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Abstract 18 
   The Open-source Data Inventory for Anthropogenic CO2 (ODIAC) is a global high-spatial 19 
resolution gridded emission data product that distributes carbon dioxide (CO2) emissions 20 
from fossil fuel combustion. The emission spatial distributions are estimated at a 1×1 km 21 
spatial resolution over land using power plant profiles (emission intensity and geographical 22 
location) and satellite-observed nighttime lights. This paper describes the year 2016 version 23 
of the ODIAC emission data product (ODIAC2016) and presents analyses that help guiding 24 
data users, especially for atmospheric CO2 tracer transport simulations and flux inversion 25 
analysis. Since the original publication in 2011, we have made modifications to our emission 26 
modeling framework in order to deliver a comprehensive global gridded emission data 27 
product. Major changes from the 2011 publication are 1) the use of emissions estimates made 28 
by the Carbon Dioxide Information Analysis Center (CDIAC) at the Oak Ridge National 29 
Laboratory (ORNL) by fuel type (solid, liquid, gas, cement manufacturing, gas flaring and 30 
international aviation and marine bunkers), 2) the use of multiple spatial emission proxies by 31 
fuel type such as nightlight data specific to gas flaring and ship/aircraft fleet tracks and 3) the 32 
inclusion of emission temporal variations. Using global fuel consumption data, we 33 
extrapolated the CDIAC emissions estimates for the recent years and produced the 34 
ODIAC2016 emission data product that covers 2000-2015. Our emission data can be viewed 35 
as an extended version of CDIAC gridded emission data product, which should allow data 36 
users to impose global fossil fuel emissions in more comprehensive manner than original 37 
CDIAC product. Our new emission modeling framework allows us to produce future versions 38 
of ODIAC emission data product with a timely update. Such capability has become more 39 
significant given the CDIAC/ORNL’s shutdown. ODIAC data product could play an 40 
important role to support carbon cycle science, especially modeling studies with space-based 41 
CO2 data collected near real time by ongoing carbon observing missions such as Japanese 42 
Greenhouse Observing SATellite (GOSAT), NASA’s Orbiting Carbon Observatory 2 (OCO-43 
2) and upcoming future missions. The ODIAC emission data product including the latest 44 
version of the ODIAC emission data (ODIAC2017, 2000-2016), is distributed from 45 
http://db.cger.nies.go.jp/dataset/ODIAC/ with a DOI.  46 
 47 
 48 
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 1 
1. Introduction 2 
 3 
   Carbon dioxide (CO2) emissions from fossil fuel combustion are the main cause for the 4 
observed increase in atmospheric CO2 concentration. The Carbon Dioxide Information 5 
Analysis Center (CDIAC) at the Oak Ridge National Laboratory (ORNL) estimated that the 6 
global total fossil fuel CO2 emissions (FFCO2; fuel combustion, cement production and gas 7 
flaring) in the year 2014 was 9.855 PgC based on fuel statistics data published by United 8 
Nation (U.N.) (Boden et al., 2017). This FFCO2 estimate often serves as a reference in carbon 9 
budget analysis, especially for inferring CO2 uptake by terrestrial biosphere and oceans (e.g. 10 
Ballantyne et al., 2012; Le Quéré et al., 2016). The Global Carbon Project for example 11 
estimated that approximately 55% of the carbon released to the atmosphere (FFCO2 plus 12 
emissions from land use change) was taken up by natural sinks over the past decade (2006-13 
2015) (Le Quéré et al., 2016).   14 
   Similarly, FFCO2 estimates serve as a reference in atmospheric CO2 flux inversion analysis 15 
where the location and size of natural sources and sinks are estimated using atmospheric CO2 16 
data and atmospheric transport models (e.g. Tans et al., 1990; Bousquet et al., 1999; Gurney 17 
et al., 2002; Baker et al., 2006). In the conventional inversion method, unlike land and 18 
oceanic fluxes, FFCO2 is a given quantity and never optimized (e.g. Gurney et al., 2005). 19 
FFCO2 thus needs to be accurately quantified and given in space and time to yield robust 20 
estimates of natural fluxes (Gurney et al., 2005). Accurately prescribing FFCO2 has become 21 
more critical because of the use of spatially and temporally dense CO2 data from a wide 22 
variety of observational platforms (ground-based, aircrafts and satellites), which inform not 23 
only background levels of CO2 concentration, but also CO2 contributions from anthropogenic 24 
sources (e.g. Schneising et al., 2013; Janardanan et al., 2016; Hakkarainen et al., 2016). 25 
Atmospheric transport models then need to be run at a higher spatiotemporal resolution than 26 
before to fully interpret and utilized CO2 variability observed at synoptic to local scale to 27 
quantify sources and sinks (e.g. Feng et al. 2016; Lauvaux et al., 2016). FFCO2 data thus 28 
needs to be accurately given at a high resolution so as not to cause biases in simulations.  29 
   Global FFCO2 data are available in a gridded form from different institutions and research 30 
groups (e.g. CDIAC/ORNL and Europe’s Joint Research Center (JRC)) and those gridded 31 
emission data are often based on disaggregation of national (or sectoral) emissions (e.g. 32 
Andres et al., 1996; Rayner et al., 2010; Oda and Maksyutov 2011; Janssens-Maenhout et al., 33 
2012; Kurokawa et al., 2013; Asefi-Najafabady et al., 2014). The emission spatial 34 
distributions are often estimated using spatial proxy data that approximate the location and 35 
intensity of human activities (hence, CO2 emissions) (e.g. population, nighttime lights and 36 
gross domestic production (GDP)) and/or geolocation of specific emission sources (e.g. 37 
power plant, transportation, cement production/industrial facilities and gas flares). CDIAC 38 
gridded emission data product for example is based on an emission disaggregation using 39 
population density at a 1×1 degree resolution (Andres et al., 1996). The Emission Database 40 
for Global Atmospheric Research (EDGAR, http://edgar.jrc.ec.europa.eu/) estimates 41 
emissions on the emission sectors specified by the Intergovernmental Panel on Climate 42 
Change (IPCC) methodology instead of fuel type and use spatial proxy data and geospatial 43 
data such as point and line source location at a 0.1×0.1 degree (Janssens-Maenhout et al., 44 
2012).   45 
   Satellite-observed nighttime light data has been identified as an excellent spatial indicator 46 
for human settlements and intensities of some specific human activities (e.g. Elvidge et al., 47 
1999, 2009) and has been used to infer the associated CO2 emissions or their spatial 48 
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distributions (e.g. Doll et al., 2000, Ghosh et al., 2010, Rayner et al., 2010). Oda and 1 
Maksyutov (2011) proposed a combined use of power plant profiles (power plant emission 2 
intensity and geographical location) and nighttime light data to achieve a global high-spatial 3 
resolution emission field. The decoupling of the point source emission which often have less 4 
spatial correlation with population (hence, nighttime light), yields improved high-resolution 5 
emission fields that show an improved agreement with the U.S. 10km Vulcan emission 6 
product developed by Gurney et al. (2009) (Oda and Maksyutov 2011). Based on Oda and 7 
Maksyutov (2011), we initiated the high-resolution emission data development (named as the 8 
Open-source Data Inventory for Anthropogenic CO2, ODIAC) under the Japanese 9 
Greenhouse Gases Observing SATellite (GOSAT, Yokota et al., 2009) at the Japanese 10 
National Institute for Environmental Studies (NIES). The original purpose of the emission 11 
data development was to provide an accurate prior FFCO2 field for global and regional CO2 12 
inversions using the column-averaged CO2 (XCO2) data collected by GOSAT. Since 2009, the 13 
ODIAC emission data product has been used for the inversion for the official GOSAT Level 14 
4 (surface CO2 flux) data production (Takagi et al., 2009; Maksyutov et al., 2013), NOAA’s 15 
CarbonTracker (Peters et al., 2007) as a supplementary FFCO2 data, as well as dozens of 16 
published works (e.g. Saeki et al., 2013; Thompson et al., 2015; Feng et al., 2016; Feng et al., 17 
2017; Shirai et al., 2017) including several urban scale modeling studies (e.g. Ganshin et al. 18 
2010; Oda et al., 2012; Brioude et al., 2013; Lauvaux et al., 2016; Janardanan et al., 2016; 19 
Oda et al., 2017).  20 
   In response to increasing needs from the CO2 modeling research community, we have 21 
upgraded and modified our modeling framework in order to produce a global, comprehensive 22 
emission data product on timely manner, while our flagship high-resolution emission 23 
modeling approach remains as the same. In this manuscript, we describe the year 2016 24 
version of the ODIAC emission data product (ODIAC2016, 2000-2015), which was the latest 25 
version of the ODIAC emission data at the time of the submission of this manuscript,  along 26 
with the emission modeling framework we are currently based on, highlighting 27 
changes/differences from Oda and Maksyutov (2011). Currently the updated, year 2017 28 
version of the ODAIC emission data (ODIAC2017, 2000-2016) are available.  This 29 
manuscript however provides the sufficient details of how we developed ODIAC2017 with 30 
updated information.  31 
 32 
 33 
2. Emission modeling framework  34 
 35 
   Fig. 1 illustrates our current ODIAC emission modeling framework (we defined it as 36 
“ODIAC 3.0 model”, in contrast to the original version). Major changes/differences from Oda 37 
and Maksyutov (2011, ODIAC v1.7) are 1) the use of emissions estimates made by the 38 
CDIAC/ORNL (rather than our own emission estimates), 2) the use of multiple spatial 39 
emission proxies in order to distribute CDIAC national emissions estimates made by fuel type, 40 
and 3) the inclusion of emission temporal variations (version 1.7 only indicates annual 41 
emission fields). Given CDIAC emission estimates have been one of well-respected, widely-42 
used in the carbon research community (e.g. Ballantyne et al., 2012; Le Quéré et al., 2016), 43 
our philosophy in our emission data development is we develop and deliver an extended, 44 
comprehensive global gridded emission data product, fully utilizing CDIAC emissions data 45 
(e.g. emission estimates in both tabular and gridded forms). We also extend CDIAC emission 46 
