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Abstract. Space-borne microwave remote sensing is widely used to monitor global environmental changes for 

understanding hydrological, ecological and climate processes. A new global land parameter data record (LPDR) was 10 

generated using similar calibrated, multi-frequency brightness temperature (Tb) retrievals from the Advanced Microwave 

Scanning Radiometer for EOS (AMSR-E) and the Advanced Microwave Scanning Radiometer 2 (AMSR2). The resulting 

LPDR provides a long-term (Jun. 2002 - Dec. 2015) global record of key environmental observations at 25-km grid cell 

resolution, including surface fractional open water (fw) cover, atmosphere precipitable water vapor (PWV), daily maximum 

and minimum surface air temperatures (Tmx and Tmn), vegetation optical depth (VOD) and surface volumetric soil moisture 15 

(vsm). Global mapping of the land parameter climatology means and seasonal variability over the full-year records from 

AMSR-E (2003-2010) and AMSR2 (2013-2015) observation periods is consistent with characteristic global climate and 

vegetation patterns. Quantitative comparisons with independent observations indicated favorable LPDR performance for fw 

(R ≥ 0.75; RMSE ≤ 0.06), PWV (R ≥ 0.91; RMSE ≤ 4.99 mm), Tmx and Tmn (R ≥ 0.90; RMSE ≤ 3.48 ºC), and vsm (0.63 ≤ R ≤ 

0.84; bias corrected RMSE ≤ 0.06 cm
3
/cm

3
). The LPDR derived global VOD record is also proportional to satellite observed 20 

NDVI (GIMMS3g) seasonality (R ≥ 0.88) due to synergy between canopy biomass structure and photosynthetic greenness. 

Statistical analysis shows overall LPDR consistency, but with small biases between AMSR-E and AMSR2 retrievals that 

should be considered when evaluating long-term environmental trends. The resulting LPDR and potential updates from 

continuing AMSR2 operations provide for effective global monitoring of environmental parameters related to vegetation 

activity, terrestrial water storage and mobility; and are suitable for climate and ecosystem studies. The LPDR data set is 25 

publicly available at http://files.ntsg.umt.edu/data/LPDR_v2 . 

1 Introduction  

Earth’s atmospheric, biophysical and hydrological processes are closely coupled (Walko et al., 2000; Trenberth et al., 2007) 

and respond to altered climate forcing manifested by changes in key environmental variables (Meehl et al., 2007). Integrated 

and consistent measurements of Earth System environmental variables at global scale are needed for advancing our 30 
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understanding of interconnected Earth systems (Trenberth et al., 2007) and for addressing critical global change related 

questions including global water cycle intensification (Huntington et al., 2006; Wild et al., 2008; Déry et al., 2009), arctic 

amplification and feedbacks to climate change (Smith et al., 2005; Grosse et al., 2011) and the primary drivers behind global 

vegetation changes (Zhu et al., 2016).   

     Complementary to optical-thermal infrared (IR) and active microwave remote sensing, space-borne passive microwave 5 

radiometers allow for measurements of global environmental variables at relatively coarse spatial resolution (~ 5km to 100 

km) but with relatively high temporal fidelity (~daily for higher latitudes ≥ 45˚N) and with reduced constraints from variable 

solar illumination, clouds and atmosphere aerosol contamination effects (Ulaby et al., 2014). While lower frequency (e.g. L-

band) sensors, including the ESA Soil Moisture and Ocean Salinity (SMOS) and NASA Soil Moisture Active-Passive 

(SMAP) missions, are generally considered optimal for detecting soil and surface water signals under moderate to high 10 

vegetation biomass conditions (Kerr et al., 2001; Entekhabi et al., 2010), higher frequency sensors, such as AMSR-E (Koike 

et al., 2004) and AMSR2 (Imaoka et al., 2012), provide simultaneous multi-channel (C- to W-band) Tb observations with 

variable sensitivity to surface water, soil, vegetation and atmosphere conditions (Njoku et al., 2003; Jones et al., 2010); the 

combined observations allow for distinguishing individual land parameter signals from background noise. However, the 

major AMSR-E and AMSR2 (hereafter denoted as AMSR-E/2) algorithms have largely focused on single parameter 15 

retrievals, including the NASA and JAXA standard soil moisture products (Njoku et al., 2003, Koike et al., 2004). In 

contrast, the University of Montana (UMT) global Land Parameter Data Record version 1 (LPDR v1) was developed to 

exploit AMSR-E multi-frequency Tb observations for global daily mapping of multiple synergistic land parameters related to 

the status and storage of water in the atmosphere, vegetation and soil (Jones et al., 2010). The LPDR v1 database has been 

applied for a variety of environmental studies, including quantifying surface water inundation impacts on tundra methane 20 

emissions (Watts et al., 2014); boreal wildfire disturbance and recovery assessments (Jones et al., 2013); evaluating 

hydroclimatic controls on vegetation phenology (Alemu and Henebry, 2013; Guan et al., 2014); biodiversity modeling and 

prediction (Waltari et al., 2014); and vector borne disease risk assessments (Chuang et al., 2012). The LPDR v1 has also 

served as a baseline for evaluating other AMSR-E algorithm retrievals (Mladenova et al., 2014) and refinements (Jang et al., 

2014; Du et al., 2014).  The LPDR v1 encompasses the AMSR-E record (2002-2011), while similar observations from 25 

AMSR2 enable potential LPDR continuity (Du et al., 2014). 

    In this investigation, the Version 2.0 UMT Land Parameter Data Record (henceforth denoted as LPDR) was generated by 

incorporating recent algorithm improvements (Du et al., 2015; Du et al., 2016a), new algorithm refinements and an extended 

AMSR-E/2 satellite record.  The key satellite microwave land parameter retrievals derived from this study include daily 

maximum and minimum surface air temperature (Tmx and Tmn), atmosphere precipitable water vapor (PWV), vegetation 30 

optical depth (VOD), surface fractional open water cover (fw) and volumetric soil moisture (vsm). Surface air temperature, 

defined as air temperature at approximate 2-meter height in this study and used as a global warming indicator (Hansen and 

Lebedeff, 1987; Jones et al., 1999), integrates key information on the thermal state of the land-atmosphere interface (Jones et 

al., 2010). PWV represents the total water content of the atmosphere column within the satellite sensor field-of-view (Bedka 
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et al., 2010), and is strongly interactive with temperature and climate (Held and Soden, 2000; Wentz et al., 2007). The VOD 

parameter represents the slant-path opacity of the intervening vegetation layer to land surface microwave emissions; VOD is 

microwave frequency dependent and is sensitive to changes in canopy biomass water content, including woody and foliar 

elements (Shi et al., 2008; Jones et al., 2011; Liu et al., 2011). The fw parameter is an important hydrological and 

biogeochemical variable (Watts et al., 2012), while large-scale mapping of fw dynamics has been used for studying high-5 

latitude ecosystems, wetlands and carbon cycle related feedbacks to climate change (Van Huissteden et al., 2011; McVicar et 

al., 2012; Lupascu et al., 2014). Another key parameter is surface soil moisture, which governs the exchanges of water, 

energy and carbon between the soil and atmosphere (Entekhabi et al., 2010); soil moisture is defined in this study as the 

volume of water in a given volume of soil. The relative depth of soil moisture sensitivity is dependent on microwave 

frequency and land surface conditions, but is generally limited to the top (~1 cm depth) soil layer using moderate frequency 10 

(e.g. C-, X-band) Tb  retrievals from AMSR-E and AMSR2 sensors. 

