
1 

 

A global historical data set of tropical cyclone exposure (TCE-DAT) 

 

Tobias Geiger¹, Katja Frieler¹, and David N. Bresch
2,3

 

 
1 Potsdam Institute for Climate Impacts Research, Telegraphenberg A 56, 14473 Potsdam, Germany  5 
2 Institute for Environmental Decisions, ETH Zurich, Universitätstr. 22, 8092 Zurich, Switzerland 
3 Federal Office of Meteorology and Climatology MeteoSwiss, Operation Center 1, P.O. Box 257, 8058 Zurich-Airport, 

Switzerland 

 

Correspondence to: Tobias Geiger (geiger@pik-potsdam.de) 10 

 

Abstract. Tropical cyclones pose a major risk to societies worldwide with about 22 million directly-affected people and 

damages of $29 billion on average per year over the last 20 years. While data on observed cyclones tracks (location of the 

center) and wind speeds is publically available these data sets do not contain information about the spatial extent of the storm 

and people or assets exposed. Here, we apply a simplified wind field model to estimate the areas exposed to wind speeds 15 

above 34, 64, and 96 knots. Based on available spatially-explicit data on population densities and Gross Domestic Product 

(GDP) we estimate 1) the number of people and 2) the sum of assets exposed to wind speeds above these thresholds 

accounting for temporal changes in historical distribution of population and assets (TCE-hist) and assuming fixed 2015 

patterns (TCE-2015). The associated country-event level exposure data (TCE-DAT) covers the period 1950 to 2015 and is 

freely available at http://doi.org/10.5880/pik.2017.005. It is considered key information to 1) assess the contribution of 20 

climatological versus socio-economic drivers of changes in exposure to tropical cyclones, 2) estimate changes in 

vulnerability from the difference in exposure and reported damages and calibrate associated damage functions, and 3) build 

improved exposure-based predictors to estimate higher-level societal impacts such as long-term effects on GDP, 

employment, or migration. 

We validate the adequateness of our methodology by comparing our exposure estimate to estimated exposure obtained from 25 

reported wind fields available since 1988 for the United States. 

We expect that the free availability of the underlying model and TCE-DAT will make research on tropical cyclone risks 

more accessible to non-experts and stakeholders. 

1 Introduction 

Tropical cyclones (TCs) belong to the most harmful natural disasters worldwide with $29 billion of direct damages and 22 30 

million people affected on average each year [Guha-Sapir, 2017]. In addition to these direct damages tropical cyclones have 

the potential to exercise influence on long-term development such as dampening of economic output [Hsiang, 2010; Hsiang 

and Jina, 2014], e.g. by reduced education achievements, mortality, and displacement.  
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Direct economic losses from TCs show a positive trend over time [MunichRe, 2015] whose attribution to increasing 

exposure, changing vulnerability, and more extreme hazards is heavily debated [Pielke et al., 2008; Estrada et al., 2015]. 

The attribution is particularly relevant for future projections of TC impacts given expected changes in population numbers 

and patterns [Jones and O’Neill, 2016], potential increases in hazards under unchecked climate change [Emanuel, 2013], and 

the future evolution of vulnerabilities [Bakkensen and Mendelsohn, 2016; Geiger et al., 2016]. Options to gain a better 5 

understanding of TC induced societal risks strongly depend on high-quality observational TC and socio-economic records. 

However, availability of data strongly varies over time and space and data sets can be subject to various reporting biases 

[Guha-Sapir and Below, 2002; Wirtz et al., 2014]. Working with these issues can be tedious and even beyond the scope of a 

researchers’ expertise. Moreover, standardized methods of data selection and preparation facilitate the reproducibility and 

comparability of research results. 10 

To overcome current limitations, we here provide a globally-consistent data set of TC exposure, named TCE-DAT. Exposure 

in TCE-DAT is defined per TC event as the number of potentially affected people and the sum of potentially affected assets. 

TCE-DAT covers the period from 1950 to 2015 and provides estimates of exposed population and exposed assets by 2713 

individual landfalling TCs with at least 34 knots (kn) 1-min sustained wind speed above land documented by the 

International Best Track Archive for Climate Stewardship (IBTrACS) [Knapp et al., 2010]. The data set is created using 15 

only publicly available data sources and running the open-source economics of climate adaptation (ECA) tool climada 

[Bresch, 2014; Gettelman et al., 2017]. 

