest type was indicated for a given pixel in 

the Blackard et al. (2008) map, no rangeland fuel data were estimated for that pixel.  The vegetation form (herbaceous or shrub) 

and type (e.g. Chihuahuan Mixed Desert and Thornscrub) were assigned from the Landfire Project (LF) Existing Vegetation Type 10 

(EVT) geospatial data layer (LANDFIRE, 2016).  Different methods were used to quantify woody and herbaceous fuels (Figure 

76). 

 

 

 15 

Shrub 

The derivation of shrub fuel loading used two LF products in addition to EVT as input: Existing Vegetation Height (EVH) and 

Existing Vegetation Cover (EVC).  The height estimates at each pixel in the EVH product are thematic classes representing a range 

of potential heights (Table C1).  The range of potential heights provided by the EVH enables three values of shrub fuels to be 

estimated at each pixel (median, maximum, and minimum).  EVC represents the vertically projected percent cover of the live 20 

canopy.   

Generation of shrub fuel loading data involves several steps (Fig. 76) which are briefly described here.  Details of the approach 

are illustrated in Appendix C.  First, crown dimensions are derived from EVH and the projected crown area on a horizontal surface 

(PCH), the latter of which is estimated using Eq. 3 (Frandsen, 1983): 

 25 

𝑙𝑙𝑙𝑙𝑙𝑙10(PCH) = −0.8471 + 2.2953𝑙𝑙𝑙𝑙𝑙𝑙10(𝐻𝐻𝐻𝐻),           (3) 

 

where PCH is in cm2 and HT is the estimated height class of shrubs in cm at each pixel (from the EVH product).  Crown dimensions 

are then used in one of 31 species specific equations from the RVS allometric library to estimate per stem biomass (PSB; kg stem-

1).  Next, the estimate of stem density (SD) at each pixel, (stem ha-1) is used to expand PSB to a per-area basis.  SD is estimated 30 

as: 

 

SD = (PCH / 108) * EVC                    (4) 

 

where SD is stem density, and the value 108 converts cm2 to a per hectare basis.  In effect, the number of times PCH can be divided 35 

into a hectare is scaled by the canopy cover (EVC).  The total shrub biomass (TSB; kg ha-1) is the product of PSB and SD.  This 

four step process was conducted at each pixel using the minimum, maximum, and median shrub heights from EVH (Table C1) to 

provide lower, upper, and middle estimates of fuel loading, respectively.  
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Herb 

The derivation of herb fuel loading used the EVT and MODIS growing season maximum Normalized Difference Vegetation Index 

(NDVI), and the Soil Survey Geographic (SSURGO) annual productivity map, which consists of polygons with estimates of 

rangeland productivity (dry-weight/area/year) for normal, favourable, and unfavourable production years (Soil Survey Staff, 5 

20165).  The SSURGO productivity data were derived from the USDA National Resource Conservation Service soil survey 

geographic database (Soil Survey Staff, 20165). Herbaceous biomass is estimated as a function of the annual maximum NDVI 

across 51 grassland vegetation types.  The three SSURGO production values reported at each soil polygon were paired with the 

average, minimum, and maximum NDVI values (from 2000–2016) for each of the 51 vegetation types dominated by herbaceous 

species (Fig. 87).  When this relationship is applied for each year in the time series between 2000 and 2016, an annual estimate of 10 

rangeland production can be made at every pixel. The present year’s herbaceous production (from 2000–2016) is added to estimated 

standing dead herbaceous vegetation (“holdover”) resulting from previous growth (see below).  Annual production added to the 

holdover from previous years creates the ‘herbaceous loading’ pool (HL; Fig. 76).  

Estimating the previous year’s standing dead or herbaceous litter material is based upon experimental (Irisarri et al. 2016) and 

anecdotal observations.  This topic is not widely studied across multiple ecosystems and it is difficult and time consuming to derive 15 

experiments that track the fate of herbaceous growth, senescence and decomposition across multiple vegetation types.  The paucity 

of suitable plot data for estimating the amount of standing dead material is therefore based on observations of various vegetation 

stands with significant herbaceous components throughout the western US. In addition, the USDA Agricultural Research Service 

(ARS) recently provided results from 10 years of grassland observations on shortgrass steppe near Cheyenne, Wyoming and 

standing dead values averaged 22% across treatments.  This means that, on average, in shortgrass steppe, standing crop of the 20 

present year includes 22% of the previous year’s production plus the present annual production.  The function used in the RVS to 

estimate the standing dead material is y = 100e-1.495x, which yields values of 22% at year 1 and 5% at year 2.  

To capture the range of variability of the herbaceous response, the coefficient of variation (C.V. = mean / standard deviation 

of the annual production between 2000 and 2016) was applied at each pixel dominated by herbaceous lifeforms.  This yields three 

potential values of herbaceous loading at each pixel (mean, mean +/- C.V.).  Likewise the range of standing dead values over 25 

2000–2016 was estimated using the mean +/- C.V.  At this stage herbaceous loading (HL) and total shrub biomass loading (TSB) 

have been produced and are mosaicked together to form a seamless depiction of fuels and are available for simulation of fuel 

consumption and emissions.  Raster files of the herbaceous C.V. and the shrub minimum and maximum are included in the MFLEI 

dataset.  

2.4.3 Total fuel loading 30 

Best estimate total fuel loading of both forests and rangelands are mapped in Figure 98.  Forest fuel loadings range from 1.3 to 

13.3 kg m-2 (Table 4, Fig. 54).  Fuel loadings are considerably less for rangelands, varying from ∼0.1 to 5.2 kg m-2, with a median 

value of 1.8 kg m-2.  Regions without a mapped fuel loading are classified as non-fuel and are largely agriculture, barren, developed 

lands or water.   

2.5 Fuel conditions 35 

Fuel moisture content is a key driver of fuel consumption, especially for coarse woody debris and duff.  The National Fire Danger 

Rating System (NFDRS; Cohen and Deeming, 1985) provides fuel moisture models that classify dead fuels by time lag intervals 

which are proportional to the fuel particle diameter.  The NFDRS classifications for dead fuel moisture are 1 h, 10 h, 100 h, and 
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1000 h corresponding to diameters of < 0.64, 0.64–2.54, 2.54–7.62, > 7.62 cm.  The algorithms used to simulate surface fuel 

consumption require fuel moisture content for 1000 h time lag fuels and duff.  Surface fuel consumption was simulated for the four 

fuel moisture regimes shown in Table 5.  In the emission modeling, MFLEI grid cells were assigned the 1000 h time lag or 100 h 

time lag fuel moisture content of the nearest NFDRS station for day of concern. 1000 h fuel moisture content is considered a proxy 

for coarse woody debris (see Table 3).  Data for NFDRS stations was obtained from the USFS Wildland Fire Assessment System 5 

(WFAS) (Wildland Fire Assessment System, 2015) data archive.  Missing values were filled by linear interpolation across days. 

Duff moisture content was estimated using the 100 h fuel moisture content and empirical relationships of Harrington (1982).   

2.6 Fuel consumption 

Best estimates and ranges of consumption (i.e. combustion completeness), for forest surface and understory fuels for the four 

moisture regimes used in the emission inventory are shown in Table 6.  The best estimate values are based on simulations using 10 

algorithms from the fire effects models CONSUME (Prichard et al., 2006) and FOFEM (Lutes, 2016a).  The ranges, which were 

used to estimate uncertainty in the fuel consumption simulations, were assigned as 10-20%.  The best estimate and range for the 

fraction of forest canopy fuel consumed was based on each pixels’ burn severity classification (Table 7), which were assigned as 

described in Sect. 2.3.3.  Fuel consumption for shrub and herbaceous grid cells used the natural fuel equations from CONSUME 

(Prichard et al., 2006).  The rangeland fuel consumption equations used do not include fuel moisture content and therefore were 15 

independent of the moisture regime.  

2.7 Emission factors 

The composition and intensity of emissions produced by biomass burning varies with the relative mix of flaming and smoldering 

combustion. Modified combustion efficiency (MCE), the molar ratio of emitted CO2 to the sum of emitted CO2 and CO (MCE 

=∆CO2/(∆CO2 + ΔCO)), is a widely used measure of the relative mix of flaming and smoldering combustion.  Because the emission 20 

factors (EF) of many species are correlated with MCE, it is a useful metric for extrapolating emissions factors from one set of 

combustion conditions to another (Urbanski, 2014; Akagi et al., 2011).  The MCE observed for wildland fires varies significantly 

across fire types, for example average MCE values are around 0.94 and 0.93 for rangeland and southeastern forest fires, 

respectively, but ∼0.88 for wildfires in western forests (Urbanski, 2014).  This difference in fire properties was accounted for in 

the emission inventory by using three sets of EF (southern forests, western and northern forests, and rangelands).  Data from several 25 

field studies (Table S4) was used to model EF as a linear function of MCE for forest and rangeland fires (Table 8).  The linear 

functions were combined with best estimate MCE values to derive the EF used in the inventory (Table 9).  Since the focus of 

MFLEI is wildfires, the best estimate MCE used for western and northern forests is based on western wildfires.  Sufficient field 

measurement data of MCE and EF for southern wildfires could not be found in the literature.  Therefore, the EF used for southern 

forest fires are based on the large body of prescribed fire studies in the literature.  The linear functions and their standard errors in 30 

Table 8 were combined with MCE values, sampled from a normal distribution to account for within fuel group uncertainty (Table 

9), to provide an estimate of the uncertainty in the EF which was used in the emission modeling uncertainty analysis (Sect. 2.9).  

