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Abstract 13 

The Soil and Water Assessment Tool (SWAT) model has been commonly used in Canada for 14 

hydrological and water quality simulations. However, pre-processing of critical data such as soils 15 

information can be laborious and time-consuming. The objective of this work was to pre-process 16 

the Soil Landscapes of Canada (SLC) database to offer a country-level soils dataset in a format 17 

ready to be used in SWAT simulations. A two-level screening process was used to identify 18 

critical information required by SWAT and to remove records with information that could not be 19 

calculated or estimated. Out of the 14,063 unique soils in the SLC, 11,838 soils with complete 20 

information were included in the dataset presented here. Important variables for SWAT 21 

simulations that are not reported in the SLC database [e.g. hydrologic soils groups (HSGs) and 22 

erodibility factor (K)] were calculated from information contained within the SLC database. 23 

These calculations, in fact, represent a major contribution to enabling the present dataset to be 24 
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used for hydrological simulations in Canada using SWAT and other comparable models. 25 

Analysis of those variables indicated that 21.3 %, 24.6 %, 39.0 %, and 15.1 % of the soils in 26 

Canada belong to HSGs 1, 2, 3, and 4, respectively. This suggests that almost two-thirds of the 27 

soils have a high (i.e., HSG 4) or relatively high (i.e., HSG 3) runoff generation potential. A 28 

spatial analysis indicated that  20.0, 26.8, 36.7 and 16.5 % of soil belonged to  HSG 1, HSG 2,  29 

HSG 3, and HSG 4, respectively. Erosion potential, which is inherently linked to the erodibility 30 

factor (K), was associated with runoff potential in important agricultural areas such as southern 31 

Ontario and Nova Scotia. However, contrary to initial expectations, low or moderate erosion 32 

potential was found in areas with high runoff potential, such as regions in southern Manitoba 33 

(e.g. Red River Valley) and British Columbia (e.g. Peace River watershed). This dataset will be a 34 

unique resource to a variety of research communities including hydrological, agricultural and 35 

water quality modellers and are publicly available at doi:10.1594/PANGAEA.877298. 36 

KEY WORDS: Modelling, SWAT, input datasets, soils, Canada. 37 

1. Introduction 38 

Integrated environmental modeling is inspired by modern environmental problems and 39 

enabled by transdisciplinary science and computer capabilities that allow the environment to be 40 

considered in a holistic way (Laniak et al., 2013). In an agricultural context, synthesis and 41 

quantification of multi-disciplinary knowledge via process-based modeling are essential to 42 

manage systems that can be adapted to continual change (Ahuja et al., 2007). The Soil and Water 43 

Assessment Tool (SWAT) (Arnold et al., 1998) is an example of such a process-based model. It 44 

has been developed over the past 30-years to evaluate the effects of alternative management 45 

decisions on water resources and nonpoint-source pollution in large river basins through the 46 

simulation of major processes including hydrology, soil temperature and properties, plant 47 
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growth, nutrient and pesticides dynamics, bacteria and pathogens transport, and land 48 

management (Arnold et al., 2012; Douglas-Mankin et al., 2010). Furthermore, a weather 49 

generator is included in the model to fill gaps that may exist in meteorological records. 50 

The SWAT model has been extensively tested around the world for a wide range of hydro-51 

climatic conditions, water and land management practices, and time scales (Douglas-Mankin et 52 

al., 2010). The wide adoption of the SWAT model has been prompted by pre- and post-53 

processing software tools such as a GIS interface, extensive user documentation (Arnold et al., 54 

2012), as well as several linked databases for crops, soils, fertilizers, tillage, and pesticides 55 

(Santhi et al., 2005). Among these, soil properties are especially important as they are needed for 56 

the simulation of influential processes such as evapotranspiration, soil water balance, nutrient 57 

dynamics, and sediment transport (Neitsch et al., 2005). However, the existing built-in database 58 

is only valid for SWAT applications in the USA. Accordingly, studies outside the USA require 59 

the development of a soils dataset by pre-processing available soils data into a format readable 60 

by SWAT, a time consuming process as not all data required by SWAT is readily available for 61 

countries outside of the USA.  62 

In Canada, the SWAT model has been used for hydrological simulations in most provinces, 63 

including Prince Edward Island (Edwards et al., 2000), New Brunswick (Chambers et al., 2011; 64 

Yang et al., 2009), Nova Scotia (Ahmad et al., 2011), Ontario (Asadzadeh et al., 2015; Rahman 65 

et al., 2012), Quebec (Lévsque et al., 2008), Manitoba (Yang et al., 2014), Saskatchewan 66 

(Mekonnen et al., 2016), Alberta (Mapfumo et al., 2004; Watson and Putz, 2014; Faramarzi et 67 

al., 2015), and British Columbia (Zhu et al., 2012). However, preparation of Canadian soils 68 

information in a consistent and usable format for SWAT is time consuming (Rahman et al., 69 

