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Abstract. In this paper, we present a database of the basic regimes of the carbon cycle in the ocean as obtained using a data 

mining/pattern recognition technique in observation-based as well as model data. Advanced data mining techniques are 

becoming widely used in Climate and Earth Sciences with the purpose of extracting new meaningful information from large 10 

and complex datasets. Such techniques need to be rigorously tested, however, in simple, well-understood cases to better assess 

their utility. This is particularly important for studies of the global carbon cycle, where the interaction of physical and 

biogeochemical drivers confounds our ability to accurately describe, understand, and predict CO2 concentrations and their 

changes in the major planetary carbon reservoirs. In this proof-of-concept study, we focus on using well-understood data that 

are based on observations, as well as model results from the NASA Goddard Institute for Space Studies (GISS) climate model. 15 

The clustering algorithm organizes the observation-based data into various regimes, the “ocean carbon states”, which are 

shown to be associated with the subtropical-subpolar gyre during the colder months of the year and the tropics during the 

warmer season in the North Atlantic basin. Conversely, in the Southern Ocean, the ocean carbon states can be associated with 

the subtropical and Antarctic convergence zones in the warmer season and the coastal Antarctic divergence zone in the colder 

season. Additionally, the carbon states are used to assess physical and biogeochemical processes in the model. We find that 20 

the GISS model reproduces the cold and warm season regimes more skillfully in the North Atlantic than in the Southern Ocean 

and matches the observed seasonality better than the spatial distribution of the regimes. The ocean carbon states can be further 

used to illustrate and characterize the model biases in the air-sea flux of CO2. In the North Atlantic, GISS model biases are 

dominated by the wind speed and salinity biases in the subpolar region due to misrepresentation of the cyclonic wind stress 

curl and the sea-ice retreat. We also find nitrate and wind speed biases in the subtropics and tropics that are explained, 25 

respectively, by inaccurate representations of nitrate utilization and the biases associated with equatorial atmosphere-ocean 

interaction processes. The Southern Ocean flux bias is dominated by nitrate because of a mischaracterization of the nitrogen 

cycle in the model. The goal of this proof-of-concept study is to introduce the means by which well-known characteristics of 

the ocean carbon cycle in the North Atlantic and Southern Ocean basins can be reproduced, and thereby establish a 

methodology for using cluster analysis with larger, higher frequency datasets. All data and analysis scripts are available at 30 

data.giss.nasa.gov/oceans/carbonstates/ (DOI: 10.5281/zenodo.996891) 

mailto:rl2797@columbia.edu
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1 Introduction 

The ocean carbon cycle plays an important role in controlling the airborne fraction of CO2 in the atmosphere, thereby regulating 

the rate of global warming, i.e. the rising temperatures in the Earth’s troposphere. In this paper, we seek to present and assess 

a data mining/pattern recognition technique, namely cluster analysis, for the purpose of defining the basic regimes, or “ocean 

carbon states”, that describe the oceanic carbon cycle variability. 5 

  

For geophysical applications, climate datasets have inherent complexities that are not easily identifiable in the age of “big” 

data. Cluster analysis is a highly effective uni- or multivariate classification method for large, high frequency data sets because 

it can find structure in a body of complex, geophysical data (Anderberg, 1973; Peron et al., 2014).  Clustering seeks to identify 

the critical modes and natural patterns of a dataset without any training or predetermined spatial-temporal guidelines, therefore 10 

it is an “unsupervised” graph theory method.  The merit of a novel, unsupervised method such as clustering is that it can 

recognize connectivity between multiple variables. This can be understood as connectivity in a temporal sense where cluster 

analysis can identify joint interannual or seasonal patterns and in a spatial sense where clustering has the power to identify 

patterns that relate different regions or basins (Jain, 2010; Phillips, 2015). 

 15 

Traditional methods of univariate analysis, such as principal component analysis or spectral decomposition, cannot fully 

describe important physical states of the climate system or adequately detect change (Hoffman et al. 2011) because these 

methods neglect interactions between state variables as well as spatial and temporal co-variability. In contrast, cluster analysis 

has been successfully applied to various dynamical systems in order to extract the organized states and detect change as well 

as in novel applications of model-data intercomparison (Hoffman et al, 2008). For example, this technique has been used to 20 

define atmospheric weather states by identifying cloud regimes (Jakob and Tselioudis, 2003; Rossow et al., 2005; Williams 

and Webb, 2009; Tselioudis et al., 2013; Bodas-Salcedo et al., 2014; Oreopoulos et al., 2016). Bankert and Solbrig (2015) 

were able to extract a three-dimensional cloud representation using cluster analysis. This technique has also been used to 

characterize water types in lakes (Trochta et al., 2014), hydraulic habitat composition in rivers (Hugue et al., 2015), phenology 

patterns in forests (Trans Mills et al., 2011), solar variability (Zagouras et al., 2012), ENSO phenomena (Radebach et al., 25 

2013), and regions with characteristic hydrological response (Halverson and Fleming, 2014), among many other applications.  

 

Beyond identifying regimes, cluster analysis can be useful in model assessment applications, like that of Wood et al. 2015, 

which used weather states derived from cluster analysis for process studies, satellite calibration, and model evaluation. Both 

regime identification and model evaluation are the focus of the cluster analysis presented in this paper as well.  30 

 

Elsewhere in ocean carbon cycle science, clustering-type methods (self-organizing maps and neural networks) have been used 

to build reconstructions or as regression analysis alternatives for surface ocean pCO2 (Lefevre et al., 2005; Telszewski et al., 
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2009; Sasse et al., 2013; Landschützer et al., 2013, 2014; Nakaoka et al., 2013). Unlike these studies, here we seek to obtain 

the co-variability maps and conditions of different ocean related variables and understand where, why and how they change. 

Other non-statistical studies, but similar in concept to multivariate regime identification, have focused more on larger scale 

geographic variations (Fay and McKinley, 2014; Trochta et al., 2015) than on the regional aspects of the ocean biogeochemistry 

and its interaction with physical circulation like in the western boundary current regions, in the upwelling zones on the eastern 5 

boundaries, and in the eddying field.  