2.8 Emission estimates 

The best estimates of fuel loading for the 14 fuel components (Fk,j, Table 3) were assigned to forest pixels using the mapped forest 

type group and associated fuel code (Sect. 2.2) and the FTG fuel classification system (Table 4).  The fuel code, fuel moisture 35 

regime, and burn severity classification were used to designate combustion completeness by fuel component for each pixel (Ck,j) 

using the best estimates from Table 6 and Table 7.  Fuel loading for herbaceous and shrub pixels (Fk,j) was taken from the rangeland 
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fuels map (Sect. 2.4.2).  Herbs and shrubs were treated as single component fuels with a combustion completeness that is 

independent of fuel moisture regime and burn severity classification. EFk,i, were selected from Table 9 based on the fuel type and 

then the best estimate emission intensities for CO2, CO, CH4, and PM2.5 were calculated using Eq. 1. 

2.9 Uncertainty estimates 

A Monte Carlo style analysis following the general approach outlined in the IPCC Guidelines for National Greenhouse Gas 5 

Inventories (Eggleston et al., 2006) was used to estimate the uncertainty in emission intensities (kg m-2) at the pixel level.  The 

method involved randomly selecting a sample of N input values (Xi, Xi+1,…,XN) for the emission model (Eq. 1) and calculating 

emission intensities (Ei, Ei+1,…,EN), where Xi is the array of input values needed for a single emission calculation: fuel loading by 

component (Table 3), combustion completeness (Tables 6 & 7), and EF (EFCO2, EFCO, EFCH4, EFPM2.5), and Ei is the array of 

emission intensities for CO2, CO, CH4, and PM2.5.  The samples of input variables were generated based on each pixel’s fuel code 10 

using the methods summarized in Table 10 and described in more detail below.  The value of N was 500 for rangeland pixels. For 

forest pixels, N was taken as the greatest of 500 or Nplots, where Nplots is the number of plots in the FIA dataset for a given pixel’s 

forest fuel code (Table 4). Next, quantiles (q = .05, .10, .25, .50, .75, .90, .95) of the emissions (Eq,b) were calculated and saved.  

The process was repeated B times, yielding Eq,1,…Eq,B and mean values (∑ 𝐸𝐸𝑞𝑞𝐵𝐵
1 𝐵𝐵⁄ ) were calculated to provide uncertainty 

estimates of the  emissions. Convergence of the distributions was achieved with B = 2000.  15 

Forest surface fuels were generated by using fuel loading arrays sampled from the FIA plot data (included in the MFLEI dataset: 

file\Supplements\Fuel_Load_Plot_Data.csv, see Sect. 4), i.e. each element i used surface fuel components from a single FIA plot.  

This approach was chosen to preserve any correlations among surface fuel components.  Uncertainty in the assigned moisture 

regime and burn severity classification, which are used to determine surface and canopy fuel consumption, respectively, were not 

considered in this analysis.  Therefore, uncertainty analysis produced 464 sets of quantiles for forest pixels (29 forest fuel codes, 20 

four moisture regimes, and four burn severity classifications).  Burned forest pixels were assigned sets of quantiles based on forest 

fuel code, moisture regime and burn severity classification.     

The variability in pixel level shrub fuel loading was simulated using means and standard deviations based on the maps of the 

mean, minimum, and maximum loading (Sect. 2.4.2); with the standard deviation in loading estimated as half the range in 

maximum and minimum loading at each pixel.  To reduce computational demands, shrub pixels were aggregated into bins of mean 25 

loading in 50 g m-2 increments (50 to 5500 g m-2).  For each 50 g m-2 increment in mean loading, simulations were conducted using 

25 increments of standard deviation each corresponding to 10 percentage points of the mean loading value (10% to 250%), resulting 

in 2750 fuel loading elements (pairs of µ and σ).  Similarly, pixel level variability in herbaceous fuel loading was simulated based 

on pixel specific mean and standard deviation from the maps of the mean and the coefficient of variation (C.V. = σ/µ) of loading 

(Sect. 2.4.2).  As with the shrub fuel loading, the herbaceous pixels were aggregated to reduce computational demands. Herbaceous 30 

pixels were grouped according to mean loading by 25 g m-2 increments (25 to 500 g m-2).  For each 25 g m-2 increment in mean 

loading, simulations were conducted using 22 increments of standard deviation corresponding 5 percentage points of the mean 

loading value from 5% to 110%, providing 440 fuel loading elements (pairs of µ and σ).  Using the general approach described in 

the first paragraph of this section, a set of emission quantiles were produced for each of the 2750 shrub and 440 herbaceous fuel 

elements, with fuel loading simulated using a truncated normal distribution with the element’s µ and σ, and the combustion 35 

completeness and EF using probability distributions described in Table 10.  Since rangeland fuel consumption was estimated 

independent of moisture regime and burn severity classification, these variables were not considered in the uncertainty analysis.  

Each burned rangeland pixel was assigned a set of emission quantiles from the simulations based on its cover type (herb or shrub), 

fuel loading, and fuel load uncertainty.  
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The spatial and temporal resolutions required of fire emission inventory systems depend on the specific applications for which 

they are being used.  For regulatory related air quality modeling the EPA recommends a horizontal grid resolution of ≤ 12 km for 

O3 and PM2.5 NAAQS (USEPA, 2007).  Therefore the uncertainty estimation approach described above was applied aggregating 

burned pixels to a 10 km × 10 km grid.  The resultant dataset at 1 d and 10 km spatial resolution provides a more relevant 

representation of the uncertainties of the emissions when used in typical air quality applications. The approach followed that 5 

outlined above, except that the emission intensities for each sample, Ei, were the sum of emission intensities for all pixels within 

each 10 km × 10 km grid cell on a given day. Only grid cell days with > 4 burned pixels were considered for this uncertainty 

analysis, this excluded 9% of burned area over the 2003–2015 period. 

3. Results 

3.1 Annual, seasonal, and monthly  10 

The MFLEI annual burned area, fuel consumed, and PM2.5 emitted for 2003–2015 are shown in Figure 109.  The average area 

burned was 22,891 km2 y-1; forest accounted for 44% of burned area with the balance split between herb (29%) and shrub (27%) 

cover types.  The maximum annual burned was 40,714 km2 in 2011 which was >5 times the minimum of 7688 km2 in 2004.  Fuel 

consumed averaged 41.4 Tg y-1, with extremes of 16.6 Tg in 2004 and 61.2 Tg in 2012.  The annual rank in fuel consumed differed 

from burned area due to the far greater fuel loading of forests (Sect. 2.4.3).  While forest comprised only 44% of burned area over 15 

the period, they accounted for 87% of fuel consumed.  Average PM2.5 emissions were 733 Gg y-1 and, as with fuel consumed, 2004 

and 2012 were the extreme years at 270 Gg and 1216 Gg, respectively.  There are slight differences in the ranking of annual fuel 

consumption and PM2.5 emitted resulting from the different EFPM2.5 used for southern and western/northern forests (Table 9).  

Maps of annual burned area, fuel consumed, and PM2.5 emitted averaged over 2003–2015 are shown in Figure 110.  In the eastern 

two-thirds of the domain, fire activity and emissions are spread broadly across the southern tier while being comparatively sparse 20 

in the north. In the west (western 11 states), fire activity has no latitudinal split, but there are large pockets where emissions are 

limited or absent.  Much of the area in the west without emissions are in desert regions of the southwest with sparse vegetation.   

The monthly distributions of burned area, fuel consumption, and PM2.5 emitted over 2003–2015, broken down by cover type,   

are plotted in Figure 121.  Burned area has a bimodal distribution with peaks in April and August. Summer (June, July, August) 

and spring (March, April, May) accounted for 49% and 31% of burned area, respectively.  The ratio of herb and shrub to forest 25 

burned area was similar for summer (1.3) and spring (1.5), but differs considerably between the peak months of April (2.7) and 

August (1.0).  August was the most significant month for emissions, accounting for 32% PM2.5 emitted, more than twice the share 

of the next highest month, which was July at 15%.  While April had the third highest burned area (15% of total), it accounted for 

only 6.7% of PM2.5 emitted.  The geographic distribution of emissions varies considerably by season as may be seen in Figure 132.  

