Searth System Discussion Science Signate Data

1 Speleothem stable isotope reference records for East-Central

2 Europe - Resampling sedimentary proxy records to get evenly

- **3** spaced time-series with spectral control
- 4

- 6 ¹Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, Hungarian
- 7 Academy of Sciences, Budapest, Budaörsi út 45, H-1112, Hungary
- 8 ²Eötvös Loránd University, Department of Physical and Applied Geology, Budapest, Pázmány Péter stny. 1/C, H-1117,
- 9 Hungary
- 10

11 **Correspondence to*: István Gábor Hatvani (<u>hatvaniig@gmail.com</u>)

- 12
- 13

14 Abstract. Uneven spacing is a common feature of sedimentary paleoclimate records, in many cases causing difficulties 15 in the application of classical statistical and time series methods. Although special statistical tools do exist to assess 16 unevenly spaced data directly, the transformation of such data to a temporarily equidistant time series applicable to 17 commonly used statistical tools remains, however, an unachieved goal. The present paper, therefore, introduces an 18 approach to obtain evenly spaced time series (using cubic spline fitting) from unevenly spaced speleothem records with 19 the application of a spectral control to avoid spectral bias caused by interpolation and retain the original spectral 20 characteristics of the data. The methodology was applied to stable carbon and oxygen isotope records derived from two 21 stalagmites of the Baradla Cave (NE Hungary) dating back to the late 18th century; it was also applied to additional well-22 dated and high-resolution stable isotope records from the Han-sur-Lesse Cave (Belgium). To show the benefit of these 23 equally spaced records to climate studies, their coherence with primary and complex climate indices is explored using 24 wavelet transform coherence and discussed. The results shed light on clear relationships with climate and NAO indices, 25 lending support to the approach utilized in this study. Moreover, these suggest that the Baradla composite stable isotope 26 data can serve as regional reference records for the past ~200 years. The equally spaced time series obtained, are available 27 at doi: 10.1594/PANGAEA.875917.

28

29 1. Introduction

With more than a hundred speleothem studies published every year, it is trivial to state that speleothems are one of the most important objects of paleoclimate research. Compared to other continental carbonate deposits, they are especially valuable since (i) they are formed in relatively protected cave environments that render late-stage alteration less frequent, (ii) they can be dated using numerical dating methods (e.g. U-Th series and radiocarbon dating), (iii) they can be sampled at high spatial and temporal resolution, and (iv) they provide a number of data that serve as proxies for climate conditions (e.g. textural characteristics, trace element and stable isotope compositions, for further details see the comprehensive review by (Fairchild and Baker, 2012)).

⁵ István Gábor Hatvani^{1*}, Zoltán Kern¹, Szabolcs Leél-Őssy², Attila Demény¹

37 The main difficulty in the application of speleothem compositions to paleoclimate research is the complex interplay of a 38 number of factors that may govern the proxy data and the backgrounds and roles, about which there is a lack of clarity 39 (see e.g. Govin et al., 2015). Global, regional and local processes collectively determine the final geochemical signature 40 that can be used in paleoclimate evaluation assuming that a transfer function can be established. To assist in the 41 interpretation of speleothem compositions, the most frequently used and widely accepted method is cave monitoring, 42 where the physical- and chemical parameters of the cave environment and carbonate precipitation are determined in a 43 multi-year study (e.g. Breitenbach et al., 2015; Mattey et al., 2008; Mattey et al., 2016; Riechelmann et al., 2011). The 44 advantage of this approach is the possibility of gaining direct information on cave behavior and speleothem formation 45 processes in the course of environmental changes; the drawback is the usually short time scale, which rarely extends as 46 far as a decade (Fairchild and Baker, 2012; Mattey et al., 2016). The appearance or absence of seasonality changes in the 47 studied cave can be determined, but the effects of stronger environmental and climate changes may not be observed due 48 to the short periods covered. 49 Another approach is the comparison of meteorological parameters and speleothem data that cover a sufficient calibration 50 period (e.g. Demény et al., 2017; Jex et al., 2010). If correlated with climate parameters, such data can serve as benchmark-51 records. Thus, the comparison of these records may elucidate regional proxy correlations, or can be used to test complex 52 climate models (Wackerbarth et al., 2012). The main criteria for the selection of speleothem reference records are good 53 dating precision and high-resolution (close to annual). Once such a record is selected, it should be compared with 54 meteorological data. The comparison can be made visually, but detailed statistical data processing (e.g. Baker et al., 2015;

55 von Gunten et al., 2012; Wassenburg et al., 2016) can provide much more objective results.

56 It is a frequently-seen that data is obtained from spatially evenly sampled sedimentary sequence are smoothed with fix-57 point moving average. However, if the accumulation rate was not constant over time, the smoothed curve will not provide 58 uniform resolution over time and cannot achieve equal spacing in time.