2012), as information has to be collected from soil reports, cross-checked against GIS datasets, 70 
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missing soil variables have to be calculated from other physical and hydraulic properties, and all 71 

parameters have to be attributed to specific soil grids or polygons. 72 

Some of this pre-processing work can be alleviated by using publically available databases 73 

that contain most of the information required by SWAT. The Soil Landscapes of Canada (SLC) 74 

database published by Agriculture and Agri-Food Canada (Soil Landscapes of Canada Working 75 

Group, 2010) is an example, and has been used in SWAT applications in Ontario (Asadzadeh et 76 

al., 2015; Rahman et al., 2012), Saskatchewan (Mekonnen et al., 2016), Alberta (Faramarzi et al., 77 

2015), and British Columbia (Zhu et al., 2012). The SLC contains a series of GIS dataset that 78 

provides information about the country's agricultural soils at the provincial and national levels. It 79 

was compiled at a scale of 1:1 million, and the information is organized according to a uniform 80 

national set of soil and landscape criteria based on permanent natural attributes (Soil Landscapes 81 

of Canada Working Group, 2010). The SLC encompasses the southern portions of the Provinces 82 

of Ontario and Quebec and a larger portion of the Prairies Provinces of Manitoba, Saskatchewan, 83 

and Alberta as far north as to the boreal shield. Coverage in the maritime provinces of New 84 

Brunswick, Nova Scotia, and Prince Edward Island is nearly complete (Fig. 1).  85 

Although there are more detailed soil datasets available at provincial levels (e.g. AGRASID 86 

dataset in Alberta), selection of SLC for integration with SWAT was based on the fact that i) it 87 

covers all of Canada’s agricultural soils in a single dataset; ii) it has been used in regional studies 88 

in Canada, as described above; and iii) it is more easily applicable to large-scale national studies 89 

as broad-scale datasets require reduced resources to prepare and process data (Moriasi and 90 

Starks, 2010). Modelling studies comparing the performance of a single model (calibrated and 91 

un-calibrated) but using soil datasets with varying spatial resolution in the USA [i.e., the State 92 

Soil Geographic database (STATSGO) compiled at 1:250,000 scale, and the Soil Survey 93 
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Geographic database (SSURGO) with scales ranging from 1:12,000 to 1:63,360] also revealed 94 

that using either dataset produced comparable results (Mednick, 2008).  95 

Due to the importance of the SWAT model for integrated environmental modeling in 96 

Canada, and the prominence of the SLC database as a potential input dataset for this model at a 97 

national level, the objective of this work was to offer a country-level soils dataset in a format 98 

ready to be used in SWAT simulations. The dataset was derived to provide over 20 parameter 99 

values for different soil types that are varied for each soil layer. It was prepared in a format 100 

suitable for use in the ArcSWAT version of the model, which is attributed to a grid or polygon-101 

based soil map. Such a laborious pre-processing exercise is widely, but inconsistently adopted in 102 

SWAT simulations reported in the literature. Finally, deficiencies in the dataset are also 103 

presented and discussed.   104 

2. SLC data structure 105 

The SLC database (http://sis.agr.gc.ca/cansis/nsdb/slc/v3.2/index.html) is structured as a 106 

component-based GIS layer, where a single polygon may contain several soil series. This 107 

structure is similar to that of the State Soil Geographic (STATSGO) database in the United 108 

States (Srinivasan et al., 2010). Such structure creates a one-to-many relationship where the 109 

multiple soil components of a polygon are not spatially defined. The actual soil information in 110 

the SLC database is stored in a number of tables linked together through intricate relationships 111 

(Soil Landscapes of Canada Working Group, 2010). Among these, four tables are relevant for 112 

developing a dataset for SWAT applications: 113 

 the Polygon Attribute Table (PAT) provides the linkage between geographic locations 114 

(polygons in the SLC GIS coverage) and soil landscape attributes in the associated 115 
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database tables (e.g. unique soil ID in the SNT and respective number of layers in the 116 

SLT); 117 

 the Component Table (CMP) describes each of the individual soil and landscape 118 

features comprising the polygons. That is, it describes which soil(s) are present in 119 

each spatial unit (i.e., polygon) in the GIS layer; 120 

  the Soil Name Table (SNT) describes the general physical and chemical 121 

characteristics for all of the soils identified in a geographic region; 122 

 the Soil Layer Table (SLT) contains soil information that varies in the vertical 123 

direction (i.e., layered attributes).  124 

The CMP table describes the proportion of each non-spatially defined soil component in a 125 

polygon if more than a soil component exists [the soil component(s) refer to the soil(s) 126 

element(s) that comprise each polygon]. The component numbering follows a sequence of 127 

decreasing proportion in a polygon (i.e., first component has the highest proportion; last 128 

component has the smallest proportion). This component-based structure of the SLC database 129 

does not affect the analysis since all the soils listed in the SNT table were processed to generate 130 

the present dataset. However, it has implications for the SWAT model user, who has to make a 131 

decision on how to handle the relationship between the polygon (spatially defined) and each non-132 

spatially defined soil component in multi-component polygons (e.g. selecting the larger 133 

component in a polygon or generating a hybrid soil incorporating properties of each soil 134 

component).  135 

3. SWAT soils data structure 136 

The SWAT soils information is stored in the ‘usersoil’ table, located within the SWAT 2012 137 

database in Microsoft Access format (i.e., SWAT2012.mdb). Each soil is stored as a new record 138 
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(i.e., row) in the table. Specific soil variables (Table 1) comprise the 152 columns of the user soil 139 

table. The first column is an OBJECTID field assigning an unique identifier for each record. 140 