Understanding the spatiotemporal distribution of emissions is aided by aggregating the emissions according to six regions in 30 

Figure 143. Roughly 8% of fuel consumption and 6% of PM2.5 emissions occurred in the winter months (Fig. 121) and were largely 

limited to the southeast and southcentral regions (Figs. 132).  Winter PM2.5 emissions comprised 25% and 16% of total PM2.5 

emissions in the southeast and southcentral, respectively (Fig. 154).  In the southeast, 74% of winter emissions resulted from fire 

activity in Florida and along the gulf coast.  The majority of southeast (52%) and southcentral (62%) emissions occurred in the 

spring.  Fires in the Flint Hills region of eastern Kansas and northeast Oklahoma accounted for 44% of southcentral spring 35 

emissions over the 13 year period.  Summer was the most significant season for fuel consumption and emissions due to fire activity 

in the west (Fig. 132).  The majority of CONUS wide fuel consumption (51%) and PM2.5 emissions (59%) occurred during the 

summer. On a regional basis, southwest emissions peaked during June (46%) and during August in both the northwest (59%) and 



16 
 

California (40%).  Northwest emissions were concentrated July – September (95%), while California emissions were spread 

symmetrically across June–October (Fig. 154). 

3.2 Daily  

While regional level summaries on a seasonal or monthly basis are useful for understanding the general spatiotemporal distribution 

of wildfire emissions, daily emissions are more relevant for appreciating the potential air quality impacts of fires.  For instance, 5 

US NAAQS includes a 24 h standard for PM2.5 and an 8 h standard for O3 (the latter of which can be produced through 

photochemcial processing of VOC and NOx present in smoke plumes (Jaffe and Wigder, 2012).  Wildfires are highly episodic and 

even though they may persist for weeks, a significant share of a wildfire’s emissions generally occur on a handful of days.  For 

example, consider the typical large (> 2000 ha) wildfire in the west, our inventory indicates more than half half of its total PM2.5 

emissions occur on a single day. In the west, 1171 fires > 2000 ha in size accounted for ∼85% of burned area and PM2.5 emission 10 

from 2003–2015.  To characterize wildfire temporal intensity, emissions of PM2.5 were summed by region for each of the 4748 

days of the inventory.  Figure 165 plots the fraction of regional, 2003–2015 PM2.5 emissions released on peak emission days, the 

top first, second, and fifth quantile of days.  Since the north accounted for only 3% of total wildfire emissions, it has been excluded 

from this analysis to simplify the discussion.  Figure 165 shows that a small fraction of days (5%) are responsible for the majority 

of wildfire PM2.5 emissions in all regions except the southeast. In fact, the percent of PM2.5 emissions during just the top 1% of 15 

days was > 33% in California and the northwest, > 25% in the southcentral and southwest, and ∼13% in the southeast.  The 

spatiotemporal concentration of emissions is further illustrated in Figure 176, which plots the cumulative distribution of daily PM2.5 

emissions aggregated on a 10 km × 10 km grid.  Five percent of the grid cell days produced 69% of total PM2.5 emitted, and 10% 

of grid cell days were responsible for 82% of total PM2.5 emitted.  This analysis highlights the importance of quantifying wildfire 

emissions on a daily time step when assessing the potential impacts of wildfires on regional air pollution; assessments based on 20 

emissions aggregated seasonal, monthly, or even weekly may significantly understate the likelihood of acute pollution episodes. 

3.3 Comparison with non-fire emission sources  

Next we compare our wildfire PM2.5 emissions with those from other sources as estimated in the EPA 2014 National Emission 

Inventory (NEI14; USEPA, 2014).  We focus on the west (the 11 states of the northwest, southwest, and California regions, Fig. 

143a) since this region accounts for 72% of total wildfire PM2.5 emissions (Fig. 143b) and the emissions are produced with a high 25 

temporal intensity (Figs. 154 & 165) and have resulted in severe air pollution episodes (Fann et al., 2018; Kochi et al., 2012; 

Rappold et al., 2014).  Non-fire PM2.5 emission estimates for the western states were extracted from the NEI14 Tier 3 summary 

state level data (USEPA, 2018c).  The NEI14 PM2.5 emissions were limited to non-fire sources by excluding the Tier 3 source 

categories of “agricultural fires”, “forest wildfires”, and “prescribed burning”.  The NEI14 provides annual emission estimates for 

2014, which are plotted with the annual sum of MFLEI PM2.5 emissions for the west for 2003–2015, in Figure 187.  The 2003–30 

2015 annual average western wildfire PM2.5 emitted is 525 Gg y-1 (range 126–1034 Gg y-1) compared with the non-fire source 

strength of 657 Gg y-1 in 2014.  As discussed above, when inferring possible air quality impacts of wildfire emissions, 1 d is an 

appropriate time scale.  Assuming the NEI14 emissions are a reasonable proxy for annual non-fire emissions across 2003–2015, 

and neglecting the seasonal variability of emissions, daily non-fire PM2.5 emissions are 1.80 Gg d-1.  For all 4748 days of MFLEI 

period, we calculated the wildfire to non-wildfire PM2.5 emission ratio; the number of days the ratio exceeds certain thresholds is 35 

shown in Figure 198.  Across the west, wildfire emissions greatly exceed non-fire sources on active fire days.  On ∼ 10% of days, 

wildfires emissions are more than twice non-fire sources and on 60 days they were >10 times non-fire sources. 
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3.4 Uncertainty   

The MFLEI pixel level best estimates of fuel consumption (FC) and emissions (ECO2, ECO, ECH4, EPM2.5) were derived as 

described in Sect. 2.8 and the uncertainty in these estimates were characterized with quantiles (q=.05, .10, .25, .50, .75, .90, .95) 

derived from Monte Carlo style simulations (Sect. 2.9).  Here we summarize the pixel level uncertainty in terms of the relative 

interquartile range: RIQR = (q75 – q25)/X, where q75 and q25 are the 75% and 25% quantiles and X is the best estimate of FC or 5 

EPM2.5; the distributions are shown in Figure 2019. The mean RIQR of both FC and EPM2.5 are ∼ 67% for forest cover type and ∼ 

47% for herb/shrub.  At the pixel level, the uncertainty is driven by the variability in fuel loading.  The difference in the uncertainty 

estimates between forest and herb/shrub cover types results primarily from the high variability in forest fuel loading (Fig. 43).  The 

mean RIQR are nearly 50% higher for forest compared with herb/shrub; however, the latter does have a long positive tail with ~ 

11% of pixels having RIQR > 90%.  These high uncertainty non-forest pixels are shrub vegetation with low fuel consumption (< 10 

350 g m-2). 

As discussed in Sect 3.2, CONUS wildfire emissions are temporally and spatially concentrated.  Considering this 

spatiotemporal concentration of emissions and the grid spacing typical of regional and national scale air quality modeling (4 to 12 

km; USEPA, 2007; NOAA, 2018), we also estimated the uncertainty in daily MFLEI emissions aggregated on 10 km × 10 km grid 

(Sect. 2.9).  For purposes of air quality modeling and air regulatory activities, the uncertainty of these spatially aggregated 15 

emissions provides a more relevant metric than the pixel level uncertainty presented above.  Uncertainty in the daily, aggregated 

FC and PM2.5 emissions are shown in Figs. 210a-b, expressed in terms of the RIQR (calculated using the quantiles and best 

estimates for the spatially aggregated data).  Compared with the pixel level data, the RIQR is reduced for the aggregated emissions 

and a difference emerges between FC and EPM2.5, the mean RIQR is 17% for FC and 26% for EPM2.5.  For the aggregated data 

we also show, in Figs. 210c-d, the distribution of relative interdecile range, RIDR = (q90 – q10)/X, where q10 and q90 are the 10% 20 

and 90% quantiles (Monte Carlo style simulations, Sect. 2.9) and X is the best estimate for FC or EPM2.5.  The mean RIDR is 32% 

for FC and 50% for EPM2.5. 

3.5 Prescribed and agricultural fires   

While the focus of MFLEI is wildfires, it does include an unquantified contribution from prescribed fires – fires intentionally 

ignited to achieve land management objectives.  The MTBS product does contain large (> 404 ha the west and > 202 ha elsewhere) 25 

prescribed fires, over 2003–2015 ∼ 13% of the MTBS burned area was due to fires classified as prescribed or unknown.  