To allow for an assessment of purely physically driven changes in exposure we also provide estimates of the number of 

people and the sum of assets exposed given fixed 2015 distributions of population and assets. In this regard TCE-DAT 

extends and complements estimates from the Global Assessment Report on Disaster Risk Reduction (GAR 2015) [UNISDR, 20 

2015], that provides a statistical assessment of exposure given fixed socio-economic conditions.  

In combination with reported damages and number of people affected from other sources, e.g. EM-DAT [Guha-Sapir, 2017] 

and NATCAT [MunichRe, 2015], TCE-DAT allows for a convenient assessment of historical vulnerabilities finally 

translating hazard (wind intensities) and exposure into damages or people affected as indicators of societal risks. 

In the following we describe the input data sets and our methodology used to create TCE-DAT. We then validate our 25 

findings based on exposed population estimates for the United States. We conclude by discussing potential applications of 

TCE-DAT and comment on its limitations and sources of uncertainty.   

2 Data & Methods 

2.1 climada - risk modeling 

TCE-DAT builds on various TC and socio-economic data sets that are merged and analyzed using climada, an open-source 30 

probabilistic natural catastrophe risk assessment model [Bresch, 2014]. For the definition of natural hazard risk, we follow 

the definition by the IPCC [IPCC, 2014] where risk is defined as a function of hazard, exposure and vulnerability, i.e. 
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where the latter three elements constitute severity of the impact. Hazard describes weather events such as storms, floods, 

drought, or heatwaves both in terms of probability of occurrence as well as physical intensity (see section 2.3 below). 

Exposure describes the geographical distribution of people, livelihoods and assets or infrastructure, generally speaking of all 5 

items potentially exposed to hazards, including ecosystems and their services. In the present case, exposure is determined for 

each TC separately based on the storm’s wind field (see section 2.2 below). Vulnerability describes how specific exposure 

will be affected by a specific hazard, i.e. relates the intensity of a given hazard with its impact, such as wind damage to 

buildings as a function of wind speed or the effect of a flood on a local community and its livelihoods. The damage function 

hence expresses the specific vulnerability for a given kind of assets. 10 

While climada allows for the implementation of different damage functions translating the intensity of the hazard, exposure, 

and vulnerabilities into damages and people affected [Gettelman et al., 2017] we only use part of its functionality to solely 

estimate exposure by using a step-like vulnerability function that is zero below a certain wind speed threshold and unity 

above. The climada module ISIMIP v1.0 used to generate TCE-DAT can be found at: 

https://github.com/davidnbresch/climada_module_isimip/releases/tag/v1.0  15 

2.2 Socio-economic data 

We use socio-economic data on the grid level with 0.1° x 0.1° resolution. For the attribution of exposed population and 

assets to different countries we use a country mask with equal resolution. 

2.2.1 Spatially-explicit population data 

Affected population is determined based on the History Database of the Global Environment (HYDE, version 3.2) that is 20 

developed under the authority of the Netherlands Environmental Assessment Agency and provides (gridded) time series of 

population and land use for the last 12,000 years [Klein Goldewijk et al., 2010, 2011] . HYDE provides population data with 

an original resolution of 5 arcmin (0.083°), decennially up to 2000 and annually up to 2015. Where required we linearly 

interpolate the data to derive annual distributions, and finally aggregate the numbers to 0.1° resolution. 

2.2.2 Spatially-explicit assets data 25 

The spatially-explicit assets data set is created based on spatially-explicit GDP data (in 2005 PPP $), available decennially 

between 1850 and 2100 [Frieler et al., 2016; Geiger and Frieler, 2017; Murakami, D. and Yamagata, 2017]. Data from 

2010 onwards is based on national GDP time series according to the Shared Socioeconomic Pathways (SSP2) [Frieler et al., 

2016; Dellink et al., 2017]. Grid-level GDP is downscaled from national GDP estimates, using spatially-explicit population 

estimates and multiple other predictors, e.g. distance to cities and to the coast, road network densities, and others [Murakami, 30 
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D. and Yamagata, 2017]. GDP data, provided with an original resolution of 5 arcmin (0.083°), is linearly interpolated to 

derive annual distributions for the years from 1950 to 2015. Finally data is aggregated to 0.1° resolution in the same way as 

the population data.  