    The goals of this study were to (a) provide an enhanced data record over prior (v1) LPDR releases in terms of both 

retrieval accuracy and temporal coverage; (b) generate consistent retrievals from AMSR-E and AMSR2 suitable for long-

term evaluations of key land parameters important to ecosystem processes; and (c) facilitate LPDR utility for the Earth 

Science community by providing detailed descriptions of algorithm structure, retrieval accuracy and product performance, 15 

and data format specifications. The LPDR methods, data processing, global performance and uncertainty assessments are 

presented below. 

2. Methods 

2.1 LPDR v1 Algorithm and refinements 

In the LPDR v1 algorithms, the satellite observed microwave emission from land overlying a non-scattering atmosphere is 20 

theoretically described by three components representing the upward emission of the atmosphere, land surface upward 

emission attenuated by the atmosphere, and the downward atmosphere emission reflected by the land surface and attenuated 

by atmosphere (Wang and Manning, 2003; Jones et al., 2010). Atmosphere effects are mainly determined by air temperature, 

and the optical depth of oxygen, cloud liquid water, and atmosphere water vapor (Wentz and Meissner, 2000; Jones et al., 

2010). The land surface upward microwave emission is represented as the overall emission from a mix of land surface 25 

features including open water, vegetation and soil (Mo et al., 1982; Jones et al., 2010). Based on the above theory, the LPDR 

v1 algorithms derive land surface parameters in two steps: first, effective surface temperature (Ts), Tmx and Tmn, fw and PWV 

are obtained using an iterative algorithm approach that incorporates H- and V-polarized 18.7 GHz and 23.8 GHz Tb data, and 

several temperature insensitive microwave indices (Jones et al., 2010). In this step, a simplified land emission model that 

considers constant dry soil emissivity is adopted for facilitating the inversion process. The X-band VOD is then obtained by 30 

inverting the land-water microwave emissivity slope index, and surface (~ 0-1 cm depth) mv is acquired after correcting for 

X-band atmosphere, fw and vegetation effects (Jones et al., 2010).  More detailed descriptions of the LPDR v1 algorithms 
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are provided elsewhere (Jones et al., 2010). Recent refinements based on the LPDR v1 algorithm framework were carried 

out separately using AMSR-E or AMSR2 Tb observations, including: (a) an empirical calibration of the AMSR2 PWV 

retrieval based on similar observations from AIRS (Du et al., 2015); (b) a refined AMSR2 estimation of Tmx and Tmn that 

considers terrain and latitude effects (Du et al., 2015); (c) an improved AMSR-E vsm retrieval using a weighted averaging 

strategy and dynamic selection of vegetation scattering albedos (Du et al., 2016a).   5 

2.2 LPDR retrieval algorithms 

The latest (v2) LPDR algorithms were developed based on the available algorithm framework and improvements (Section 

2.1). For generating a consistent LPDR product, the available algorithm refinements were adapted for both AMSR-E and 

AMSR2 portions of the combined, calibrated Tb record (Section 3.1). The final regression formulas for estimating PWV are 

described below, which follow from (Du et al., 2015) but use different regression coefficients; for the satellite ascending 10 

(PM) overpass, the empirical calibration resulted in: 

23 18

(89.0)
4.06 0.22 (0.47 0.26exp( )) 1.63log( )

(36.0)

vd b
PM s

v v b

A T
PWV T H

a a T


      

 

                                        (1) 

and for the descending (AM) overpass: 
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1.06 0.27 (0.48 0.21exp( )) 1.63log( )

(36.0)

vd b
AM s

v v b

A T
PWV T H

a a T


     

 

                                        (2) 

The PWV estimate is derived by a weighted sum of 
sT (ºC), atmosphere optical depth

vdA estimated from the 23.8 GHz and 15 

18.7 GHz Tb polarization difference ratios, a cloud correction term (89.0)

(36.0)

b

b

T

T





and surface elevation H (km). The terms 
18va  and 

23va are empirically derived water vapor absorption coefficients (Jones et al., 2010). The regression formulas for estimating 

Tmx and Tmn are given as:  
23.55 0.69 11.86 6.67 0.14( ( )) 2.74 cos( ) 1.83*log( 1.0)mn s c cT T T T abs Lat t fw                         (3) 

 20 
27.49 0.79 5.71 11.45 0.14( ( )) 2.20 cos( ) 1.75*log( 1.0)mx s c cT T T T abs Lat t fw                         (4) 

 

where 
sT is the effective surface temperature,

cT  is the frequency dependent vegetation transmissivity, which is 

exp( )cT VOD  ; 2t    ;
doy

n
  ; ( ( ) 45)

( )(1 )
45

abs abs Lat
sign Lat


  ; doy is the day of year; n is the total days in a year, and 

Lat is the geographic latitude; fw is the fractional proportion (%) of standing water cover within a grid cell, and is used for 25 

minimizing open water impacts on the temperature retrievals. 

Besides the above updates, we performed additional fw calibration for improving the vsm retrievals in this study. As 

described above, the iterative retrieval algorithm proposed in (Jones et al., 2010) and revised in (Du et al., 2015) assumes dry 

soil conditions for estimating fw, VOD and atmosphere properties. Consequently, the fw retrieval is likely to be affected by a 

soil moisture signal when the simplified dry soil assumption is not fully satisfied. Therefore, an empirical calibration of 30 

AMSR-E/2 fw was made for the purpose of improving the soil moisture inversion as follows: (a) AMSR-E fw values for the 

non-frozen period over the 2003-2010 record were averaged for each 25-km grid cell and compared with an ancillary 
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MODIS 250-m MOD44W static fw map (Carroll et al., 2009); (b) the resulting AMSR-E fw summer average values were 

grouped into 1000 population ranges from 0.0 to 1.0 and 0.001 intervals; (c) for each group, mean AMSR-E fw and 

corresponding MOD44W values were calculated; and (d) relationships between AMSR-E and MOD44W fw retrievals were 

analyzed based on their mean group values and derived for two respective conditions: AMSR-E fw <0.15 and fw ≥0.15. Soil 

moisture was then estimated after open water correction using the calibrated fw record (denoted as
calfw ). The resulting 5 

empirical relationships were used for calibrating AMSR-E/2 ascending (PM) /descending (AM) fw estimates prior to their 

use in vsm retrievals against the MOD44W open water maps:  
3 2

_

2

_

4.4267 1.3447 0.4114 0.15

0.4683 1.0182 0.0458 0.15

cal PM

cal PM

fw fw fw fw fw

fw fw fw fw

   

                                                               (5) 

 
3 2

_

2

_

23.752 7.7518 0.1565 0.15

0.4014 0.9837 0.0422 0.15

cal AM

cal AM

fw fw fw fw fw

fw fw fw fw

    

    
                                                      (6) 

10 

Here we note that the ancillary MOD44W map was used solely for open water correction of the vsm estimates and is 

independent from the LPDR fw retrievals. 