59 Unfortunately, despite all efforts, uneven spacing is a common feature of sedimentary paleoclimate records. This 60 characteristic usually prohibits the application of classical statistical and time series methods in many cases (Hammer, 61 2017; Mudelsee, 2010). There are excellent toolsets that can solve certain problems directly on unevenly spaced data, e.g. 62 determining whether it has a first-order autoregressive characteristic (Schulz and Mudelsee, 2002), estimating correlation 63 with uncertainty limits between unevenly spaced autocorrelated series (Roberts et al., 2017), or conducting a variety of 64 spectral analyses (Schulz et al., 1999; Schulz and Stattegger, 1997). However, the problem remains: the transformation 65 of unevenly spaced data to a temporally equidistant time series in order for it to be suitable for the application of 66 commonly used statistical tools. The required preprocessing step, in the case of sedimentary records, is most commonly 67 performed using linear- (e.g. Holmgren et al., 2003; Lachniet et al., 2004) or non-linear interpolation (e.g. Ersek et al., 68 2012), rescaling of the data (e.g. Deininger et al., 2016) or by insufficiently documented methods (e.g. McCabe-Glynn et 69 al., 2013; Duan et al., 2014). However, any transformation which adds data to or removes it from the original record 70 unavoidably changes its spectral characteristics. 71 Thus, the present paper aims to introduce an approach on selected stable carbon and oxygen isotope records from the

72 Baradla Cave (Demény et al., 2017) to obtain evenly spaced time series from unevenly spaced speleothem records with 73

the application of a spectral control to avoid spectral bias and retain the genuine spectral characteristics. Section 2

- 74 describes the data sources and the proposed methodology for interpolation and resampling, combining the abilities of two
- 75 available software (Björg Ólafsdóttir et al., 2016; Schulz and Mudelsee, 2002) and the development of the spectral control.
- 76 Sect. 3 presents the evenly spaced data generated by the application of the methodology, while Sect. 4 presents an

- additional application to a recently growing stalagmite from the Han-sur-Lesse Cave (Belgium; Van Rampelbergh et al.,
- 78 2015). Thus, a generally applicable statistical processing methodology to obtain spectral bias-free time series with equal
- 79 time steps and present the processed regional reference records is presented.
- 80

81 2. Materials and Methods

82 2.1. Data sources

83 The stable carbon and oxygen isotope compositions presented in this paper derive from two stalagmites (VK1 and NU2) 84 of the Baradla Cave (NE Hungary, N48°28' E20°30'). A detailed description of the stalagmites and the analytical methods 85 can be found in (Demény et al., 2017). Conventionally, the stable C and O isotope compositions of speleothem carbonate 86 are expressed as δ^{13} C and δ^{18} O values in ∞ . δ^{13} C or δ^{18} O = (R_{sa}/R_{st} -1)·1000, where R_{sa} and R_{st} are ¹³C/¹²C and ¹⁸O/¹⁶O 87 ratios in the sample and standard (VPDB), respectively. To construct composite isotope records from the two stalagmites' 88 δ^{13} C and δ^{18} O records, the original raw data was normalized using mean and standard deviation for the 1950-2000 period 89 (an interval of simultaneous growing for the VK1 and NU2 stalagmites) and merged to a common timescale to provide a 90 regional reference. The composite regional reference records will be mentioned as $\Delta^{13}C_{Baradla}$ and $\Delta^{18}O_{Baradla}$ hereinafter. 91 To verify the applicability of the processed data the relationship of the processed -and thus evenly spaced (for details see 92 Section 2.1)- $\Delta^{13}C_{Baradla}$ and $\Delta^{18}O_{Baradla}$ data with climate was assessed. Thus, monthly averages of temperature and 93 monthly precipitation totals were retrieved, corresponding to the cave location from a global gridded climate dataset 94 (CRU TS3.23; Harris et al., 2014) with a time span covering 1901-2014 and a grid space of 0.5°. 95 Besides temperature and precipitation, indices describing the leading mode of atmospheric variability of the Atlantic 96 sector called North Atlantic Oscillation (NAO; Hurrell, 1995) were considered. The NAO index quantifies the pressure 97 difference between the Azores High and the Iceland Low regions. In a positive mode (with positive NAO indices) the 98 pressure difference is large and moisture and heat are transported to the northwestern part of Europe. In a negative NAO 99 mode (with negative NAO indices) the North Atlantic jet is shifted to the south, bringing moisture and heat to the 100 Mediterranean region. Since there is no unique way to define the spatial structure of the NAO, there is no universally 101 accepted index to describe the temporal evolution of the phenomenon (Hurrell and Deser, 2009). Most modern NAO 102 indices are derived either from the simple difference in surface pressure anomalies between various northern and southern 103 benchmark meteorological stations, or from the principal component (PC)-based time series of the leading empirical 104 orthogonal function of the sea level pressure (SLP) field of a selected domain. 105 Although PC-based indices are presumed to be more optimal representations of the full spatial patterns of the NAO and 106 are also presumed to be less noisy than station-based indices, they are not available as far back in time as the station-107 based indices. Therefore, two datasets of monthly North Atlantic Oscillation indices (NAO_i) were used as a reference in 108 this study: (i) PC-based NAO indices (NAO_{PC}) calculated over the Atlantic sector (20°-80°N, 90°W-40°E) (NCARS, 109 2016) available from 1899 AD and (ii) station-based ones (NAOst) obtained as monthly averages, calculated from a 110 quality-checked daily dataset extending back to 1850 AD constructed using mostly observational daily SLP data from 111 SW Iceland and the Azores; missing daily data was filled in with reanalysis products (Cropper et al., 2015). 112 Besides the Baradla records, stable isotope compositions published for Belgium, close to the Atlantic Ocean (Van 113 Rampelbergh et al., 2015), were selected and processed using the same approach (Section 2.1). 114

- 115 2.2. Methodology
- 116 2.2.1. Interpolation and resampling with spectral control