To estimate assets distributions from the GDP data we use the Global Wealth Databook 2016 assembled by Credit Suisse 

[CreditSuisse, 2016] to derive national Assets/GDP ratios for the year 2016 for 181 countries. Ratios for missing countries 5 

are approximated based on geographically close countries with similar GDP per capita values. Due to a lack of reported asset 

distributions for other years we assume national Assets/GDP ratios to be constant over the considered time period (1950-

2015).  

2.3 Hazard data and wind field modeling 

2.3.1 Hazard data 10 

IBTrACS provides the most comprehensive global data set of historical tropical cyclone activity [Knapp et al., 2010]. We 

rely on the latest version (v03r09) that includes tropical cyclones records up to the end of 2015. IBTrACS combines TC data 

from various Regional Specialized Meteorological Centers (RSMC). However, historical TC records from the National 

Hurricane Center (NHC) of the United States (known as HURDAT), available for the North Atlantic and Eastern Pacific, 

and the Joint Typhoon Warning Center (JTWC), available for the remainder of the world, are regarded most accurate 15 

[Holland and Bruyère, 2014]. Whenever possible, we sub-select HURDAT and JTWC data from IBTrACS data, relying on 

other providers for otherwise missing events only (see Table 1). 

The IBTrACS archive originally contains 7019 entries between 1950-2015 (3662 between 1980-2015). We select 5719 TCs 

between 1950-2015 (3577 TCs between 1980-2015) where all information required to estimate the associated wind fields is 

available (see Table 2 for the list of required variables) to subsequently filter 2713 events with landfall. Note that most 20 

incomplete data entries occur prior to 1980, and in particular for very weak events mostly without landfall. 

 

provider North 

Atlantic 

South 

Atlantic 

East 

Pacific 

West 

Pacific 

South 

Pacific 

North 

Indian 

South 

Indian 

HURDAT 1 - 1 - - - - 

JTWC - - 3 1 1 1 1 

ATCF 2 1 2 - - - - 

BOM - - - - - - 2 

newdehli - - - - - 2 - 

CMA - - - 2 - - - 

remainder 3 2 4 3 2 3 3 

Table 1: List of consulted data providers within the IBTrACS archive broken down by ocean basin. Numbers indicate order of 

priority. The row “remainder” has lowest priority for all basins and data from this source is only used in very few cases to provide 

estimates for otherwise missing data. Abbreviations are the following: HURDAT: Hurricane Databases of the National Hurricane 25 
Center, JTWC: Joint Typhoon Warning Center (available for various basins), ATCF: Automated Tropical Cyclone Forecast, 

BOM: Bureau of Meteorology (Australia), newdehli: Regional Specialized Meteorological Center New Dehli, India, CMA: China 

Meteorological Administration - Shanghai Typhoon Institute, remainder: [VARIABLE_NAME]_for_mapping variables in 
IBTrACS data. 
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2.3.2 Wind field modeling 

The IBTrACS archive only contains TC center coordinates and other physical variables on a 6-hour snapshot basis. A wind 

field model is required to generate continuous wind fields that - based on IBTrACS variables - provides realistic distributions 

of surface winds around the TC center. The spatial extent of a TC is usually described as the sum of the following 

components: 1) a static circular wind field for each track coordinate, and 2) the translational wind speed component that 5 

arises from the TC movement. To estimate the first component several models have been proposed, see e.g. [Holland, 1980, 

2008; Holland et al., 2010; Chavas et al., 2015]. Here, we apply the improved wind field model by Holland et al. [Holland, 

2008] (named Holland08 in the following), that has been successfully applied in other studies, e.g. [Peduzzi et al., 2012]. 

The second component is added to the first one by quantifying the mean TC’s translational wind speed between two 

consecutive track coordinates (via an optimized Haversine formula) and vectorial addition of both wind speed components. 10 

We incorporate that the effect of the translational wind speed decreases with distance from the TC center by multiplying the 

translational component with an attenuation factor given as the ratio between the distance to center and rmax, c.f. also 

[Peduzzi et al., 2012].  