2.3 Evaluation of the LPDR 

The resulting LPDR environmental parameters for non-frozen land surface conditions were evaluated based on their full-

year records (2003-2010 and 2013-2015) and following similar approaches used in previous studies (Jones et al., 2010; Du et 15 

al., 2015; Du et al., 2016a). The evaluations included analyzing the global distributions of climatological means and standard 

deviations (SD) of LPDR full-year records. The LPDR ascending and descending retrievals have similar spatial distributions, 

so only the ascending result maps are presented in the following analysis. For comparing with the LPDR results, similar 

climatological mean and SD maps (if applicable) from alternative reference data were utilized, including MOD44W fw, 

Normalized Difference Vegetation Index (NDVI) observations from the third generation Global Inventory Monitoring and 20 

Modeling System project record (GIMMS3g) (Tucker et al., 2005; Pinzon and Tucker, 2014), and Atmospheric Infrared 

Sounder (AIRS) PWV (Divakarla et al., 2006).  

Global seasonal cycles defined from monthly means and SD variations of the LPDR daily observations and full-year data 

records were compared against similar aggregations from the reference data, including GIMMS3g NDVI, and AIRS PWV. In 

particular, the vegetation seasonality indicated by VOD and NDVI was compared for the global domain and six major plant 25 

functional types.  

The LPDR derived fw composites over the 2003-2010 (representing AMSR-E) and 2013-2015 (representing AMSR2) 

periods were compared against the MOD44W static open water map. While the MOD44W record is used for surface water 

correction of Tb observations for the soil moisture retrievals (Eq. 5 and Eq.6), the correction is independent of the LPDR fw 

retrieval (Jones et al., 2010). The LPDR derived Tmx and Tmn estimates were compared with independent daily air 30 

Earth Syst. Sci. Data Discuss., doi:10.5194/essd-2017-27, 2017

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Discussion started: 18 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



6 

 

temperature measurements from 142 World Meteorological Organization (WMO) sites for selected years 2010 (representing 

AMSR-E) and 2013 (representing AMSR2). The LPDR derived PWV results were analyzed against AIRS PWV observations 

from the same 142 WMO site locations for the 2010 and 2013 periods. Finally, the LPDR derived daily vsm results were 

compared against independent surface soil moisture measurements from four regional soil station networks. The metrics 

used to evaluate agreement between the LPDR results and independent observations included correlation coefficient (R), root 5 

mean square error (RMSE) and bias.  

For evaluating LPDR consistency, only grid cells with high-quality retrievals were considered in the analysis, which 

excluded areas with higher vegetation biomass cover (VOD > 2.3 representing over 90% loss of underlying soil/open water 

signals from vegetation attenuation) or where the difference between V-pol and H-pol Tb retrievals at 18 GHz or 23 GHz was 

less than 1.0 K (i.e. indicating microwave signal saturation); grid cells containing large water bodies (fw > 0.2) were also 10 

excluded to avoid excessive contamination of the land signal by open water (Du et al., 2015; Jones, 2016).  Moreover, we 

divided 365 (366 for leap year) days of a year into 122 three-day periods; and for each three-day period selected for the 

consistency evaluation,  we required at least one high-quality retrieval within the period for each year of 2003-2010 and 

2013-2015 portions of record. Based on the above data selection criteria, the global monthly mean of the high-quality LPDR 

daily estimates were calculated for each month of the AMSR-E (2003-2010) and AMSR2 (2013-2015) full-year records and 15 

analyzed using statistical metrics including mean, SD and range. 

3. Data processing and ancillary datasets 

3.1. AMSR-E and AMSR2 Tb records used for land parameter retrievals  

Multi-frequency Tb observations from AMSR-E and AMSR2 provide the primary inputs for LPDR processing. The AMSR-

E sensor was launched on 4 May 2002 onboard the NASA EOS Aqua satellite and operated until 4 October 2011. AMSR-E 20 

was succeeded by AMSR2, which was launched on 18 May 2012 on-board the JAXA GCOM-W1 satellite. Both sensors 

provide global measurements of vertically (V) and horizontally (H) polarized microwave emissions at six frequencies (6.9, 

10.7, 18.7, 23.8, 36.5, 89.0 GHz) with descending/ascending orbital equatorial crossings at 1:30 AM/PM local time. Though 

succeeding most characteristics of its predecessor, AMSR2 is different from AMSR-E in several aspects including (a) an 

additional frequency at 7.3 GHz designed for mitigating Radio Frequency Interference (RFI); (b) a larger (2.0 m diameter) 25 

main reflector providing enhanced spatial resolution retrievals, and (c) an improved calibration system (Imaoka et al., 2010).  

For developing a consistent global land parameter record, the AMSR-E/2 Tb retrievals were pre-processed in four steps: (a) 

AMSR-E orbital swath Tb data from the Remote Sensing Systems (RSS) Version 7 product were spatially re-sampled and re-

projected to a 25-km resolution global Equal Area Scalable Earth (EASE) Grid Version 1 format following previously 

established methods (Armstrong and Brodzik, 1995; Ashcroft and Wentz, 1999; Brodzik and Knowles, 2002). In this study, 30 

an additional altitude correction of the Tb orbital swath retrievals was made to improve sensor footprint geolocation accuracy 

prior to the gridding process. The altitude correction to the AMSR2 L1R data considers the actual surface of the Earth 
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instead of an ideal Earth ellipsoid (Maeda et al., 2016), which helps to ensure reliable analysis of AMSR-E/2 land surface 

retrievals over high elevation areas, including the Qinghai-Tibetan Plateau; (b) a similar gridding process was performed on 

the AMSR2 L1R swath data; (c) the AMSR2 multi-frequency (X- to W-band) Tb retrievals were empirically calibrated 

against the same AMSR-E channels using similar overlapping Tb observations from the Microwave Radiation Imager 

(MWRI) on-board the Chinese FY3B satellite (Du et al., 2014). However, in contrast with Du et al. (2014) where the Tb 5 

calibration was conducted on per grid cell basis for each frequency, polarization and orbit, the approach used for this 

investigation involved calibrating within 5×5 grid cell windows to minimize the impact of the different sensor footprints. 