data where possible. Our emission modeling framework was also designed to produce an 47 
annually-updated emission data product in a timely manner. Given the discontinuity of future, 48 
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updated CDIAC emission data, we believe our emission data production capability of 1 
producing an extended product of the CDIAC emission data is significant. 2 
   Starting with national emission estimates as an input, our model framework achieves 3 
monthly, global FFCO2 gridded fields via preprocessing, and spatial and temporal 4 
disaggregation. CDIAC national estimates made by fuel type (liquid, gas, solid, cement 5 
production, gas flare and international bunker emissions) are further divided into an extended 6 
set of ODIAC emission categories (point source, non-point source, cement production, gas 7 
flare, international aviation and marine bunker (further described in Section 3). It is important 8 
to note that ODIAC2016 carries emissions from international bunker (international marine 9 
bunker and aviation, often accounts for a few percent of the global total emissions), which are 10 
not included in the CDIAC gridded emission data products (CDIAC gridded emission data 11 
only indicate national emissions and international bunker emissions are often not considered 12 
to be a part of national emissions in an international convention). With the inclusion of 13 
international bunker emissions, we provide a more comprehensive global gridded emission 14 
field. We extended the CDIAC national estimates over the recent years that was not yet 15 
covered in the version of CDIAC gridded data (2014-2016), in order to support near-real time 16 
CO2 simulations/analysis. Emissions are then spatially distributed using a wide variety of 17 
spatial data (e.g. point source geographical location, nighttime light data and flight/ship tracks, 18 
further described in Section 4). We adopt an emission seasonality from existing emission 19 
inventories for particular emission categories (further described in Section 5).  20 
   In the following sections (Section 3-5), we describe how ODIAC2016 was developed. It is 21 
important to note that ODIAC2016 is based on the best available data at the time of the 22 
development (ODIAC2016 was released in September 2016). Thus, some of the emission 23 
estimates and underlying data used in ODIAC2016 might have been outdated. For traceability 24 
purpose, data used in this development, their versions/editions, and data sources are 25 
summarized in Appendix A. Following the results and evaluation section (Section 6), we 26 
discuss caveats and current limitations in our modeling framework/emission data product 27 
(Section 7), and then describe how we will update the ODIAC emission data product with 28 
updated fuel statistics and/or emission information (Section 8). Atmospheric CO2 inversion 29 
studies recently published (e.g. Maksyutov et al., 2013) and operational assimilation systems 30 
such as NOAA’s CarbonTracker (https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/) often 31 
focus on time periods after 2000. We thus put a priority to produce emission data after year 32 
2000 with regular update upon the availability of updated emission and fuel statistical data 33 
and deliver the emission product to the science community, instead of developing a longer 34 
term emission data product. Future versions of ODIAC data however might have a longer, 35 
extended time coverage. Currently the ODIAC data are provided in two data formats: 1) 36 
global 1×1 km (30 arc second) monthly data in the GeoTIFF format (only includes emissions 37 
over land) and 2) 1×1 degree annual (12 month) data in the NetCDF format (includes 38 
international bunker emissions). The 1×1 degree annual data are aggregated from the 1×1 km 39 
product. The improvements with the use of improved nighttime light data in the 1×1 km data 40 
were documented in Oda et al. (2012). This manuscript thus focuses on the comprehensive 41 
global FFCO2 fields at a 1×1 degree, otherwise specified.  42 
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Figure 1. A schematic figure of the ODIAC emission modeling framework (defined as 
“ODIAC 3.0 FFCO2 model”). Starting with CDIAC national emission estimates made by fuel 
type (emission estimates), the CDIAC national emission estimates are first divided into 
extended ODIAC emission categories (input data processing, see Section 3). ODIAC 3.0 
FFCO2 model then distributes the emissions in space and time, using point source 
geolocation information and spatial data depending on emission category such as nighttime 
light (NTL), and aircraft and ship fleet tracks (spatial disaggregation, see Section 4). The 
emission seasonality for emissions over land and international aviation were adopted from 
existing emission inventories (temporal disaggregation, see Section 5).  
 1 
 2 
3. Emission estimates and input emission data preprocessing 3 
 4 
3.1 Emissions for 2000-2013 5 
 6 
   CDIAC FFCO2 emissions estimates are based on fuel statistic data published as United 7 
Nation Energy Statistics Database (Boden et al., 2017). Emission estimates are calculated on 8 
global, national and regional basis and by fuel type in the method described in Marland and 9 
Rotty (1984). CDIAC also provides their own gridded emission data products that indicate 10 
annual and monthly FFCO2 fields at a 1×1 degree (Andres et al., 1996; Andres et al., 2011). 11 
ODIAC2016 is primarily based on the year 2016 version of the CDIAC national estimates 12 
(Boden et al., 2016), which was the most up-to-date CDIAC emission estimates at the time of 13 
the data development (currently Boden et al. 2017 is the latest). We first aggregated the 14 
CDIAC national (and regional) emissions estimates to 65 countries and 6 geographical 15 
regions (North America, South and Central Americas, Europe and Eurasia, the Middle East, 16 
Africa, and Asia Pacific) defined in Oda and Maksyutov (2011) (see the country/region 17 
definitions are shown in Table 1 in Oda and Maksyutov 2011). In addition to the national and 18 
geographical categories, we decided to include Antarctic fishery emissions, which are from 19 
fishery activities over the Antarctic Ocean (< 60S, 1~ 4 kTC/yr over 1987-2007 by Boden et 20 
al., 2016), as an individual emission region and distributed in the same way as Andres et al. 21 
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(1996). Emissions from international bunker and aviation are not included in national 1 
emissions by international convention. Thus CDIAC gridded emission data products do not 2 
include the emissions from international bunker and aviation although the CDIAC/ORNL 3 
does have records of those emissions on national/regional basis. ODIAC2016 includes those 4 
emissions to achieve comprehensive global FFCO2 gridded emission fields.  5 
   In CDIAC emission estimates, the global total emission and national total emissions are 6 
obtained by different calculation methods (global fuel production vs. apparent national fuel 7 
consumption, see Andres et al., 2012) and the CDIAC national totals do not sum to the 8 
CDIAC global total due to the difference in calculation method and inconsistencies in the 9 
underlying statistical data (e.g. import/export totals) (e.g. Andres et al., 2012). We thus 10 
calculate the difference between the global total and the sum of national totals and scaled up 11 
national totals to account for the difference. Andres et al. (2014) reported global total 12 
emission estimates calculated with production data (as opposed to apparent consumption 13 
data) have the smallest uncertainty (approximately 8% (2 sigma). It is thus used as the 14 
reference for global carbon budget analyses (e.g. Le Quéré et al., 2016). Inversion analysis is 15 
an extended version of the global carbon budget analysis using atmospheric models. We thus 16 
believe that imposing transport models and/or inversion models in a consistent way with the 17 
global carbon budget analysis such as Le Quéré et al. (2016) has significance, although we 18 
sacrifice the accuracy of the national/regional emission estimates. Due to the global scaling, 19 
national totals in ODIAC2016 differ from the estimates originally reported by the 20 
CDIAC/ORNL. The differences between the CDIAC global total and the sum of national 21 
emissions are often few percent and thus the magnitude of the scaling is often within the 22 
uncertainty range of national emissions (e.g. 4.0 to 20.2%, Andres et al., 2014). The global 23 
scaling factor derived and used in this study are presented in Appendix A2. 24 
 25 
3.2 Emissions for 2014-2015 26 
 27 
   The year 2016 version of the CDIAC emission estimates only covers years to 2013 (Boden 28 
et al., 2016). We thus extrapolated the year 2013 CDIAC emissions to years 2014 and 2015 29 
using the year 2016 version of the BP global fuel statistical data (BP, 2017). Our emission 30 
extrapolation approach is the same as Myhre et al. (2009) and Le Quéré et al. (2016). 31 
Emissions from cement production and gas flaring (approximately 5.7% and 0.6% of the 32 
2013 global total, Boden et al., 2016) were assumed to be as the same as year 2013. 33 
International bunker emissions were scaled using changes in national total emissions.  34 
 35 
3.3 CDIAC emission sector to ODIAC emission categories 36 
 37 
   CDIAC national emission estimates (prepared by fuel type) were re-categorized to our own 38 
ODIAC emission categories (point source, nonpoint source, cement production, gas flare and 39 
international aviation and international marine bunker). Following Oda and Maksyutov 40 
(2011), the sum of emissions from liquid, gas and solid fuels was further divided into point 41 
source emissions and non-point source emissions. The total emissions from point sources 42 
were estimated using national total power plant emissions calculated using CARMA (Oda and 43 
Maksyutov, 2011). As mentioned earlier, CDIAC gridded emission data products only 44 
indicate national emissions and do not include international bunker emissions (Andres et al., 45 
1996, Andres et al., 2011). In contrast, EDGAR provides bunker emissions in their gridded 46 
data product (JRC, 2017). Peylin et al. (2013) show some models include international bunker 47 
emissions and some do not, although the difference due to the inclusion/exclusion of the 48 