 

The structure of the paper is as follows. Section 2 describes the data sets used in this study, both the observation-based sources 

as well as the model experiments. Section 3 presents the k-means cluster analysis methodology and application, including 

discussion of the k-means clustering technique and sensitivity to number of clusters chosen, to binning, and to data 10 

normalization. The results of the methodology are provided in section 4. Section 4.1 focuses on how the methodology is applied 

in observations from the North Atlantic basin. The observed ocean carbon states are then characterized temporally and spatially 

in order to reveal their physical meaning. Next, the model carbon states are computed and characterized in a similar way as 

the observations. Using the ocean carbon states, model biases are also discussed and evaluated. Section 4.2 repeats the analysis 

presented in Section 4.1, but now applied to the Southern Ocean. Finally, general discussion and conclusions are provided in 15 

Section 5. A note about the figures in the paper: some interesting but non-critical figures are offered in the Supplemental 

Material and are denoted as Fig. S#. All data and analysis scripts are available at data.giss.nasa.gov/oceans/carbonstates/ 

website (DOI: 10.5281/zenodo.996891) 

 

2. Data  20 

Choice of variables to represent ocean carbon regimes 

One critical question to answer at the onset of any clustering analysis is what key geophysical variables should be used to base 

the analysis on. For the purposes of this study, we picked sea surface temperature (SST) and partial pressure of CO2 in the 

ocean surface water (pCO2SW). The rationale for this choice will be explained now. There are two main pathways that determine 

the ability of the ocean to take up CO2 (Sarmiento and Gruber, 2006): the chemical disequilibrium, expressed by pCO2, 25 

dissolved inorganic carbon (DIC = the sum of all inorganic carbon species) and nutrients, and the physical processes, such as 

air-sea interaction (expressed by the wind speed) and ocean circulation (expressed by sea surface temperature and salinity). 

Greater insight into the ocean’s biogeochemical processes that control these pathways can inform the improved use of field 

measurements, the development of better metrics for model evaluation, and the selection of more suitable parameterizations 

in climate models in order to provide more accurate predictions. We select pCO2SW and SST because they are able to represent 30 

a broad range of biogeochemical and physical processes. We use them in cluster analysis to find temporal and spatial patterns 

https://doi.org/10.5281/zenodo.996891
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in their joint parameter space that can be used to understand CO2 flux distributions and its fluctuations. Other variables pairs 

can be alternatively used here; a comparison between choices is set aside for future work. 

 

This study will focus on two oceanic basins, namely the North Atlantic (defined as 80°W to 45°E, 0° to 90°N) and the Southern 

Ocean (defined as 180°W to 180°E, 90°S to 40°S), because of their importance in the global carbon cycle (Takahashi et al., 5 

2009). 

2.1 Observation-based data 

Air-Sea flux of CO2 and pCO2, surface wind speed, sea surface temperature and salinity 

The 12-month climatology of the air-sea flux is obtained from the Carbon Dioxide Information Analysis Center (LDEO 

database (NDP-088); Takahashi et al., 2009). It is derived from the difference between surface water pCO2 (pCO2SW), air 10 

pCO2, and the air-sea gas transfer rate. Surface water pCO2 climatological mean distribution was obtained from 3 million 

measurements from 1970 to 2007, and normalized to a reference year 2000. The pCO2 of the air is computed from the 

GlobalView CO2 concentration zonal mean, NCAR monthly mean barometric pressure, SST, and salinity. Other variables in 

the data set pertinent to this analysis are wind speed (derived from the 1979-2005 climatological mean NCEP-DOE AMIP-II 

Reanalysis wind speed field), climatological sea surface temperature (from NOAA Climate Diagnostic Center Objective 15 

Interpolation), and salinity (from the NODC World Ocean Database 1998). All variables are available as a 12-month 

climatology at a 4⁰ x 5⁰ resolution.  

Nitrate  

The nitrate monthly climatology at 1 degree horizontal resolution is obtained from the World Ocean Atlas 2013 version 2 

(Boyer et al., 2013). It is collected from in situ measurements at standard depth levels and is available as annual, seasonal, and 20 

monthly climatologies. Nitrate is an essential nutrient that limits the growth of phytoplankton, which is responsible for fixating 

carbon dioxide from the atmosphere. Therefore, pCO2 levels in the surface ocean depend partially on the abundance of nitrate. 

 

2.2 Numerical Simulations 

The NASA-GISS modelE2.1 output used for this analysis comes from 5 ensemble coupled model simulations of the 20th 25 

Century with realistic greenhouse gas, aerosol, land use and solar forcing, as used in CMIP5 experiments. The model physics 

is somewhat different than the modelE2 used in the CMIP5 experiments mostly due to improved representation of the ocean 

mesoscale mixing. The physical ocean and the biogeochemistry modules are described in detail in Romanou et al (2013; 2017). 

Briefly here we note that the ocean model is a non-Boussinesq mass-conserving ocean model with 32 vertical levels and 

1°x1.25° horizontal resolution. The vertical coordinate is a stretched z-level coordinate and has a free surface and natural 30 
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surface boundary fluxes of freshwater and heat that are obtained by the atmospheric model. In addition to advection and 

turbulent mixing, it also includes a scheme for isopycnal eddy fluxes and isopycnal thickness diffusion. The interactive ocean 

carbon cycle model consists of a biogeochemical model (NASA Ocean Biogeochemistry Model (NOBM) Gregg and Casey, 

2007) and a gas exchange parameterization for the computation of the CO2 flux between the ocean and the atmosphere 

(Romanou et al., 2013). Specifically, the air-sea exchange of CO2 (Sarmiento and Gruber, 2006; Takahashi et al., 2009) is 5 

described by Eq. (1): 

F = kwK0(pCO2atm - pCO2sw )               (1) 

where kw is the piston velocity for CO2 (in ms-1) that depends on the wind speed, K0 is the solubility coefficient- dependent 

on sea surface temperature (SST) and sea surface salinity (SSS) (expressed in mole,CO2kg-1atm-1)- and pCO2 is the partial 

pressure of CO2 (Wanninkhof et al., 2013) in the atmosphere (atm) and the surface ocean (sw). Eq. (1) describes the chemical 10 

disequilibrium of CO2 in the oceanic and atmospheric reservoirs due to the solubility and biological pumps. As discussed in 

Sarmiento and Gruber (2006), the pCO2SW in Eq. (1) is a function of temperature and salinity, wind speed, DIC, nutrients, and 

alkalinity (a measure of the excess of bases over acids) which can be expressed as follows:  

pCO2sw = f (SST ,SSS,DIC,windspeed,nutrients,alkalinity)         (2) 

NOBM utilizes ocean temperature and salinity, mixed layer depth and the ocean circulation fields, and the horizontal advection 15 

and vertical mixing schemes obtained from the host ocean model as well as shortwave radiation (direct and diffuse) and surface 

wind speed obtained from the atmospheric model to produce horizontal and vertical distributions of several biogeochemical 

constituents. The carbon submodel parameterizes the cycling of carbon through the phytoplankton, herbivore and detrital 

components, affecting the dissolved inorganic and organic carbon in the ocean and interacting with the atmosphere.  Alkalinity 

is assumed analogous to surface salinity, which is an acceptable approximation for the sea surface but does not take into 20 

account changes in the carbonate pump. Temperature and salinity are affected only by physical processes such as circulation, 

advection, eddy mixing and stirring, and local upwelling/downwelling while DIC distributions are influenced by all these 

physical processes and also several biogeochemical processes such as air-sea gas exchange, production by organisms, 

biological export to depth and remineralization there and nutrient availability in the water column. Atmospheric pCO2 

(pCO2atm) is the saturation concentration of CO2 in equilibrium with a water–vapor-saturated atmosphere at a total atmospheric 25 

pressure P and a given atmospheric pCO2 level:  

pCO2𝑎𝑡𝑚 =
𝑃

𝑃0  𝐶𝑂20                    (3) 

where P0 = 1 atm and [CO2]0 is the saturation concentration at 1 atm total pressure. 

