
The National Eutrophication Survey: lake characteristics and
historical nutrient concentrations
Joseph Stachelek1, Chanse Ford2, Dustin Kincaid3, Katelyn King1, Heather Miller4, and Ryan Nagelkirk5

1Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
2Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, USA
3Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
4Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
5Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI, USA

Correspondence to: Joseph Stachelek (stachel2@msu.edu)

Abstract. Historical ecological surveys serve as a baseline and provide context for contemporary research, yet many of these

records are not preserved in a way that ensures their long-term usability. The National Eutrophication Survey
:::::
(NES)

:
database

is currently only available as scans of the original reports (PDF files) with no embedded character information. This limits

its searchability, machine readability, and the ability of current and future scientists to systematically evaluate its contents.

These
:::
The

:::::
NES data were collected by the United States Environmental Protection Agency between 1972 and 1975 as part of5

an effort to investigate eutrophication in freshwater lakes and reservoirs. Although several studies have manually transcribed

small portions of the database in support of specific studies, there have been no systematic attempts to transcribe and preserve

the database in its entirety. Here we use a combination of automated optical character recognition and manual quality assurance

procedures to make these data available for analysis. The performance of the optical character recognition protocol was found

to be linked to variation in the quality (clarity) of the original documents. For each of the four archival scanned reports, our10

quality assurance protocol found an error rate between 5.9 and 17%. The goal of our approach was to strike a balance between

efficiency and data quality by combining hand-entry of data with digital transcription technologies. The finished database

contains information on the physical characteristics, hydrology, and water quality of about 800 lakes in the contiguous United

States (doi:10.5063/F10G3H3Z). Ultimately, this database could be combined with more recent studies to generate metadata

analyses
::::::::::::
meta-analyses of water quality trends and spatial variation across the continental United States.15

1 Introduction

Effective management of inland freshwater lakes requires an understanding of the factors that affect water quality and how

these factors change over time. One of these factors, termed eutrophication, occurs when excess nutrient inputs from human

activities fuels increases in algal growth which can cause hypoxia and decreases in water clarity. Eutrophication of surface

waters from increased phosphorus and nitrogen loading has been observed in connection with altered land-use especially20

in areas of rapid urbanization and intensive agriculture (Smith et al., 1999, 2014). As human populations and their impacts

continue to grow, eutrophication is expected to become more widespread (Bennett et al., 2001; Taranu and Gregory-Eaves,
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Figure 1. Survey locations colored by sampling year (1972 northeastern-red, 1973 southeastern-green, 1974 central-blue, 1975 western-

grey).

2008). Historical datasets are needed in order to track, understand, and manage eutrophication in lakes and reservoirs because

they serve as an important baseline for modern studies.

The U.S. Environmental Protection Agency (EPA) designed and implemented the National Eutrophication Survey (NES)

in order to investigate the extent of eutrophication in freshwater lakes and reservoirs across the contiguous United States

(US). Sampling took place in over 800 lakes and reservoirs from 1972 to 1975, and included a variety of physical, chemical,5

and biological metrics including data on nutrients and nutrient loading, hydrologic retention time, morphometry, and plankton

community diversity.
::::
Each

::::
lake

:::
was

:::::::
sampled

:::
on

:
a
:::::::
monthly

:::::
basis

::
for

::
a

:::::
period

:::
one

:::::
year.

::::::
Except

::
for

:::
the

::::::::::::
phytoplankton

::::::::::
distribution

:::::
subset,

::::::
which

:::
we

:::
did

:::
not

::::::::
transcribe

:::::::::::::::::::::
(see Stomp et al., 2011),

::
the

:::::
NES

:::
data

::
is
::::::::
provided

::
as

::::::
annual

::::::::
averages. Unlike current EPA

National Lake Assessments that select a random sample of lakes across the US, the NES targeted only lakes impacted directly or

indirectly by municipal sewage treatment plant discharge (USEPA, 2009, 1975). Until recently, these data were only available10

in their entirety as four separate scanned reports representing the northeastern and northcentral (northeastern), eastern and

southeastern (southeastern), central, and western regions of the US (Figure 1). In the remainder of the present paper we refer

to the former two regions as simply the northeastern and southeastern regions.