Both ascending and descending orbit X-band Tb data for a given polarization were calibrated together because the largest 

differences and lowest correlations were found between overlapping MWRI and AMSR-E/2 X-band observations among all 

sensor frequencies utilized (Du et al., 2014); the combined orbit X-band calibration was also found to produce better 10 

consistency between the AMSR2 ascending and descending X-band VOD retrievals, which are particularly sensitive to Tb 

calibration uncertainties, especially for higher vegetation biomass conditions; (d) finally, the gridded and calibrated AMSR-

E/2 Tb data were subjected to additional screening prior to implementing the retrieval algorithms to minimize potential noise 

effects from RFI, active precipitation, frozen conditions, and permanent ice and snow cover using previously established 

methods (Jones et al., 2010). The Tb screening under frozen land surface conditions was identified using an existing global 15 

daily freeze-thaw (FT) data record derived from a refined classification algorithm (Kim et al., 2017) and AMSR-E/2 36.5 

GHz V polarized Tb retrievals in a consistent 25-km resolution global EASE-grid projection format; the FT mask is 

represented as a grid cell-wise daily binary bit flag in the LPDR data set and was used to identify and screen frozen land 

surface conditions from further LPDR processing and retrievals.  

3.2. Ancillary data used for algorithm calibration and LPDR performance assessment  20 

A variety of ancillary data were used for calibrating the LPDR algorithms and evaluating LPDR global performance. The 

ancillary data included atmosphere PWV retrievals from AIRS (Divakarla et al., 2006), a static MOD44W open water map 

(Carroll et al., 2009), GIMMS3g NDVI (Pinzon and Tucker, 2014) and in situ surface soil moisture measurements from four 

globally distributed measurement networks (Jackson et al., 2010; Yang et al., 2013; Smith et al., 2012).  All ancillary data 

were re-projected to the same 25 km EASE-grid Version 1 format as the LPDR to facilitate algorithm calibration and 25 

product comparisons. 

The AIRS PWV products were used for LPDR PWV algorithm calibration and product comparisons. The LPDR iterative 

retrieval algorithm for PWV (Jones et al., 2010; Section 2.1) was empirically calibrated and quantitatively validated using 

synergistic PWV observations (version 6 level 2 swath product) from AIRS and the Advanced Microwave Sounding Unit 

(AMSU) instruments (Du et al., 2015). Both AIRS and AMSU are deployed on the Aqua satellite together with AMSR-E 30 

and have the same local overpass time as AMSR2.  The AIRS Version 6 product is expected to have higher accuracy than 

the previous AIRS Version 4 water vapor record, which shows retrieval uncertainties less than 15% in comparison with 

radiosonde measurements in 2-km troposphere layers (Divakarla et al., 2006; Diao et al., 2013).   

Earth Syst. Sci. Data Discuss., doi:10.5194/essd-2017-27, 2017

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Discussion started: 18 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



8 

 

For calibrating LPDR derived PWV, Tmx and Tmn retrievals over different land cover types, in-situ daily Tmx and Tmn 

measurements were obtained along with coincident AIRS PWV retrievals for year 2010 from 250 globally distributed WMO 

weather station locations (Fig.1). The spatial distribution of WMO stations selected was designed to be representative of 

major global land cover classes (Justice et al., 2002; Friedl et al., 2010). The WMO air temperature record was obtained 

from the National Climate Data Center (NCDC) Global Summary of the Day (GSOD version 7) using previously established 5 

criteria (Jones et al., 2010). The calibration was made for year 2010 and the derived relationships were applied to the entire 

AMSR-E/2 record. Independent daily air temperature measurements and collocated AIRS PWV retrievals from 142 other 

globally distributed WMO weather stations (Fig.1) operating from years 2010 to 2013 were selected for evaluation of LPDR 

derived Tmx, Tmn and PWV accuracy; relative consistency in performance between AMSR-E (represented by year 2010) and 

AMSR2 (represented by year 2013) portions of the LPDR record was also assessed.   10 

    The LPDR derived fw record was evaluated against the higher-resolution (250-m), global-scale MOD44W static open 

water product (Carroll et al., 2009). The MOD44W product is derived from a compilation of the SRTM (Shuttle Radar 

Topography Mission) Water Body dataset and the MODIS MOD44C Collection 5 (2000–2008) open water classification 

(Haran, 2005; Carroll et al., 2009).  The MOD44W map was re-projected and aggregated to the same 25 km EASE-grid 

format as the LPDR prior to the comparisons.  15 

    The LPDR derived VOD record was evaluated over the global domain using synergistic satellite optical-IR observations of 

vegetation greenness defined from NDVI. The GIMMS3g (version 1) global NDVI record derived from calibrated NOAA 

Advanced Very High Resolution Radiometer (AVHRR) sensor observations (Pinzon and Tucker, 2014) has been widely 

used in evaluating global vegetation status and changes (Zhu et al., 2016); the bi-monthly NDVI data were re-projected from 

their native 1/12 degree spatial resolution and geographic projection format to the same 25-km resolution global EASE-grid 20 

format as the LPDR for the 2003 to 2015 record. The NDVI is sensitive to changes in vegetation greenness and differs from 

LPDR derived 10.65 GHz VOD sensitivity to canopy biomass and water content variations, including both photosynthetic 

(e.g. foliar) and non-photosynthetic (e.g. stem and branch) elements (Jones et al. 2013). Both satellite NDVI and VOD 

records have been shown to provide similar synergistic canopy phenology metrics distinguishing both seasonal and spatial 

differences among different plant functional types (Jones et al. 2011). 25 

    The LPDR vsm retrieval accuracy was evaluated using a similar approach as (Du et al., 2016) by comparing the satellite 

X-band (10.65 GHz) daily soil moisture retrievals against collocated in situ surface soil moisture measurements from four 

globally distributed soil moisture measurement networks (Fig.1). The Little River network (LR; centroid 83.61
° 
W, 31.65

° 
N) 

has a humid climate representing forest, cropland and pasture vegetation (Jackson et al., 2010). The Little Washita network 

(LW; centroid 98.1
° 
W, 34.95

° 
N) has a sub-humid climate dominated by rangeland and pasture vegetation (Jackson et al., 30 

2010). A three-year (2003 to 2005) LR and LW daily soil moisture record representing surface (0-5 cm depth) soil layer 

conditions was used for this study. The Naqu (NQ; centroid 91.875
° 
E, 31.625

° 
N) soil moisture network was located on the 

Tibetan Plateau in western China. Surface soil moisture measurements extending from August 2010 to September 2011 from 

the NQ network were used for evaluating LPDR performance in an environment characterized as high elevation, with large 
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surface soil moisture variability and sparse vegetation (Chen et al., 2013; Yang et al., 2013). The Yanco (YC; centroid 

146.0915
° 

E, 34.842
° 

S) network is part of the larger Murrumbidgee Soil Moisture Monitoring Network (MSMMN) in 

Australia (Smith et al., 2012; Panciera et al., 2014) and represents a Southern Hemisphere semi-arid agricultural and grazing 

landscape; a two-year (2009-2010) YC surface soil moisture record was also used for this study. 