Science Scienc

117 To achieve a regular time axis, the gaps in the $\Delta^{13}C_{Baradla}$ and $\Delta^{18}O_{Baradla}$ time series were filled by cubic-spline fitting, and 118 resampled to an annual resolution by averaging (Fig. 1) (De Boor, 1978) in an R statistical environment (R Core Team, 119 2016) using the stringr package (Wickham, 2015) and the spline function of the stats package (R Core Team, 120 2016). The advantage of cubic spline fitting is that it is considered to be highly effective in preserving the spectral 121 characteristics of the original record (Horowitz, 1974), and it outperforms linear interpolation -especially in the higher 122 frequency domain (Schulz and Stattegger, 1997)-, and has a smaller chance of overfitting as a higher order spline. In the 123 case of interpolation, regardless of the applied method, the high frequency components in a spectrum will be 124 underestimated, thus the interpolated time series will become "reddened" (Schulz and Stattegger, 1997). 125

126

127 128

Figure 1: Cubic spline fitted to the (a) original unevenly spaced $\Delta^{16}O_{Baradla}$ time series and the (b) annual
averages derived from the interpolated time series.

129

130 Thus, the spectral bias caused by interpolation has to be objectively quantified and controlled. The spectral characteristics 131 of the original and the interpolated data have to be compared to detect potential spectral artifacts. Thus, the threshold 132 frequency was quantified beyond which (i) the interpolation (cubic spline in the present case) left the original spectrum 133 mainly unchanged, and (ii) the significant powers of the original time series were in coherence with the interpolated 134 spectrum. 135 To determine this threshold frequency objectively, first the spectral characteristics of the original-, and the interpolated 136 time series were explored to see if the powers of the time series' Lomb-Scargle Fourier Transform periodograms (LSP) 137 (Lomb, 1976; Scargle, 1982) are significant against red-noise background from a first-order autoregressive (AR(1)) 138 process using REDFIT (Schulz and Mudelsee, 2002). In the calculations, a Welch I window with two overlapping (50%)

- segments was used, the oversampling parameter was set as ofac=4 according to (Hocke and Kämpfer, 2009; Press et al., 1996), and hifac=1, the number of Monte-Carlo simulations to obtain the significance levels was nsim=1000 in
- 141 line with studies dealing with speleothem time series (Holzkämper et al., 2004; Neff et al., 2001), and the red-noise

boundary was estimated as the bias-corrected 80% chi-squared limit of a fitted AR(1) process. For the computations the
 redfit function of the dplR package was used (Bunn, 2008). The obtained periodograms will be referred to hereinafter
 as redfit Lomb-Scargle Fourier Transform periodograms (rLSP). The obtained rLSPs of the original and the interpolated

time series were than visually compared.

After the visual comparison of the rLSPs, the coherence of the unevenly spaced original and the interpolated time series
was also computed, using REDFIT-X (Björg Ólafsdóttir et al., 2016) developed for cross-spectral analysis of unevenly
spaced paleoclimate time series. The run parameters were the same as indicated above.

149 Combining the visual comparison of the original and interpolated time series' rLSPs with their quantified coherence 150 spectrum, the smallest significant period of the original data was determined, which was also present, and in coherence 151 with the spline interpolated one. This could be set as the threshold frequency above which the original spectra could be 152 taken as unbiased. Finally, the variance below this threshold frequency was removed/filtered from the spline interpolated 153 time series using the bandpass function of the astrochron package (Meyers, 2014).

154

155

2.2.2. Wavelet transform coherence (WTC)

156 The data preprocessing to ensure a time series is evenly spaced in time (Section 2.2.1) was necessary to find the areas 157 with common powers between the speleothem stable isotope time series and the climatic data in the time-frequency space. 158 Wavelet transform coherence (Torrence and Webster, 1999) was used to assess and visualize the coherence of the time 159 series on so-called power spectrum density (PSD) graphs (e.g. Fig. 3). This method may be considered similar to a 160 correlation coefficient, but with the difference that here we are dealing with a localized time-frequency space (Grinsted 161 et al., 2004). It is based on wavelet spectrum analysis, a function localized in both frequency and time, with a mean of 162 zero (Grinsted et al., 2004), and may be taken as the convolution of the data and the wavelet function (Kovács et al., 2010) 163 for a time series $(X_n, n=1, \ldots, N)$ with a ' Δt ' degree of uniform resolution Eq. (1):

$$164 \qquad W_n^X(s) = \sqrt{\frac{\Delta t}{s}} \sum_{n'=1}^N X_{n'} \Psi^* \left[(n'-n) \frac{\Delta t}{s} \right] \tag{1}$$

165 Whereby N is the length of the time series, ' ψ^* ' is the wavelet function and 's' is the scale. In the study the Morlet mother 166 wavelet (Morlet et al., 1982) was used to generate daughter wavelets, because it establishes a clear distinction between 167 random fluctuations and periodic regions (Andreo et al., 2006) and has also been used in other speleothem studies (e.g. 168 Ersek et al., 2012; Holmgren et al., 2003). 169 If two time series correlate, it does not mean that their WTC will indicate a strong common periodic behavior, because 170 the periodic component has to be present in order to find a meaningful WTC. In the course of the evaluation only those 171 positive signals were considered which were significant (α =0.1) against an AR(1) process, for details see (Roesch and 172 Schmidbauer, 2014). Since, the wavelet functions are normalized to have unit energy, the obtained wavelet transforms 173 may even be compared with other time series (Torrence and Compo, 1998). 174 From a practical point of view, the PSD graphs of the WTC analysis between the stable isotope time series and the 175 monthly climate data were calculated to find the months with the highest response. These chosen months were averaged 176 and their WTC with the proxy time series was calculated again. Thus, consecutive multi-monthly averages (seasons) were 177 obtained, indicating the maximum response forming the final output of the analysis. The WTC PSD graphs were generated 178 with the analyze.coherency function of the Wavelet-comp package (Roesch and Schmidbauer, 2014) in R.