Columns two through six pertain to soil classification. The second column is the map unit 141 

identifier (MUID), which is used for mapping a collection of areas grouped by the same soil 142 

characteristics. A single MUID may describe different soil types, which are stored with a record 143 

counter in the third column (SEQN), while a soil identifying name (SNAM), a soil interpretation 144 

record (S5ID), and the percent of each soil component (CMPPCT) are recorded in the fourth, 145 

fifth, and sixth columns, respectively (Sheshukov et al., 2009). Columns seven through twelve 146 

describe major soil properties pertaining to the soil type, namely, the number of layers 147 

(NLAYERS), the hydrological soil group to which that soil belongs (HYDGRP), the maximum 148 

rooting depth of the soil profile (SOL_ZMX), the fraction of soil porosity from which anions are 149 

excluded (ANION_EXCL), the potential of maximum crack volume of the soil profile expressed 150 

as a fraction of the total soil volume (SOL_CRK), and the texture of the soil layer (TEXTURE). 151 

The next 120 columns starting from column 13 (i.e., columns 13 to 132) describe the 152 

information for each layer of the soil profile. These columns are arranged in sets of 12 variables 153 

each for 10 possible soil layers. The variable NLAYERS indicates how many of these sets 154 

should be populated. Variables for any sets beyond NLAYERS should be assigned a value of 155 

zero. The variables included in each set of soil layers are the depth from soil surface to bottom of 156 

layer (SOL_Z), moist bulk density (SOL_BD), available water capacity of the soil layer 157 

(SOL_AWC), saturated hydraulic conductivity (SOL_K), organic carbon (SOL_CBN), clay 158 

(CLAY), silt (SILT), sand (SAND), and rock fragment (ROCK) contents, moist soil albedo 159 

(SOL_ALB), erodibility factor (USLE_K), and electrical conductivity (SOL_EC). Beyond the 160 

columns describing layered soil information, there are 20 columns (i.e., columns 133 to 152) 161 
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describing two variables [i.e., soil CaCO3 (SOL_CA) and soil pH (SOL_PH)] for 10 soil layers. 162 

These variables are not currently active in SWAT and are assigned a value of zero. 163 

4. Merging the two datasets 164 

Despite its usefulness as a source of soil information for hydrological simulations, the SLC 165 

dataset is not assembled in a format readable by SWAT or other similar models. For example, 166 

SWAT stores all the properties for a specific soil in a single row in the the ‘usersoil’ table, while 167 

this information is stored in the SLC as multiple rows in two different tables (i.e., SNT and 168 

SLT). Thus, the information contained in the SLT database has to be processed to satisfy 169 

SWAT’s format requirements. In addition, all properties in the usersoil are spatially defined 170 

while those of SLC are often stored in a multi-polygon structure with no unique spatial 171 

identification. Variables required by SWAT and contained in the dataset presented here were 172 

either extracted from SNT and SLT, or calculated from the information therein. Some other 173 

variables were estimated from published values. Extraction or calculation of variables was done 174 

through an R code that imported both SNT and SLT, screened the data for missing records and 175 

missing SWAT-required information (data screening is described in section 5), and sequentially 176 

populated unique soil records in the database. This section describes how these variables were 177 

defined. 178 

5. Data screening 179 

5.1 Screening out incomplete soil information in the SNT  180 

The use of the SNT is necessary as it links the soils information to the GIS coverage 181 

containing the PAT. However, a first screening was required to remove soils from the SNT that 182 

are not present in the SLT, as soil layer information is required by SWAT. The mismatch among 183 
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soils in both tables can occur for a number of reasons. For example, there are soils in both tables 184 

that pedologists have identified but their properties have not yet been characterized. Also, soils 185 

listed in one table may be absent from another table due to changes in soil classification. Finally, 186 

soils listed as unclassified in the SNT (i.e., variable KIND=U) do not have any data associated 187 

with them in the SLT and do not occur on any published map. 188 

Out of the 14,063 unique soils in the SNT, 489 soils were missing in the SLT and, therefore, 189 

removed from the analysis. These 489 soils correspond to around 3.5 % of the soils listed in the 190 

SNT. Most of the missing soils were reported as “unclassified” (305 soils; 62.2 %), suggesting 191 

that these soils have been identified, but their properties have not yet been characterized. Mineral 192 

soils corresponded to 29.4 % (144 soils) of the total, likely a reflection of changes in 193 

classification. The other two classes comprised non-true soils (e.g. mine tailings, urban land; 33 194 

soils; 6.7 %) and organic soils (8 soils; 1.6 %). Also, only 58 of the 489 missing soils (11.0 %) 195 

could be mapped through linking with the CMP table, making it impossible to do any spatial 196 

analysis on the distribution of these soils across the country. However, since the SNT assigns a 197 

province for each soil, it is possible to identify where these missing records occur. Most of the 198 

missing soils were in British Columbia (167 soils; 34.2 %), Manitoba (151 soils; 30.9 %), and 199 