The gas transfer velocity is given by 

𝑘𝑤 = 𝑐(
𝑆𝑐

660
)−1/2𝑤𝑠𝑝𝑑2                              (4) 30 

where wspd is the surface wind speed and c is the piston velocity coefficient taken here equal to 0.337/(3.6x105). The value of 

c has been agreed upon by the Ocean Carbon Model Intercomparison Project, phase II (OCMIP-II) so that the global, annual 

mean gas transfer coefficient for carbon dioxide (kw, K0) is equal to 0.061 mol/m2/yr/l atm for preindustrial times. Sc, the 
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Schmidt number, is computed using the temperature of the host ocean model following Wanninkhof (1992). The gas transfer 

velocity kw is computed only over open water. The solubility of CO2 in the water K0 is also parameterized based on OCMIP 

using prognostic temperature, salinity and sea level pressure. In these model runs, the global average of the atmospheric 

concentration of CO2 follows the Mauna Loa measurements (Dlugokencky and Tans, 2014), although regionally atmospheric 

CO2 is allowed to vary due to the distributions of the ocean sources and sinks.  5 

 

The five ensemble member runs were averaged into one ensemble mean to account for the intrinsic climate variability that is 

not adequately resolved in climate models of low spatial resolution. The model output for the years 1995 – 2005 was then 

averaged again to produce a 12-month climatology for the purpose of direct comparison with the observationally based data 

in the Takahashi database.  10 

 

The model output and the observational data were interpolated onto the same grid, which is the Takahashi ocean grid at 4x5 

degree resolution, with no Arctic Ocean, and the ocean mask was conformed across all observational and model data sets.  

 

In the rest of the paper, some conventions with regards to nomenclature should be noted. Firstly, the Takahashi carbon flux, 15 

pCO2 and ancillary data as well as the nitrate climatology will be referred to as “observations”, for brevity, keeping in mind 

that they are really observation-based estimates and not direct observations. Secondly, “model” will exclusively refer to the 

numerical simulations using the NASA-GISS climate model and by “algorithm”, “method” or “technique” we will refer to the 

clustering technique. 

 20 

All data products are available in the Ocean Carbon States Database (data.giss.nasa.gov/oceans/carbonstates). 

 

3. Methodology  

A schematic diagram of the methodology is presented in Fig. 1. First, the 2D histograms pCO2-SST are computed from the 

climatological data, then the histograms are clustered using a statistical method, the k-means clustering method, and finally 25 

the regimes or “ocean carbon states” are obtained. The methodology steps will be explained in detail below, using as an 

example the North Atlantic basin data. 

 

(Figure 1) 

 30 
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pCO2-SST 2D histograms 

pCO2SW values in the North Atlantic span the range 50-450 uatm while sea surface temperatures range between -2 and 30⁰ C. 

The 2D histograms (Fig. 2) show highest frequency of occurrence for pCO2sw values in the range of 300 to 400 uatm and 

temperatures in the range of 10 to 300C. Certain months (December, January, February and March) show a higher frequency 

of occurrence of cold temperatures (-2 to 20C) and low pCO2sw (50 to 300 uatm) than others. Fig. 2 also reveals that certain 5 

histograms appear similar in shape, for example, January – April exhibit an S-shaped curve and no tilt, while June – September 

exhibit a diagonal tilt that reflects a tendency for higher temperatures to co-locate with higher pCO2sw values. This being a 

small dataset of only 12 2D histograms, one could easily sort them into groups of similar shape just by visual inspection only. 

The methodology presented in this paper seeks to more mechanistically identify these groups, so that it can be confidently 

applied to larger and more complex datasets. We will call those organized groups, clusters or regimes or “ocean carbon states”. 10 

 

(Figure 2) 

 

It is noted here that despite the broad range of values for both variables, the 2D histograms are very similar regardless of the 

number of bins chosen for each of the variables. 15 

 

k-Means clustering 

The k-means clustering algorithm (Anderberg, 1973; Jakob and Tselioudis, 2003) partitions the 2D histograms of pCO2-SST 

shown in Fig. 2 into a predefined number k of groups, called clusters. In the first step of the algorithm, k histograms are 

randomly selected and are considered the centroid of each of the k clusters. Each other histogram in the input dataset is then 20 

assigned to its nearest centroid by computing the Euclidean distance of each bin of the 2D histogram from the same bin of the 

centroid. The procedure is repeated N number of iterations, each time the centroid of the resulting group is recalculated, if 

doing so reduces the sum of distances of each histogram to the centroid. This iterative procedure stops when the squared 

distance between the mean of each cluster and all the 2D histograms assigned per cluster is minimized (Jain, 2010). More than 

one iteration (N) is necessary to have convergent clustering results because each analysis initializes at a random cluster 25 

centroid. In this paper, convergence is reached after 10 iterations, if not less (Fig. S1 shows how this is determined for the 

example of the North Atlantic basin).  

 

Sensitivity to predefined number of clusters   

To ensure that the chosen number of clusters, k, is representative of the system, typically, one needs to repeat the technique 30 

for various values of k, and, using visual inspection, select the optimal value for k when the resulting clusters become repetitive 

or contain no additional information. Objective methods have been proposed (e.g. Bankert and Solbrig, 2015), where the 

average radius of each cluster (the distance from the centroid to the most distant member within a cluster) is computed for 

decreasing k. Bankert and Solbrig (2015) found that when the number of clusters falls below the optimal k, the average radius 
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grows rapidly. We employ a similar methodology here. First, we use a scoring algorithm that computes the distance of each 

2D histogram from the centroid of its cluster. The higher the score, the closer the 2D histograms are to the centroid.  The 

maximum score is 1 which indicates a perfect match.  Negative or low values indicate poorly matched histograms that are the 

farthest from the centroid in the cluster. We run the scoring algorithm for k = 2 through k = 12, since we have 12 2D histograms 

and therefore there can be up to 12 clusters. Fig. 3a shows the scores only for k = 2, k = 3, and k = 4 as examples of the output 5 

of the scoring algorithm. We find that for k=2 and k=3 all 2D histograms are well matched within a cluster (i.e. all scores are 

high) whereas for k=4 there is one month with a negative score. To further summarize the scoring results, we average all scores 

for each k and normalize by k. The results are shown in Fig. 3b where we note that the averaged normalized score for k=2 is 

0.4 and it then quickly drops to 0.2 for k=3 and to 0.1 for k=4 and it plateaus after that. We choose as the optimal number of 

clusters the k with the highest score and no significant change of the normalized averaged score thereafter.  This choice implies 10 

that any reorganization of the 2D histograms within more than 3 clusters will not produce any “tighter” clusters, i.e. clusters 

where the members are closer together. We must note here, that the method is not entirely objective as one always need to 

visually inspect the clusters themselves and ensure that the choice of k is indeed the best one. 