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international bunker emissions in the prescribed emissions could be corrected afterwards 1 
(Peylin et al., 2013). In ODIAC2016, we carry CDIAC international bunker emissions 2 
reported on country basis to achieve the complete picture of the global fossil fuel emissions. 3 
Country total bunker emissions (aviation plus marine bunker) were distributed using spatial 4 
proxy data adopted from other emission inventories described later (see Section 4.3). 5 
Although the CDIAC/ORNL does not report emissions from international aviation and 6 
marine bunker separately, we loosely estimated those two emissions using U.N. statistics. We 7 
estimated the fraction of aircraft emissions using jet fuel and aviation gasoline consumption 8 
and then the international bunker emissions were divided into aircraft and marine bunker 9 
emissions.  10 
 11 
 12 
4. Spatial emission disaggregation 13 
 14 
4.1 Emissions from point sources, non-point sources and cement production 15 
 16 
   We define the sum of the emissions from solid, liquid and gas fuels as land emission (see 17 
Fig. 1). Land emissions are further divided into two emission categories (point source 18 
emissions and non-point source emissions) and then distributed at a 1×1 km resolution in the 19 
ways described in Oda and Maksyutov (2011): Point source emissions are mapped using 20 
power plant profiles (emission intensity and geographical location) taken from the CARbon 21 
Monitoring and Action (CARMA) database (Wheeler and Ummel, 2008) and non-point 22 
source emissions are distributed using nighttime light data collected by the Defense 23 
Meteorological Satellite Program (DMSP) satellites (e.g. Elvidge et al., 1999). To avoid a 24 
difficulty in emission disaggregation especially over bright regions in nighttime light data (e.g. 25 
cities), Oda and Maksyutov (2011) employed a product that does not have an instrument 26 
saturation issue, rather than regular nightlight product. ODIAC2016 employs the latest 27 
version of the special nighttime light product (Ziskin et al., 2010). The improved nighttime 28 
light data has mitigated the underestimation of emissions over dimmer areas seen in ODIAC 29 
v1.7 (Oda et al., 2010). Nighttime light data are currently available for multiple years (1996-30 
97, 1999, 2000, 2002-03, 2004, 2005-06 and 2010). In ODIAC2016, due to the lack of 31 
information, the emissions from cement production were spatially distributed as a part of non-32 
point source emissions, although those emissions should have been distributed as point 33 
sources. This needs to be fixed in future versions of ODIAC emission data.  34 
 35 
4.2 Emissions from gas flaring 36 
 37 
   In the ODIAC v1.7, emissions from gas flaring were not considered (Oda and Maksyutov 38 
2011). Nighttime light pixels corresponding to gas flares often appear very bright and would 39 
result in creating strong point sources in emission data (Oda and Maksyutov, 2011). We thus 40 
identified and excluded those bright gas flare pixels before distributing land emissions, using 41 
another global nighttime light data product that was specifically developed for gas flares by 42 
National Oceanic and Atmosphere Administration (NOAA), National Centers for 43 
Environmental Information (NCEI, former National Geophysical Data Center (NGDC)) (Oda 44 
and Maksyutov, 2011). In ODIAC2016 we separately distributed CDIAC gas flare emissions 45 
using the 1×1 km nightlight-based gas flare maps developed for 65 individual countries 46 
(Elvidge et al., 2009). Other than the 65 countries, the gas flare emissions were distributed as 47 
a part of land emissions.   48 
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 1 
4.3 Emissions from international aviation and marine bunker 2 
 3 
   Emissions from international aviation and marine bunker were distributed using aircraft and 4 
ship fleet tracks. International aviation emissions were distributed using the AERO2k 5 
inventory (Eyers et al., 2005). The AERO2k inventory was developed by a team at the 6 
Manchester Metropolitan University (MMU) and indicates the fuel use and NOx, CO2, CO, 7 
hydrocarbon and particulate emissions for 2002 and 2025 (projected) with injection height at 8 
a 1×1 degree spatial resolution on monthly basis. We used their column total CO2 emissions 9 
to distribute emissions to a single layer. International marine bunker emissions were 10 
distributed at a 0.1×0.1 degree using an international marine bunker emission map from the 11 
EDGAR v4.1(JRC, 2017). We decided not to adopt an international and domestic shipping 12 
(1A3d) map from EDGAR v4.2 as it includes domestic shipping emissions that we does not 13 
distinguish.  14 
 15 
 16 
5. Temporal emission disaggregation 17 
 18 
   The inclusion of the temporal variations is often a key in transport model simulation. For 19 
CO2 flux inversion, the potential biases in flux inverse emission estimates due to the lack of 20 
temporal profiles was suggested by Gurney et al. (2005). In ODIAC2016, we adopt the 21 
seasonal emission changes developed by Andres et al. (2011). The CDIAC monthly gridded 22 
data include monthly national emissions gridded at a 1×1 degree resolution (Andres et al. 23 
2011). We normalized the monthly emission fields by the annual total and the applied to our 24 
annual emissions over land. The seasonality in ODIAC2016 is based on the year 2013 version 25 
of the CDIAC monthly gridded emission. The CDIAC monthly emission data do not cover 26 
the recent years. For recent years, we created a climatological seasonality using monthly 27 
CDIAC data from 2000-2010 (excepting 2009 where economic recession happened). Due to 28 
the limited availability of monthly fuel statistical data, Andres et al. (2011) used proxy 29 
country and also seasonality allocated by Monte Carlo simulations. The years between 2000-30 
2010 were most data rich period and mostly explained by data (see Fig. 1 in Andres et al., 31 
2011).  32 
   Although ODIAC2016 only provides monthly emission fields, users can derive hourly 33 
emissions by applying scaling factors developed by Nassar et al. (2013). The Temporal 34 
Improvements for Modeling Emissions by Scaling (TIMES) is a set of scaling factors which 35 
one can derive weekly emissions and diurnal emissions from any monthly emission data that 36 
you use. Temporal profiles are collected from Vulcan, EDGAR and best available 37 
information and gridded on a 0.25×0.25 degree (Nassar et al., 2013). TIMES also includes per 38 
capita emissions corrections for Canada (Nassar et al., 2013).  39 
 40 
 41 
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Figure 2. Global emission time series from four gridded emission data: CDIAC (red, 2000-
2013) plus projected emissions (dashed maroon, 2014-2015) (values taken from 
ODIAC2016), CDIAC 1×1 degree (black, 2000-2013), EDGAR v4.2 (green, 2000-2008) and 
EDGAR v4.2 Fast Track (blue, 2000-2010). The values here are given in the unit of peta 
gram (= giga tonnes) carbon per year. The shaded area indicated in tan is a two-sigma 
uncertainty range (8%) estimated for CDIAC global total emission estimates by Andres et al. 
(2014).  
 1 
 2 
6. Results and discussions 3 
 4 
6.1 Annual global emissions  5 
 6 
   In Fig. 2, global emission time series from different emission data were compared to give an 7 
idea of agreement among them. We calculated the global total for each year from four gridded 8 
emission data for the period of 2000-2016: CDIAC global total + projection (taken from 9 
ODIAC2016), CDIAC gridded data (hence, no international bunker emissions), two versions 10 
of EDGAR gridded data (v4.2 and FastTrack). The uncertainty range (shaded in tan) is 8% (2 11 
sigma) estimated for CDIAC global by Andres et al. (2014). Those gridded emission data are 12 
often used in global atmospheric CO2 inversion analysis (e.g. Peylin et al., 2013). To account 13 
for the difference in emission reporting categories (e.g. fuel basis in CDIAC vs. emission 14 
sector basis in EDGAR), the EDGAR totals were calculated as the “total short cycle C” 15 
emissions minus the sum of emissions from agriculture (IPCC code: 4C and 4D), land use 16 
change and forestry (5A, C, D, F and 4E) and waste (6C) (see more details on emission 17 
sectors documented in JRC (2017)). International aviation (1A3a) and navigation (1A3b) 18 
were thus included in values for EDGAR time series. The authors acknowledge the JRC has 19 
updated EDGAR emission time series for 1970-2012 in November 2014 (JRC, 2017). This 20 
study however uses gridded emission data, which are not fully based on the updated emission 21 
estimates, in order to characterize differences from gridded emission data, especially for 22 
potential data users in the modeling community.  23 
   All four global total values obtained from four gridded emission data agree well within 8% 24 
uncertainty. The difference between ODIAC and CDIAC gridded data (3.3%-5.7%) were 25 
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largely attributable to the international bunker emissions and global correction. ODIAC 1 
(where the total was scaled by CDIAC global total) and two versions EDGAR showed minor 2 
differences in magnitude (0.3%-2.7%) and trend, which are largely attributable to the 3 
differences in the underlying statistical data (e.g. U.N. Stat vs. EIA from different inventory 4 
years) and the emission calculation method (fuel basis vs. sector basis).  Global total 5 
estimates at 5-year increments are shown in Table 1.  For the year 2014 and 2015, we 6 
estimated the global total emissions 9.836 and 9.844 PgC. Boden et al. (2017) reported the 7 
latest estimate for year 2014 global total emission as 9.855 PgC. Our projected 2014 emission 8 
estimate was lower than the latest estimate by approximately 0.02 PgC (0.2%).  9 
 10 
 11 
Table 1. Global total emission estimates for year 2000, 2005 and 2010 from four gridded 12 
emission data (ODIAC2016, CDIAC, EDGAR v4.2 and EDGAR FastTrack). Values for two 13 
versions of EDGAR emission data were calculated by subtracting emissions from agriculture 14 
(IPCC code: 4C and 4D), land use change and forestry (5A, C, D, F and 4E) and waste (6C) 15 
from the total EDGAR CO2 emissions (total short cycle C). 16 
 17 
Year ODIAC2016 CDIAC national EDGAR v4.2 EDGAR FT 
2000 6727 6506 (-3.3%) 6907 (+2.7%) N/A 
2005 8025 7592 (-5.4%) 8005 (-0.2%) 7959 (-0.8%) 
2010 9137 8694 (-4.8%) N/A 8950 (-2.0%) 
 