Saskatchewan (133 soils; 27.2 %), with smaller proportions in Yukon (13 soils; 2.7 %), Ontario 200 

(11 soils; 2.3 %), Nova Scotia (9 soils; 1.8 %) and Newfoundland (5 soils; 1.0 %).   201 

5.2 SWAT requirements 202 

The SWAT data requirements were used as a second level of screening to build the present 203 

dataset. The soil input variables in SWAT can be either required or optional (Table 2; Arnold et 204 

al., 2013). Required variables that could not be calculated or estimated (e.g., SOL_BD, SOL_K, 205 

SOL_CBN, CLAY, SILT, and SAND) were used to separate complete from incomplete records. 206 
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Soils in the SLT containing or allowing derivation of all the variables required by SWAT were 207 

compiled in a dataset comprising 11,838 unique soils that were importable into the model. Soils 208 

in the SLT with missing records (i.e., variables entered as -9 in the database) for the required 209 

SWAT variables (gray rows in Table 2) were removed from the analysis. These soils were 210 

compiled into a soils list provided as a reference.  211 

As for the non-matching soils in the SNT and SLT, only 547 out of 1736 (i.e., 31.5 %) soils 212 

with missing information could be mapped through linking with the CMP table, which renders 213 

any spatial representation of these soils unmeaningful. However, the provinces where these soils 214 

occur could also be identified. The highest proportions of soils with incomplete information were 215 

in British Columbia (490 soils; 28.2 %), Manitoba (391 soils; 22.54 %). Ontario (182 soils; 216 

10.5 %) and Alberta (180 soils; 10.4 %) had intermediate values, while Newfoundland (123 217 

soils; 7.1 %), Saskatchewan (102 soils; 5.9 %), New Brunswick (93 soils; 5.4 %), the Northwest 218 

Territories (80 soils; 4.6 %), Nova Scotia (47 soils; 2.7 %), Quebec (30 soils; 1.7 %), and Yukon 219 

(17 soils; 1.0 %) had  less than 10 % of the soils missing information.   220 

6. Populating the user soil table in SWAT 221 

The variables in SWAT’s ‘usersoil’ table refer to record indexing and soil classification, as 222 

well as soil properties pertaining to the entire profile or specific layers. The variables in each of 223 

these groups are described in the following sub-sections. The ‘usersoil’ table starts with a 224 

number of columns that define the database and soil classification variables, followed by soil 225 

profile and layer information, and inactive soil properties (Table 2).  226 
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6.1 Database and soil classification variables 227 

The SWAT soil classification variables include the OBJECTID (general listing number), 228 

MUID (map unit identifier), SEQN (sequence number), SNAM (soil name), S5ID (Soils5-ID 229 

number for USDA soil series data) and CMPPCT (percentage of the soil component in the 230 

MUID). A numbering system used for the OBJECTID variable was chosen to avoid conflicts 231 

with existing soils in the user soil table. The SWAT model comes with more than 200 soils in a 232 

built-in database that cannot be easily overwritten, and any soils imported into the database with 233 

the same OBJECTID as existing soils will not be imported. Thus, the OBJECTID field was 234 

populated sequentially from 1001 to the number of unique soils in the SLC database plus 1000 235 

(i.e., OBJECTID ends in 12,838 in the case of the COMPLETE dataset, which has 11,838 unique 236 

soils). The map unit ID (MUID) was assigned the SOIL_ID code in the SLC dataset, which is a 237 

concatenation of the province code (two digits), a soil code (three digits), a modifier code (five 238 

digits), and a profile code (one digit). The sequence number (SEQN) variable was assigned the 239 

same value as the OBJECTID variable. This process created a unique SEQN for each recurrence 240 

in the SLC dataset.  241 

Similar to the MUID variable, the soil name variable (SNAM) was also assigned the 242 

SOIL_ID code in the SLC, despite the soil name being in the database, so as to link the soil 243 

information to the GIS layer. The S5ID variable was created as a concatenation between the 244 

acronym “SLC” and the province two-digit abbreviation code. For example, all the soils in the 245 

province of Alberta have S5ID equal to “SLCAB”. The CMPPCT variable was assigned a value 246 

of 100, meaning that the soil comprises 100 % of this component. As stated in section 2, the user 247 

has to make a decision on how to handle multipart polygons in the pre-processing of the SLC 248 

GIS dataset since the soils in multi-component polygons are not spatially defined.  249 
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6.2 Soil profile information 250 