Additionally, the MODIS burned area product (Giglio et al., 2015) used to supplement MTBS does not distinguish between 

wildfires and prescribed fires and likely includes some prescribed fire burned area.  Information on prescribed fires by federal and 

state agencies indicate an average fire size of ∼ 60 ha (NIFC, 2018).  Considering the large fire focus of MTBS and the fact that 

prescribed fires are often low intensity understory burns, which are difficult to detect by satellite (Hawbaker et al., 2008), we 30 

believe prescribed fires account for a small share of total MFLEI emissions.  Unfortunately, there is not a nationwide database that 

inventories prescribed fire on federal, state, and private lands.  The 2015 National Prescribed Fire Use Survey Report (Melvin, 

2016), based on a 2014 comprehensive survey conducted by state forestry agencies, summarizes prescribed fire activity at national 

and regional levels.  Melvin reported CONUS prescribed fire burned area as 35,222 km2 in 2014.  For the same year, the MTBS 

prescribed fire burned area was 11,954 km2 (prior to reduction for unburned to low burn severity patches as described Sect. 2.3.3), 35 

suggesting MFLEI may be be missing up to two-thirds of CONUS prescribed fire burned area.  The regional summary in Melvin 

reports prescribed fire burned area of 25,049 km2 in their southeast region (the southeast and southcentral regions used in our study, 

excluding Kansas and Missouri).  The 2014 MTBS data reports only 4651 km2 of prescribed fire burned area for the same region, 

indicating most of MFLEI underrepresentation in prescribed fire emissions occurs in these southern states.   
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3.6 Comparison with other emission inventories    

Next we compare the estimated fuel consumption and PM2.5 emissions of MFLEI with three fire emissions inventories: GFED 

v4.1s (GFED, 2018), FINN v1.5 (FINN, 2018), and WFEIS v0.5 (WFEIS, 2018).  In this comparison, we have excluded fuel 

consumption and PM2.5 emissions associated with agricultural burning from all three inventories.  Regional annual fuel 5 

consumption from the four inventories is plotted in Figure 22.  Statistics comparing MFLEI regional annual fuel consumption 

versus the other inventories are given in Table 11.  There is significant variability in the agreement between MFLEI and the other 

inventories.  Across the west (NW, CA, SW), MFLEI annual fuel consumption is well correlated with both FINN and GFED (Table 

11).  MFLEI fuel consumption exceeds the mean of FINN, GFED, and WFEIS in nearly all years and is generally the highest in 

northwest and southwest regions (Fig. 22a).  In the east regions (SC, SE, NO), MFLEI fuel consumption fluctuates about the 10 

FINN/GFED/WFEIS mean value (Fig. 22b).  In terms of variability and mean absolute relative difference, MFLEI agrees best with 

GFED.  

Regional annual PM2.5 emissions are shown in Figure 23 and statistics comparing MFLEI PM2.5 emissions versus the other 

inventories are given in Table 12. As with fuel consumption, across the west (NW, CA, SW), MFLEI annual PM2.5 emissions are 

well correlated with both FINN and GFED, while correlation with WFEIS is weak in most regions (Table 12).  In the west, MFLEI 15 

annual PM2.5 emissions are highest among the inventories in most years (Fig. 23a).  The greater PM2.5 emissions of MFLEI in the 

west are partly attributable to the use of a larger EFPM2.5 for western forests (22.8 g kg-1, Table 9) compared with FINN (12.9 g 

kg-1), GFED (12.6 g kg-1), and WFEIS (11.9 g kg-1). Because WFEIS uses combustion phase dependent EFs applied in a non-

transparent manner, we have taken EFPM2.5 as the ratio of the sum of EPM2.5 to the sum of fuel consumed for all western forests. 

MFLEI uses EFPM2.5 from the synthesis of Urbanski (2014) that accounts for the lower MCE measured for wildfires in western 20 

conifer forests (Urbanski, 2013).  FINN and GFED use EFPM2.5 from Akagi et al (2011), with updates from May et al. (2014), 

which are based on emission measurements of prescribed fires, most of which occurred in the southeast US. WFEIS employs 

EFPM2.5 measured for prescribed burns of logging slash.  The higher EFPM2.5 used by MFLEI for wildfires in western forests is 

consistent with recent emission measurements of Liu et al. (2017).  In a study of western US wildfires, Liu et al. (2017) reported 

an average EFPM1 = 26.0 g kg-1 (PM1 = particulate matter with an aerodynamic diameter < 1 µm), more than 2 times the EF for 25 

prescribed fires.  

 

 

4. Data Availability 

MFLEI is archived and publicly available at the USDA Forest Service Research Data Archive with the DOI number 30 

https://doi.org/10.2737/RDS-2017-0039. 

5. Conclusions 

We have presented the Missoula Fire Lab Wildfire Emission Inventory (MFLEI), a retrospective, wildfire emission inventory for 

CONUS.  MFLEI was developed from multiple datasets of fire activity and burned area, a newly developed wildland fuels map 

and an updated emission factor database.  Daily burned area was constructed using a combination of Landsat-based burn severity 35 

data (MTBS), MODIS burned area and active fire detection products, VIIRS active fire detections, incident fire perimeters, and a 
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spatial wildfire occurrence database.  Forest fuel loading was based on a large set (> 27,000 sites) of forest inventory surface fuel 

measurements.  Herbaceous fuel loading was estimated using site specific parameters from a soil survey database with NDVI from 

MODIS.  Shrub fuel loading was quantified by applying numerous allometric equations linking stand structure and composition 

to biomass and fuels, with the structure and composition data derived from geospatial data layers of the LANDFIRE Project.  

MFLEI provides estimates of daily wildfire burned area, fuel consumption, and pollutant emissions at a 250 m × 250 m resolution 5 

for 2003–2015.  The inventory includes a spatially aggregated emission product (10 km × 10 km, 1 d) with uncertainty estimates 

to provide a more relevant representation of emission uncertainties for use in air quality modelling.  MFLEI will be updated with 

recent years as the MTBS data become available.  The focus of MFLEI is wildfires and does not include most prescribed fire 

activity.  In the southeast, where prescribed fire burned area is estimated to greatly exceed that of wildfires on average, the 

prescribed fire emissions not included in MFLEI are likely to be substantial.  10 

MFLEI CONUS average wildfire fuel consumption and PM2.5 emissions were estimated to be 41.4 Tg y-1 and 733 Gg y-1, 

respectively over 2003–2015.  Annual CONUS PM2.5 emissions showed significant variability with a coefficient of variation = 

0.41 and a maximum to minimum ratio of 4.5.  Summer was the most active season, over half (59%) of total PM2.5 emissions 

occurred in the summer (June–August), with August alone accounting for 32% of the total.  Emissions were highly concentrated 

both temporally and spatially.  Just 5% of days accounted for 57% of total PM2.5 emitted over 2003–2015.  At the spatial scale of 15 

10 km × 10 km grid, 69% of total PM2.5 originated from 5% of grid cell days with fire activity.  Fires in the west (western 11 states) 

accounted for 56% of burned area, 60% of fuel consumption, and 72% of PM2.5 emitted over 2003–2015. The southeast and south 

central regions were largely responsible for the balance of burned area and emissions.  The northern tier states across central and 

eastern CONUS produced < 3 % of total PM2.5 emissions.  In the west, wildfire PM2.5 emissions dwarfed those from non-fire 

sources during active fire periods.  Comparison of MFLEI PM2.5 emissions with the EPA 2014 National Emission Inventory 20 

indicated that in the west, wildfires exceeded all non-fire primary sources of PM2.5 by a factor of  > 5 on nearly 200 days over 

2003–2015.  Quantified with the relative interdecile range, the uncertainties in daily fuel consumption and PM2.5 emissions, at the 

spatial scale of 10 km × 10 km, were estimated to be 32% and 50% respectively.  A regional comparison of MFLEI with three fire 

emission inventories, FINN v1.5, GFED v4.1s, and WFEIS v0.5, showed MFLEI predicted significant greater PM2.5 emissions 

across the west, in part due to the use of a larger EFM2.5 for wildfires in forests.   25 

Appendix A 

Table A1. Average small fire duration based the fire discovery and containment dates from years 2003–2015 of the Fire Occurrence 

Database (Short, 2017).  