 18 
 19 
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Figure 3. National emission time series for top 10 emitting countries (China, U.S., India, 
Russian Federation, Japan, Germany, Islamic Republic of Iran, Republic of Korea (South 
Korea), Saudi Arabia and Brazil). The values are given in the unit of peta gram (=giga tonnes) 
carbon per year. The values are calculated using gridded emission data, not tabular emission 
data. The national total values in the plots might be thus different from values indicated in the 
tabular form due to the emission disaggregation. The shaded area in grey indicates a two-
sigma uncertainty range estimated by Andres et al. (2014) (see Table 2). 
 1 
 2 
   Fig. 3 shows the same type of comparison as Fig. 2, but for the top 10 emitting countries 3 
(China, US, India, Russian Federation, Japan, Germany, Islamic Republic of Iran, Republic of 4 
Korea (South Korea), Saudi Arabia and Brazil, according to the year 2013 ranking reported 5 
by CDIAC). We aggregated all the four gridded emission fields to a common 1×1 degree field 6 
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and sampled using the 1×1 degree country mask used in CDIAC emission data development. 1 
The annual uncertainty estimates for national total emissions (2 sigma) are made following 2 
the method described by Andres et al., (2014) and values are shown in Table 2. In the 3 
analysis presented in Fig. 3, emissions from international aviation (1A3a) and navigation 4 
(1A3b) are excluded. All four national total values sampled from four gridded emission data 5 
at a 1×1 degree often agree within the uncertainty estimated by Andres et al. (2014). 6 
Systematic differences of ODIAC from CDIAC gridded data can be largely explained by 1) 7 
global correction (the total was scaled using CDIAC global total) and 2) the differences in 8 
emissions disaggregation methods. Although ODIAC is expected to indicate slightly higher 9 
values than CDIAC gridded data (often a few percent) because of the global correction (note 10 
global correction can be negative, despite of the depiction in Fig. 1), ODIAC sometimes 11 
indicates values lower that CDIAC gridded data more than few percent (see Japan in Fig. 3 as 12 
an example). This is due to a sampling error using the 1×1 degree country map in the analysis. 13 
The aggregated 1×1 degree ODIAC field is slightly larger than that of CDIAC especially 14 
because of the coastal areas depicted a high-resolution in the original 1×1 km emission field. 15 
This type of sampling error was discussed in Zhang et al. (2014). ODIAC employs a 1×1 km 16 
coastline and a 5×5 km country mask as described in Oda and Maksyutov (2011). Thus, the 17 
use of 1×1 degree CDIAC country map results in missing some land mass (hence, CO2 18 
emissions). Similar sampling errors can happen for countries that are physical small and 19 
island countries, depending on the resolution of analysis. Despite of the sampling errors, the 20 
authors used the CDIAC 1×1 degree country map to do this comparison analysis with having 21 
CDIAC gridded data as a reference. The lower emission indicated by ODIAC or EDGAR in 22 
this analysis does not always mean the national total emissions are lower. The emission 23 
estimates at national level often agree well even among different emission inventories (e.g. 24 
Andres et al., 2012). 25 
 26 
 27 
Table 2. Annual uncertainty estimates associated with CDIAC national emission estimates. 28 
The uncertainty estimates were made following the method described by Andres et al. (2014). 29 
The national total emissions for the year 2013 were taken from Boden et al. (2016).  30 
 31 
Ranking # Country 2013 emissions in kTC 