Our implementation of the Holland08 model (including the translational TC movement) is freely available within the 

climada ISIMIP module (https://github.com/davidnbresch/climada_module_isimip/releases/tag/v1.0) that has been used to 15 

generate the provided data set. The input variables required to run the Holland08 model are summarized in Table 2.  

 

variable short name variable long name further details 

cgps current TC center lat/lon-coordinates - 

ngps TC center lat/lon-coordinate at next timestep - 

tint time between time steps usually 6 hours 

pcen minimum central pressure in mbar 

prepcen minimum central pressure at previous timestep required to calculate pressure 

gradient 

vmax 1-min maximum sustained wind speed only used if pcen not given 
penv environmental pressure at outer closed isobar if unavailable set to 1010 mbar 

rmax radius of maximum winds extrapolated from pcen if not given; 

based on cubic fit of IBTrACS data 

Table 2: Input variables for Holland08 wind field model as implemented in climada. 
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Figure 1: Exemplary wind fields for Hurricane Katrina affecting the United States in 2005 (a) and Typhoon Haiyan affecting the 

Philippines in 2013 (b) as generated using the Holland08 wind field model. The colorbar ticks highlight the relevant wind speed 
thresholds from the Saffir-Simpson scale in kn. 

The Holland08 model works best in the tropics; for TCs with sub-tropical transition that potentially enter the westerlies of 5 

the mid-latitudes we limit the translational wind speed component to 30 kn, thereby removing fast-moving storms that lack 

TC characteristics.    

The present implementation of the Holland08 wind field model generates a complete wind profile for each TC by saving its 

lifetime’s maximum wind speed at each spatial location; 1-min sustained wind speeds below 34 kn (17.5 m/s) are discarded 

(see Fig. 1). 10 

2.4. The global TC exposure data set (TCE-DAT) 

2.4.1. Overview of TCE-DAT 

The final TCE-DAT is freely available at http://doi.org/10.5880/pik.2017.005. It is created by overlaying the estimated 

winds fields and the distributions of assets and population and subsequent aggregation of all non-zero country- and TC-

specific exposure values. Two data sets are included in TCE-DAT: 1) TCE-hist where socio-economic information matches 15 

the year of landfall, and 2) TCE-2015 where socio-economic patterns are fixed at 2015 values. TCE-DAT provides estimates 

of exposed population and exposed assets by event and by country for 34, 64, and 96 kn wind speed thresholds, 

corresponding to the Saffir-Simpson hurricane scale classification of tropical storm, hurricane, and major hurricane, 

respectively. Note that TCE-2015 contains 23 additional entries compared to TCE-hist. This is due to the fact that population 

and assets distributions have advanced over time and would have been exposed if all historical TCs were to make landfall in 20 

2015 (as assumed in TCE-2015), while they were not exposed historically. 

Due to technological innovations the reporting of TCs in the IBTrACS data base has improved significantly over time, 

reaching comprehensive global coverage by 1980 (see also Fig. 2). Compared to basin-wide TC activity, the number of 

landfalling TCs is smaller and shows greater variability due to underlying climate variability, e.g. driven by the El Nino 

Southern Oscillation (ENSO). When using TCE-DAT to analyze trends in TC risk (see Fig. 3), one should be aware of the 25 

underreporting in IBTrACS for earlier periods as this can be one reason for trends. 
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Figure 2: Annual numbers of TC landfalls by ocean basin. The number of TC landfalls varies greatly due to the stochastic 

occurrence of landfalls, natural variability, and reporting biases (prior to 1980, indicated by vertical gray line). Ocean basin 

abbreviations are as follows: NA=North Atlantic (red), EP=East Pacific (orange), WP=West Pacific (yellow), SP=South Pacific 5 
(light blue), NI=North Indian (blue), SI= South Indian (dark blue). South Atlantic is excluded (2 TCs). 

 

 

Figure 3: Annual global TC exposure for different thresholds of wind speed (34 kn red; 64 kn orange; 96 kn yellow). Dashed lines: 

estimates based on fixed 2015 patterns of population and assets (TCE-2015); solid lines: estimates based on the historical evolution 10 
of population and assets patterns (TCE-hist). 