Appendix B 

Table B1. Available canopy fuel (ACF) best estimates (see Sect. 2.4.1) and optimized parameters for Weibull pdf fits.  Parameters 30 

predict ACF in units of ton acre-1 

Appendix C 

This appendix demonstrates the four step process used to estimate shrub fuel loading.  Three LF existing vegetation products are 

used: EVT, EVC, and EVH.  The height estimates at each pixel in the EVH product are thematic classes representing a range of 

potential heights (Table C1) which enables three values of shrub fuels to be estimated at each pixel (average, maximum, and 35 
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minimum).  Likewise, the EVC product is thematic classes which providing a 10 percentage point range in potential vegetation 

cover (Table C2).  However, the shrub fuel loading calculation simply uses the median value vegetation cover range.  To illustrate, 

consider a pixel with an EVT of class of Big Sagebrush shrubland, an EVH class of 105, and an EVC class of 112 the fuel loading 

proceed as follows: 

First, the crown volume is derived from the three EVH estimates (0.5, 0.75, and 1.0 m) as the product of these EVH values and 5 

the projected crown area on a horizontal surface (PCH), the latter of which is estimated using Eq. C1 (Frandsen, 1983): 

 

𝑙𝑙𝑙𝑙𝑙𝑙10(PCH) = −0.8471 + 2.2953𝑙𝑙𝑙𝑙𝑙𝑙10(𝐻𝐻𝐻𝐻),           (C1) 

 

where PCH is the projected horizontal crown area in cm2 and HT is the estimated shrub height in cm (from the EVH product).  Per 10 

stem above ground biomass estimates are then derived from the crown volume estimates using an allometric equation for Sagebrush 

shrubs from the RVS allometry library: 

𝑃𝑃𝑃𝑃𝑃𝑃 = 201.4062 + 1.162 × VOL,               (C2) 

where PSB is per stem biomass (g stem-1) and VOL is crown volume (dm3).  Next, the pixel stem density, SD, (stem ha-1) is 

estimated to expand PSB to a per-area basis: 15 

𝑆𝑆𝑆𝑆 = �1.0e8
PCH

� × CC,                   (C3) 

where SD is stem density, CC is the fractional canopy cover from EVC (Table C2), and the value 1.0e8 converts cm2 to a per 

hectare basis.  The total shrub biomass (TSB; kg ha-1) is the product of PSB and SD.  Figure C1 shows the TSB estimates for the 

pixel used in this example.  This process was conducted at each pixel with a shrub EVT using the range of heights from EVH to 

provide lower, upper, and middle estimates of fuel loading.  The allometric equation used to estimate PSB depends on the pixel 20 

EVT and is selected from 31 available in the RVS allometry library. 

 

Supplement link provided by journal. 
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Tables 

Table 1. MFLEI cover types and fuel codes 
Cover type 

code Fuel code Cover type Generalized cover type 

-99 0 Non-fuel Non-fuel 

1 1 Herbaceous Herbaceous 

2 2 Shrub / scrub Shrub 

100 1100 White / red / jack pine group Northern conifer 

120 1120 Spruce / fir group Northern conifer 

140 1140 Longleaf / slash pine group Southern conifer 

160 1160 Loblolly / shortleaf pine group Southern conifer 

180 1180 /2180 Pinyon / juniper group Pinyon juniper 

200 1200 Douglas-fir group Western conifer / softwood 

220 1220 Ponderosa pine group Western conifer / softwood 

240 1240 Western white pine group Western conifer / softwood 

260 1260 Fir / spruce / mountain hemlock group Western conifer / softwood 

280 1280 Lodgepole pine group Western conifer / softwood 

300 1300 Hemlock / Sitka spruce group Western conifer / softwood 

320 1320 Western larch group Western conifer / softwood 

340 1340 Redwood group Western conifer / softwood 

360 1360 Other western softwoods group Western conifer / softwood 

370 1370 California mixed conifer group Western conifer / softwood 

380 1380 Exotic softwoods group Western conifer / softwood 

400 1400 Oak / pine group Hardwood 

500 1500 Oak / hickory group Hardwood 

600 1600 Oak / gum / cypress group Hardwood 

700 1700/2700 Elm / ash / cottonwood group Hardwood 

800 1800 Maple / beech / birch group Hardwood 

900 1900/2900 Aspen / birch group Western hardwood 

910 1910 Alder / maple group Western hardwood 

920 1920 Western oak group Western hardwood 

940 1940 Tanoak / laurel group Western hardwood 

950 1950/2950 Other western hardwoods group Western hardwood 

980 1980 Tropical hardwoods group Western hardwood 

990 1990 Exotic hardwoods group Western hardwood 

 

 5 
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Table 2.  MTBS burn severity class percent distribution by generalized cover types for 2003-2013. 
Generalized Cover Type BSEV =1 BSEV = 2 BSEV = 3 BSEV = 4 

Herbaceous 18 68 11 3 

Shrub 17 57 22 4 

Northern conifer 18 34 19 29 

Southern conifer 25 61 12 2 

Pinyon juniper 24 43 25 8 

Western conifer / softwood 25 32 22 21 

Hardwood 27 62 10 1 

Western hardwood 18 38 25 19 
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Table 3. Description of fuel components  

General fuel type Fuel component Strata Description 

Litter Litter Surface  

Loose, freshly fallen plant material found on the top surface of 

the forest floor which includes needles, leaves, cones, and dead 

herbaceous stems.1  

Duff Duff Surface 
Layer just below the litter consisting of partially decomposed 

biomass whose origins cannot be determined.1 

Down dead wood 1 h  (small woody)  Surface < 1 cm diameter 

 10 h (medium woody) Surface 1-2.5 cm diameter 

 100 h (large woody)  Surface 2.5-7.6 cm diameter 

 s3to9 (coarse woody debris) Surface Sound2 logs 7.6-22.9 cm diameter  

 s9to20 (coarse woody debris) Surface Sound2 logs 22.9-50.8 cm diameter  

 sgt20 (coarse woody debris) Surface Sound2 logs >50.8 cm diameter  

 r3to9 (coarse woody debris) Surface Rotten2 logs 7.6-22.9 cm diameter  

 r9to20 (coarse woody debris) Surface Rotten2 logs 22.9-50.8 cm diameter 

 rgt20r (coarse woody debris) Surface Rotten2 logs >50.8 cm diameter  

Herb Herb Understory Herbs (above ground portion) 

Shrub Shrub Understory Woody shrubs (above ground portion) 

Canopy Available Canopy Fuel (ACF) Canopy Foliage and twigs ≤ 6 mm diameter 
1O’Connell et al. (2016) 
2Sound logs are logs assigned FIA decay classes 1, 2, or 3 and rotten logs are logs assigned FIA decay class 4 or 5 (O’Connell et al., 2016) 
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Table 4. Fuel loading (kg m-2) by fuel component for the Fuel Type Group (FTG) Classification. Litter and duff depth in cm. See Table 3 for descriptions. 
Fuel 
Code 

FTG 
Code 

No. 
Plots Litter Litter 

depth  1 hr 10 hr 100 hr s3to9 s9to20 sgt20 r3to9 r9to20 rgt20 Duff Duff 
depth  Herb Shrub ACF 

1100 100 45 2.34 0.44 0.03 0.14 0.36 0.38 0.21 0.05 0.04 0.04 0.00 4.12 0.30 0.06 0.23 0.50 

1120 120 100 0.65 0.34 0.02 0.10 0.32 0.48 0.18 0.01 0.10 0.05 0.00 10.21 2.08 0.03 0.28 0.91 

1140 140 79 3.14 0.59 0.01 0.09 0.17 0.11 0.04 0.00 0.02 0.01 0.00 3.26 0.24 0.05 0.47 0.29 

1160 160 266 3.06 0.56 0.01 0.10 0.28 0.12 0.06 0.00 0.05 0.02 0.00 2.64 0.19 0.03 0.49 0.16 

1180 180 5626 0.43 0.12 0.02 0.06 0.16 0.10 0.07 0.01 0.02 0.03 0.00 0.38 0.04 0.10 0.31 0.68 

1200 200 3558 0.64 0.34 0.04 0.14 0.50 0.43 0.50 0.45 0.10 0.29 0.28 1.39 0.28 0.07 0.42 1.18 

1220 220 2163 1.19 0.34 0.01 0.09 0.26 0.26 0.24 0.11 0.04 0.09 0.08 1.30 0.15 0.10 0.30 0.46 

1240 240 30 0.78 0.23 0.01 0.06 0.19 0.25 0.42 0.56 0.07 0.11 0.09 1.33 0.15 0.24 0.36 0.41 

1260 260 3000 0.53 0.27 0.03 0.12 0.42 0.58 0.84 0.31 0.15 0.41 0.22 1.74 0.35 0.06 0.36 1.23 

1280 280 1334 0.86 0.25 0.02 0.09 0.38 0.89 0.49 0.06 0.18 0.24 0.07 2.22 0.25 0.20 0.20 0.67 

1300 300 521 0.66 0.35 0.03 0.16 0.53 0.67 1.35 1.88 0.18 0.71 0.94 2.66 0.54 0.25 0.31 1.38 

1320 320 159 1.37 0.40 0.04 0.17 0.65 1.24 0.90 0.17 0.14 0.35 0.05 3.29 0.37 0.46 0.05 0.63 

1340 340 63 3.00 0.87 0.03 0.16 0.52 0.55 0.74 2.03 0.12 0.37 0.71 2.73 0.31 0.09 0.49 1.66 