(% of the global total) 
Uncertainty (%) 

1 China 2,795,054 (28.6%) 17.5 
2 U.S. 1,414,281 (14.5%) 4.0 
3 India 554,882 (5.7%) 12.1 
4 Russia Federation 487,885 (5.0%) 14.8 
5 Japan 339,074 (3.5%) 4.0 
6 Germany 206,521 (2.1%) 4.0 
7 Islamic Republic of Iran 168,251 (1.7%) 9.4 
8 Republic of Korea 161,576 (1.7%) 12.1 
9 Saudi Arabia 147,649 (1.5%) 9.4 

10 Brazil 137,354 (1.4%) 12.1 
 32 
 33 
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Figure 4. Year 2013 global fossil fuel CO2 emissions distributions from CDIAC (left, 8.36 
PgC) and ODIAC (right, 9.78 PgC). The ODIAC emission field was aggregated to a common 
1 × 1 degree resolution. The value is given in the unit of log of thousand tonnes C/cell.  
 1 
 2 
6.2 Global emission spatial distributions 3 
 4 
   The global total emission fields of CDIAC gridded emission data and ODIAC2016 for the 5 
year 2013 (the most recent year CDIAC indicates) are shown in Fig. 4. Emission fields are 6 
shown at a common 1×1 degree. The major difference seen between two fields is primarily 7 
due to inclusion/exclusion of emissions from international bunker emissions that largely 8 
account for the differences indicated in Table 1. A breakdown of ODIAC year 2013 emission 9 
field are presented by emission category in Fig. 5. The emission fields for point sources, non-10 
point sources, cement production and gas flaring were produced at a 1×1 km resolution in 11 
ODIAC 3.0 model, but as mentioned earlier, we focus on the 1×1 degree version of 12 
ODIAC2016 in this manuscript. In CDIAC gridded emission data, the emissions over land are 13 
distributed by population data without fuel type distinction. In ODIAC 3.0 model, we have 14 
added additional layers of consideration in the emission modeling from the conventional 15 
CDIAC model and add the possibility of future improvement with improved emission proxy 16 
data.  17 
 18 
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Figure 5. Year 2013 global distributions of ODIAC fossil fuel emissions by emission type. 
The panels show emissions from (from top to the right, then down) point source, non-point 
source, cement production, gas flaring, international aviation and international shipping. The 
values in the figures are given in the unit of log of thousand tonnes carbon/year/cell (1×1 
degree). The numbers in the brackets are the total for the category emissions in the unit of 
PgC (total year 2013 emission in ODIAC2016 was 9.78 PgC).  
 1 
 2 
  In Fig. 6, we compared the four global gridded products over land and also calculated 3 
differences from ODIAC2016 (shown in Fig. 7. Histograms are presented in Appendix A3). It 4 
is often very challenging to evaluate the accuracy and uncertainty of gridded emission data, 5 
because of the lack of direct physical measurements at grid scales (Andres et al., 2016). 6 
Recent studies have attempted to evaluate the uncertainty of gridded emission data by 7 
comparing emission data each other (e.g. Oda et al., 2015; Hutchins et al., 2016). The 8 
differences among emission were used as a proxy for uncertainty. However, it is important 9 
note that such evaluation does not give us an objective measure of which one is closer to truth, 10 
beyond characterizing the differences in emission spatial patterns and magnitudes from 11 
methodological viewpoints (e.g. emission estimation and disaggregation). Some of the 12 
gridded emission data are partially disaggregated using commercial information, which users 13 
are often not authorized to fully disclose the information used and thus makes the comparison 14 
even less meaningful and/or significant. Oda et al. (2015) also discussed that emission inter-15 
comparison approaches often do not allow us to evaluate two distinct uncertainty sources 16 
(emissions and disaggregation) separately. In addition, because of the use of emission proxy 17 
for emission disaggregation (rather than mechanistic modeling), such comparison can be only 18 
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implemented at an aggregated, coarse spatial resolution. These issues will be further 1 
discussed in the Section 7.  2 
   Because of the limitation mentioned above, we here compared emission data only to 3 
characterize the differences that can be explained by the differences in emission 4 
disaggregation methods. We implemented this comparison exercise using 2008 emission field 5 
aggregated at a 1×1 degree resolution. Year 2008 is the most recent year where all the four 6 
emission fields are available. The major emission spatial patterns (e.g. emitting regions such 7 
as North America, Europe and East Asia) are overall very similar as the correlations were 8 
driven by national emission estimates (which we already saw good agreement earlier), but we 9 
do see differences due to emission disaggregation at the subnational level. Because of the use 10 
of nightlight, ODIAC did not indicate emissions over some of the areas (e.g. Africa and 11 
Eurasia) while others do. Especially, EDGAR has emissions over those areas that are largely 12 
explained by line source emissions such as transportation. Overall, ODIAC tends to put more 13 
emissions towards populated areas than suburbs. This is also explained by the lack of line 14 
sources. In EDGAR v4.2, domestic fishery emissions can be seen, but not in EDGAR FT. 15 
Even in these two EDGAR versions, we can confirm the subnational differences at United 16 
States, Europe and China.  17 
 18 
 19 
 

 
 