To our knowledge, there have been no attempts to transcribe the data into a usable, searchable digital database despite

its use in previous studies. For example, large portions of the dataset were used to examine large scale relationships between15

residence time and phytoplankton abundance (Soballe and Kimmel, 1987). Also, it was used to predict eutrophication incidence

in a Bayesian framework (Lamon and Stow 2004). Smaller portions of the data were used to explore drivers of nutrient loading

(Stomp et al., 2011; Brett and Benjamin, 2007). Yet, to our knowledge, the only study to use the NES dataset and provide a

publicly available data supplement is Stomp et al. (2011), and
::
but

:
their data supplement was limited to a small subset of the

available variables relating to phytoplankton community diversity.20
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The present study is the first to leverage digital transcription technologies to unlock the full NES dataset. In this paper, we

describe the digital transcription of the full NES dataset with the goal of making the dataset openly accessible to the research

community.
::::::::::
Specifically,

:::
our

::::::::
objective

::::
was

::
to

::::::
exactly

::::::::
reproduce

:::
the

::::::::
contents

::
of

:::
the

:::::::
original

::::::
dataset

:::::
rather

::::
than

::
to

:::::::
evaluate

:::
its

:::::::
scientific

::::::::
integrity. We introduce and publish the data in an open format that requires no proprietary software. It can be easily

downloaded, used for analysis, and amended. The provided summary statistics and figures also allow users to quickly assess5

the utility of the data. . Finally, the code and raw data files are provided to facilitate the extraction of fields not represented in

our completed dataset (mostly phytoplankton diversity data).

2 Methods

Data was collected from multiple locations within the water column and included in-situ measurements as well as laboratory

analysis
:::::::
analyses. Flow estimates and drainage area calculations were provided by the USGS and were determined from flow10

gages when present. More detailed information on sampling methods, units, equipment, and accuracy can be found in the EPA

survey methods publication (USEPA, 1975). Due to historical nature of the dataset, the NES sampling design differs from more

modern efforts (USEPA, 2009). For example, the original NES data was collected from four separate regions of the US over

the course of four years, whereas current assessments complete nation-wide sampling in a single summer. As such, NES data

values represent the median
::::
mean

:
of measurements taken in the spring, summer, and fall in either 1972 (northeastern), 197315

(southeastern), 1974 (central), or 1975 (western) rather than
:::::::
summer measurements taken in a single year.

We obtained the NES archival scanned reports from the EPA National Service Center for Environmental Publications (avail-

able at: https://www.epa.gov/nscep). The data for each NES region is contained in four separate files. We extracted the data

from each file using automated techniques followed by manual quality assurance and checking
::
of

::::
each

:::::
value. To begin, we

enhanced (de-noised) each file using the local adaptive filtering algorithm as provided by the Imagemagick program (v6.8.9-20

9, available at: https://www.imagemagick.org/). Next, we processed the enhanced files using the Tesseract optical character

recognition program (OCR) (Ooms, 2017; Smith, 2007). The output of these initial extraction steps were recorded in a set of

“raw data” files where each file contains the raw unprocessed text of each document page. The contents of specific fields in

the raw data were extracted to a database using the automated rules provided by the nesR software package (Stachelek, 2017).

Finally, all values in the database were manually checked for accuracy against the original scanned reports. Inaccurate OCR25

outputs were hand-corrected in the final database.
:::::::
Because

:::
our

::::
goal

:::
was

::
to

:::::::::
reproduce

:::
the

:::
data

:::::
from

:::
the

::::::
original

::::::
reports

::::
and

:::
not

::
to

:::::
verify

:::
the

::::::::
technical

:::::::::
correctness

::
of

:::
the

:::::::
original

:::::
data,

:::
we

::::
only

:::::::
changed

::::::
values

:
if
::::
they

:::
did

::::
not

:::::
match

:::
the

::::::
orginal

::::
data

:::::::
reports.

:::
For

:::::::
example,

:::
we

:::
did

:::
not

:::::::
change

:::
data

:::::
from

:::
the

:::
five

::::
NES

:::::
lakes

::::
that

:::
had

:::::::::
phosphate

:::::
(PO4)

::::::
values

:::::::::
exceeding

::::
their

::::::::::::
corresponding

::::
total

:::::::::
phosphorus

:::::
(TP )

::::::
values

::::::
despite

:::
the

:::
fact

::::
that

:::
this

::
is

:::
not

:::::::::
physically

:::::::
possible

:::::
(PO4

::
is

:
a
::::::::::
component

::
of

::::
TP ).