4. Results  5 

4.1 Fractional open water 

The LPDR fw composites (Fig. 2a) for non-frozen periods capture characteristic global inundation patterns consistent with 

the ancillary MOD44W static water map (Fig. S1), including extensive wetland complexes in the pan-Arctic region, 

Bangladesh and Argentina, and major river systems such as the Amazon, Mississippi, Yangtze, and Yenisei. Large fw 

seasonal variations (Fig. 2b) associated with seasonal precipitation and/or snow melt events occur over the Mississippi basin, 10 

Parana River Basin, northern Canada and Eurasia, Indian sub-continent, southern Tibet, and eastern China. The LPDR fw 

record also distinguishes dynamic flooding events not represented by the ancillary static water map, including extensive 

water inundation (Fig.2a) and large seasonal fw variations (Fig.2b) in Bangladesh where the summer monsoon brings large 

precipitation driven flooding (Brouwer et al., 2007).    

Quantitative comparisons of LPDR fw annual means in relation to MOD44W were made for respective AMSR-E (2003-15 

2010) and AMSR2 (2013-2015) full-year records (Table 1). Both AMSR2 and AMSR-E fw annual means show favorable 

spatial correspondence with the MOD44W results (R ≥ 0.75, RMSE ≤ 0.06). The LPDR inundated area percentage also 

shows a mean 1.50% wet bias relative to the MOD44W product, which may partially result from better LPDR microwave 

sensitivity to surface water dynamics, including water beneath vegetation (Du et al., 2016b). Higher LPDR fw levels along 

coastlines are due to larger water cover of coastal grid cells within the land mask. The LPDR results also show generally 20 

larger coastal fw levels than MOD44W, indicating ocean contamination of adjacent land grid cells within the coarser AMSR-

E/2 Tb footprint. 

4.2 Atmosphere precipitable water vapor  

The spatial distributions of LPDR PWV climatology mean (Fig.3a) and SD (Fig.3b) results derived from ascending orbit 

Tb retrievals and full-year observations were compared with benchmark satellite PWV retrievals from AIRS (Fig. S2). Both 25 

LPDR and AIRS PWV retrievals show similar global patterns and latitudinal distributions, with generally higher water vapor 

levels at lower latitudes and warmer climate zones, consistent with the near-exponential relationship between atmospheric 

temperature and moisture holding capacity, except for dry desert regions distinguished by lower characteristic PWV levels. 

Especially large PWV levels are observed over the Bay of Bengal and adjacent regions (Fig.3a) where a large amount of 

water vapor is transported by the summer monsoon (Uma et al., 2014). Large PWV seasonal variations (SD) are apparent in 30 
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regions with distinct dry and wet seasons, including the Indian sub-continent, eastern China and the African Sahel (Fig.3b); 

these spatial and temporal patterns are consistent between the LPDR and AIRS products.  The LPDR shows larger PWV 

seasonal variability in tropical rainforest regions (Fig.3b) than the AIRS observations, which is attributed to ill-conditioned 

LPDR retrieval associated with microwave signal saturation over dense vegetation cover. Overall, the LPDR and AIRS 

ascending and descending orbit derived PWV monthly means are highly correlated (R = 0.99) (Fig.4) with a major peak in 5 

the Northern Hemisphere summer months (July and August) and a secondary peak in the Southern Hemisphere summer 

months (January and February).  

The LPDR PWV retrievals were quantitatively validated against the AIRS observations at 142 global WMO weather 

station locations for years 2010 and 2013 (Table 2). The AMSR-E/2 retrievals show strong agreement with the AIRS PWV 

product (R ≥ 0.91; RMSE ≤ 4.99 mm), though a slight PWV over estimation and under estimation are indicated for respective 10 

AMSR-E (bias ≤ 0.27 mm) and AMSR2 (bias ≥ -0.27 mm) portions of record (Table 2).  

4.3 Daily maximum/minimum surface air temperature 

The LPDR derived global mean and SD variability maps for Tmx are presented in Figure 5, while the Tmn results show similar 

global and seasonal patterns. The LPDR results show characteristic global temperature patterns following major climate 

zones and latitudinal gradients, and similar to the PWV results (Fig. 3), but with generally greater surface spatial complexity 15 

influenced by proximity to coastal areas, vegetation and land cover conditions, and elevation-driven temperature lapse rates 

(Du et al., 2015). The LPDR results show expected smaller seasonal temperature variability (SD) near the equator and larger 

variability at higher latitudes, especially in the interior of large landmasses such as North America and Asia. The resulting 

temperature maps (Fig. 5) only represent non-frozen land surface conditions rather than complete annual cycles (i.e. sections 

2.3, 3.1).   20 

The LPDR derived Tmx and Tmn retrievals were validated against independent in-situ daily air temperature measurements 

from 142 global WMO weather stations for years 2010 and 2013 (Table 2). Overall, the LPDR temperatures corresponded 

favorably with the WMO temperature measurements (R ≥ 0.90; RMSE ≤ 3.48 ºC). The AMSR-E (2010) and AMSR2 (2013) 

retrievals show similar Tmx and Tmn retrieval accuracy, with associated RMSE differences within 0.16 K in relation to the 

WMO daily temperature measurements. These results indicate improved LPDR temperature accuracy relative to previously 25 

reported AMSR2 derived accuracies for Tmx (RMSE = 3.64 ºC) and Tmn (RMSE = 3.54 ºC) from a prior study (Du et al., 

2014); the higher LPDR temperature accuracy (RMSE ≤ 3.48 ºC) suggests an improvement in sensor inter-calibration and 

algorithm refinements (Section 3.1). However, the calibrated AMSR2 Tb is not identical to that of AMSR-E as reflected by a 

maximum 0.38 ºC difference in their Tmx and Tmn retrieval biases against WMO measurements (Table 2). To evaluate the 

impact of the fractional water corrections on the LPDR v2 air temperature retrievals, Eqs (1-4) were re-derived using the 30 

same procedure (section 2.2) but assuming zero fractional water cover. The results indicated approximately 13% improved 

RMSE performance in the Tmx and Tmn retrievals using the fw correction relative to air temperature retrievals derived without 

accounting for fractional water influence.  
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4.4 Vegetation optical depth 

The previous UMT LPDR v1 AMSR-E VOD record was assessed globally (Jones et al., 2011) and has been used for a range 

of regional ecosystem studies including vegetation phenology and disturbance recovery assessments (Liu et al., 2013, Jones 

et al. 2013, Jones et al. 2014). The VOD record can also be used as a data quality mask for the vsm retrievals because soil 

moisture retrieval accuracy is generally degraded under higher vegetation biomass levels (Du et al., 2016a). In this study, the 5 