Figure 6. Land emissions from ODIAC (upper left), CDIAC (upper right), two versions of 
EDGAR emission data (v4.2 lower left and v4.2 Fast Track lower right). The units are million 
tonnes carbon/year/cell (1×1 degree). In addition to excluding emissions from international 
aviation and marine bunker, some of the sector emissions were subtracted from EDGAR short 
cycle total emissions to account for the differences in emission calculation methods between 
CDIAC and EDGAR, as also done earlier. The emission fields for the year 2008 were used.  
 20 
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Figure 7. ODIAC-other emission data differences. CDIAC (upper right), two versions of 
EDGAR (v4.2 lower left and v4.2 Fast Track lower right). The units are million tonnes 
carbon/year/cell (1×1 degree). Note that the differences are defined as ODIAC (this study) 
minus others. The histograms of the differences are also presented in Appendix A3.  
 1 
 2 
6.3 Regional emission time series.  3 
 4 
   Fig. 8 shows time series of regional fossil fuel emissions aggregated over 11 land regions 5 
defined in the TransCom transport model intercomparison experiment (e.g. Gurney et al., 6 
2002). The global seasonal variation and the associated uncertainty have been presented and 7 
discussed in Andres et al. (2011). Here monthly total emission values were calculated for 8 
eleven TransCom land regions and presented with the associated uncertainty values (see 9 
Table 3). The monthly total values were calculated in both excluding international bunker 10 
emissions (hence, land emissions only) and including the emissions. The uncertainty range 11 
was calculated by mass weighted uncertainty estimates of countries that fall into the 12 
TransCom regions. The uncertainty ranges shown in Fig. 8 are annual uncertainty plus the 13 
monthly profile uncertainty (12.8%, reported by Andres et al., 2011). Monthly time series are 14 
presented for land only emissions and land and international bunker emission (here, largely 15 
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aviation emissions). As described earlier, the emission seasonality was adopted from Andres 1 
et al. (2011). The patterns in the emission seasonality are often largely characterized by the 2 
large emitting countries within the regions (e.g. U.S. for region 2; China for region 8). Since 3 
Andres et al. (2011) used geographical closeness (also, type of economic systems) to define 4 
proxy countries, the countries in the same TransCom regions can have similar or the same 5 
seasonal patterns in their emissions.   6 
   As we can see in Fig. 4 (panel plot for aviation emissions), aviation emissions are intense 7 
over North America, Europe and Asia. Global total aviation emission was approximately 0.12 8 
PgC/yr in 2013 and it often does not account for a large portion of the global total (1.2% of 9 
the global total in 2013). However, considering the fact that those emissions are concentrated 10 
in particular areas such as North America, Europe and East Asia, rather than evenly 11 
distributed in space, and often imposed at the surface layer in transport model simulation, care 12 
must be taken to achieve an accurate atmospheric CO2 transport model simulation (Nassar et 13 
al., 2010). Aviation emissions were often around 0.5-5.1% of the land total emissions over the 14 
most regions, but as large as 12.7% (North American Boreal).  15 
 16 
 17 
7. Current limitations, caveats and future prospects 18 
 19 
   As ODIAC emission data product is now used for a wide variety of the carbon cycle 20 
research (e.g. global, regional inversions, urban emission studies), it would be useful for the 21 
users of the ODIAC emission data product to note and discuss issues, limitations and caveats 22 
in our emission data that the authors are aware. Some of the issues and limitations are specific 23 
to our study, however the majority of them are often shared by other existing gridded 24 
emission data and or emission models.  25 
 26 
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Figure 8. Emission time series over inversion analysis land regions defined by the Transport 
model intercomparison (TransCom) project (Gurney et al., 2002). The TransCom region map 
(bottom right) is available from 
http://transcom.project.asu.edu/transcom03_protocol_basisMap.php (last access: 8 
November, 2016). Black lines indicate the ODIAC 1×1 degree monthly emissions. The 
monthly emissions are calculated using the 1×1 degree ODIAC emission data. The 
uncertainty range was calculated by mass weighted uncertainty estimates of countries that fall 
into the regions (see Table 3). The uncertainty ranges shown in Fig. 8 are annual uncertainty 
plus the monthly profile uncertainty (12.8%, reported by Andres et al., 2011). Note scales in 
the vertical axis are different.  
 1 
 2 
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 1 
Table 3. Annual total emission over the TransCom land regions and the associated 2 
uncertainty estimates. The total emissions were calculated using the ODIAD2016 gridded 3 
emission data. The numbers in the bracket are values including international bunker 4 
emissions.  The uncertainty estimates were mass weighted values of uncertainty estimates of 5 
countries that fall in the regions. Country uncertainty estimates were estimated using the 6 
method described Andres et al. (2014). The values were reported as the 2-sigma uncertainty.   7 
 8 
Region # Region name Uncertainty (%) 

1 North American Boreal 3.7 

2 North American Temperate 3.7 

3 South American Tropical 9.6 

4 South American Temperate 12.8 

5 Northern Africa 5.1 

6 Southern Africa 10.6 

7 Eurasian Boreal 12.4 

8 Eurasian Temperate 7.8 

9 Tropical Asia 11.8 

10 Australia 4.0 
11 Europe 3.8 
 9 
 10 
7.1 Emission estimates 11 
 12 
   In the production of ODIAC2016, we used several versions/editions of CDIAC estimates 13 
(e.g. global estimates, national estimates and monthly gridded data). This could often happen 14 
in emission data production, as some of the underlying data are not updated/upgraded at the 15 
time of emission data production (we often start updating emission data after new fuel 16 
statistical data are released). We sometimes accept the inconsistency and try to use the most 17 
up-to-date information available. For example, we could use GCP’s emission estimates (e.g. 18 
Le Quéré et al., 2016) to constrain the global totals, if CDIAC global total emission estimates 19 
are not available. The way we obtained emission estimates for each version is often described 20 
in the NetCDF header information of the emission data product. The use of the CARMA 21 
power plant estimates for estimating magnitude of point source portion of emissions is hard to 22 
eliminate, although ideally this is done using emission estimates that are fully compatible to 23 
CDIAC estimates. We are currently examining U.N. statistical data (which CDIAC emission 24 
estimates are based on) to assess the ability of explaining power plant emissions.   25 
 26 
 27 
7.2 Emission spatial distributions 28 
 29 
7.2.1 Point source emissions 30 
    31 
   Although the use of the power plant geolocation allowed us to achieve improved high-32 
resolution emission spatial distributions over land (Oda and Maksyutov, 2011), the 33 