2.4.2. Limitations of TCE-DAT 

We ask each user to consult the list of limitations of TCE-DAT before working with the data. 
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The IBTrACS archive is the most comprehensive data set of TC activity today. However, before the invention of remote 

sensing technologies TC coverage in IBTrACS data is incomplete (see Fig. 2). In particular the Indian Ocean and the 

Southern Pacific Ocean should be treated with care for all events before 1980.  

The Holland08 wind field model (as well as other available wind field models) provide a rather generic setup to derive wind 

fields based on statistical properties of observed TCs. The wind field generated by the model represents a gross 5 

approximation of the actually realized wind field. Wind fields of “standard” TCs are more accurately captured by wind field 

models than TCs with very unusual properties, e.g. Superstorm Sandy in 2012 whose extension was unusually huge despite 

its rather weak winds. Therefore, one should be aware of outliers when analyzing single storm properties from TCE-DAT. 

Furthermore, our methodology defines exposure solely using the storm’s wind field. We do not account for additional people 

and assets in regions that might still be exposed to e.g. severe precipitation and/or storm surges. This is particular relevant 10 

for TCs that cause damage but whose wind field never touches land directly. The same is true for offshore activities (e.g. oil 

platforms, ships) whose assets remain unresolved by our methodology. 

The socio-economic data has been carefully assembled but still gives rise to uncertainties, e.g. caused by linear interpolation 

between decennial timesteps. While there exists some certainty for population distributions as sub-national population counts 

have been collected for centuries, the uncertainty in the distribution of GDP is much larger as reported sub-national GDP and 15 

assets estimates are still unavailable for most countries at present. Additionally, GDP at the grid level is used to approximate 

local assets. While this assumption seems reasonable for the spatial resolution used in this work, there might still exist large 

discrepancies for specific grid cells and economic sectors. Furthermore and due to a lack of data, we use 2016 national 

assets/GDP ratios to approximate assets structure for all years between 1950 and 2015. As a consequence, the assets value of 

fast developing countries might be overestimated for earlier years. 20 

3. Validation of exposure estimates 

TCs and their impacts are comprehensively studied in the United States. We therefore use the United States as a test region 

to compare TCE-DAT estimates with more comprehensive observational records for storm size and in order to evaluate the 

reliability of our methodology.  

Our validation is based on the extended best track HURDAT (HURDAText) archive. This archive is equally maintained by 25 

the NHC and - in extension to the regular HURDAT archive - provides size estimates for most North Atlantic TCs since 

1988 for the wind speed thresholds 34 kn, 50 kn, 64 kn, and maximum wind speed) [Demuth et al., 2006]. No size 

information is available for intermediate wind speeds. Data by HURDAText is preprocessed (as described in [Geiger et al., 

2016]) and compared to results from TCE-DAT for the variables wind speed at landfall and exposed population at 34 kn, 64 

kn, and 96 kn for 87 TCs between 1988 and 2012.  30 
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The comparison of the TC’s maximum recorded wind speed above land (Fig. 4a) shows a good qualitative agreement 

between both data sets with a Pearson correlation of r=0.86. Perfect agreement cannot be expected and is precluded for 

several reasons: 

 

Figure 4: Comparison of wind speed at landfall by event (a) and the aggregated number of TCs with nonzero exposure for 5 
different wind speed thresholds (b) between 1988 and 2012 using estimates based on the Holland08 wind field model and the 
observed HURDAText data base. 

 

First, the Holland08 model estimates TC wind speed indirectly based on minimum central pressure, thereby inhibiting a 

direct comparison of wind speeds at landfall. Second, the HURDAText data set provides observed wind speed in incremental 10 

steps (34 kn, 50 kn, 64 kn, and maximum wind speed). For TCs with no direct landfall of the storm’s center (near misses) 

this provides only an approximate value for the real wind speed. As, however, near misses also affect people and assets they 

are also included in TCE-DAT. Therefore, a single grid cell can decide between a miss and a near miss and consequently the 

results strongly depend on the exact wind field. This also explains why the actual number of TCs with nonzero exposure 

slightly varies between both data sets (see Figure 4b). The relatively large difference in numbers of landfall for the 96 kn 15 

threshold is due to the fact that the HURDAText archive does not provide size estimates for 96 kn directly, but for the radii 

of maximum winds only.
1
 Major TCs that do not hit land with their maximum winds are thus only included as TCs 

exceeding 64 kn despite the fact that a fraction of the wind field above land might well exceed the 96 kn threshold. 