LPDR derived VOD was compared with the GIMMS3g NDVI record based on an assumption of proportionality between 

vegetation canopy biomass and greenness variations (Jones et al. 2011). The LPDR VOD pattern and seasonal variability 

(SD) are generally consistent with the global pattern in vegetation cover indicated from the NDVI record (Fig. S3). The 

LPDR derived mean annual VOD results (Fig.6a) show characteristic global patterns in vegetation biomass, including higher 

VOD in tropical rainforests (e.g. Amazon Basin, Congo Basin Southeast Asia) and much lower VOD in arid and sparsely 10 

vegetated areas, including the Sahara and Sonoran deserts, and Central Australia. Moderate VOD levels occur in grassland, 

shrubland and cropland areas, including the Central USA, sub-Saharan Africa, central China and India. Larger VOD relative 

seasonal variability (Fig.6b) (i.e. VOD SD normalized by the mean; %) occurs over predominantly deciduous and lower 

biomass areas, including grassland, shrubland and cropland. Large VOD seasonal variations also occur in semi-arid climate 

zones with distinctive wet and dry cycles, including the African Sahel where plant growth depends on seasonal rainfall 15 

(Proud and Rasmussen, 2011). A few VOD change hotspots occur in wetland areas (e.g. Iberá Wetlands in Argentina and 

Bangweulu Wetlands in Zambia), which may reflect emergent vegetation overlying a standing water background during the 

wet season.  Lower VOD seasonality occurs in the tropics, consistent with a smaller seasonal climate cycle near the 

equatorial zone. Arid areas show generally low VOD levels and seasonality consistent with sparse vegetation cover, except 

for some areas, including portions of Arabian Peninsula, where relatively large VOD seasonality may be a result of irrigation 20 

activities (Siebert et al., 2005).  

Both VOD and NDVI display similar seasonal cycles represented by their mean monthly time series (R ≥ 0.88), but with 

temporal phase offsets in VOD and NDVI cycles for different land cover types (Fig.7). Here, the mean seasonal cycle in 

VOD and NDVI is depicted for major IGBP global land cover types, including evergreen needleleaf forest (ENF), evergreen 

broadleaf forest (EBF), deciduous needleleaf forest (DNF), deciduous broadleaf forest (DBF), grassland and cropland. The 25 

LPDR VOD and GIMMS3g NDVI comparison results are summarized in Table 3 and show strong correspondence for both 

ascending (0.67 ≤ R ≤ 0.90) and descending (0.84 ≤ R ≤ 0.95) orbit retrievals for ENF, DNF, grassland and cropland areas 

with relatively well-defined seasonal cycles. A VOD temporal phase shift relative to NDVI is evident for croplands and 

detectable for other land cover types, reflecting different vegetation biophysical properties that the microwave and optical-

infrared instruments are sensitive to (Jones et al., 2011, 2012). Weaker VOD and NDVI correlations in EBF regions coincide 30 

with lower characteristic canopy seasonality in the tropics, but may reflect degraded signal-to-noise due to persistent cloud 

and atmospheric aerosol effects limiting effective NDVI retrievals, and VOD and NDVI saturation over dense canopies 

(Jones et al., 2011). The VOD estimates derived from the descending orbit Tb retrievals also show overall stronger 

correspondence with NDVI than the ascending retrievals, especially for DBF regions (descending orbit R = 0.87; ascending 
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orbit R = 0.20). Differences in NDVI correspondence between the ascending and descending orbit VOD records may reflect 

regional VOD retrieval uncertainties contributed by deficiencies in the underlying LPDR algorithm assumptions and 

parameterizations, which are discussed below (Section 5). 

4.5 Soil Moisture 

The global soil moisture pattern depicted by the LPDR X-band vsm record (Fig. 8) is generally consistent with the known 5 

global climatology, including characteristically wet surface soil moisture conditions in northern high latitude areas and drier 

soil moisture extremes in deserts, and semi-arid regions such as the African Sahara, southwest USA, and central Australia. 

Wetter vsm conditions along coastal boundaries may reflect remaining ocean Tb contamination of adjacent land grid cells 

within the coarser sensor footprint despite explicit fw correction of the vsm retrievals. Relatively large seasonal soil moisture 

variations are associated with areas having distinctive wet and dry seasons, including the African Sahel, central USA, Indian 10 

subcontinent and southern Tibet. For arid regions such as central Australia, high relative (%) seasonal SD variability is due 

to low average vsm conditions. Lower vsm variability occurs over higher vegetation biomass (VOD) areas, including forests, 

where AMSR-E/2 soil moisture sensitivity and vsm retrieval performance are expected to be lower due to loss of soil 

sensitivity; the global range of effective vsm retrievals and other LPDR observations are represented by the data quality 

metrics described below (Section 5.2). 15 

    The LPDR vsm retrievals were compared against globally distributed validation watershed measurements (Table 4). The 

LPDR results show overall favorable vsm accuracy in relation to independent in situ soil moisture observations from the 

globally distributed monitoring sites within the effective LPDR domain (0.63 ≤ R ≤  0.84; 0.03 ≤ bias corrected RMSE ≤  

0.06 cm
3
/cm

3
). These results indicate similar or better accuracy than the reported performance of other AMSR-E soil 

moisture products (Jackson et al., 2010; Du et al., 2016a), and generally better LPDR performance for descending (AM) than 20 

ascending (PM) orbit vsm retrievals. 

5. Discussion 

The latest (v2) LPDR incorporates recent algorithm refinements and updates over the original baseline algorithms and data 

record (Jones et al., 2010), while also including an extended global data record spanning both AMSR-E and AMSR2 

observation periods (Jun. 2002 - Dec. 2015). The resulting data record produces global environmental patterns and seasonal 25 

dynamics consistent with characteristic climate and land cover variability; the LPDR also shows favorable agreement with a 

diverse set of independent observation benchmarks. The LPDR algorithms and parameter estimates are internally consistent 

and include an integrated set of environmental parameters representing atmosphere, vegetation, surface and soil conditions 

derived from simultaneous satellite multi-frequency Tb observations. The iterative algorithm and multi-parameter retrieval 

approach enable decomposition of the satellite observations into atmosphere, vegetation, standing water and soil moisture 30 
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components. In particular, the dynamic open-water (fw) correction in the LPDR algorithm benefits vsm retrievals over areas 

with significant spatial and seasonal inundation variability.   

5.1 LPDR data format 

The resulting LPDR is available in a 25-km resolution global EASE-Grid (v1) projection and GeoTIFF file format. The data 

files are organized by ascending and descending orbits on a daily basis. Each GeoTIFF file consists of six 2-D (1383 5 

columns, 586 rows) data arrays representing five float-type retrieval data bands (fw, Tmx or Tmn, cT , PWV, vsm) and one 

byte-type QC band. A set of product QC flags are included to inform the user about the estimated quality of retrieved 

parameters or missing data. The QC binary bit flags are summarized in Table 5 and indicate the presence or absence of the 

following land surface conditions: frozen ground (1
st
 bit), snow or ice presence (2

nd
 bit), strong precipitation (3

rd
 bit), RFI at 

18.7 GHz (4
th

 bit), RFI at 10.65 GHz (5
th

 bit), dense vegetation with VOD > 2.3  (6
th

 bit) large water bodies with fw > 0.2 (7
th
 10 

bit), and saturated microwave signals (difference between V-pol and H-pol brightness temperature at 18 GHz or 23 GHz less 

than 1.0 K) (8
th

 bit).  