 

Figure 3 15 

 

Data normalization 

As noted earlier, pCO2 and SST have a broad range of values. Specifically, pCO2 values vary by about 2 orders of magnitude 

between 50-450 uatm while SST by one order of magnitude between -2 and 30⁰C. It is customary in applications of statistical 

techniques such as clustering, to normalize the data (subtract the mean and divide by the standard deviation) in order to force 20 

both datasets to be in the same range of values. However, this is not always necessary (Anderberg, 1973, p. 13; Kaufman et 

al, 2005, p. 11). In our case, we are not clustering each variable separately in order to determine regression coefficients (as in 

Lefevre et al., 2005). Rather, we are clustering the 2D histograms and comparing them, in order to obtain groups of similar 

patterns. In addition, clusters represented in normalized data are not as easily understood physically and as well-represented 

on geographical maps. Therefore we choose not to normalize the data for the purposes of this study.  25 

4. Results 

4.1 The North Atlantic Ocean Carbon States  

Figure 4 depicts the regimes for k = 2, k = 3, and k = 4. When only two clusters are predefined, i.e. for k = 2, the first cluster 

(Regime 2A, Fig 4a) is dominated (30% of the time) by pCO2-SST pairs in the ranges of 350 – 400 uatm and 25-30⁰C. The 

second cluster (Regime 2B) is dominated (20%) by pCO2SW values within 300 – 350 uatm and SST values in the ranges -2-30 

20⁰C. When we choose more clusters initially, i.e. for k=3, Regime 3B is very similar to Regime 2A and Regime 3C is 

analogous to Regime 2B, in the sense that the regimes have analogous bins of highest frequencies. Regime 3A is a new state 
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that was unresolved in k = 2, but isn’t similar to 3B or 3C. For k = 4, Regime 4B and 4C appear to be almost equivalent, and 

both derived from Regime 3B, which probably indicates that there is no new information gained by requiring 4 clusters. Similar 

visual inspection of the results for k > 4 confirms our more objective analysis result that k = 3 is the optimal number of clusters 

in the pCO2-SST space in the North Atlantic basin. It should be noted here that because we implement k-clustering to the 2D 

histograms and not the raw data, there is really no change in the results if we use different number of bins in the histograms or 5 

if we use normalized data. 

 

(Figure 4) 

 

Temporal attribution for the North Atlantic carbon states 10 

In order to characterize the ocean carbon states obtained in the previous section, we perform a temporal attribution analysis by 

determining when each cluster occurs. This is possible because the k-means analysis provides the distance of each member 2D 

histogram to the centroid of the cluster it belongs, and we are thus able to associate each cluster with certain months of the 

climatology. Fig. 5b shows that in the North Atlantic basin, regime 1 is represented by months January, February, March, and 

April and we call this the “winter regime”; regime 2 occurs during June, July, August, September and October and we will 15 

thus call it the “summer regime”; regime 3 occurs in May, November, and December and we will call this the “transition 

regime” because it reflects a mixed season in between the winter and summer regimes. Not surprisingly, these resulting regimes 

align themselves fairly well with the boreal winter and summer seasons in the North Atlantic. The cold season (winter regime) 

includes March and April but not November-December which are included, rather, in the transition regime. The warm season 

(summer regime) includes the months between June and October, again broader than the typical boreal summer. It is not 20 

surprising that we recover the seasonal cycle from the 12-month climatology, and probably because our domain is the entire 

North Atlantic, from the equator to the subpolar regions, these seasons are broader including months from the spring and fall, 

since the length of each season is different at different latitudes.  

 

Spatial attribution of the North Atlantic carbon states 25 

Next, we describe the geographical distribution of each regime (Fig. 5c). To do so, the frequencies of occurrence associated 

with each pCO2-SST bin in Fig. 5a are averaged over the months in each regime and mapped on the North Atlantic basin. 

We find that in the winter regime, the dominant value pairs (300-350 uatm and 10-20⁰C) are found in the subtropical North 

Atlantic. In contrast, the dominant range of pCO2-SST pairs in the summer regime occurs in the tropics (values 350 – 400 

uatm and 25 – 30⁰C). The transition regime shows a mix of the winter and summer regimes. 30 

(Figure 5) 
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We conclude that the ocean carbon states determined by a 12-month climatology of surface ocean pCO2 and SST are 

characterized by a cold season where most persistent value-pairs occur in the subtropical North Atlantic and the subpolar 

region. In the warm season however, the most persistent value-pairs occur in the tropical Atlantic. For more complex 

datasets, e.g. when interannual variability is included, we expect to be able to detect regimes that correspond to processes 

controlled by the El Nino-Southern Oscillation (ENSO) or the North Atlantic Oscillation, for example.  5 

The NASA-GISS climate model North Atlantic carbon states  

Next we obtain the ocean carbon states from the GISS model simulations. As described in Section 2.2, we construct the 

ensemble mean climatologies for pCO2SW and SST for the period 1995-2005 from 5 simulations of Earth’s historical climate 

of the 20th Century performed with the NASA-GISS climate model. We then obtain the 12-monthly 2D histograms from the 

model climatology and using the same binning groups as in the observations, we obtain the model clusters. It should be noted 10 

here again that because we are actually clustering the 2D histograms and not the raw data, our clusters are not sensitive to the 

number of bins nor to normalization of the datasets prior to cluster analysis. 

 

The sensitivity test for the model clusters is not as clear as in the case of the observations (Fig. 6). Note that there is a plateau 

after k = 5 and thus it appears that 5 would be a more suitable choice for k. However, as seen in Fig. 6a, some of the additional 15 

regimes include only one monthly 2D histogram. We therefore chose here k=3, recognizing that the model clusters have larger 

uncertainty. In a larger dataset that includes interannual variability, more than a single 2D histograms would be potentially 

assigned to a regime, reducing that uncertainty.  

 

Fig. 7a shows the ocean carbon states for k=3 while Fig. 7b characterizes their temporal occurrence: model winter regime 20 

corresponds to months December, January, February, March, April, and May; the summer regime corresponds to months July, 

August, September, October, and November; the transition regime corresponds only to June. There is therefore good agreement 

with the regimes from observations (Fig. 5b). The model winter regime is somewhat broader than the observed by two months 

(December and May) while the model summer regime is lagging by one month (starts in July, while in the observations starts 

in June). 25 

 

The regimes (clusters) themselves are similar to the observations (comparing Fig. 5a and Fig. 7a) in that the same bins of most 

likely values are identified but with somewhat different frequencies of occurrence. As an example of comparison between the 

temporal regimes, for the winter regime both the model and the observations show that the dominant pairs are in the range of 

300–350 uatm and 20–250C, at 30% and 25% relative frequency. However, other weaker pairs are not well represented in the 30 

model, e.g. the range 50–200 uatm and -2–10⁰C. During the winter regimes, the highest frequency of occurrence (25%) is for 

the pair of values 300-350 uatm and 10-20⁰C, whereas in the model the same pair of values is found 30% of the time. Similarly, 



11 

 

the summer and transition regime highest frequency pairs are well simulated. In contrast, the value pairs 200-350 uatm for 

very cold temperatures are not well represented in the model.  