The following six variables in the dataset (i.e., columns 7 to 12) pertain to soil profile 251 

information. The number of layer variables (NLAYERS) was defined according to the soil layers 252 

in the SLT below the soil surface. The SLT table also contains information for layers above the 253 

soil surface as is the case of litter, which have negative values for upper and lower depths (i.e., 254 

the ground surface corresponded to the zero depth, while above surface and below surface layers 255 

have negative and positive values, respectively). Above-surface layers were removed from the 256 

dataset prior to analysis through filtering layers with lower depth above the soil surface (i.e., 257 

lower depth less than or equal to zero).  258 

The hydrologic soil group (HSG) variable (HYDGRP) is an influential parameter for 259 

estimation of runoff using the SCS-Curve Number method and, consequently, for hydrological 260 

simulations in SWAT (Gao et al., 2012; Neitsch et al., 2005). The HSGs were calculated 261 

according to the method outlined by USDA-NRCS (1993), which is based on depth to the 262 

impermeable layer (e.g., bedrock), depth from soil surface to shallowest water table during the 263 

year, hydraulic conductivity of the least conductive layer of the soil profile, and depth range of 264 

the hydraulic conductivity. The specific criteria used are provided in tabular form as 265 

supplementary material. Soils in the dual HSG classes were assigned to the less restrictive class 266 

since most agricultural soils in Canada exhibit some degree of drainage (e.g., municipal drainage 267 

network, surface drains, or tile drainage). SWAT translates HSG alphabetical classification into a 268 

numeric system, where HSGs A, B, C, and D, are interpreted as 1, 2, 3, and 4, respectively. The 269 

runoff potential increases with increasing numeric designations.  270 

The depth to the impermeable layer is not reported in the SLC database and was estimated 271 

based on the soil layers available in the SLT. When a bedrock layer or specific soil horizons 272 
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were present [i.e., fragipan; duripan; petrocalcic; orstein; petrogypsic; cemented horizon; densic 273 

material; placic; bedrock, paralithic; bedrock, lithic; bedrock, densic; or permafrost; USDA-274 

NRCS (1993)], its upper depth was used as the depth to impermeable layer. When a bedrock 275 

layer was absent, the lower depth of the deepest mineral soil layer was used as an alternative. 276 

The shallowest annual depth to water table is also not reported and was estimated based on 277 

drainage class reported in the SNT. Very poorly drained, poorly drained, imperfectly drained, 278 

moderately well drained, and well drained (or better) soils were assigned water table depths of 0 , 279 

25 , 75, 100, and 125 cm, respectively. The variables pertaining to hydraulic conductivity of the 280 

least conductive layer of the soil profile and depth range of the hydraulic conductivity were both 281 

calculated using information from the SLT. 282 

Out of the 11,838 soils in the generated dataset, 21.3, 24.6, 39.0, and 15.1 % belonged to 283 

HSGs 1, 2, 3 and 4, respectively. These results suggest that more than half of the soils in Canada 284 

have a relatively high or high runoff generation potential (i.e., HSGs 3 and 4, respectively). A 285 

spatial analysis indicated that 20.0, 26.8, 36.7, and 16.5% of the areal extend of the soils 286 

belonged to HSGs 1, 2, 3, and 4, respectively. Much of the soils with higher potential for runoff 287 

generation are in the humid regions of  Ontario, Quebec, and the Maritimes (Fig. 2). Not 288 

surprisingly, this region has extensively adopted measures to address excess moisture in 289 

agricultural soils, such as tile drainage (Stonehouse, 1995; Rasouli et al., 2014). Excess moisture 290 

is also a problem in areas of Canadian Prairies, such as the Red River Valley in Manitoba, where 291 

surface drainage (Bower, 2007) and a growing use of  tile drainage  (Cordeiro and Sri Ranjan, 292 

2012, 2015) have been used to address this problem. Conversely, soils with low potential for 293 

runoff generation are located in Saskatchewan and Southeastern Alberta (along the 294 

Saskatchewan border), which are among the most arid regions in Canada (Wolfe, 1997). 295 
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The maximum rooting depth of the soil profile (SOL_ZMX) was assumed to be the lower 296 

depth of the deepest layer in the SLC soil profile. The fraction of soil porosity from which anions 297 

are excluded (ANION_EXCL) was not available in the SLC database and was set to the default 298 

value of 0.5 in SWAT (Arnold et al., 2013). This variable affects the concentration of nitrate in 299 

the mobile water fraction, which is directly related to nitrate leaching. The potential of maximum 300 

crack volume of the soil profile expressed as a fraction of the total soil volume (SOL_CRK) can 301 

be calculated by the FLOCR model using 30-yr weather data (Bronswijk, 1989). However, due 302 

to the fact that the model is not readily available for download and the unreasonable time 303 

required to run the model for such a large number of soil types, as well as the fact that 304 

SOL_CRK is optional in SWAT, its value was set of 0.5. In large scale studies this value is 305 

further adjusted through a spatially explicit calibration scheme (Whittaker et al., 2010). The 306 

SOL_CRK variable controls the potential crack volume for the soil profile. This value was 307 

selected based on the fact that all of the built-in soils in the SWAT soils database have the 308 