180 3. Results and Discussions

181 3.1. Data preprocessing before WTC analysis

- 182 After obtaining the rLSPs and the coherency spectra of the original- and spline interpolated $\Delta^{13}C_{Baradla}$ and $\Delta^{18}O_{Baradla}$ time
- 183 series, these were compared as discussed in Section 2.2.1.
- 184 As low as the ~5yr period, the significant powers (α =0.8) of the original Δ ¹⁸O_{Baradla} record were all mirrored in the spline
- 185 interpolated one with high coherency and the original- and the interpolated record indicated a similar pattern on their
- **186** rLSPs (Fig. 2a). However, below the ~5yr period, the significant powers of the original $\Delta^{18}O_{Baradla}$ record were no longer
- 187 reflected any more in the spline interpolated one, and the two time series' coherency became generally low, as well.
- 188 Therefore, to be consistent and conservative, the period domain below 4.5 yrs was omitted with a lowpass filter for the
- 189 $\Delta^{18}O_{Baradla}$ time series.

190

191

192Figure 2: rLSPs (upper panels) and coherency spectra (lower panels) of the original, and the spline interpolated193(a) $\Delta^{18}O_{Baradla}$ and (b) $\Delta^{13}C_{Baradla}$ records of the Baradla speleothem. The bias-corrected 80% chi-squared limit of194a fitted AR(1) process for the rLSPs is shown in grey. The coherency spectra were produced with a 95% Monte195Carlo false-alarm levels (lower panels). The vertical black line indicates the determined cut-off period.

197 The same steps were then performed for the $\Delta^{13}C_{Baradla}$ record, as well, thus the domain below 7.5yrs was cut off from the **198** $\Delta^{13}C_{Baradla}$ spectrum to avoid the spectral bias caused by spline interpolation (Fig. 2b).

199

200 3.2. Climate-composition relationship for the Baradla speleothems

201 To present the applicability of the now equally spaced paleoproxy data in regional climate models, the $\Delta^{13}C_{Baradla}$ and 202 $\Delta^{18}O_{Baradla}$ records were compared to local (precipitation and temperature) and regional (NAO indices) climate variables.

203The first step was to explore whether meaningful and significant coherences could be found in the time-frequency space204between the equally spaced and 7.5yr lowpassed speleothem $\Delta^{13}C_{Baradla}$ time series and similarly lowpassed primary205climate parameters (precipitation, temperature). In the case of the composite $\Delta^{13}C_{Baradla}$ record, the best coherence was206found with the December-March average precipitation amount, and this was mostly in anti-phase.

207 The generally anti-phase coherence/relationship between precipitation amount and the composite carbon isotope record 208 is in accordance with the general theory that a higher amount of precipitation results in enhanced biological soil activity, 209 more biogenic CO₂ in the soil, and consequently more negative Δ^{13} C values in the speleothems of the Baradla Cave 210 (Demény et al., 2017). Although the relationship between the Δ^{13} C and precipitation amount had previously been observed 211 for individual records using visual comparisons and regression analysis (Demény et al., 2017), it was found to be weak 212 due to dating uncertainties and the varying effect of additional factors contributing to the precipitation-composition 213 relationship (e.g. kinetic fractionation, vegetation change, prior calcite precipitation; see (Fairchild and Baker, 2012) for 214 the compilation of governing factors). Nevertheless, with wavelet coherence analysis, it was not the whole spectra which 215 was taken into account all at once (as in the case of linear regression analysis), but the relationship was mapped for each 216 frequency band and observed over time. The phase of the coherence was observed to vary on the decadal-scale. A 217 generally negative phase difference was revealed between Δ^{13} C and precipitation amount (Fig. 3).

Figure 3: Time series of the 7.5yr lowpassed composite *A*¹³C_{Baradla} records (on a reversed axis) with the gridded
 December-March average precipitation amount (Harris et al., 2014) (upper panel) and their time-frequency
 coherency image (lower panel). The white contours in the lower panel show the 90% confidence levels calculated
 based on 1000 AR (1) surrogates. The black arrows indicate the phase-angle difference.

224

Significant coherences were found between the Baradla speleothem's $\Delta^{18}O_{Baradla}$ records and the monthly- and multimonthly averages of the primary climate parameters with a common discontinuity around the 1960s (Fig. 4). Such coherences were to be expected, since the oxygen isotope composition of the speleothem is driven by temperature and drip water composition (Lachniet, 2009), with the latter directly related to meteoric water composition governed by atmospheric temperature and moisture origin (Dansgaard, 1964; Kaiser et al., 2001).

- 230 However, with regard to the phase differences between the $\Delta^{18}O_{Baradla}$ records and the climate parameters, a somewhat
- 231 confusing picture can be observed in the investigated ~110 years. The phase differences changed multiple times, and a
- 232 dominant direction could hardly be assigned. This may be a result of the complex interplay of governing factors.
- 233

Figure 4: Time series of the 4.5yr lowpassed composite *d*¹⁸O records with the gridded climate data (Harris et al.,
 2014) December-May average (a) temperature and (b) precipitation (upper panels) and their time–frequency
 coherency image (lower panels). For further details see the caption of Fig. 3.