 

We also find (Fig. 7c) that in the winter regime, the dominant value pairs (300-350 uatm and 10-200C, identified in Fig. S2) 

are found in the subtropical North Atlantic with higher frequency in the model (darker shading) than in the observations. The 5 

GISS model however underestimates the frequency of occurrence of the value pairs in the subpolar region (values 50–350 

uatm and -2–10⁰C, identified in Fig. S2). In contrast, the dominant range of pCO2-SST pairs in the summer regime occurs in 

the tropics (values 350–400 uatm and 25–30⁰C; Fig. 7c) and is of higher frequency in the observations than the model. In other 

words, the model underestimates the extent of the tropical summer regime but reproduces well the other parts of the summer 

regime. The transition regime shows a mix of the winter and summer regimes for both observations and model. The model 10 

results in this regime indicate higher frequency in the subpolar region than in the observations.  

(Figure 6) 

(Figure 7) 

Model North Atlantic air-sea flux of CO2 error analysis and bias attribution 

The ocean carbon states identified in the previous section can provide a framework for model assessment against the 15 

observations. In this section we seek to identify biases in the simulated flux of CO2 and attribute them to leading biases in 

physical and biogeochemical processes. For this analysis, model data will be composited on the observational regimes, i.e. the 

model climatology will be averaged over those months that define each observational cluster in Fig. 5b. 

 

Figure 8 depicts the air-sea flux of CO2 composited over the observed temporal regimes in both observations (Fig. 8a) and 20 

model output (Fig. 8b).  In the winter regime, model outgassing (in shades of blue) is confined only to the tropics, whereas in 

the observations there is also a tongue of outgassing at about 60⁰N. Similarly, in the transition regime, the model has a more 

extended uptake region in the subpolar North Atlantic than in the observations. While the summer regime is better represented 

in the model than the other two regimes, all three regimes show that model uptake is stronger than in observations at mid and 

high latitudes and outgassing is also stronger in the model in mid to low latitudes.  25 

 

(Figure 8) 

 

To trace the source of model biases in the air-sea flux of CO2 we need a better understanding of the physical or biogeochemical 

processes that control the air-sea flux of CO2 in the model. Using the clustering analysis results from the previous section, we 30 

can investigate the underlying processes that might be responsible for the bias.  
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The process attribution is performed using a Taylor expansion of the model bias as shown in Eq. (5). The model flux bias, ∆𝐹, 

depends on the biases of pCO2SW, SST, salinity (SSS) and wind speed (wspd) such that: 

∆𝐹~ 
𝜕𝐹

𝜕𝑝𝐶𝑂2𝑆𝑊
∆𝑝𝐶𝑂2𝑆𝑊 +

𝜕𝐹

𝜕𝑆𝑆𝑇
∆𝑆𝑆𝑇 +

𝜕𝐹

𝜕𝑆𝑆𝑆
∆𝑆𝑆𝑆 +

𝜕𝐹

𝜕𝑤𝑠𝑝𝑑
∆𝑤𝑠𝑝𝑑       (5) 

 

where ∆𝑞 is the bias of the variable q, defined as the root mean squared error (RMSE) between the observations and the model 5 

and q is any of the variables {pCO2SW, SST, SSS, wspd}.  
𝜕𝐹

𝜕𝑞
 is a weight term that represents dependence of the flux on that 

variable and is determined by the slope of a linear fit in the scatter plot of the flux F with each variable q for each carbon state. 

Since the North Atlantic basin is a very broad basin, both zonally and meridionally, and because the carbon states regional 

distribution (Fig. 5c) is quite complex, we identify areas where the linear fits will be more appropriate approximations of the 

{F,q} relationships. The subpolar region where the value pairs are -2 to 10⁰C and 50 to 350 uatm, a subtropical region (10 to 10 

20⁰C, 300 to 350 uatm), and a tropical region (20 to 30⁰C, 300 to 400 uatm) are demarcated in Fig. S2. Results of the regional 

scatter plots and the linear fit for each regime are shown in Fig. S3 and are synthesized in Figure 9. Each contribution term 

(each term in the right hand side of Eq. 5) is calculated from the multiplication of the weights and the RMSEs. Figure 9 then 

shows that over most of the North Atlantic, the flux biases are attributed mainly to errors in the pCO2SW, although in subpolar 

regions other terms such as salinity biases and wind speed biases become important. It therefore makes sense to further 15 

investigate biases in pCO2SW and the processes these are attributed to, as presented in Eq. (2).  

 

(Figure 9) 

 

Similarly to Eq. (5): 20 

 

∆𝑝𝐶𝑂2𝑆𝑊~ 
𝜕𝑝𝐶𝑂2𝑆𝑊

𝜕𝑆𝑆𝑇
∆𝑆𝑆𝑇 + 

𝜕𝑝𝐶𝑂2𝑆𝑊

𝜕𝑆𝑆𝑆
∆𝑆𝑆𝑆 + 

𝜕𝑝𝐶𝑂2𝑆𝑊

𝜕𝑊𝑆𝑃𝐷
∆𝑊𝑆𝑃𝐷 + 

𝜕𝑝𝐶𝑂2𝑆𝑊

𝜕𝑁𝐼𝑇𝑅𝐴𝑇𝐸
∆𝑁𝐼𝑇     (6) 

 

We perform the Taylor expansion of the bias for each of the regimes that we computed, calculating the weights and RMSEs 

in the same way as described for CO2 flux biases. The estimates of the linear fit slopes of the scatter plots are shown in Fig. 25 

S4 and the composites of the contributions in Fig. 10. 

 

Overall Fig. 10 shows that the biases in the subpolar region are larger than anywhere else in the North Atlantic basin, as the 

contributions to the bias in pCO2sw are an order of magnitude larger there. Specifically, in the subpolar region, wind speed 

biases emerge as responsible for the winter and transition regime biases in pCO2sw while salinity biases dominate the summer 30 

bias in pCO2SW. In the winter and transitional months, the quasi-cyclonic subpolar gyre, driven by energetic winds and wind-

outbreaks, leads to Ekman divergence in the surface layer that controls the pCO2sw biases near the coast. At the same time, 
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winter-time convective mixing is responsible for biases in the strength of the Meridional Overturning Circulation that are 

known to influence open ocean pCO2sw (Romanou et al,. 2017). In the summer regime, GISS model sea-ice concentration is 

higher than observed hence melting will lead to significant surface salinity biases. Inaccurate model representation of the 

magnitude and fluctuations of the cyclonic wind stress curl as well as the sea-ice retreat and associated salinity changes are 

probably responsible for deficient physical characterization of the model ocean circulation, which would result in 5 

misrepresentations of the pCO2SW and thus the CO2 flux in the model.  