:

We provide the final dataset in an open non-proprietary format (comma-delimited, *.csv). We
:
In

::::::::
addition,

:::
we generated meta-30

data descriptions from the contents of the original scanned reports. All calculations, table construction, and figure generation

were performed in R and saved as reproducible R scripts (R Core Team, 2017). Table and figure generation was accomplished

with the use of the reshape2, plyr, and sp packages (Wickham, 2016; Pebesma and Bivand, 2017).
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Figure 2. Map of log-scaled alkalinity (mg/L) interpolated using inverse distance weighting.

3 Results

The final NES dataset contains observations from 775 lakes and the distribution of these lakes was spatially variable. Although

there were more lakes measured in the northeastern and southeastern United States, the number of locations was close to evenly

distributed among the remaining regions (Figure 1, Table 1). Specifically, the number of lakes sampled in each region were as

follows: northeastern - 200 lakes, southeastern - 245 lakes, central - 177 lakes, and western, 153 lakes.5

Although the overall
:
In

:::::::
addition

::
to

:::::::::
differences

::
in
:::
the

::::
total

:
number of lakes was similar among regions, they differed

::::::::
measured

::
in

::::
each

::::::
region,

:::::
there

::::
were

::::
also

:::::::::
differences

:
in the proportion of lakes classified as impoundments rather than

:
as

:
natural lakes.

For example, slightly more than half of
::
all the lakes studied (462 of 775) were classified as impoundments yet the northeastern

region had only 54 impoundments and
::::
while

:
the southeastern region had 168 impoundments. Conversely, the number of

natural lakes sampled in the northeastern region (146 lakes) was more than double that of any other region (77, 48, and 42, for10

southeastern, western, and central United States, respectively).

We observed substantial spatial variation in many of the individual lake characteristics. For example, lakes in the eastern

sub-regions were generally smaller and shallower than lakes in the western sub-region (Table 2). In addition, lakes in the

western sub-region generally had higher alkalinity and higher water clarity (Figure 2, 3). Lakes with particularly low alkalinity

were found in coastal areas, whereas lakes with particularly high alkalinity were found in Nevada, western Washington, and15

parts of North Dakota. Comparisons among regions was easy for some well-sampled lake chemistry parameters such as total

phosphorus but more difficult for undersampled lake chemistry parameters. A particularly extreme example of this difficulty

was total nitrogen measurements in the eastern region, as this parameter was only measured for a single lake (Table 1).

The ability to examine these spatial trends was made possible by our optical character recognition procedure which had

6 - 17% accuracy depending on region and archival report scan quality. In total, we carried out approximately 5,000 hand-20

4



Table 1. Number of measurements (n) for each variable in each NES region.

Variable Western Central Northeastern Southeastern

Drainage area 122 138 171 232

Surface area 152 177 200 245

Mean depth 149 174 174 242

Total inflow 124 138 170 232

Retention time 124 140 158 230

Alkalinity 153 177 200 245

Conductivity 153 176 200 245

Secchi depth 153 177 200 245

Total P 153 177 200 245

Total inorg. P 153 177 200 245

Total inorg. N 153 177 200 245

Total N 152 176 1 245

P pt. source mun. 52 83 139 189

P pt. source ind. 7 1 10 24

P pt. source sep. 65 88 111 175

P nonpt. source 122 133 167 231

P total inputs 122 133 167 231

N pt. source mun. 52 84 139 189

N pt. source ind. 7 1 8 22

N pt. source sep. 77 90 111 184

N nonpt. source 122 129 167 231

N total inputs 122 129 167 231

P total exports 119 132 167 227

P retention 99 115 144 201

P load per area 122 133 167 231

N total exports 119 133 166 227

N retention 88 111 122 170

N load per area 122 135 167 231

5



Table 2. Mean and standard deviation (sd) for each variable in each NES region.