1360 360 796 0.52 0.15 0.01 0.05 0.15 0.15 0.17 0.05 0.03 0.07 0.05 0.68 0.08 0.13 0.20 0.39 

1370 370 894 1.70 0.49 0.02 0.15 0.43 0.40 0.48 0.60 0.06 0.21 0.37 1.85 0.21 0.14 0.32 1.04 

1400 400 133 2.68 0.49 0.01 0.12 0.43 0.22 0.12 0.00 0.06 0.04 0.00 2.58 0.18 0.05 0.42 0.13 

1500 500 1375 1.79 0.39 0.01 0.09 0.32 0.24 0.13 0.01 0.04 0.03 0.01 1.22 0.10 0.00 0.37 0.06 

1600 600 129 1.37 0.30 0.01 0.10 0.29 0.15 0.15 0.03 0.04 0.09 0.00 3.28 0.28 0.00 0.39 0.33 

1700 700 50 1.14 0.36 0.03 0.15 0.85 0.32 0.39 0.04 0.04 0.12 0.12 2.40 0.29 0.01 0.25 0.22 

1800 800 336 1.97 0.44 0.02 0.14 0.44 0.54 0.37 0.06 0.09 0.09 0.00 3.39 0.29 0.07 0.22 0.21 

1900 900 619 1.25 0.25 0.02 0.09 0.47 0.47 0.33 0.04 0.11 0.13 0.03 3.31 0.26 0.03 0.30 0.34 

1910 910 222 2.07 0.46 0.02 0.14 0.47 0.38 0.59 0.95 0.08 0.26 0.48 3.33 0.29 0.05 0.47 0.40 

1920 920 907 1.73 0.37 0.02 0.10 0.28 0.21 0.17 0.11 0.03 0.06 0.05 0.99 0.08 0.10 0.40 0.24 

1940 940 263 2.23 0.48 0.03 0.16 0.49 0.46 0.44 0.62 0.06 0.20 0.32 2.53 0.21 0.09 0.54 0.48 

1950 950 1590 0.93 0.20 0.02 0.07 0.17 0.11 0.09 0.04 0.02 0.03 0.01 0.94 0.08 0.06 0.31 0.41 

2180 180 759 0.45 0.13 0.00 0.03 0.13 0.02 0.00 0.00 0.01 0.00 0.00 0.30 0.03 0.10 0.31 0.40 

2700 700 202 0.79 0.25 0.01 0.11 0.37 0.21 0.12 0.04 0.04 0.05 0.00 0.47 0.06 0.01 0.25 0.17 

2900 900 92 2.39 0.49 0.01 0.11 0.31 0.39 0.20 0.01 0.10 0.04 0.00 3.59 0.28 0.03 0.30 0.18 

2950 950 1813 0.47 0.10 0.01 0.05 0.13 0.02 0.00 0.00 0.00 0.00 0.00 0.09 0.01 0.06 0.31 0.13 
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Table 5. Fuel moisture regimes used for simulating fuel consumption.  

Regime 
 NFDRS station 

data moisture 
content range 

Moisture content used in fuel 
consumption simulations 

  1000 h 
(%) 

1000 h      
(%) 

duff 

(%) 
very dry  <= 10 10 20 

dry  > 10 and <= 25 20 40 

moderate  > 25 and <= 35 30 60 

moist  > 35 40 80 

 

 5 
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Table 6. Best estimates and ranges of the combustion completeness by fuel component according to moisture regime and forest 
type group. Best estimates are based on cited references. Low and high ranges assigned as approximately +/- 20 %.  

Fuel 
component1 Moisture regime 

 
Very dry Dry Moderate Moist  

 
best 

estimate low high best 
estimate Low high best 

estimate low high best 
estimate low high Reference 

Western and Northern Forest Type Groups (All forests EXCEPT Fuel Codes 1140,1160,1400,1500, and 1600) 
Shrub 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80 1.00 a 

Herb 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80 1.00 b 

HR1 0.95 0.90 1.00 0.95 0.90 1.00 0.95 0.90 1.00 0.95 0.90 1.00 c 

HR10 0.86 0.72 1.00 0.86 0.72 1.00 0.86 0.72 1.00 0.86 0.72 1.00 c 

HR100 0.78 0.62 0.94 0.78 0.62 0.94 0.78 0.62 0.94 0.78 0.62 0.94 c 

Litter 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80 1.00 d 

Duff 0.75 0.60 0.90 0.67 0.54 0.80 0.58 0.46 0.70 0.50 0.40 0.60 e 

s3to9 0.93 0.86 1.00 0.88 0.76 1.00 0.81 0.65 0.97 0.71 0.56 0.85 c 

s9to20 0.60 0.48 0.72 0.50 0.40 0.60 0.41 0.33 0.49 0.32 0.25 0.38 c 

sgt20 0.50 0.40 0.60 0.41 0.32 0.49 0.32 0.25 0.38 0.24 0.19 0.29 c 

r3to9 0.96 0.92 1.00 0.88 0.76 1.00 0.70 0.56 0.84 0.43 0.34 0.52 c 

r9to20 0.78 0.62 0.94 0.59 0.47 0.71 0.38 0.30 0.46 0.20 0.16 0.24 c 

rgt20 0.57 0.46 0.68 0.43 0.34 0.52 0.31 0.25 0.37 0.21 0.17 0.25 c 

Southern Forest Type Groups (Fuel Codes 1140,1160,1400,1500, and 1600) 

Shrub 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80 1.00 a 

Herb 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80 1.00 b 

HR1 0.95 0.90 1.00 0.95 0.90 1.00 0.95 0.90 1.00 0.95 0.90 1.00 f 

HR10 0.86 0.72 1.00 0.86 0.72 1.00 0.86 0.72 1.00 0.86 0.72 1.00 f 

HR100 0.40 0.32 0.48 0.40 0.32 0.48 0.40 0.32 0.48 0.40 0.32 0.48 f 

Litter 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80 1.00 d 

Duff 0.15 0.12 0.18 0.10 0.08 0.12 0.05 0.00 0.10 0.05 0.00 0.10 g 

s3to9 0.33 0.26 0.40 0.18 0.14 0.22 0.10 0.08 0.12 0.05 0.04 0.06 f 

s9to20 0.33 0.26 0.40 0.18 0.14 0.22 0.10 0.08 0.12 0.05 0.04 0.06 f 

sgt20 0.33 0.26 0.40 0.18 0.14 0.22 0.10 0.08 0.12 0.05 0.04 0.06 f 

r3to9 0.41 0.33 0.49 0.27 0.22 0.32 0.11 0.09 0.13 0.05 0.04 0.06 f 

r9to20 0.41 0.33 0.49 0.27 0.22 0.32 0.11 0.09 0.13 0.05 0.04 0.06 f 

rgt20 0.41 0.33 0.49 0.27 0.22 0.32 0.11 0.09 0.13 0.05 0.04 0.06 f 

Rangeland 

Herb 0.93 0.86 1.00 0.93 0.86 1.00 0.93 0.86 1.00 0.93 0.86 1.00 b 

Shrub 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80 1.00 a 
1See Table 3 for description  

References: 

a) CONSUME natural fuels algorithm shrub stratum, adjusted to 0.90 (Prichard et al., 2006) 
b) CONSUME natural fuels algorithm non-woody stratum, adjusted to 0.90 (Prichard et al., 2006) 
c) CONSUME natural fuels algorithm – western woody equations (Prichard et al., 2006) 
d) FOFEM default reduced to 0.90 (Lutes, 2016a) 
e) Equation 10 of Brown et al. (1985) 
f) CONSUME natural fuels algorithm – southern woody equations (Prichard et al., 2006) 
g) Hough (1978)  
h) CONSUME natural fuels algorithm non-woody stratum (Prichard et al., 2006)   

 

  5 
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Table 7. Fraction of forest canopy consumed according to burn severity classification. After Miller and Yool (20023). 
Burn 

Severity 
Code 

Burn Severity Thematic Class Fraction of canopy consumed 

  Best 
estimate 

Lower 
range 

Upper 
range 

1 Unburned to low severity 0 0 0 

2 Low severity 0.125 0.05 0.20 

3 Moderate severity 0.60 0.50 0.70 

4 High severity 1 1 1 
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Table 8. Statistics for the linear regression of EF as a function of MCE for field data from 78 forest fires and 20 rangeland fires 
(Table S4 and Figs. S1 and S2) 

 Intercept Slope R2 
Standard 

Error 

Forest 

EFCO2  -476 2304 0.87 23 

EFCO 1088 -1084 0.99 2.5 

EFCH4 96.2 -100.7 0.79 1.4 

EFPM2.5 209.0 -211.3 0.53 4.9 

Rangeland 

EFCO2  -673 2505 0.89 17 

EFCO 1105 -1103 1.00 1 

EFCH4 62.9 -64.2 0.79 0.6 

EFPM2.5 76 -70.1 0.07 4.8 

 

 

  5 
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Table 9. Best estimate MCE and EF (g kg-1) for generalized fire types from multiple field studies. The standard deviation for MCE 
is provided in parentheses. EF are based on the linear fits in Table 8 at the fire type average MCE value. The MCE values are from 
Urbanski (2014).  