 

In the subtropics, nitrate is found to be the largest contributor for the winter regime biases, wind speed is the main contributor 

in the summer, and salinity is the main contributor for the transition regime. The subtropics are characterized at the surface by 

anticyclonic circulation and a strong western boundary current, the Gulf Stream. Gyre subduction supports downwelling which 10 

brings nutrients and pCO2 to depth. Nitrate utilization by ocean biology during the winter regime is probably inaccurate in the 

model while wind speed biases are known to be larger in the summer than the winter regime in the model.  

 

 In the tropics, biases in wind speed, nitrate and salinity are again found to be important. Here, nitrate biases, which are 

relatively higher in oligotrophic regions (Arteaga et al,. 2015), are probably due to misrepresentation of nitrogen fixation in 15 

the GISS climate model. Wind speed and salinity biases are associated with well-known biases in the intensity and position of 

the Inter Tropical Convergence Zone (ITCZ) that controls cloudiness, temperature gradient, and rainfall. The ITCZ moves 

north in the summer and south in the winter, therefore a wind speed bias in the transition regime in the model could be explained 

by an inaccurate model reproduction of how the ITCZ affects the wind during its transitional movement. The ITCZ increases 

precipitation, thus decreasing salinity, therefore how salinity changes by season as a result of the shifting ITCZ could explain 20 

the winter regime bias. 

 

(Figure 10) 

4.2 The Southern Ocean Carbon States 

The application of cluster analysis in the Southern Ocean is presented here similarly as in the North Atlantic, with the purpose 25 

of examining whether the technique will also be able to identify some known aspects of the Southern Ocean carbon cycle. For 

brevity, though, the observation-based and the model regimes will be presented alongside one another and will be followed by 

the model-error attribution analysis. 

 

As done for the North Atlantic basin, we look at probability density distributions of observations in the Southern Ocean which 30 

show that both SST and pCO2SW exhibit a broad range of values. Temperatures range between -3 and 20⁰C whereas pCO2SW 

values span 20 and 400 uatm. The 12 monthly 2D histograms of pCO2SW and SST in the Takahashi dataset are shown in Fig. 

S5 (Supplementary Material Figure 5). 
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Fig. 11a shows the scores of each regime for k=2, 3, and 4 and Fig. 11b the results of the sensitivity test to the choice of k. 

Following the criterion established in section 3, the largest score change is for k=3 and k=4. However, Fig. 11a shows that the 

overall score is better for k=3, because more months have larger individual scores, with the exception of one month (November) 

which has a slightly negative score. Additionally, visual inspection of apparent patterns in the 12 monthly 2D histograms (Fig. 5 

S5) also corroborates the choice of k=3 as the optimal value for the number of clusters. Again, the small climatological dataset 

leads to some uncertainty in determining k.  

 

A value of k = 3 is also chosen for the model analysis based on Fig. 11c and 11d which show that this is also the optimal 

number of clusters. There is added ambiguity in the choice of k here, in addition to that due to the small dataset, which arises 10 

from the fact that the Southern Ocean is a very broad basin zonally and different processes become important in different 

regions more so than in the narrow North Atlantic basin, which make the choice of k not as clear as it was in the North Atlantic. 

 

(Figure 11) 

 15 

The observed and the model ocean carbon states are shown in Fig. 12. In the summer regime, which includes January, February 

and March (see Fig. 13 and explanation below), the highest frequency pair-values (i.e. the most persistent pairs) are found 

around 20% of the time in the observations and 25% of the time in the model for the ranges of 250-350 uatm and 0-5⁰C. 

Another range of pair-values which also shows high frequency of occurrence (25%) is found for warmer temperatures (10-

20⁰C) and the same range of pCO2, but the GISS model misplaces it towards higher values of pCO2 (350-400 uatm). The winter 20 

regime comparison shows that the model captures the low pCO2, low temperature state (20-150 uatm, -3-0⁰C) well (30% of 

the time in observations and in the model). The mid-range pCO2, high temperature state (250-350 uatm, 10-20⁰C) is not as 

well represented in the model. The observations there show the highest frequencies of occurrence for higher pCO2 (350-400 

uatm) whereas the model for lower pCO2 (250-350 uatm). Comparison between the transition regimes reveals much less 

correspondence between observations and the GISS model, considering the high frequency states in observations are quite 25 

different than in the model (e.g. observations high frequency states: 20-150 uatm, -3-0⁰C; 250-350 uatm, 10-20⁰C; 350-400 

uatm, 0-5⁰C; model high frequency state: 250-350 uatm; 0-10⁰C).  

 

Figure 12 

Temporal attribution for the Southern Ocean carbon states 30 

Temporal attribution, which is estimated using the method described in section 4.1, is shown for both the model and the 

observations in Fig. 13. Note that all subsequent analysis considers the austral seasons when referring to “winter” and 

“summer”. The temporal attribution shows that the observations and model data are clustered in regimes that correspond to 
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almost the same months. The only difference is that November is accounted for in the transition regime for the observations 

as opposed to the winter regime for the model. It is noted, however, that November is technically a “poorly matched” 2D 

histogram in the observations cluster routine, as discussed earlier. 

 

(Figure 13)   5 

Spatial attribution of the Southern Ocean carbon states 

In order to further explain the model and observed Southern Ocean regimes shown in Fig. 12, the frequencies of occurrence 

of each bin in the cluster are mapped onto the Southern Ocean (Fig. 14). In the coastal Antarctic divergence zone, SST varies 

within -3–3⁰C and pCO2 20–250 uatm, in the Antarctic convergence zone SST ranges 3–10⁰C and pCO2 250–400 uatm, and 

in the subtropical convergence zone SST lies within 10–20⁰C and pCO2 250–400 uatm. Despite the strong temporal attribution 10 

agreement between the model and the observations, the regional attributions show much less correspondence. For example, in 

the summer regime, the observations show the highest frequency of occurrence between 250–350 uatm and 10–20⁰C along the 

subtropical convergence zone (roughly along 40⁰S) while the highest frequency of occurrence for the model is for the pair 

250–350 uatm and 0–5⁰C, occurring in the coastal region (poleward of the divergence zone along 60⁰S). In the winter regime, 

both observations and the GISS model show highest frequency of occurrence for the value-pairs nearest to the coast where the 15 

pCO2 is low and the temperatures coldest (20–150 uatm and -3–10⁰C). Further offshore, the model highest frequency values 

occur for lower pCO2 (250-350 uatm) than in the observations (350-400 uatm).  Lastly, in the transition regime, the model 

shows a much higher persistency of values in the range (250-350 uatm and 0-10⁰C) than in the observations.  

 

(Figure 14) 20 

It is therefore evident that the GISS model does not reproduce well the observed ocean carbon states in the Southern Ocean. 

There is a tendency to persistently underestimate pCO2-SST values closer to the coast and overestimate it near the subtropical 

convergence zone, during the warm season. Whereas, during the cold season, the model captures well the divergence zone 

regime but the errors further offshore switch: the model now overestimates pCO2-SST value-pair frequency of occurrence in 

the Antarctic convergence zone but is performing better in the subtropical convergence zone. The transition regime is not well 25 

represented, indicating that not enough regimes are chosen to adequately describe ocean carbon states in this small dataset. 