Region Western Central Northeastern Southeastern

Variable Mean sd Mean sd Mean sd Mean sd

Drainage area (km2) 2.5e+04 ± 7.8e+04 2.1e+04 ± 7.5e+04 3.2e+03 ± 1.4e+04 5.3e+03 ± 1.4e+04

Surface area (km2) 44.57 ± 99.83 54.38 ± 1.4e+02 27.25 ± 99.01 42.7 ± 1.4e+02

Mean depth (m) 16.71 ± 27.08 5.97 ± 4.49 7 ± 9.37 6.4 ± 6.07

Total inflow (m3 · s−1) 52.1 ± 1.1e+02 31.82 ± 71.77 23.1 ± 65.26 82.6 ± 2.3e+02

Retention time (years) 7.27 ± 43.32 2.78 ± 6.98 2.01 ± 4.77 0.59 ± 1.12

Alkalinity (mg · l−1) 1.7e+02 ± 3.7e+02 1.5e+02 ± 91.51 1.2e+02 ± 1.6e+02 72.18 ± 66.25

Conductivity (uohm) 4.9e+02 ± 1.0e+03 6.4e+02 ± 7.6e+02 3.3e+02 ± 4.0e+02 2.5e+02 ± 2.2e+02

Secchi depth (m) 2.86 ± 2.64 1.2 ± 0.91 1.81 ± 1.71 1.22 ± 0.82

Total P (mg · l−1) 0.07 ± 0.13 0.11 ± 0.16 0.16 ± 0.35 0.12 ± 0.27

Total inorg. P (mg · l−1) 0.04 ± 0.11 0.04 ± 0.07 0.11 ± 0.3 0.05 ± 0.15

Total inorg. N (mg · l−1) 0.14 ± 0.23 0.33 ± 0.58 0.47 ± 0.66 0.72 ± 0.91

Total N (mg · l−1) 0.62 ± 0.65 1.22 ± 1.11 0.12 ± NA 1.56 ± 1.25

P pt. source mun. (kg · yr−1) 2.5e+04 ± 8.7e+04 2.3e+04 ± 5.6e+04 3.5e+04 ± 1.5e+05 4.5e+04 ± 1.1e+05

P pt. source ind. (kg · yr−1) 2.5e+04 ± 4.0e+04 1.3e+04 ± NA 2.7e+04 ± 4.9e+04 1.7e+04 ± 4.5e+04

P pt. source sep. (kg · yr−1) 56.62 ± 1.4e+02 60.62 ± 93.67 1.6e+02 ± 3.4e+02 98.55 ± 2.3e+02

P nonpt. source (kg · yr−1) 1.4e+05 ± 4.2e+05 1.8e+05 ± 6.8e+05 5.6e+04 ± 2.1e+05 1.9e+05 ± 5.5e+05

P total inputs (kg · yr−1) 1.5e+05 ± 4.7e+05 2.0e+05 ± 7.0e+05 8.7e+04 ± 3.4e+05 2.3e+05 ± 5.8e+05

N pt. source mun. (kg · yr−1) 7.8e+04 ± 2.5e+05 7.3e+04 ± 1.7e+05 1.4e+05 ± 5.4e+05 1.4e+05 ± 3.8e+05

N pt. source ind. (kg · yr−1) 2.3e+07 ± 6.1e+07 4.0e+03 ± NA 1.6e+05 ± 4.2e+05 1.7e+05 ± 5.6e+05

N pt. source sep. (kg · yr−1) 5.7e+06 ± 5.0e+07 2.2e+03 ± 3.5e+03 4.3e+03 ± 5.5e+03 3.3e+03 ± 6.7e+03

N nonpt. source (kg · yr−1) 1.8e+06 ± 4.9e+06 1.8e+06 ± 4.4e+06 1.2e+06 ± 4.1e+06 3.1e+06 ± 8.9e+06

N total inputs (kg · yr−1) 6.8e+06 ± 5.7e+07 1.8e+06 ± 4.3e+06 1.3e+06 ± 4.6e+06 3.2e+06 ± 9.0e+06

P total exports (kg · yr−1) 6.2e+04 ± 1.7e+05 7.4e+04 ± 1.9e+05 7.3e+04 ± 3.1e+05 1.9e+05 ± 6.3e+05

P retention (%) 47.77 ± 28.5 57.55 ± 26.01 36.93 ± 25.2 42.7 ± 23.34

P load per area(g/m2/day) 5.61 ± 21.36 3.3 ± 9.2 28.46 ± 97.49 9.43 ± 17.06

N total exports (kg · yr−1) 1.6e+06 ± 4.0e+06 1.2e+06 ± 2.8e+06 1.2e+06 ± 4.9e+06 3.0e+06 ± 8.3e+06