 

In a next step we compare the obtained exposure measures for different intensity thresholds, both on the individual event- 20 

and aggregated level (see Figure 5).  

For 34 kn winds we find a good agreement (r=0.83) for exposed population between Holland08 and HURDAText (see 

Figure 5a). There are a few outliers where the exposed population based on HURDAText is several orders of magnitude 

                                                        
1 For completeness we decided to compare also the 96 kn threshold being aware that a proper comparison is infeasible as no 

direct size estimates exist for this threshold. 
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larger than based on Holland08. Such large deviations are, however, expected as individual storms can strongly deviate from 

regular-sized TCs. Superstorm Sandy that hit the U.S. East coast in 2012 is a good example: Sandy’s wind field of tropical 

storm force was huge in comparison to mean extensions of comparable events and extended all the way to Florida despite its 

landfall location in New Jersey. Similar deviations are also reflected in the exposure estimates across all TCs at 34 kn (see 

Figure 5b): while mean affected population is comparable there are large deviation for higher percentiles. 5 

Differences in TC exposure derived from observational and approximated wind fields become smaller with increasing 

intensity (Figure 5c), and the mean numbers as well as the different percentiles of exposed population across all landfalling 

TCs between 1988-2012 compare well (see Figure 5d). For 96 kn winds the number of TCs available for comparison is 

rather small (Figure 5e,f), and there exists an additional bias as the 96 kn wind speed threshold is not provided in 

HURDAText explicitly, see discussion above. Nonetheless and up to one outlier, we find good agreement between the 10 

exposure estimates from both data sets. 

 

Based on the validation exercise for the United States we conclude that there exists a good qualitative and quantitative 

agreement between risk estimates drawn from the observation-based HURDAText and the generic Holland08 wind field 

data, despite known shortcomings of the Holland08 wind field model. Consequently, there exists confidence that exposure 15 

estimates for other parts of the world and other time periods can be used to approximate exposure given the lack of observed 

wind fields. Due to the generic wind field modeling approach, however, more confidence should be put into aggregated 

exposure estimates than single event exposure, in particular if additional information about this event is scarce. 
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Figure 5: Comparison of exposed population by event (a,c,e) and across events (b,d,f) for different wind speed thresholds using 

estimates from the Holland08 wind field model and the observed HURDAText data base. In the right panels, boxes (whiskers) 
indicate the 25%-75% (10%-90%) percentile range, while yellow lines are medians. 

 5 
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4. Data availability 

TCE-DAT was produced using publicly-available data only. In particular, the open-source climada modeling tool module 

ISIMIP v1.0 (https://github.com/davidnbresch/climada_module_isimip/releases/tag/v1.0) was used to generate TCE-DAT. In 

addition to the data sources mentioned above, the already pre-processed socio-economic data can also be accessed via the 

input data tab available at https://www.isimip.org/. The final TCE-DAT repository can be found at 5 

http://doi.org/10.5880/pik.2017.005. 

5. Conclusions 

We here provide a new and comprehensive data set TCE-DAT for global historical TC exposure between 1950 and 2015. 

The data set contains exposed population and exposed assets by event and country for 5335 events based on 2713 TCs, 

additionally separating exposure to wind speeds above 34 kn, 64 kn, and 96 kn, respectively. This data set provides an 10 

assessment by overlying estimated wind fields with gridded information about population and assets. While this approach 

has some limitations, it also overcomes various other issues that arise due to biased and/or changing reporting standards 

across time and space. Pure data of exposed population and assets, i.e. relying only on TC properties, is not available 

elsewhere. As a further benefit, TCE-DAT was created using only freely available input data and established methods and 

the freely available modeling tool climada with module ISIMIP.  15 

In conclusion, this work provides a valuable additional resource to the community studying TC related impacts, in particular 

for non-experts in this field. It avoids present endogeneity issues, in particular relevant for econometric assessments of TC 

impacts, by creating a TC exposure database based on physical storm properties. Based on this data set new insights are 

expected for global and region-specific vulnerability assessments and the long-run economic consequences of natural 

disasters in general.  20 
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