238

239 In order to extend the investigation on the climate-composition relationship through the exploration of the moisture origin 240 effect, the $\Delta^{18}O_{Baradla}$ record was compared with NAO indices that quantify the large-scale atmospheric processes directly 241 influencing moisture source pathways over the region of interest. Out of the multi-monthly averages, the strongest 242 coherence was found with the December-May averages of the station-based (Fig. 5a) and PC-based (Fig. 5b) NAO 243 records. The power maxima of the significant coherences (> 0.25) were reached at the ~ 8 yr period, and the relationship 244 was dominantly in anti-phase. Moreover, in a strong negative NAO mode, their coherence with the speleothem $\Delta^{18}O$ 245 record was disrupted (Fig. 5).

246

247

Figure 5: Time series of the 4.5yr lowpassed composite *A*¹⁸O records with the December-May average (a) NAO_{st}
 and (b) NAO_{PC} reconstructions (upper panels) and their time–frequency coherency images (lower panels). For
 further details see the caption of Fig. 3.

The generally anti-phase relationship with the NAO indices suggests that the Δ^{18} O values of Baradla stalagmites mainly reflect variations in moisture origin and, hence, fluctuations in moisture transport trajectories. In a negative NAO mode the dominance of moisture transport is shifted to the Mediterranean, from where more ¹⁸O-rich moisture arrives to the Eastern Alps (Kaiser et al., 2001), and also to the Baradla Cave region, in accordance with the anti-phase relationship observed in this study. This observation can be used to interpret further the isotope data of older speleothems in the light of the large scale atmospheric and oceanic variations of the North Atlantic realm.

258

259 4. Speleothem stable isotope records in a strongly NAO-influenced area

260 The methodology proposed and utilized on the Baradla speleothem was tested on an additional high resolution and 261 accurately dated speleothem dataset. The Proserpine stalagmite's δ^{13} C and δ^{18} O records (Han-sur-Lesse Cave, Belgium; 262 Van Rampelbergh et al., 2015) covering the period 1479-2000 AD were processed following the same procedure. 263 Although in the text only the section comparable with the previously discussed NAO_i spanning 1857-2000 is processed 264 and compared using WTC with the NAO_i, the processed datasets for the entire time can be found in the supplementary 265 material. After the necessary processing to achieve the even spacing of the records, the spectral assessment of the rLSPs 266 of the original and the interpolated data indicated that a 3.5yr and 3.3yr lowpass filtering is necessary for the full δ^{18} O 267 and δ^{13} C records of the Proserpine speleothem, respectively, to avoid bias caused by the interpolation. As a next step the 268 season with strongest response was selected, by forming multi-monthly averages of the climate data, as in the case of the 269 Baradla speleothem stable isotope records. Note here that the climate data was lowpassed, just as the speleothem data 270 assessed together with it.

The relationship with the precipitation reconstruction was explored, and it proved to be mostly in-phase (where it gave any relationship at all, only from ~1960 onwards), most probably due to the superimposed effects of local factors and regional climate variations. With the NAO_i, however, it indicated changing (Fig. 6a) and an anti-phase coherency (Fig. 6b) at the ~8yr period band.

275 The Proserpine δ^{18} O record indicated a strengthened response with the November-March averages of the NAO_{st} and the 276 November-April averages of the NAO_{PC} indices at the ~7yr period, predominantly in anti-phase (Fig. 7). The anti-phase 277 relationship was most explicit in the case of the NAO_{PC} index (Fig. 7b). The strength of the coherence was somewhere 278 lower for the shorter comparison with the NAO_{PC} than for the NAO_{st} (Fig. 7) record, which had an extra ~50yrs overlap 279 with the speleothem stable isotope record.

The reason why the NAO and the Proserpine δ 18O records are in anti-phase is because when the NAO index is positive, the cave receives more winter (low- δ ¹⁸O) precipitation, while the negative NAO state induces cold and dry periods around the cave environment, resulting in increased δ ¹⁸O values in the speleothem (Van Rampelbergh et al., 2015). The anti-phase δ ¹⁸O-NAO_i relationship is especially significant for the PC-based NAO_i. The detection of the relationship between the processed Proserpine speleothem record (Van Rampelbergh et al., 2015) and the NAO_i further validates the procedure elaborated in this study and demonstrates the use of the established algorithm.

Figure 6: Time series of the 3.3yr lowpassed composite *d*¹³C records with the December-May average (a) NAO_{st}
 and (b) NAO_{PC} reconstructions and their time–frequency coherency image. For further details see the caption of
 Fig. 3.

292

Figure 7: Time series of the 3.5yr lowpassed Proserpine *∆*¹⁸O records with the (a) November-March average
 NAO_{st} and (b) December-April average NAO_{PC} reconstructions (upper panels) and their time–frequency
 coherency image (lower panels). For further details see the caption of Fig. 3.

297

293

298 5. Conclusions

A cubic spline-based universally applicable methodology was developed to handle the uneven spacing of sedimentary
 proxy records, additionally taking into account the bias that interpolation may cause. The methodology was successfully
 applied to the composite stable carbon and oxygen isotope records of the speleothems of the Baradla Cave, NE Hungary
 and in addition to the similar records of a speleothem from the Han-sur-Lesse Cave, Belgium.