Deleted: n34 



	 20	

availability of power plant data is often very limited. For example, CARMA does not provide 1 
power plant emissions and its status (e.g. commission/decommission) every year and 2 
furthermore update/upgrade after their version 3.0 database (which dated 2012). The error in 3 
their power plant geolocation is another issue that has been identified (e.g. Oda and 4 
Maksytuov, 2011; Woodard et al., 2015). In ODIAC, the base year emissions (2007) were 5 
projected and all the power plants were assumed to be active over the period (Oda and 6 
Maksyutov, 2011). There are only few global projects that are collecting power plant 7 
information such as the Global Energy Observatory (GEO, 8 
http://globalenergyobservatory.org/) and those can be a useful source of data to improve and 9 
supplement CARMA database. Regionally, CARMA can be evaluated using an inventory 10 
such as the U.S. Emissions and Generation Resource Integrated Database (eGRID) (EPA, 11 
2017). However, it is often difficult to find such a well-constructed and documented 12 
inventory for countries that are actually driving the uncertainty in global emissions (e.g. 13 
China and India).  14 
   Emissions from cement production (which are currently distributed using nightlight by 15 
Ziskin et al., 2010) and gas flare (which is distributed using gas flare nightlight data by 16 
Elvidge et al., 2009) should be distributed as point sources. For gas flare emissions, we are 17 
examining the use of Nightfire (Elvidge at al., 2013a) to pinpoint active gas flares in timely 18 
manner and improve their emissions spatial disaggregation over the recent years. Currently, 19 
the point source emissions in ODIAC do not have an injection height due to the lack of global 20 
information. This limitation is shared with other existing global emission data products. 21 
 22 
7.2.2 Non-point source emissions 23 
 24 
   Nighttime light data has been an excellent proxy for human settlements (hence, CO2 25 
emissions) even at a high spatial resolution, however there are some issues to be discussed. 26 
As mentioned earlier, we used an improved version of calibrated radiance data developed by 27 
Ziskin et al. (2010), but those data are only available to seven data periods over the course of 28 
DMSP years (1992-2013). As we do not believe linearly interpolating the existing nightlight 29 
data over the intervening years is necessarily the best way (as done in Asefi-Najafabady et al., 30 
2014), the same nightlight data has been used for some periods and thus emission 31 
distributions remain unchanged. We are now examining the use of nightlight data collected 32 
from the Visible Infrared Imaging Radiometer Suite (VIIRS) on Suomi National Polar-33 
orbiting Partnership satellite (e.g. Elvidge et al., 2013b; Román and Stokes, 2015). VIIRS 34 
instruments do not have several critical issues that the DMSP instrument had (e.g. spatial 35 
resolution, dynamic range, quantization and calibration) (Elvidge et al., 2013b). The fully 36 
calibrated nightlight data can be used to map emission changes in space in timely and 37 
consistent manner.  38 
   In ODIAC, the disaggregation of non-point emissions is solely done using nighttime light 39 
data for estimating subnational emission spatial distributions and no additional subnational 40 
emission constrain were applied. Rayner et al. (2010) proposed to better constrain subnational 41 
emission spatial distribution by combining population data, nighttime lights and GDP in their 42 
Fossil Fuel Data Assimilation System (FFDAS) framework. Asefi-Najafabady et al. (2014) 43 
further introduced the use of point source information in their disaggregation, the 44 
optimization in their current framework is however under-constrained by the lack of GDP 45 
information. Without having such optimization, the state level per capita emission estimates 46 
can provide subnational constraints. Nassar et al. (2013) evaluated the per capita emissions in 47 
CDIAC and ODIAC emission data over Canada using the national inventory and found that 48 
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ODIAC outperformed. However, as the nightlight-population relationship might have a bias 1 
for developing and the least developed countries (Raupach et al., 2010), we would expect we 2 
see significant biases over those countries and the per capita estimates can provide a useful 3 
constraint.  4 
  As seen in the comparison to other emission data, the major difference from EDGAR 5 
emission spatial distribution was due to the lack of line sources in ODIAC. We do not believe 6 
the result from the emission data comparison can falsify the emission distribution in ODIAC, 7 
as discussed earlier. However, we do expect an inclusion of the line sources would improve 8 
the spatial distributions and emission representations in both cities and rural areas. We are 9 
currently examining the inclusion of transportation network data (e.g. OpenStreetMap) as 10 
proxy for line source emissions to explore the better spatial emission aggregation method. 11 
Oda et al. (2017) recently implemented the idea of adding a spatial proxy for line sources and 12 
improved emission estimates for a U.S. city.  13 
 14 
7.2.3. Aviation emissions  15 
 16 
   We estimated emissions from international aviation from CDIAC using U.N. statistical data. 17 
The emissions are currently provided as a single layer emission field, although it is not 18 
appropriate given the nature of the aviation emissions. Nassar et al. (2010) discussed that the 19 
importance of the three dimensional (e.g. x,y,z) emissions for interpreting CO2 profile. In 20 
current modeling framework, although we maintain the aviation emission injection height 21 
from AERO2k (reduced to 1km interval), we distribute the emissions to a single layer. As 22 
pointed out by Olsen et al. (2013), AERO2k does not agree with other inventories in height 23 
distribution. With noting the caution, we will examine the use of height information from 24 
AERO2k and other data available to us and do sensitivity analysis using transport model 25 
simulations. 26 
 27 
 28 
7.3 Emission temporal profiles. 29 
 30 
   The emission seasonality in ODIAC2016 is based on Andres et al. (2011) and it can be 31 
further extended using the TIMES scaling parameter to hourly scale. We note that the 32 
emission seasonality was based on top 10 emitting countries’ fuel statistics and Monte Carlo 33 
simulation (Andres et al., 2011). The emission seasonality for countries other than the top 10 34 
could be less robust. Also, because of the use of Monte Carlo, the seasonality is different over 35 
different editions of monthly emission data. It is also important to note that the repeated use 36 
of climatological (mean) seasonality for the recent years (described in Section 5) could be a 37 
source of uncertainty and biases. Andres et al. (2011) estimated the monthly uncertainty as 38 
12.8% (two sigma) in addition to the annual emission uncertainty. As we often impose fossil 39 
fuel emissions, a care must be taken when applied to inversions. Ultimately, as done by Vogel 40 
et al. (2013), we might be able to evaluate temporal profiles from statistical data and improve 41 
them (but only to limited small locations).  42 
 43 
7.4 Uncertainties associated with gridded emission fields 44 
 45 
   As mentioned earlier, the evaluation of gridded emission data is often very challenging and 46 
most of the emission data study share this difficulty. Although the emission estimates are 47 
made at global and national scales with small uncertainties (e.g. 8% for global by Andres et 48 
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al., 2014), considerable errors seem to be introduced when the emissions are disaggregated 1 
(e.g. Hogue et al., 2016; Andres et al., 2016). Andres et al. (2016) for example estimated the 2 
uncertainty associated with CDIAC gridded emission data on a per grid cell basis with an 3 
average of 120% and a range of 4.0 to 190% (2 sigma). Hogue et al. (2016) closely looked at 4 
CDIAC gridded emission data over the U. S. domain and estimated the uncertainty associated 5 
with the 1×1 degree emission grids as ±150%. Those errors seem to be unique to the 6 
disaggregation method (Andres et al., 2016). Future funding may allow us to pursue a full 7 
uncertainty analysis of the ODIAC emission data/model, akin to the Andres et al. (2016) 8 
approach but accounting for the greater than one carbon distribution mechanisms utilized in 9 
the ODIAC emission modeling framework. All of the spatially distributed gridded emission 10 
data mentioned in this manuscript suffer from the same basic defect: they use proxies to 11 
spatially distribute emissions rather than actual measurements. In addition, evaluating 12 
emission distributions based on a nightlight proxy can be challenging as the connection 13 
between CO2 emissions and proxy is less direct compared to population (e.g. per capita 14 
emissions). A combined use of emission proxy and geolocation data (e.g. power plant 15 
location) would also add additional difficulties to give a comprehensive measure of the 16 
uncertainty because of different type of error/uncertainty sources (e.g. Woodard et al., 2015). 17 
As finer spatial scales are approached, the defect of the proxy approach becomes more 18 
apparent: proxies only estimate emission fields. The ODIAC data product has been used not 19 
only for global simulations at an aggregated spatial resolution, but also at very high spatial 20 
resolution (e.g. Ganshin et al. 2010; Oda et al. 2012; Lauvaux et al. 2016; Oda et al. 2017). 21 
Thus, an emission evaluation at a high resolution has become an important task. One 22 
approach we could take for evaluating high-resolution emission fields is comparing to a local 23 
fine-grained emission data product such as Gurney et al. (2012), acknowledging the 24 
limitations of the approach discussed earlier. Another approach would be evaluating emission 25 
data in concentration space, rather than emission space. As reported in Vogel et al. (2013) and 26 
Lauvaux et al. (2016), with radiocarbon measurements and/or good, spatially dense CO2 27 
measurements, a high-resolution transport model simulation can provide an objective measure 28 
for emission data evaluations (e.g. model-observation mismatch and emission inverse 29 
estimate).  30 
   While the quality (i.e. bias and uncertainty) of the gridded emission estimates remains 31 
unquantified for most of the emission data mentioned in this manuscript, the emission data 32 
are still used because sufficient measurements in space and time are not presently available to 33 
offer a better alternative. At very least, we presented the uncertainty estimates over the 34 
aggregated TransCom land regions. We believe that the regional uncertainty estimates are 35 
highly useful for atmospheric CO2 inversion modelers, more than uncertainty estimates at a 36 
grid level, which still do not seem to be ready for use. Inversion studies often aggregate flux 37 
estimates over the TransCom land regions to interpret regional carbon budgets, while flux 38 
estimations in their models are done at much higher spatial resolutions (e.g. Feng et al., 2009; 39 
Chevallier et al., 2010; Basu et al., 2013). Taking an advantage of being based on the CDIAC 40 
estimates, we adopted the updated uncertainty estimates reported by Andres et al. (2016) and 41 
obtained the regional uncertainty estimates. Those estimates are new and readily usable to the 42 
inversion studies especially when interpreting the regional estimates. 43 
 44 
  45 
8. Product distribution, data policy and future update 46 
   The ODIAC2016 data product is available from a website hosted by the Center for Global 47 
Environmental Research (CGER), Japanese National Institute for Environmental Studies 48 
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(NIES) (http://db.cger.nies.go.jp/dataset/ODIAC/, doi: 10.17595/20170411.001). The data 1 
product is distributed under Creative Commons Attribution 4.0 International (CC-BY 4.0, 2 
https://creativecommons.org/licenses/by/4.0/deed.en). The ODIAC2016 emission data are 3 
provided in two file formats: 1) global 1×1 km (30 arc second) monthly file in the GeoTIFF 4 
format (only includes emissions over land) and 2) 1×1 degree annual (12 month) file in the 5 
NetCDF format (includes international bunker emissions). A single, global 1×1 km monthly 6 
GeoTIFF file is about 3.7 GB (compressed to 120 MB). A 1×1 degree single NetCDF annual 7 
file is about 6MB.  8 
   We update the emission data on annual basis, following a release of an updated global fuel 9 
statistical data. Future versions of the emissions data are in principle based on updated 10 
version/edition of the underlying statistical data with the same name convention 11 
(ODIACYYYY, YYYY= the release year, the end year is YYYY minus 1). In October 2017, 12 
we started distributing the updated, year 2017 version of ODIAC data (ODIAC2017, 2000-13 
2016). We primarily focus on years after 2000. Future versions of ODIAC data however 14 
might have a longer, extended time coverage.  15 
 16 
 17 
9. Summary  18 
 19 
   This manuscript describes the year 2016 version of ODIAC emission data (ODIAC2016) 20 
and how the emission data product was developed within our upgraded emission modeling 21 
framework. Based on the CDIAC emission data, ODIAC2016 can be viewed as an extended 22 
version of the CDIAC gridded data with improved emission spatial distributions 23 
representations. Utilizing the best available data (emission estimates and proxy), we achieved 24 
a comprehensive, global fossil fuel CO2 gridded emission field that allows data users to 25 
impose their CO2 simulations in a consistent way with many of the global carbon budget 26 
analysis. With updated fuel statistics, we should be able to continue producing an updated, 27 
future versions of ODIAC emission data product within the same model framework. The 28 
capability we developed in this study has become more significance now, given the 29 
CDIAC/ORNL’s shutdown. Despise of expected difficulties (e.g. discontinued CDIAC 30 
estimates), the authors believe that ODIAC could play an important role in delivering 31 
emission data to the carbon cycle science community. Limitations and caveats discussed in 32 
this manuscript mirror and lead ODIAC’s future prospects. The ODIAC emission data 33 
product is distributed from http://db.cger.nies.go.jp/dataset/ODIAC/ with a DOI. Currently 34 
the 2017 version of ODIAC emission data (ODIAC2017, 2000-2016) are also available. 35 
 36 
 37 
Appendix A  38 
 39 
Table A1. A list of components in ODIAC2016 and data used in the development.  40 
 41 
Component Data/product 