Model Southern Ocean air-sea flux of CO2 error analysis and bias attribution 

Comparing the CO2 flux composites on the observed regimes (Fig. 15) shows significant discrepancies between observations 

(Fig. 15a) and model (Fig. 15b). To better understand where these discrepancies come from, we perform an error attribution 

analysis, as in section 4.1 above. In the summer regime (January through March), outgassing in the model is restricted to the 30 

subtropical convergence zone whereas in the observations it is more localized and closer to Antarctica. At the same time, 

model uptake is stronger, confined to the coast and over a broader area than in the observations. This is consistent with the 
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result from the previous section, where the model underestimates pCO2 and SST in the Antarctic convergence zone. In the 

winter regime (June through October), the entire model basin is a sink for CO2 whereas in the observations there is a zonally 

confined outgassing belt south of 50⁰S and an uptake belt north of it. Again this result is consistent with the earlier finding that 

the model winter regime is closer to the observed near the Antarctic coast. The transition regime shares a mix of the same 

discrepancies as in the summer and winter regimes.  5 

 

(Figure 15) 

 

Bias attribution is computed for the three zonally-defined regions indicated in Fig. S6. Based on the bias computations in Eq. 

(5) for pCO2SW, SST, salinity, and wind speed with respect to CO2 flux, pCO2SW is again shown to be the driving variable in 10 

most of the flux biases in the Southern Ocean (Fig. S7; Fig. S8 for scatter plots). We therefore seek to understand the processes 

that control the pCO2 biases in the model, using the Taylor expansion in Eq. (6) (Fig.16; Fig. S9 for scatter plots).  

 

For almost all regimes and regions, biases in nitrate are large partly because of lack of a closed, state-of-the art nitrogen cycle 

representation in the climate model. On the other hand, observations are too scarce in the region, due to inclement weather and 15 

biases to specific seasons, so there is large observational uncertainty associated with the Takahashi climatology in the Southern 

Ocean.  The model skill would be more adequately assessed as more in situ measurements are made (e.g. from the Southern 

Ocean Carbon and Climate Observations and Modeling (SOCCOM) experiment; Johnson et al., 2017). Nevertheless, the model 

underestimates surface nitrates in the Southern Ocean in particular because of a large nitrate deficit in the subsurface ocean 

which upwells in the subantarctic zone and flows into the Antarctic Circumpolar Current region. This is related to processes 20 

such as denitrification and accurate remineralization in the deep ocean. SST is the second-most dominating variable for biases 

in the coastal Antarctic. Inspection of the model biases shows that south of 70⁰S the model water column is colder than in 

observations, hence upwelling there will bring colder waters near the surface.  Interestingly, surface salinity biases are 

relatively very important in the region south of the subtropical convergence zone which suggests that a study of water mass 

formation in that region in the model and the observations would better explain the biases. 25 

 

(Figure 16) 

Data availability 

Data and analysis scripts can be accessed at www.data.giss.nasa.gov/oceans/carbonstates. 
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5. Conclusions  

This proof-of-concept study presents the k-means cluster analysis and the determination of the regimes called “ocean carbon 

states” in observation-based data of the ocean carbon cycle. A method is described here to more objectively determine the 

optimal number of clusters for the cluster analysis. The study also explores how to characterize the ocean carbon states 

temporally and spatially in order to determine the physical-biogeochemical processes related to each carbon state. Composites 5 

of the CO2 flux and a quantitative exploration of the effect of each field on pCO2SW bias is also demonstrated.  

 

In this study, pCO2 and SST were chosen as the two variables that co-determine the carbon states, based on the fact that they 

both play critical roles on the biogeochemistry and the physics of the ocean system and control the flux of CO2. One may 

choose different variables and it would be interesting to see whether and how the regimes depend on the choice of variables. 10 

 

We have also tested the importance of the choice of k. A main caveat of k-means cluster analysis is that k must be 

predetermined through reasoning that is subject to personal bias. However, we show that by assessing the clusters from multiple 

angles (i.e. the score plots, the sensitivity test, visual inspection, analyzing cluster outputs with increasing k, temporal 

attribution), it is possible to determine an optimal k that is semi-objective. Even so, in this proof of concept study, we 15 

acknowledge the uncertainty in our choice of k as a result of the small dataset of 12 monthly 2D histograms, which occasionally 

results in there being only a small number of histograms per cluster. 

 

The ocean carbon states we obtain from this climatological year data set are interesting. We found that the subtropical North 

Atlantic is the dominant feature in the cold season regime (the months January through April). In the same regime, the subpolar 20 

North Atlantic also features prominently which is associated with the high variability in this area due to sea ice retreat, the 

spring bloom and the winter-spring convection. In contrast, the tropical Atlantic dominates the warm months June through 

October, while the subtropical and subpolar regions play a smaller role. The transition regime, which is comprised by months 

that do not entirely fall in the winter or the summer regimes, shows again the lower tropics and the subtropical gyre to be more 

active. We would expect that a longer dataset that includes natural variability as well as the effects of longer-term climate and 25 

anthropogenic trends would result in more carbon states and hence that would be an interesting extension of the present study. 

 

The NASA-GISS model carbon states in the North Atlantic are similar, both in temporal as well as spatial characterization, to 

the observed ones, with better model skill in the summer than in the winter. Specifically, the model overestimates the 

importance of the subtropical gyre and underestimates the subpolar gyre during the cold months. During summer, the model 30 

underestimates the tropics but not significantly. The transition months are found to behave differently in the model, although 

that might be a result of the small size of our input datasets. 
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In the Southern Ocean, during the warmer months (January-March), the observational states are more persistent along 40⁰S, 

the subtropical convergence zone, while the colder season has prominent states (higher persistency) mostly along the Antarctic 

coast.  The transition regime shows similar degree of variability across the entire Southern Ocean.  

 

While the GISS model agrees in the temporal characterization of the ocean carbon states, it diverges from the observational 5 

spatial attribution particularly in the summer and the transition regimes. It is of note here, however, that the Takahashi 

climatology is far more uncertain in the Southern Ocean (Takahashi et al., 2009) than it is in the North Atlantic, and therefore 

the model lack of skill might be not as alarming. New observations in the area (e.g. from SOCCOM) will greatly benefit studies 

such as this.  