5.2. Data record consistency  

The LPDR record described in this study extends from Jun. 2002 to Dec. 2015 and captures both short-term (diurnal, daily, 

annual) variability and longer-term (annual, decadal) climate trends over the global terrestrial environment for a diverse set 15 

of significant environmental parameters. Potential differences in Tb characteristics and algorithm performance between 

AMSR-E and AMSR2 portions of the LPDR are expected to introduce artifacts and degrade LPDR precision for analyzing 

long-term environmental changes. LPDR data consistency was examined through statistical comparison of best quality (QC) 

retrievals between AMSR-E and AMSR2 portions of record (Section 2.3); the global pattern and temporal frequency of 

estimated best QC retrievals are presented in Fig. 9. As summarized in Table S1, the land parameter retrievals have similar 20 

mean values, variations and ranges between the AMSR-E and AMSR2 portions of record, indicating general LPDR 

consistency and quality. However, the underlying Tb retrieval biases between the two sensors are not completely removed by 

the sensor inter-calibration process (Du et al., 2014), which may propagate to uncertainty in the higher order LPDR retrievals 

and trends.  For ascending retrievals, the AMSR2 biases relative to AMSR-E for LPDR parameters fw, PWV, Tmx, VOD, and  

vsm are about 0.00, -0.50 mm, -0.24 
o
C, -0.03 and -0.01 cm

3
/cm

3
, respectively; and for descending retrievals, the 25 

corresponding biases are 0.00, -0.45 mm, 0.13 
o
C, 0.01 and 0.01 cm

3
/cm

3
. The AMSR2 record also tends to have smaller 

PWV and VOD derived SD variability and ranges compared with AMSR-E (Table S1). Similar differences between AMSR-

E and AMSR2 retrievals are also evident in the validation assessments against the independent observations, including 

WMO surface air temperature measurements and AIRS PWV (Table 2).  
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5.3 LPDR Uncertainty 

While the v2 data record provides new refinements and enhancements over the earlier LPDR baseline, several product 

uncertainty and consistency issues remain unresolved. The LPDR VOD and vsm analysis (Section 4.4 and 4.5) indicated 

generally better performance for descending than ascending orbit retrievals. Better descending (~1:30 AM) performance may 

result from seasonal changes in thermal gradients between surface air, canopy and ground layer conditions through the 5 

process of leaf development (Durre and Wallace, 2001), which is not accounted for in the VOD retrieval algorithm (Jones et 

al., 2012). The AMSR-E/2 descending observations reflect relatively isothermal early morning conditions that promote 

better VOD and vsm performance relative to ascending observations under mid-day (~1:30 PM) conditions characterized by 

larger thermal gradients.  

The LPDR retrievals in more densely vegetated areas (e.g. VOD > 2.3) are expected to have greater uncertainty and 10 

should be used with caution; these areas are flagged in the LPDR QC data fields and distinguished from areas with expected 

higher quality retrievals (Fig. 9). In more densely vegetated areas, the higher frequency AMSR-E/2 Tb retrievals are more 

likely to have smaller polarization differences and signal saturation, resulting in less sensitivity to VOD and PWV, and higher 

retrieval uncertainties. For this reason, differences in VOD and PWV retrievals between AMSR-E and AMSR2 may be 

magnified over more densely vegetated areas where sensor inter-calibration uncertainties further lower the signal-to-noise. 15 

Denser vegetation cover also promotes stronger attenuation of underlying soil/water microwave signals, increasing vsm 

retrieval uncertainty in these areas (Du et al., 2016a). Similarly, the retrieval accuracy for standing water with overlying 

vegetation cover, a different scenario from exposed open water with surrounding vegetation cover assumed in this study, is 

expected to decrease exponentially under higher VOD levels (Du et al., 2016b). The land parameter grid cells and retrievals 

along coastlines and other large water bodies are likely to be affected by water contamination of the coarse sensor Tb 20 

footprint, though these effects are partially accounted for by representation of fw on the associated land parameter retrievals 

within a grid cell. Regions with larger fw cover may have higher retrieval uncertainties, which are represented as a water flag 

(fw > 0.2) in the LPDR quality mask (Fig. 9).  

The AMSR2 and AMSR-E Tb records used for this study were previously calibrated (Du et al. 2014), but remaining 

artifacts from the different sensor spatial resolutions and instrument calibration systems likely contribute to differences in 25 

land parameter characteristics and performance between the two sensor periods of record. Though small in quantity, the 

AMSR2 retrieval biases relative to AMSR-E (Table 2 and Table S1) should be considered when analyzing long-term 

environmental trends. Differences in parameter accuracy and performance between AMSR2 and AMSR-E observations and 

a limited (12.5 years) LPDR (v2) period of record constrain capabilities for assessing subtle environmental trends. Future 

LPDR releases are expected to benefit from continuing AMSR2 operations and calibration refinements to the integrated 30 

AMSR-E/2 Tb record, enabling more accurate environmental change assessments.  
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6. Conclusions 

We developed an extended global land parameter data record for ecosystem studies using similar, calibrated satellite multi-

frequency and polarization Tb retrievals from AMSR-E and AMSR2. The latest (v2) LPDR represents an advance over a 

prior (v1) product release by incorporating recent algorithm refinements and an extended (Jun. 2002 – Dec. 2015) satellite 

observation record. The LPDR algorithms are internally consistent and rely on AMSR-E and AMSR2 brightness 5 

temperatures as primary inputs. The algorithms exploit the strong microwave sensitivity to liquid water in the landscape, and 

variable sensitivity of different Tb frequencies and polarizations to vegetation, soil and atmosphere elements to derive a set of 

synergistic daily land parameters, including vsm, fw, VOD, Tmx, Tmn and PWV. The resulting data record shows favorable 

accuracy and performance in relation to a diversity of other observation benchmarks. However, small but significant 

differences were found between the AMSR-E and AMSR2 portions of record due to artifacts from cross-sensor calibration; 10 

these effects should be considered when interpreting environmental trends from the long-term record. The LPDR provides 

global coverage and up to twice-daily observations for non-snow/ice covered land surface conditions. The data are publicly 

available with detailed documentation and data quality information, and with suitable precision to support a range of 

environmental studies. Example LPDR applications from the literature include land surface phenology monitoring, vector 

borne disease risk, surface hydrology and drought severity, and climate change related assessments. Continuing operations 15 

from AMSR2 and similar microwave sensors allow for future LPDR extensions, while further calibration refinements and a 

longer data record are expected to yield additional gains in precision and product utility for distinguishing and diagnosing 

global environmental changes. 