303	The composite stable isotope records of the Baradla Cave speleothem were compared with monthly-resolved temperature
304	and precipitation-amount data using wavelet transform coherence analyses. A generally negative relationship between the
305	carbon isotope record and cold season precipitation amount was revealed, in accordance with earlier assumptions. In the
306	case of the oxygen isotopic composition, its relationship with primary climate variables (temperature and precipitation
307	amount) was less clear, probably due to the competing and/or superimposed factors that determine the carbonate oxygen
308	isotopic composition. Nevertheless, the Δ^{18} O record indicated an anti-phase relationship with North Atlantic Oscillation
309	indices reflecting moisture origin. Specifically, in a negative NAO mode the moisture transport trajectory is shifted to the
310	Mediterranean from where the Baradla Cave receives δ^{18} O-enriched precipitation. These observations provide a firm base
311	for the interpretation of stable isotope data obtained for the Baradla Cave system, NE Hungary. The now evenly resampled
312	and lowpass filtered composite records can serve as regional benchmarks in future proxy paleoclimate evaluations.
313	Moreover, the methodology was successfully applied using published data for a stalagmite from Belgium (δ^{13} C and δ^{18} O
314	records of the Proscription state state in the transformation of the transformation of the transformation records of the transformation of transformation of the transformation of transformation of the transformation of transfor
315	¹⁸ O records, were found in accordance with the earlier assumptions, lending credibility to the methodology applied and
316	developed in this study.
317	
318	6. Author contribution
240	
319	I.G. Hatvani developed the model code and performed the simulations. Z. Kern preprocessed the data and provided the
320	composite records. A. Demény conceived the study and provided the geochemical interpretation. Sz. Leél-Ossy was
321	responsible for the cave studies. All authors took part in the manuscript preparation.
322	
323	7. Data availability:
324	The data sets produced with the methodology presented in the paper are available at doi: 10.1594/PANGAEA.875917.
325	
326	8. Competing interests:
227	
327	The authors declare that they have no conflict of interest.
328	
329	9. Acknowledgements
330	Financial support was received from the Hungarian Academy of Sciences (MTA "Lendület" program; LP2012-27/2012),
331	the National Research, Development and Innovation Office (OTKA NK 101664) and the János Bolyai Research
332	Scholarship of the Hungarian Academy of Sciences. This is contribution No. XX of 2ka Palæoclimatology Research
333	Group.
224	
334	
335	10. References
336	
337	Andreo, B., Jiménez, P., Durán, J. J., Carrasco, F., Vadillo, I., and Mangin, A.: Climatic and hydrological variations
338	during the last 117-166 years in the south of the Iberian Peninsula, from spectral and correlation analyses and continuous

339 wavelet analyses, Journal of Hydrology, 324, 24-39, doi: 10.1016/j.jhydrol.2005.09.010, 2006.

- 340 Baker, A., C. Hellstrom, J., Kelly, B. F. J., Mariethoz, G., and Trouet, V.: A composite annual-resolution stalagmite
- 341 record of North Atlantic climate over the last three millennia, Scientific Reports, 5, 10307, doi: 10.1038/srep10307, 2015.
- 342 Björg Ólafsdóttir, K., Schulz, M., and Mudelsee, M.: REDFIT-X: Cross-spectral analysis of unevenly spaced paleoclimate
- 343 time series, Computers & Geosciences, 91, 11-18, doi: 10.1016/j.cageo.2016.03.001, 2016.
- 344 Breitenbach, S. F. M., Lechleitner, F. A., Meyer, H., Diengdoh, G., Mattey, D., and Marwan, N.: Cave ventilation and
- rainfall signals in dripwater in a monsoonal setting a monitoring study from NE India, Chemical Geology, 402, 111124, doi: 10.1016/j.chemgeo.2015.03.011, 2015.
- 347 Bunn, A. G.: A dendrochronology program library in R (dplR), Dendrochronologia, 26, 115-124, doi:
- **348** 10.1016/j.dendro.2008.01.002, 2008.
- 349 Cropper, T., Hanna, E., Valente, M. A., and Jónsson, T.: A daily Azores-Iceland North Atlantic Oscillation index back
- **350** to 1850, Geoscience Data Journal, 2, 12-24, doi: 10.1002/gdj3.23, 2015.
- 351 Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436-468, 1964.
- **352** De Boor, C.: A Practical Guide to Splines, Springer-Verlag, 1978.
- 353 Deininger, M., McDermott, F., Mudelsee, M., Werner, M., Frank, N., and Mangini, A.: Coherency of late Holocene
- 354 European speleothem δ18O records linked to North Atlantic Ocean circulation, Clim Dyn, doi: 10.1007/s00382-016-
- **355** 3360-8, 2016. 1-24, doi: 10.1007/s00382-016-3360-8, 2016.
- 356 Demény, A., Németh, A., Kern, Z., Czuppon, G., Molnár, M., Leél-Őssy, S., Óvári, M., and Stieber, J.: Recently forming
- 357 stalagmites from the Baradla Cave and their suitability assessment for climate-proxy relationships, Central European
- **358** Geology, 60, 1-34, doi: 10.1556/24.60.2017.001, 2017.
- Duan, F., Wang, Y., Shen, C.-C., Wang, Y., Cheng, H., Wu, C.-C., Hu, H.-M., Kong, X., Liu, D., and Zhao, K.: Evidence
 for solar cycles in a late Holocene speleothem record from Dongge Cave, China, Scientific Reports, 4, 5159, doi:
 10.1038/srep05159, 2014.
- 362 Ersek, V., Clark, P. U., Mix, A. C., Cheng, H., and Lawrence Edwards, R.: Holocene winter climate variability in mid-
- 363 latitude western North America, Nature Communications, 3, 1219, doi: 10.1038/ncomms2222, 2012.
- 364 Fairchild, I. J. and Baker, A.: Geochemistry of Speleothems. In: Speleothem Science, John Wiley & Sons, Ltd, 2012.
- 365 Govin, A., Capron, E., Tzedakis, P. C., Verheyden, S., Ghaleb, B., Hillaire-Marcel, C., St-Onge, G., Stoner, J. S., Bassinot,
- 366 F., Bazin, L., Blunier, T., Combourieu-Nebout, N., El Ouahabi, A., Genty, D., Gersonde, R., Jimenez-Amat, P., Landais,
- 367 A., Martrat, B., Masson-Delmotte, V., Parrenin, F., Seidenkrantz, M. S., Veres, D., Waelbroeck, C., and Zahn, R.:
- 368 Sequence of events from the onset to the demise of the Last Interglacial: Evaluating strengths and limitations of
- 369 chronologies used in climatic archives, Quaternary Science Reviews, 129, 1-36, doi: 10.1016/j.quascirev.2015.09.018,
- **370** 2015.
- 371 Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to
- 372 geophysical time series, Nonlin. Processes Geophys., 11, 561-566, doi: 10.5194/npg-11-561-2004, 2004.
- 373 Hammer, Ø.: PAST PAleontological STatistics, Version 3.15, Natural History Museum; University of Oslo, 2017.
- 374 Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated high-resolution grids of monthly climatic observations
- the CRU TS3.10 Dataset, International Journal of Climatology, 34, 623-642, doi: 10.1002/joc.3711, 2014.
- 376 Hocke, K. and Kämpfer, N.: Gap filling and noise reduction of unevenly sampled data by means of the Lomb-Scargle
- 377 periodogram, Atmos. Chem. Phys., 9, 4197-4206, doi: 10.5194/acp-9-4197-2009, 2009.