General Fuel Type MCE EFCO2 EFCO EFCH4 EFPM2.5 

Southern Forests1 0.933 (0.013) 1674  77  2.5  11.9  

Western & Northern 
Forests2 0.881 (0.031) 1554  133  7.5  22.8  

Rangeland3 0.938 (0.020) 1677  70  2.7  10.2  
1Fuel codes 1140, 1160, 1400, 1500, and 1600 
2All forest fuel codes except 1140, 1160, 1400, 1500, and 1600 
3Fuel codes 1 and 2 

 5 
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Table 10. Sample generation methods employed in Monte Carlo style simulation of emission intensity uncertainty 

Fuel Component Sample Generation Details 

Surface Fuel Loading Sampling of surface fuel data from FIA 
plots  

Supplemental dataset 
Fuel_Load_Plot_Data.csv 

Understory Fuel Loading Empirical distribution Supplemental dataset 
Understory_Fuel_Dist.csv  

Available Canopy Fuel  Weibull distribution Table B4 
Herbaceous Fuel Loading Normal Distribution  See text 
Shrub Fuel Loading  Normal Distribution See text 
Fraction of Fuel Consumed Uniform distribution Table 6 and Table 7  
Emission Factors Normal or truncated normal distribution Table 8 and Table 9. See text. 
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Table 11. Statistics for comparison of annual fuel consumption by region between MFLEI and FINN v1.5, GFED v4.1s, and 

WFEIS v0.5. Regions are as defined in Fig. 14a. 

 
 Region 
 

CONUS NW CA SW NO SC SE 

MFLEI versus FINN v1.5 (2003–2015) 

Mean 

RDa -17% 6% 50% 103% -35% -65% -75% 

Min RD -71% -94% -25% 61% -103% -131% -135% 

Max RD 41% 81% 115% 131% 68% 21% -31% 

rb 0.62 0.90 0.87 0.92 0.57 0.24 0.70 

MFLEI versus GFED 4.1s (2003–2015) 

Mean RD 29% 14% 3% 75% 16% 35% 43% 

Min RD 0% -4% -27% 41% -83% -45% -1% 

Max RD 60% 40% 52% 105% 90% 91% 76% 

r 0.90 0.97 0.96 0.97 0.62 0.79 0.76 

MFLEI versus WFEIS v0.5 (2003–2013) 

Mean RD -2% 30% -26% 130% -99% -51% 40% 

Min RD -41% -110% -177% 35% -161% -175% -104% 

Max RD 56% 137% 112% 196% -17% 121% 181% 

r 0.95 0.43 -0.20 0.88 0.20 -0.34 0.06 
a 

𝑅𝑅𝑅𝑅 = 100 ×
𝑋𝑋(𝑡𝑡)𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑌𝑌(𝑡𝑡)𝑖𝑖

0.5 ∗ (𝑋𝑋(𝑡𝑡)𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑌𝑌(𝑡𝑡)𝑖𝑖)
 

X(t)MFLEI = MFLEI fuel consumed in year = t 

Y(t)i = i fuel consumed in year = t, where i = FINN, GFED, or WFEIS 

 
br = correlation coefficient 

 5 
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Table 12. Statistics for comparison of annual PM2.5 emitted consumption by region between MFLEI and FINN v1.5, GFED v4.1s, 

and WFEIS v0.5. Regions are as defined in Fig. 14a. 

 Region 
 

CONUS NW CA SW NO SC SE 

MFLEI versus FINN v1.5 (2003–2015) 

Mean 

RDa 98% 56% 85% 136% 24% -55% -70% 

Min RD -70% -43% 15% -55% -44% -123% -136% 

Max RD 86% 123% 147% 157% 125% 35% -27% 

rb 0.61 0.90 0.88 0.94 0.52 0.20 0.71 

MFLEI versus GFED 4.1s (2003–2015) 

Mean RD 76% 76% 61% 137% 71% 59% 60% 

Min RD 50% 58% 29% 104% -24% -29% 18% 

Max RD 99% 98% 106% 158% 136% 119% 94% 

r 0.94 0.97 0.98 0.97 0.65 0.70 0.73 

MFLEI versus WFEIS v0.5 (2003–2013) 

Mean RD 49% 98% 96% 151% 66% 103% 82% 

Min RD 19% -59% -154% 63% -118% -174% -86% 

Max RD 104% 167% 161% 198% 59% 122% 183% 

r 0.98 0.42 -0.15 0.90 0.23 -0.33 0.11 
a 

𝑅𝑅𝑅𝑅 = 100 ×
𝑋𝑋(𝑡𝑡)𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑌𝑌(𝑡𝑡)𝑖𝑖

0.5 ∗ (𝑋𝑋(𝑡𝑡)𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑌𝑌(𝑡𝑡)𝑖𝑖)
 

 

X(t)MFLEI = MFLEI PM2.5 emitted in year = t 

Y(t)i = i PM2.5 emitted in year = t, where i = FINN, GFED, or WFEIS 

 
br = correlation coefficient 
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Table A1. Average small fire duration based the fire discovery and containment dates from years 2003 – 2015 of the Fire 
Occurrence Database (Short, 2017).  

Fire size (ha) Number of fires 
Average duration 

(d) 
Standard Deviation 

of duration (d) 

0 – 31 43915 2 7 

31 – 62 6894 4 12 

62 – 94 2673 5 13 

94 – 125 1704 7 16 

125 – 156 962 8 17 

156 – 188 838 8 18 

188 – 625 216 9 17 

  5 
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Table B1. Available canopy fuel (ACF) best estimates (see Sect. 2.4.1) and optimized parameters for Weibull PDF fits.  Parameters 

predict ACF in units of ton acre-1.  

Fuel 
Code N1 Best est. ACF 

(kg m-2 ) 

Best est. 
ACF  

(ton acre-1) 

Shape 
parameter 

Scale 
parameter 

1100 12199 0.50 2.23 1.73 2.48 

1120 21990 0.91 4.05 1.33 4.40 

1140 21443 0.29 1.28 1.30 1.38 

1160 61276 0.16 0.71 1.33 0.77 

1170 1582 0.36 1.60 1.55 1.77 

1180 19045 0.68 3.02 1.56 3.37 

1200 15112 1.18 5.25 1.70 5.85 

1220 9554 0.46 2.06 1.66 2.30 

1240 90 0.41 1.85 1.54 2.04 

1260 10886 1.23 5.48 1.80 6.14 

1280 5425 0.67 2.99 1.59 3.32 

1300 2002 1.38 6.16 1.56 6.82 

1320 684 0.63 2.80 1.48 3.07 

1340 239 1.66 7.39 2.29 8.29 

1360 2573 0.39 1.75 1.19 1.86 

1370 2173 1.04 4.62 1.91 5.19 

1380 543 0.63 2.80 1.01 2.82 

1400 34528 0.13 0.57 1.03 0.57 

1500 58266 0.06 0.25 0.85 0.23 

1600 17157 0.33 1.48 0.62 0.98 

1700 134 0.22 0.97 0.91 0.93 

1800 25727 0.21 0.92 0.91 0.88 

1900 1736 0.34 1.50 1.03 1.51 

1910 945 0.40 1.76 1.02 1.78 

1920 1564 0.24 1.05 0.80 0.93 

1940 774 0.48 2.13 1.19 2.26 

1950 294 0.41 1.81 1.02 1.82 

1970 2119 0.18 0.82 1.05 0.83 

1980 166 0.10 0.43 1.04 0.44 

19901 0 0.10 0.43 1.04 0.44 

2180 1257 0.40 1.79 1.36 1.96 

2700 6859 0.17 0.77 0.82 0.69 

2900 18279 0.18 0.79 0.92 0.75 

2950 690 0.13 0.57 0.91 0.55 
1N = number of FIA plots used in deriving best estimate ACF and Weibull PDF fits. 
2Values for fuel code 1990 set to those of fuel code 1980 due to lack of data 5 
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Table C1. Thematic classes representing shrub heights in the Landfire EVH product and the associated height values represented 

in the RVS fuel modelling system.  