SOL_CRK variable set to 0.5. The TEXTURE variable, although not required for simulations 309 

with the SWAT model, was estimated for reference using the ‘TT.points.in.classes’ function 310 

from the ‘soiltexture’ R package (Moeys, 2016). The Canadian soil texture classification system 311 

was used as a reference. 312 

6.3 Soil layer information 313 

The soil profile variables are followed by 10 sets of 12 variables (i.e., columns 13 to 132) 314 

pertaining to layered soil information. The lower depth of each soil layer in the SLT was used as 315 

the depth from soil surface to the bottom layer (SOL_Z). The soil bulk density (SOL_BD) was 316 

extracted directly from the SLT. The available water capacity of the soil layer (SOL_AWC) was 317 

calculated from the water retention of the soil reported in the SLT at different matric potentials. 318 
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The water moisture content at -33 and -1500 kPa were assumed to represent the soil moisture at 319 

field capacity (FC) and permanent wilting point (PWP), respectively (Givi et al., 2004). The 320 

SOL_AWC was calculated as the difference between FC and PWP (Hillel, 1998). Soil moisture 321 

content at -33 kPa was not available for 2,658 layer records (i.e., 4.3% of the 61905 original 322 

records in the SLT table), which would result in the variable SOL_AWC not being calculated 323 

and the loss of more soils from the dataset. To avoid this, the moisture content at -10 kPa was 324 

used to replace that at -33 kPa. On average, the soil moisture content in the soil profile was 325 

around 6 mm larger at -10 kPa than that at -33 kPa (Table 3), indicating an overestimation of 326 

SOL_AWC in these soils. Larger differences between soil moisture content at -10 kPa and -33 327 

kPa in the top soil layers were likely driven by lower bulk densities, which increase the water 328 

holding capacity of the soil (Table 3). 329 

The variables saturated hydraulic conductivity (SOL_K) and soil organic carbon content 330 

(SOL_CBN), as well as the clay (CLAY), silt (SILT), sand (SAND), and rock fragment (ROCK) 331 

contents, were extracted directly from the SLT. The moist soil albedo (SOL_ALB) variable was 332 

only required for the top layer as subsequent layers were assigned a value of zero. Since this 333 

variable is not reported in the SLC database, it was estimated as the average (i.e., 0.10) of the 334 

range reported by Maidment (1993) for moist, dark, plowed fields (i.e., 0.05-0.15). Again, this 335 

value was selected since the SLC version 3.2 focuses on agricultural areas, which is also the 336 

major domain simulated by SWAT. 337 

Another important variable for SWAT is the erodibility factor (USLE_K), used as an input to 338 

the Universal Soil Loss Equation (USLE). This equation is used to calculate soil erosion, which 339 

is inherently linked to sediment and nutrient transport (Sharpley et al., 1992; He et al., 1995; 340 

Sharpley et al., 2002; Aksoy and Kavvas, 2005; Koiter et al., 2013) and therefore, critical for 341 
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simulations of non-point sources of pollution. The erodibility factor was calculated using the 342 

method presented by Sharpley and Williams (1990), which is based on the sand, silt, clay, and 343 

organic carbon content of the soil (Eq. 1): 344 
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where K is the erodibility factor [0.01 (ton·acre·hr)/(acre ft-ton in)], ms is the sand content 346 

(percent), msilt is the silt content (percent), mc is the clay content (percent), and orgC is the 347 

organic carbon content (%) of the respective soil layer. 348 

As for SOL_ALB, USLE_K is only required for the top layer and subsequent layers were 349 

also assigned a value of zero. When converted from Imperial to SI units (Foster et al., 1981), the 350 

range of calculated values (Table 4) generally agrees with the ranges reported for Canada (Wall 351 

et al., 2002), taking into consideration that K values may vary, depending on particle size 352 

distribution, organic matter, structure and permeability of individual soils (Wall et al., 2002). 353 

However, the units in the dataset presented here were kept in Imperial units for consistency with 354 

the SWAT input format. The spatial distribution of the erodibility factor (Fig. 3) was anticipated 355 

to align with HSG, which was the case in areas of low erosion potential in Saskatchewan where 356 

sandy soils prevail and in areas where runoff potential is high such as in southern Ontario. 357 

However, the spatial distribution of USLE_K somewhat contrasted to that of HSG in some areas 358 

of Manitoba and British Columbia, where low sediment transport potential was predicted in areas 359 

with high runoff potential. This contrast was likely due to other factors reducing the potential for 360 
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sediment transport, such as soils with high clay to silt ratios or high organic carbon contents 361 

(Sharpley and Williams, 1990). 362 

The soil electrical conductivity (SOL_EC) information was extracted directly from the SLT. 363 

The last twenty columns of the dataset (i.e., columns 133 to 152), which correspond to 364 

SOL_CAL for the 10 soil layers followed by SOL_PH for the same layers, were all populated 365 

with zeros since these variables are not currently active in SWAT. These variables also had 366 

values of zero for all the pre-existing soils in the built-in database in the model. 367 

7. Importing the SLC dataset into SWAT database 368 

Although the SWAT database is in a proprietary format (i.e., Microsoft Access), the present 369 

soils dataset has been published in a non-proprietary format [i.e., comma-separated values (CSV) 370 

file] that can be opened in a variety of software packages. However, the dataset can be easily 371 

imported into the SWAT soils database using an automated import routine in Microsoft Access. 372 