- 378 Holmgren, K., Lee-Thorp, J. A., Cooper, G. R. J., Lundblad, K., Partridge, T. C., Scott, L., Sithaldeen, R., Siep Talma,
- 379 A., and Tyson, P. D.: Persistent millennial-scale climatic variability over the past 25,000 years in Southern Africa,
- **380** Quaternary Science Reviews, 22, 2311-2326, doi: 10.1016/S0277-3791(03)00204-X, 2003.
- 381 Holzkämper, S., Mangini, A., Spötl, C., and Mudelsee, M.: Timing and progression of the Last Interglacial derived from
- 382 a high alpine stalagmite, Geophysical Research Letters, 31, doi: 10.1029/2003GL019112, 2004.
- Horowitz, L.: The effects of spline interpolation on power spectral density, IEEE Transactions on Acoustics, Speech, and
 Signal Processing, 22, 22-27, 1974.
- 385 Hurrell, J. W. and Deser, C.: North Atlantic climate variability: The role of the North Atlantic Oscillation, Journal of
- 386 Marine Systems, 78, 28-41, doi: 10.1016/j.jmarsys.2008.11.026, 2009.
- 387 Jex, C. N., Baker, A., Fairchild, I. J., Eastwood, W. J., Leng, M. J., Sloane, H. J., Thomas, L., and Bekaroğlu, E.:
- Calibration of speleothem δ18O with instrumental climate records from Turkey, Global and Planetary Change, 71, 207217, doi: 10.1016/j.gloplacha.2009.08.004, 2010.
- Kaiser, A., Scheifinger, H., Kralik, M., Papesch, W., Rank, D., and Stichler, W.: Links between meteorological conditions
 and spatial/temporal variations in long-term isotope records from the Austrian precipitation network, Study of
- **392** environmental change using isotope techniques, C&S Paper Series, 13, 67-77, 2001.
- 393 Kovács, J., Hatvani, I. G., Korponai, J., and Kovács, I. S.: Morlet wavelet and autocorrelation analysis of long-term data
- series of the Kis-Balaton water protection system (KBWPS), Ecological Engineering, 36, 1469-1477, doi:
 10.1016/j.ecoleng.2010.06.028, 2010.
- 396 Lachniet, M. S.: Climatic and environmental controls on speleothem oxygen-isotope values, Quaternary Science Reviews,
- **397** 28, 412-432, doi: 10.1016/j.quascirev.2008.10.021, 2009.
- 398 Lachniet, M. S., Burns, S. J., Piperno, D. R., Asmerom, Y., Polyak, V. J., Moy, C. M., and Christenson, K.: A 1500-year
- 399 El Niño/Southern Oscillation and rainfall history for the Isthmus of Panama from speleothem calcite, Journal of
- **400** Geophysical Research: Atmospheres, 109, doi: 10.1029/2004JD004694, 2004.
- 401 Lomb, N. R.: Least-squares frequency analysis of unequally spaced data, Astrophysics and space science, 39, 447-462,
 402 1976.
- 403 Mattey, D., Lowry, D., Duffet, J., Fisher, R., Hodge, E., and Frisia, S.: A 53 year seasonally resolved oxygen and carbon
- 404 isotope record from a modern Gibraltar speleothem: Reconstructed drip water and relationship to local precipitation, Earth
 405 and Planetary Science Letters, 269, 80-95, doi: 10.1016/j.epsl.2008.01.051, 2008.
- 406 Mattey, D. P., Atkinson, T. C., Barker, J. A., Fisher, R., Latin, J. P., Durrell, R., and Ainsworth, M.: Carbon dioxide,
- 407 ground air and carbon cycling in Gibraltar karst, Geochimica et Cosmochimica Acta, 184, 88-113, doi:
 408 10.1016/j.gca.2016.01.041, 2016.
- 409 McCabe-Glynn, S., Johnson, K. R., Strong, C., Berkelhammer, M., Sinha, A., Cheng, H., and Edwards, R. L.: Variable
- 410 North Pacific influence on drought in southwestern North America since AD 854, Nature Geosci, 6, 617-621, doi:
- **411** 10.1038/ngeo1862, 2013.
- 412 Meyers, S. R.: astrochron: An R Package for Astrochronology. 2014.
- 413 Morlet, J., Arens, G., Fourgeau, E., and Giard, D.: Wave propagation and sampling theory; Part I, Complex signal and
- 414 scattering in multilayered media, Geophysics, 47, 203-221, doi: 10.1190/1.1441328, 1982.
- 415 Mudelsee, M.: Climate Time Series Analysis: Classical Statistical and Bootstrap Methods, Springer, Dordecht, 2010.