 10 

Error analysis of the model response helps explain the GISS model biases. Applying k-means clustering analysis in two main 

regions of the world that are known to be critical for the global ocean carbon cycle, namely the North Atlantic region and the 

Southern Ocean, defines the priorities for model improvement: in the North Atlantic biases in surface salinity, wind speed and 

surface temperature whereas in the Southern Ocean priorities are nitrate and surface salinity. Clearly the GISS climate model 

would benefit from more realistic representation of the nitrogen cycle in the ocean as a whole.  15 

 

The goal of this study is to enable us to apply this k-means clustering to “big” data, in order to find the interannual and regional 

patterns in larger, higher frequency climate datasets. This extended application will allow researchers to gain a much more 

comprehensive insight and intuition for physical systems by mechanistically and impartially grouping multiple variables that 

form the prominent features of these networks. Other variable pairs besides pCO2 and SST will also be explored, such as CO2 20 

flux and chlorophyll, in order to assess other drivers in Eq. (1). Finally, higher order clustering and classification techniques 

will be analyzed in order to determine the most efficient and successful method for understanding the ocean carbon cycle.   

 

All routines and datasets used in this study are freely available in the Ocean Carbon States page of the NASA-Goddard Institute 

for Space Studies web portal (data.giss.nasa.gov/oceans/carbonstates).  25 

 

 

 

 

 30 
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Figures: 

 

Figure 1: Schematic diagram of the clustering methodology used in this paper: a) 12 monthly mean climatological year data of two 

variables, pCO2 and SST, b) monthly 2D histograms, c) clustering of the 2D histograms into groups by similarity in the bivariate 

distributions, d) clusters resulting when k=3 is assumed. 5 
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Figure 2: Monthly 2D histograms of partial pressure of CO2 in the surface water (pCO2sw) and sea surface temperature (SST) in 

the North Atlantic (defined as 80°W to 45°E, 0° to 90°N) from the Takahashi observational dataset. The horizontal axis is pCO2sw 

(uatm) and the vertical axis is SST (⁰C). The bin interval is 15 uatm and 1.6⁰C. The colorbar describes the actual frequency of 

occurrence of each bin. 5 
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Figure 3: a) Scores for each cluster analysis of observational data in the North Atlantic for k = 2, k = 3, k = 4, where cluster k is the 

predetermined number of clusters and each bar represents the score per 2D histogram. b) Average scores for each cluster analysis 

with increasing k, from k=2,…,12, normalized by the number of clusters k.  

 5 

Figure 4: Cluster analysis output (regimes) for a) k = 2, b) k =3, and c) k = 4 for the North Atlantic, from the Takahashi observational 

dataset. The colorbar represents the relative frequencies of occurrence of each value-pair interval, i.e. the frequencies are divided 

by total number of frequencies per regime.  
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Figure 5: a) Ocean carbon states (regimes) in observation-based data of the North Atlantic. b) Monthly attribution of each ocean 

carbon regime in the Takahashi observational dataset. Temporal attribution is based on the distance of each monthly 2D histogram 

to the centroid of each cluster. Each color represents different regime: blue denotes the cold months regime (winter regime), red the 

warm months (summer regime) and green the May/Nov-Dec transition regime, since this is more a mix of the other two. c) Regional 5 
attribution of each regime depicted in 5a. The colors in 5(c) correspond to the ones in 5(a), i.e. to the frequencies of occurrence of 

each bin (value pair) in the clusters of 5(a).  
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Figure 6: a) Scores for each cluster analysis of the GISS model data in the North Atlantic for k = 2, k = 3, k = 4, k = 5, where cluster 

k is the predetermined number of clusters and each bar represents the score per 2D histogram. b) Average scores for each cluster 

analysis with increasing k, normalized by the number of clusters k.  
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Figure 7: a) Ocean carbon states (regimes) in the North Atlantic from the GISS model output. b) Monthly attribution of each ocean 

carbon regime. Temporal attribution is based on the distance of each monthly 2D histogram to the centroid of each cluster. Blue 

denotes the cold months regime (winter regime), Red the warm months (summer regime) and Green the transition regime (only 

June), since this is more a mix of the other two. c) Regional attribution of each regime depicted in 7(a). The frequencies of occurrence 5 
of each bin (value pair) in the clusters of 7(a) is mapped onto the North Atlantic grid.  
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Figure 8: Composites of the CO2 Flux field over the observed regimes for (a) the observations and (b) the model. The composite 

fields are computed as averages of the field over the months included in each regime. Both the observations and the model data are 

composited over the same months as determined by the temporal attribution of the observations dataset, shown in Fig. 5b. Blue 

shades indicate outgassing, red shades indicate uptake. 5 
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Figure 9: Contributions of each of the variables pCO2, SST, SSS, WSPD to the overall air-sea flux ∆𝑭 bias. The contributions are 

computed as the products of the weights and the RMSEs of each variable q as described in Eq. (5). See text for detailed explanation.  
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Figure 10: Contributions to the pCO2sw bias in the model from SST, SSS, wind speed (WSPD) and nitrate (NIT) in the winter, 

summer, and transitional regimes. Contributions are computed as in Fig. 9 (see details in the text). The entire North Atlantic is 

differentiated into subpolar, subtropical, and tropical regions to better account for regional differences in the model biases and 

obtain better linear fit for the computation of the weights in Eq. 6. 5 
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Figure 11: a) Scores for each cluster analysis for k = 2, k = 3, k = 4 for the observational data in the Southern Ocean where cluster 

k is the predetermined number of clusters and each bar represents the score per 2D histogram b) Average scores of each clustering 

analysis for increasing k, from k=1 to k=12. c) Scores for each cluster analysis for k = 2, k = 3, k = 4 for the model data in the 

Southern Ocean. d) Average scores of each clustering analysis for increasing k. 5 
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Figure 12: Comparison between the regimes in (a) the observations and (b) the model output. 

 

 

Figure 13: Monthly attribution of each ocean carbon regime in observations and the GISS climate model. Temporal attribution is 5 
based on the distance of each monthly 2D histogram to the centroid of each cluster. Referring to austral seasons, blue denotes the 

cold month regime (winter regime), Red the warm months (summer regime) and green the transition regime, since this is more a 

mix of the other two. 
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Figure 14: Regional attribution of each regime for k=3 in the Southern Ocean in (a) the observations and (b) the GISS model 

simulations. Each spatial grid point for every month is associated with its relative frequency of occurrence in the cluster output, and 

then the months are averaged per regime to output the average frequency of occurrence in each regime. Model regimes are calculated 

using the monthly groups identified by the observation temporal attribution. 5 

 

Figure 15: Composites of the CO2 Flux field over the regimes in the Southern Ocean for (a) the observations and (b) the GISS model. 

Both the observations and the model data are composited over the same months as determined by the temporal attribution of the 

observed regimes. Blue shades indicate outgassing, red shades indicate uptake. 
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Figure 16: Contributions to the pCO2sw bias in the model from SST, SSS, wind speed (WSPD) and nitrate (NIT) in the winter, 

summer, and transitional regimes. The Southern Ocean is differentiated into the coastal Antarctic divergence zone (roughly 

polewards of 60⁰S), Antarctic convergence zone (roughly 60⁰S-50⁰S), and subtropical convergence zone (roughly 50⁰S-40⁰S) to better 

account for regional differences in the model biases and obtain better linear fit for the computation of the weights in Eq. 6 (see Fig. 5 
S9). 

 

 

 