N retention (%) 39.33 ± 27.13 43.41 ± 23.97 28.41 ± 23.62 26.28 ± 18.85

N load per area (g/m2/day) 1.8e+02 ± 1.1e+03 42.67 ± 1.1e+02 2.8e+02 ± 9.1e+02 1.3e+02 ± 2.4e+02

corrections to the automated data product as part of our manual quality control review. A total of approximately 650 lakes

had values for at least 80% of the total number of variables shown in Table 1. On an individual lake basis, the most common

“missing” data was nutrient loading estimates for individual point and nonpoint-source components. In many cases, this data

6
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Figure 3. Map of secchi depth (m) interpolated using inverse distance weighting.

may not actually be missing but it may have not been a component of the budget for that particular lake. For example, not all

lakes have industrial land use so no data is expected in these cases.

4 Discussion

We have demonstrated an approach for rescuing historical data from scanned documents. In particular, our approach involved

a two-step process of automated data scraping followed by hand-curation and quality assurance. Overall, we found that op-5

tical character recognition was an efficient method for reducing the labor associated with transcribing analog text records

(Drinkwater et al., 2014). Unfortunately, optical character recognition technology does not have absolute accuracy. In our case,

transcription was hampered by poor print and scan quality of the source paper documents. We discovered through our manual

validation procedure that the OCR computations produced inaccurate values in approximately 6 - 17% of the cells in the com-

plete dataset (n = 4836). We expect that accuracy could be improved by experimenting with varying the window size of the10

local adaptive thresholding algorithm relative to the document font size. Our ability to experiment with thresholding window

size was limited due to the computationally expensive nature of these extractions.

The end result of our approach was data from every lake and nearly every variable in the NES survey dataset. The only

primary subset of the NES data which is not included in our final product is the phytoplankton distribution data which has al-

ready been digitally transcribed by Stomp et al. (2011). The results of the present study could be used to explore anthropogenic15

and environmental drivers of lake eutrophication as well as to verify previously documented trends. One example is the 2007

National Lakes Assessment (NLA) Report, which included a reanalysis of some of the NES study lakes (USEPA, 2009). This

reanalysis considered population level trends in the NES lakes but did not consider trends in individual lakes or potential envi-

ronmental drivers contributing to observed trends. On a population basis, the NLA reanalysis found that less than 30% of the

7



NES lakes had increased chlorophyll and phosphorus concentrations. The results of the present study could be used to verify

these claims as well as to compare the NES data with more recent work such as the 2012 National Lakes Assessment. Note

that sampling techniques may differ from current techniques, so care should be given when making comparisons. In addition to

their utility in validating historical trends, this dataset has value because it contains data on a number of hydrographic variables

which are difficult to estimate such as water residence (retention) time. Such data is critical to a variety of hydrological and5

water quality modelling efforts (Brett and Benjamin, 2007).

Although our goal was to digitally transcribe the full NES dataset to facilitate studies on historical nutrient loading, it is

worth noting the similarities between the present study and other scientific record digitization initiatives. Such initiatives are

common in the climate and ocean sciences but they are just starting to gain momentum in the biological sciences (Allan et al.,

2011; Freeman et al., 2017). To our knowledge, the present study is the first large-scale attempt at digitization of historical10

limnology records. We hope that by making our analysis open and reproducible we will inspire future efforts at recovering

important records from the pre-digital era.

Code and data availability. Original scanned reports from the EPA are available from the EPA National Service Center for Environmental

Publications (https://www.epa.gov/nscep). Our cleaned and useable data are available for download at doi:10.5063/F10G3H3Z. The data

are provided as a zip file which contains all versions of the data including the raw and quality checked versions (Stachelek et al., 2017).15

Moreover, the R package and R code used to scrape and analyze the data are provided by Stachelek (2017) so that the methods may be

reproduced and openly available for (re)use. All figures and summary statistics were generated by R scripts available in the data supplement

linked above.
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the optical character recognition code. CF, DK, and RN performed the data analysis and made figures. KK, HM, and JS wrote major parts of20

the manuscript text.
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Reviewer Responses

0.1 Reviewer 1

• This is an important data set and it is good to see that it is becoming available in electronic format. The authors
appear to have used good methods to bring in a large dataset. I suspect that the manual entry error rate would
be close to the lower end of their error rate.

• There are multiple copies of these reports floating around in various libraries. Would it improve things to scan
multiple copies of the same data and check the copies against each other?