- 416 NCARS, N. C. f. A. R. S. E.: The Climate Data Guide: Hurrell North Atlantic Oscillation (NAO) Index (PC-based),
- 417 <u>https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based</u>, last access:
 418 27.04.2016, 2016.
- 410 27.04.2016, 2016.
- 419 Neff, U., Burns, S. J., Mangini, A., Mudelsee, M., Fleitmann, D., and Matter, A.: Strong coherence between solar
- 420 variability and the monsoon in Oman between 9 and 6 kyr ago, Nature, 411, 290-293, doi: 10.1038/35077048, 2001.
- 421 Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.: Numerical recipes in C, Cambridge university
- 422 press Cambridge, 1996.
- R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing,
 Vienna, Austria, 2016.
- 425 Riechelmann, D. F. C., Schröder-Ritzrau, A., Scholz, D., Fohlmeister, J., Spötl, C., Richter, D. K., and Mangini, A.:
- 426 Monitoring Bunker Cave (NW Germany): A prerequisite to interpret geochemical proxy data of speleothems from this
- 427 site, Journal of Hydrology, 409, 682-695, doi: 10.1016/j.jhydrol.2011.08.068, 2011.
- 428 Roberts, J., Curran, M., Poynter, S., Moy, A., Ommen, T. v., Vance, T., Tozer, C., Graham, F. S., Young, D. A., Plummer,
- 429 C., Pedro, J., Blankenship, D., and Siegert, M.: Correlation confidence limits for unevenly sampled data, Computers &
- **430** Geosciences, 104, 120-124, doi: 10.1016/j.cageo.2016.09.011, 2017.
- **431** Roesch, A. and Schmidbauer, H.: WaveletComp: A guided tour through the R-package. 2014.
- 432 Scargle, J. D.: Studies in astronomical time series analysis. II-Statistical aspects of spectral analysis of unevenly spaced
- **433** data, The Astrophysical Journal, 263, 835-853, 1982.
- 434 Schulz, M., Berger, W. H., Sarnthein, M., and Grootes, P. M.: Amplitude variations of 1470-year climate oscillations
- during the last 100,000 years linked to fluctuations of continental ice mass, Geophysical Research Letters, 26, 3385-3388,
- **436** doi: 10.1029/1999GL006069, 1999.
- 437 Schulz, M. and Mudelsee, M.: REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time
 438 series, Computers & Geosciences, 28, 421-426, doi: 10.1016/S0098-3004(01)00044-9, 2002.
- 439 Schulz, M. and Stattegger, K.: Spectrum: spectral analysis of unevenly spaced paleoclimatic time series, Computers &
 440 Geosciences, 23, 929-945, doi: 10.1016/S0098-3004(97)00087-3, 1997.
- 441 Torrence, C. and Compo, G. P.: A Practical Guide to Wavelet Analysis, Bulletin of the American Meteorological Society,
- 442 79, 61-78, doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2, 1998.
- 443 Torrence, C. and Webster, P. J.: Interdecadal Changes in the ENSO-Monsoon System, Journal of Climate, 12, 2679-
- 444 2690, doi: 10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2, 1999.
- 445 Van Rampelbergh, M., Verheyden, S., Allan, M., Quinif, Y., Cheng, H., Edwards, L. R., Keppens, E., and Claeys, P.: A
- 446 500-year seasonally resolved δ^{18} O and δ^{13} C, layer thickness and calcite aspect record from a speleothem deposited in the
- 447 Han-sur-Lesse cave, Belgium, Clim. Past, 11, 789-802, doi: 10.5194/cp-11-789-2015, 2015.
- von Gunten, L., D'Andrea, W. J., Bradley, R. S., and Huang, Y.: Proxy-to-proxy calibration: Increasing the temporal
 resolution of quantitative climate reconstructions, Scientific Reports, 2, 609, doi: 10.1038/srep00609, 2012.
- 450 Wackerbarth, A., Langebroek, P. M., Werner, M., Lohmann, G., Riechelmann, S., Borsato, A., and Mangini, A.:
- 451 Simulated oxygen isotopes in cave drip water and speleothem calcite in European caves, Clim. Past, 8, 1781-1799, doi:
- **452** 10.5194/cp-8-1781-2012, 2012.
- 453 Wassenburg, J. A., Dietrich, S., Fietzke, J., Fohlmeister, J., Jochum, K. P., Scholz, D., Richter, D. K., Sabaoui, A., Spotl,
- 454 C., Lohmann, G., Andreae, M. O., and Immenhauser, A.: Reorganization of the North Atlantic Oscillation during early
- 455 Holocene deglaciation, Nature Geosci, advance online publication, doi: 10.1038/ngeo2767, 2016.

456 Wickham, H.: stringr: Simple, Consistent Wrappers for Common String Operations. R package. 2015.457