Dataset availability 

The AMSR-E/2 derived LPDR described in this study is publicly available through the following link 20 

http://files.ntsg.umt.edu/data/LPDR_v2 . 
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 5 

Figure 1: Global distribution of WMO weather station locations where collocated AIRS observations and WMO air temperature 

measurements were used for calibrating (white circles) and validating (red circles) the LPDR PWV, Tmx and Tmn estimates; the 

locations of the four independent soil moisture networks used for validating the LPDR vsm retrievals are also shown (blue circles).  
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Figure2:  LPDR fractional water mean (a) and temporal SD variability (%) (b) over years 2003-2010 and 2013-2015. 
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 Figure 3: LPDR PWV climatology mean (a) and SD seasonal variability (b) from the combined 2003-2010 and 2013-2015 record. 

 5 

Figure 4: LPDR and AIRS PWV monthly means and seasonal variability (2 times standard deviation or 2 ×SD) over the globe and 

combined 2003-2010 and 2013-2015 period. 
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Figure 5: LPDR Tmx mean (a) and temporal standard deviation (b) for years 2003-2010 and 2013-2015.  
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Figure 6: Annual mean (a) and seasonal SD variability (b) of LPDR 25-km global X-band VOD daily estimates from AMSR-E/2 

ascending observations encompassing years 2003-2010 and 2013-2015. 5 
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Figure 7: Monthly means and variations (2 ×SD) of LPDR X-band vegetation optical depth (VOD) and GIMMS3g NDVI  for all 5 

global vegetation (a) and selected land cover types, including ENF (b), EBF (c), DNF (d), DBF (e), grassland (f) and cropland (g) 

areas over the aggregate 2003-2010 and 2013-2015 observation period. 

 

(a) global 

(b) ENF (c) EBF 

(d) DNF (e) DBF 

(f) grassland (g) cropland 
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Figure 8: LPDR 25-km X-band volumetric soil moisture (vsm) mean (a) and standard deviation (SD) in percentage of mean values 

(b) derived from the aggregate 2003-2010 and 2013-2015 observation record.  
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Figure 9: Temporal frequency distribution map of estimated high quality (QC) retrievals, which exclude areas with dense 

vegetation (VOD > 2.3), saturated microwave signals (V-pol and H-pol Tb difference at 18 GHz or 23 GHz less than 1.0 K) and 

large water bodies (fw > 0.2). 
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Table 1: Comparisons of fw global averages over AMSR-E (2003-2010) and AMSR2 (2013-2015) periods in relation to the 

MOD44W static open water map. All products were projected into a consistent 25.0 km resolution EASE-GRID format; positive 

and negative bias indicates fw over- and under- estimation, respectively, relative to the static water map. 

 

AMSR-E/2 fw vs MOD44W 

             R*          RMSD*           Bias 

 Asc* Dsc* Asc* Dsc* Asc* Dsc* 

AMSR-E 0.77 0.75 0.06 0.06 0.02 0.01 

AMSR2 0.79 0.78 0.05 0.05 0.02 0.01 

* R denotes Pearson correlation coefficient; RMSD denotes Root Mean Square Difference; Asc and Dsc denote respective ascending 5 

and descending orbits. 

 

 

Table 2: LPDR daily 
mnT , 

mxT  and ascending/descending orbit based PWV accuracy in relation to respective in-situ air 

temperature measurements and AIRS PWV observations for 142 global WMO site locations for selected years 2010 (AMSR-E) 10 

and 2013 (AMSR2). 

 

                      Tmx (ºC)                        Tmn (ºC) 

    RMSE  Bias*    RMSE  Bias 

AMSR-E 0.93 3.43 0.64 0.90 3.31 0.06 

AMSR2 0.92 3.48 0.26 0.90 3.15 0.27 

 PWV (mm) from Ascending Orbits PWV (mm) from Descending Orbits 

    RMSE  Bias    RMSE  Bias 

AMSR-E 0.93 4.24 0.27 0.92 4.79 0.20 

AMSR2 0.91 4.61 -0.27 0.92 4.99 -0.20 

 

 *Bias is calculated from retrievals minus observations. 

Table 3: Pearson correlations [R] between LPDR VOD and GIMMS3g NDVI climatology monthly means for the aggregate 2003-15 

2010 and 2013 to 2015 observation record. The comparisons were made for all global vegetation and selected land cover areas, 

including: ENF, EBF, DNF, DBF, grassland and cropland. Both products were projected into a consistent 25.0 km resolution 

EASE-GRID format. VOD results are delineated for LPDR ascending and descending orbit records. 

 

Pearson correlation coefficient Global ENF EBF DNF DBF Grassland Cropland 

Ascending 0.88 0.71 0.22 0.89 0.20 0.90 0.67 

Descending 0.94 0.90 -0.12 0.94 0.87 0.95 0.84 

 20 
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Table 4: Summary of satellite LPDR soil moisture retrieval accuracy in relation to in situ surface soil moisture measurements 

from four globally distributed validation watersheds. 

Statistics 
Little River 

(USA; 2003-2005) 

Little Washita 

(USA;2003-2005) 

Naqu (China; 

2010-2011) 

Yanco (Australia; 

2009-2011) 

All Sites* 

Ascending Orbits 

R 0.63 0.76 0.79 0.76 0.82 

RMSE* 0.04 0.04 0.05 0.06 0.05 

Bias 0.04 0.05 -0.10 -0.04 0.01 

Descending Orbits 

R 0.70 0.73 0.83 0.79 0.84 

RMSE* 0.03 0.04 0.04 0.06 0.04 

Bias 0.07 0.09 -0.06 -0.03 0.04 

R is coefficient coefficient; RMSE (Root Mean Square Error) and Bias are in cm3/cm3. *RMSE and All 

Sites statistics except bias are calculated with watershed bias corrected. 

 

Table 5: LPDR data quality flag description.  
 5 

Bit number Land surface condition Indication 

1st Frozen ground No LPDR retrieval 

2nd Snow or ice presence No LPDR retrieval 

3rd Strong precipitation No LPDR retrieval 

4th RFI at 18.7 GHz No LPDR retrieval 

5th RFI at 10.65 GHz No LPDR retrieval 

6th Dense vegetation with VOD > 2.3 Possible large retrieval uncertainty 

7th Large water bodies with fw > 0.2 Possible large retrieval uncertainty 

8th Saturated microwave signals  with V-pol 

and H-pol Tb difference at 18 GHz or 23 

GHz less than 1.0 K Possible large retrieval uncertainty 

 

 

 

Earth Syst. Sci. Data Discuss., doi:10.5194/essd-2017-27, 2017

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Discussion started: 18 April 2017
c© Author(s) 2017. CC-BY 3.0 License.