This is a good suggestion. However, the effort to do this would be quite large. Also, since we
manually verified the accuracy of every field, this task seems unnecessary. This may have been
a more useful step at the beginning of our optical character recognition quality control step,
affording us perhaps two other scan options, and the best of three could have been populated into
our final repository. We would still suspect that a manual quality control step would have been
necessary.

• I am curious why the authors did not try to bring in the data that Stomp et al. (2011) digitized. They could then
compare the two datasets. At a minimum they should try to combine the datasets, at least chlorophyll would be
nice.

The R code provided in the article supplement could be extended to accomplish this task. It
would require writing a parsing function to extract the values from the raw files produced as
a result of the optical character recognition algorithm. However, this section has very complex
formatting so we felt that doing so would be redundant. In addition, the Stomp et al. dataset is
already archived and we felt that it was not good data management practice to duplicate their
data in a second location.

• I am not functional in R so could not assess that part of the data product.

• The data could use some quality checking. For example, there are points where phosphate exceeds total phosphorus.
This is not possible.

We also agree that some data points reported through these four EPA documents did not make
scientific sense. However, our goal was to reproduce the dataset exactly as it appears in the
original documents, and not to judge the scientific accuracy of these data. We expect that a
proper analysis would be conducted in cooperation with an original research project. We have
added text to the manuscript pointing out this issue.

• It also would be good if the all data were all quality checked. If it takes about 1 second per data point, I calculate
it would take 3 hours each for the team of authors working in pairs to check the whole thing. That would lead to
a cleaner data set as well as making the error rate certain.

We agree that manual quality checking is essential. We were able to calculate (and report) our
error rate because we had already done this manual checking.

• It would be nice to have retention all in one type of units (not years or days mixed)

We agree. However, if we converted the data in this way it would make it more difficult to check
the data against the original documents.

• Table 2. Could use the units

Good catch! We have updated the table.

0.2 Reviewer 2

• Please use the full doi designation: https://doi.org/10.5063/f1kk98r5 ? The full designation allowed this reviewer
to avoid a search through DataCite to access the KNB Site.

1



The ESSD author instructions say to report a DOI in the abbreviation form (10.5194/xyz). We
suspect that this could be hyperlinked to the full designation on typesetting. For example, it ap-
pears that the partial doi code provided in the abstract of the pdf manuscript has been hyperlinked
to the full doi in the html abstract.

• Data very well organized and easily accessible. Very good metadata. Spot checks (Montana, Illinois) showed
believable locations and values, evidently quality control has worked reasonably well. Good product, potentially
very useful as baseline for both chemical and hydrological / geomorphological purposes.

• No information about sampling date in the master .csv file? E.g. a reader gets reference to the report number
(.pdf 475, published 1978) and to a page number (for Bloomington Lake, Maclean County, Illinois, actually on
page 79 rather than 81 as in .csv file), but no reference to sampling dates. Bloomington Lake data shows nutrient
and biological samples collected on 5/11/73, 8/9/73 and 10/17/73. For MacDonald Lake (.pdf 477, page 78
rather than 80 as in .csv) Montana, nutrient and biological sampling on 6/1/75 and 7/28/75. In text we read
that sampling of geographic regions occurred by year (e.g. 1973 for southeastern including Illinois and 1975 for
western) but the user does not see actual dates where available, or would need to extract those dates themselves?
But apparently none of the raw files captured these sampling dates from the original .pdf?

The sampling dates you see are exclusive to the “Biological Characteristics” section, which we
did not transcribe, because this has already been done in Stomp et al. (2011). In contrast, the
data we report are annual means computed from monthly samples. The NES reports provide no
further details about specific sampling dates. We have added clarifying text to the manuscript
and metadata on this point.

• Data from Illinois resides in two separate sections of .pdf 475 (page numbers 80 to 99 and 100 to 110 contiguous)
but one needs to search by storet code or state name to find all data per each state? This scattering arises from
processing sequence?

Yes

• Page numbers in .csv file refer to page number of digitized .pdf, not to page numbers used within the individual
reports? I did not see reference to this small discrepancy in the metadata.

We have appended additional text to the “pagenum” metadata field. It now reads: “page number
of the pdf (not the report page number)”.

• Need specific clarification about the page number discrepancies and about whether the digitisation process captured
the sampling date

See above.
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