EVH Class 

Code 
EVH Classes RVS shrub height (m) 

  Minimum Median Maximum 

104 Shrub height 0 to 0.5 m 0.1 0.25 0.5 

105 Shrub height 0.5 to 1.0 m 0.5 0.75 1 

106 Shrub height 1.0 to 3.0 m 1 2 3 

107 Shrub height > 3.0 m 3 4 5 
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Table C2. Thematic classes representing shrub canopy in the Landfire EVC product and the associated canopy cover used in the 

RVS fuel modelling system.  

EVC 
Class 
Code 

EVC Classes 
RVS 

canopy 
cover 

 % 
111 Shrub cover >= 10 and < 20 15 

112 Shrub cover >= 20 and < 30 25 

113 Shrub cover >= 30 and < 40 35 

114 Shrub cover >= 40 and < 50 45 

115 Shrub cover >= 50 and < 60 55 

116 Shrub cover >= 60 and < 70 65 

117 Shrub cover >= 70 and < 80 75 

118 Shrub cover >= 80 and < 90 85 

119 Shrub cover >= 90 and <= 100 95 

 

 
 5 
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Figure captions 

Figure 1. Diagram of MFLEI biomass burning emission model methodology and datasets. 
 5 
Figure 21. MFLEI land cover type map. White regions are non-fuel cover type. Cover type codes are described in Table 1. 
 
Figure 32. Location of FIA plots used to develop surface fuel loading classifications. 
 
Figure 43. The distribution of surface fuel loading for the FIA plots of three FTG:, Loblolly/shortleaf pine (160), Douglas-fir 10 
(200), and California mixed conifer (370). 
 
Figure 54. Best estimate (Table 4) forest fuel loading in canopy, understory, and surface fuels by fuel type. 
 
Figure 65. Fraction of best estimate (Table 4) total forest fuel loading in surface fuel loading groups by fuel type.  15 
 
Figure 76. Abbreviated flow of data and actions in RVS to produce rangeland fuel loadings. EVT, EVC and EVH are Existing 
Vegetation Type, Existing Vegetation Cover, and Existing Vegetation Height from the Landfire Project.  
 
Figure 87. Relationship between annual production and annual maximum NDVI on 51 grassland vegetation types. 20 
 
Figure 98. Map of best estimate fuel loading for forest and rangelands in g m-2. 
 
Figure 109. Annual burned area, fuel consumed, and PM2.5 emitted for 2003-2015. 
 25 
Figure 110. Annual burned area, fuel consumed, and PM2.5 emitted averaged over 2003-2015. 
 
Figure 121. Monthly distributions of burned area, fuel consumption, and PM2.5 emitted over 2003-2015, broken down by cover 
type. 
 30 
Figure 132. Seasonal PM2.5 emitted average over 2003-2015. 
 
Figure 143. Top panel: geographic regions. Bottom panel: Burned area, fuel consumption, and PM2.5 emitted by region. 
 
Figure 154. Monthly PM2.5 emitted averaged over 2003-2015. 35 
 
Figure 165. Fraction of regional, 2003-2015 PM2.5 emissions released on peak days.    
 
Figure 176. Cumulative distribution of daily PM2.5 emissions aggregated on a 10 km × 10 km grid. Dashed line and dashed – 
dotted line mark 5% and 10% of grid cell days with emissions. 40 
 
Figure 187. Annual PM2.5 emitted in the west. 
 
Figure 198. Number of days over 2003-2015 when the wildfire to non-wildfire PM2.5 emission ratio in the west exceeds 
thresholds of 2, 5, 10, 15, and 20.  45 
 
Figure 2019. Distribution of relative interquartile range from pixel level Monte Carlo style simulations. 
 
Figure 210. Distribution of relative interquartile range (top panels) and relative interdecile range (bottom panels) from 10 km × 
10 km gridded Monte Carlo style simulations. 50 
 
Figure 22a. Annual fuel consumption from MFLEI, FINN v1.5, GFED v4.1s, and WFEIS v0.5 for northwest, California, and 
southwest regions.  
 
Figure 22b. Annual fuel consumption from MFLEI, FINN v1.5, GFED v4.1s, and WFEIS v0.5 for north, southcentral, and 55 
southeast regions.  
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Figure 23a. Annual PM2.5 emitted from MFLEI, FINN v1.5, GFED v4.1s, and WFEIS v0.5 for northwest, California, and 
southwest regions.  
  
Figure 23b. Annual PM2.5 emitted from MFLEI, FINN v1.5, GFED v4.1s, and WFEIS v0.5 for north, southcentral, and southeast 
regions.  5 
 
Figure A1. The burn day distribution for the 12,500–25,000 ha size class. Distributions for all six size classes are provided in the 
dataset supplement (file\Supplements\BurnDayDist.csv). 
 
Figure C1. Total shrub biomass estimates for a pixel with EVT class of Big Sagebrush shrubland, EVH class of 105, and EVC 10 
class of 112 (see text).   
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Figure A1. The burn day distribution for the 12,500–25,000 ha size class. Distributions for all six size classes are provided in the 
dataset supplement (file\Supplements\BurnDayDist.csv). 
 
Figure C1. Total shrub biomass estimates for a pixel with EVT class of Big Sagebrush shrubland, EVH class of 105, and EVC 5 
class of 112 (see text).   
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Figure 1. Diagram of 
MFLEI 40 biomass 
burning emission 
model methodology 
and datasets. 
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Figure 21. MFLEI land cover type map. White regions are non-fuel cover type. Cover type codes are described in Table 1. 5 
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Figure 32. Location of FIA plots used to develop surface fuel loading classifications. 
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Figure 4 3. The distribution of surface fuel loading for the FIA plots of three FTG:, Loblolly/shortleaf pine (160), Douglas-fir 
(200), and California mixed conifer (370). 
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Figure 54. Best estimate (Table 4) forest fuel loading in canopy, understory, and surface fuels by fuel type. 
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Figure 65. Fraction of best estimate total forest fuel loading in surface fuel loading groups (Table 4) by fuel type.  
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Figure 76. Abbreviated flow of data and actions in RVS to produce rangeland fuel loadings. EVT, EVC and EVH are Existing 5 
Vegetation Type, Existing Vegetation Cover, and Existing Vegetation Height from the Landfire Project.  
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Figure 87. Relationship between annual production and annual maximum NDVI on 51 grassland vegetation types. 
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Figure 98. Map of best estimate fuel loading for forest and rangelands in g m-2. 
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Figure 109. Annual burned area, fuel consumed, and PM2.5 emitted for 2003-2015. 
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Figure 110. Annual burned area, fuel consumed, and PM2.5 emitted averaged over 2003-2015. 
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Figure 121. Monthly distributions of burned area, fuel consumption, and PM2.5 emitted over 2003-2015, broken down by cover 
type. 
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Figure 132. Seasonal PM2.5 emitted average over 2003-2015. 
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Figure 143. Top panel: geographic regions. Bottom panel: Burned area, fuel consumption, and PM2.5 emitted by region. 
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Figure 154. Monthly PM2.5 emitted averaged over 2003-2015. 
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Figure 165. Fraction of regional, 2003-2015 PM2.5 emissions released on peak days. 
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Figure 176. Cumulative distribution of daily PM2.5 emissions aggregated on a 10 km × 10 km grid. Dashed line and dashed – 
dotted line mark 5 % and 10 % of grid cell days with emissions. 5 
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Figure 187. Annual PM2.5 emitted in west. 5 
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Figure 198. Number of days over 2003-2015 when the wildfire to non-wildfire PM2.5 emission ratio in the west exceeds 
thresholds of 2, 5, 10, 15, and 20. 5 
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Figure 2019. Distribution of relative interquartile range from pixel level Monte Carlo style simulations. 5 
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Figure 210. Distribution of relative interquartile range (top panel) and relative interdecile range (bottom panels) from 10 km × 10 
km gridded Monte Carlo style simulations. 5 
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Figure 22a. Annual fuel consumption from MFLEI, FINN v1.5, GFED v4.1s, and WFEIS v0.5 for northwest, California, and 
southwest regions.   
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Figure 22b. Annual fuel consumption from MFLEI, FINN v1.5, GFED v4.1s, and WFEIS v0.5 for north, southcentral, and 
southeast regions.   
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Figure 23a. Annual PM2.5 emitted from MFLEI, FINN v1.5, GFED v4.1s, and WFEIS v0.5 for northwest, California, and 
southwest regions.  
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Figure 23b. Annual PM2.5 emitted from MFLEI, FINN v1.5, GFED v4.1s, and WFEIS v0.5 for north, southcentral, and southeast 45 
regions.  
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Figure A1. The burn day distribution for the 12,500–25,000 ha size class. Distributions for all six size classes are provided in the 
dataset supplement (file\Supplements\BurnDayDist.csv). 
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Figure C1. Total shrub biomass estimates for a pixel with EVT class of Big Sagebrush shrubland, EVH class of 105, and EVC 5 

class of 112 (see text). 
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