name 
Description and data source Reference 

Global 
FFCO2 

CDIAC 
global 
fossil-fuel 
CO2 
emissions 

The year 2016 edition of the CDIAC global total estimates 
were used to constrain the ODIAC2016 totals. Data 
available at http://cdiac.ornl.gov/ 
ftp/ndp030/global.1751_2013.ems.  

Boden et al. 
(2016) 

National  CDIAC The year 2016 editions of the CDIAC national emission Boden et al. 

Deleted: n42 
Deleted: 143 
Deleted: The44 
Deleted:  45 
Deleted: n46 

Deleted: Currently we are working on the year 2017 47 
version of ODIAC data (ODIAC2017) which covers 2000-48 
2016. 49 

Deleted: d50 

Deleted: the 51 

Deleted: t52 

Deleted: Currently we are working on 53 
Deleted:  and expecting to release by fall 201754 
Deleted: .55 
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FFCO2 fossil-fuel 
CO2 
emissions by 
Nation 

estimates are used as a primary input data. Data available 
at http://cdiac.ornl.gov/ 
ftp/ndp030/nation.1751_2013.ems. 

(2016) 

Global fuel 
statistics 

BP 
Statistical 
review of 
world 
energy 

The year 2016 edition of the BP statistical data were used 
to project CDIAC national emissions over the recent years 
(2014-2015). Data are available at 
http://www.bp.com/en/global/corporate/energy-
economics/statistical-review-of-world-energy.html.  

BP (2017) 

Monthly 
temporal 
variation 

CDIAC 
Gridded 
Monthly 
Estimate 

The year 2013 version of the CDIAC monthly gridded data 
were used to the model seasonality in ODIAC2016. Data 
are available at http://cdiac.ornl.gov/ 
ftp/fossil_fuel_CO2_emissions_gridded_monthly_v2013/ 

Andres et 
al. (2011) 

Power 
plant data 

CARMA The CARMA power plant database with geolocation 
correction described in Oda and Maksyutov (2011).  Data 
available from http://carma.org/.  

Wheeler 
and Ummel 
et al. 2008 

NTL (for 
non-point 
emissions) 

Global 
Radiance 
Calibrated 
Nighttime 
Lights 

Multiple year NTL data are used to distribute nonpoint 
emissions. Data are available at 
https://ngdc.noaa.gov/eog/dmsp/download_radcal.html. 

Ziskin et al. 
(2010) 

NTL (for 
gas flaring) 

Global Gas 
Flaring 
Shapefiles 

Global gas flaring NTL data are specifically used to 
distribute gas flaring emissions. Data are available at 
http://ngdc.noaa.gov/eog/interest/ 
gas_flares_countries_shapefiles.html 

Elvidge et 
al. (2009) 

Int’l ship 
tracks 

EDGAR 
v4.1  

The international marine bunker emission field in EDGAR 
v4.1 was used. Data are available at 
http://edgar.jrc.ec.europa.eu/archived_datasets.php. 

JRC (2017) 

Int’l 
Aviation 
flight 
tracks 

AERO2k Data were used to distributed aviation emissions. More 
details can be find at 
http://www.cate.mmu.ac.uk/projects/aero2k/. 

Eyers et al. 
(2005) 

Weekly 
and diurnal 
cycle 

TIMES  This was not a part of ODIAC2016, however it is useful to 
note that this scaling factors can be used to create weekly 
and diurnally varying emissions. Data are available at 
http://cdiac.ornl.gov/ftp/Nassar_Emissions_Scale_Factors/. 

Nasar et al. 
(2013) 

 1 
Appendix A2  2 
 3 
Table A2. A table for the global scaling factor for 2000-2013.   4 

Year Scaling factor 
2000 0.999 
2001 1.016 
2002 1.008 
2003 1.014 
2004 1.012 
2005 1.022 
2006 1.022 
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2007 1.016 
2008 1.023 
2009 1.024 
2010 1.015 
2011 1.017 
2012 1.017 
2013 1.025 

 1 
Appendix A3  2 
 3 
 4 

 5 
Fig. A3.  A histogram of the inter-emission data differences from ODIAC. Values are given 6 
in the unit of million tonnes carbon per year (MTC/yr).   7 
 8 
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