This import process consists of opening the SWAT2012 database and using the ‘Import Text 373 

File’ tool under the ‘Import & Link’ section of the ‘External Data’ tab to read the CSV file. This 374 

action will prompt a window where the user can select the path to where the present dataset is 375 

stored and specify how and where the data is stored in the database. The option ‘Append a copy 376 

of the record to the table’ should be selected, which activates a drop-down menu from which the 377 

‘usersoil’ table should be highlighted. Once these options have been processed, an ‘Import Text 378 

Wizard’ window will be prompted, where the option ‘Delimited – Characters such as comma or 379 

tab separate each field’ should be selected. Processing of this selection will prompt another 380 

window where the option ‘comma’ should be automatically selected by the wizard. However, the 381 

user should activate the box ‘First Row Contains Field Names’ since the first row of the present 382 
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dataset contains the variable labels. Confirming the processing of the next windows should 383 

finalize the import process, and the data should be ready to be used in SWAT predictions.  384 

8. Data access 385 

PANGAEA, an open access library to archive, publish and distribute georeferenced data, 386 

supports database-dependent research. Therefore, the entire dataset is published and archived in 387 

the PANGAEA database (https://doi.pangaea.de/10.1594/PANGAEA.877298) under Creative 388 

Commons Attribution 3.0 Unported, where the user must give appropriate credit, provide a link 389 

to the license and indicate if changes are made. 390 

9. Conclusions 391 

The soils dataset presented and discussed in this work represent an effort to facilitate 392 

hydrological simulations using the SWAT model in Canada. The dataset consists of a 393 

compilation of 11,838 different soils from the SLC database with all the information required by 394 

SWAT and is ready to be imported into the model’s soils database. A two-level data screening 395 

procedure removed 489 soils with missing layered information (i.e., not present in the SLT), 396 

while 1,736 soils were removed due to the lack of  critical information required by SWAT, such 397 

as soil bulk density or saturated hydraulic conductivity. Among the major contributions of this 398 

dataset, the calculation and/or estimation of variables not reported in the SLC database are of 399 

special importance. The hydrologic soil groups (HSGs) calculated from SLC database suggests 400 

that about half of the soils in Canada belong to classes with higher potential to generate runoff 401 

(i.e., HSG classes 3 and 4). Occurrence of soils in HSG 3 and 4 agree with management practices 402 

aimed at addressing excess moisture conditions in agricultural fields, such as subsurface drainage 403 

in southern Ontario and Manitoba. The erodibility factor, which is another important variable for 404 

SWAT simulations of non-point source pollution, suggest a relationship with runoff potential in 405 
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portions of  southern Ontario and Nova Scotia. However, low erodibility potential likely driven 406 

by high clay to silt ratios or high organic carbon content were found in areas with higher runoff 407 

potential in Manitoba and British Columbia.   408 
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Table 1. Description of variables in SWAT's 'usersoil' table. 560 

Variable Group Column number in ‘usersoil’ table Variables
a
 

Database indexing 1 OBJECTID 

Soil classification 2 through to 6 MUID; SEQN; SNAM; S5ID; CMPPCT 

Soil properties   

Profile 7 trough to 12 NLAYERS; HYDGRP; SOL_ZMX; 

ANION_EXCL; SOL_CRK; TEXTURE 

Layers 13 through to 132 (12 variables 

for 10 soil layers) 

SOL_Zx; SOL_BDx;  SOL_AWCx; 

SOL_Kx; SOL_CBNx; CLAYx; SILTx; 

SANDx; ROCKx; SOL_ALBx; 

USLE_Kx; SOL_ECx 

Inactive 133 through to 152  SOL_CALx; SOL_PHx 

a
 Subscript x corresponds to soil layer from 1 to 10.561 
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Table 2. Variables included in the SWAT user soil table. 562 

Column Variable
a
 Description Units Status 

1 OBJECTID Object identifier  – Optional 

2 MUID Mapping unit identifier – Optional 

3 SEQN Record counter calculated by SWAT – Optional 

4 SNAM Soil identifying name – Optional 

5 S5ID Soil interpretation record – Optional 

6 CMPPCT Soil component percent – Optional 

7 NLAYERS
†
 Number of layers – Required 

8 HYDGRP Hydrologic Soil Group – Required 

9 SOL_ZMX Maximum rooting depth of the soil profile mm Required 

10 ANION_EXCL Fraction of soil porosity from which anions are excluded – Optional 

11 SOL_CRK Potential of maximum crack volume of the soil profile expressed as a fraction of 

the total soil volume 

mm
3
 mm

-3
 Optional 

12 TEXTURE Texture of soil layer – Optional 

13 SOL_Zx Depth from soil surface to bottom of layer mm Required 

14 SOL_BDx  Moist bulk density  Mg m
-3

 or g cm
-3

 Required 

15 SOL_AWCx Available water capacity of the soil layer  mm mm
-3

 Required 

16 SOL_Kx Saturated hydraulic conductivity mm h
-1

 Required 

17 SOL_CBNx Organic carbon content % (w/w) Required 

18 CLAYx Clay content % (w/w) Required 

19 SILTx Silt content % (w/w) Required 

20 SANDx Sand content % (w/w) Required 

21 ROCKx Rock fragment content % (w/w) Required 

22 SOL_ALBx Moist soil albedo – Required 

23 USLE_Kx Erodibility factor (K) 0.01 (ton·acre·hr)/(acre ft-ton in) Required 

24 SOL_ECx Electrical conductivity  dS m-1 Optional 

Adapted from Arnold et al. (2013) and Sheshukov et al. (2009).
 a
 Subscript x corresponds to soil layer from 1 to 10. The variables SOL_CALx and SOL_PHx are 563 

present in the user soil table after all the columns listed above for all the 10 pre-existing layers. These variables refer to soil CaCO3 and soil pH, respectively, and 564 
are not currently active in the model. Thus, their records are entered zero in the SWAT 2012 database. 

†
The number of layers defines how many entries will be 565 

required in the layered information, signalled by the subscript x. For example, a soil with NLAYERS=4 should have subscript x corresponding to soil layer 566 
variables from 1 to 4. As a result, the records extend to column 60 in the user soil table. (i.e., 4 layers×12 variables + 12 preceding variables=60). 567 
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Table 3. Average soil moisture content at matric potentials -10 kPa and -33kPa and average soil bulk density for 568 
discrete layers of the soil profile. The average was calculated for all soils in the dataset. Each layer could have 569 
different depths for individual soils used in the average.   570 

Layer kPaat 10  kPaat 33  Difference (mm) 

Average soil bulk density 

(g cm
-3

) 

1 36.8 29.67 7.13 1.13 

2 33.65 26.72 6.93 1.27 

3 31.99 25.36 6.63 1.38 

4 29.48 23.32 6.16 1.47 

5 28.1 22.17 5.93 1.50 

6 27.26 21.53 5.73 1.52 

7 27.03 21.42 5.61 1.54 

8 26.98 21.17 5.81 1.54 

9 25.05 18.86 6.19 1.55 

AVERAGE 29.59 23.36 6.24 1.43 

 = average soil moisture content (mm).  571 
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Table 4. Comparison between the average erodibility factor (K) calculated for 572 
each soil textural class in the SWAT dataset and values reported in the 573 
literature.   574 

Soil Textural Class Acronym Calculated average K Reported K range
†
 

Loam L 0.14 0.23 – 0.30 

Heavy clay HCl 0.18 0.05 – 0.23 

Silty clay loam SiClLo 0.22 0.30 – 0.38 

Clay loam ClLo 0.14 0.23 – 0.30 

Silt loam SiLo 0.22 0.30 – 0.38 

Sand Sa 0.04 < 0.05 

Sandy loam SaLo 0.11 0.05 – 0.23 

Clay Cl 0.14 0.23 – 0.30 

Silty clay SiCl 0.22 0.23 – 0.30 

Loamy sand LoSa 0.07 < 0.05 

Sandy clay loam SaClLo 0.10 0.23 – 0.30 

Silt Si 0.55 0.30 – 0.38
¶
 

Sandy clay SaCl 0.09 0.05 – 0.23
#
 

†
Adapted from Wall et al. (2002). 

¶ 
Range not reported; value from SiLo 575 

used. 
#
 Range not reported; value from SaLo used.576 
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 577 

578 
Figure 1. Spatial extent of the Soil Landscapes of Canada (SLC) database showing coverage in the Provinces of 579 
Newfoundland and Labrador (NL), Prince Edward Island (PE), Nova Scotia (NS), New Brunswick (NB), Quebec 580 
(QC), Ontario (ON), Manitoba (MB), Saskatchewan (SK), Alberta (AB), and British Columbia (BC), as well as the 581 
Northwest Territories (NT). 582 
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  583 

 584 
Figure 2. Spatial distribution of the hydrologic soil groups (HYDGRP) variable calculated for the Soil Landscapes 585 
of Canada (SLC) database. HSG A=1, HSG B=2, HSG C=3, and HSG D=4 shown for the Provinces of Prince 586 
Edward Island (PE), Nova Scotia (NS), New Brunswick (NB), Quebec (QC), Ontario (ON), Manitoba (MB), 587 
Saskatchewan (SK), Alberta (AB), and British Columbia (BC). Some HSG could not be mapped [e.g. Province of 588 
Newfoundland and Labrador (NL)] due to missing records in the PAT of the GIS layer or being part of the soils with 589 
missing data in the SLT. 590 
  591 
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 592 
Figure 3. Spatial distribution of the erodibility factor (K) calculated for the Soil Landscapes of Canada (SLC) 593 
database (Imperial units). The K factor shown for the Provinces of Prince Edward Island (PE), Nova Scotia (NS), 594 
New Brunswick (NB), Quebec (QC), Ontario (ON), Manitoba (MB), Saskatchewan (SK), Alberta (AB), and British 595 
Columbia (BC). Some HSG could not be mapped [e.g. Province of Newfoundland and Labrador (NL)] due to 596 
missing records in the PAT of the GIS layer or being part of the soils with missing data in the SLT. 597 
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