Supplement of

Estimating the thickness of unconsolidated coastal aquifers along the global coastline

Daniel Zamrsky¹, Gualbert H.P. Oude Essink^{1,2}, and Marc F.P. Bierkens^{1,2}

Correspondence to: Daniel Zamrsky (d.zamrsky@uu.nl)

Table S1. Borehole validation dataset sources

Dataset Name	Source								
CPRM	Geological survey of Brazil, c2016, published by Companhia de Pesquisa de								
	Recursos Minerais [Accessed 2016, August], http://www.cprm.gov.br/								
GeoVIC	Online geology portal of Victoria, Australia, c2016, published by the state of								
	Victoria [Accessed 2016, October], http://er-								
	info.dpi.vic.gov.au/sd_weave/anonymous.html								
CGS	China Geological Survey, 2012. Groundwater serial maps of Asia: Hydrogeological								
	map, Groundwater resources map, Geothermal map, Sinomaps Press.								

Table S2. Literature validation dataset sources

Polygon ID	Source
1	Lagudu, S. et al., 2013. Use of Geophysical and Hydrochemical Tools to Investigate
	Seawater Intrusion in Coastal Alluvial Aquifer, Andhra Pradesh, India. In C.
	Wetzelhuetter, ed. Groundwater in the Coastal Zones of Asia-Pacific. Dordrecht:
	Springer Netherlands, pp. 49–65.
2	Singh, S.C., 2013. Geophysical Viewpoints for Groundwater Resource Development
	and Management in Coastal Tracts. In C. Wetzelhuetter, ed. Groundwater in the
	Coastal Zones of Asia-Pacific. Dordrecht: Springer Netherlands, pp. 67–87.
3	Duerrast, H. & Srattakal, J., 2013. Geophysical Investigations of Saltwater Intrusion
	into the Coastal Groundwater Aquifers of Songkhla City, Southern Thailand. In C.
	Wetzelhuetter, ed. Groundwater in the Coastal Zones of Asia-Pacific. Dordrecht:
	Springer Netherlands, pp. 155–175.
4	Sherif, M., Almulla, M. & Shetty, A., 2013. Seawater Intrusion Assessment and
	Mitigation in the Coastal Aquifer of Wadi Ham. In C. Wetzelhuetter, ed. Groundwater
	in the Coastal Zones of Asia-Pacific. Dordrecht: Springer Netherlands, pp. 271–294.
5	Leonhard, L., Burton, K. & Milligan, N., 2013. Gascoyne River, Western Australia;
	Alluvial Aquifer, Groundwater Management and Tools. In C. Wetzelhuetter, ed.
	Groundwater in the Coastal Zones of Asia-Pacific. Dordrecht: Springer Netherlands,
	pp. 359–378.
6	Wagner, F., Tran, V.B. & Renaud, F.G., 2012. Groundwater Resources in the Mekong
	Delta: Availability, Utilization and Risks. In F. G. Renaud & C. Kuenzer, eds. The
	Mekong Delta System: Interdisciplinary Analyses of a River Delta. Dordrecht:
	Springer Netherlands, pp. 201–220.
7	Benkabbour, B., Toto, E.A. & Fakir, Y., 2004. Using DC resistivity method to
	characterize the geometry and the salinity of the Plioquaternary consolidated coastal

¹Department of Physical geography, Utrecht University, Utrecht, The Netherlands

²Deltares, Utrecht, The Netherlands

	aquifer of the Mamora plain, Morocco. Environmental Geology, 45(4), pp.518–526. Available at: http://link.springer.com/10.1007/s00254-003-0906-y. Amharref, M. et al., 2007. Cartographie de la vulnérabilité à la pollution des eaux
	souterraines: Application à la plaine du Gharb (Maroc). Journal of Water Science, 20(2), pp.185–199.
8	Chen, J. et al., 2014. Clay minerals in the Pliocene - Quaternary sediments of the southern Yangtze coast, China: Sediment sources and palaeoclimate implications. Journal of Palaeogeography, 3(3), pp.297–308. Available at: http://dx.doi.org/10.3724/SP.J.1261.2014.00057.
9	Cobaner, M. et al., 2012. Three-dimensional simulation of seawater intrusion in coastal aquifers: A case study in the Goksu Deltaic Plain. Journal of Hydrology, 464-465, pp.262–280. Available at: http://dx.doi.org/10.1016/j.jhydrol.2012.07.022.
10	Carretero, S. et al., 2013. Impact of sea-level rise on saltwater intrusion length into the coastal aquifer, Partido de La Costa, Argentina. Continental Shelf Research, 61-62, pp.62–70. Available at: http://dx.doi.org/10.1016/j.csr.2013.04.029.
11	Rasmussen, P. et al., 2013. Assessing impacts of climate change, sea level rise, and drainage canals on saltwater intrusion to coastal aquifer. Hydrology and Earth System Sciences, 17(1), pp.421–443. Available at: http://www.hydrol-earth-syst-sci.net/17/421/2013/.
12	Kalm, V. & Gorlach, A., 2014. Impact of bedrock surface topography on spatial distribution of Quaternary sediments and on the flow pattern of late Weichselian glaciers on the East European Craton (Russian Plain). Geomorphology, 207, pp.1–9. Available at: http://dx.doi.org/10.1016/j.geomorph.2013.10.022.
13	Chen, J. et al., 2014. Clay minerals in the Pliocene - Quaternary sediments of the southern Yangtze coast, China: Sediment sources and palaeoclimate implications. Journal of Palaeogeography, 3(3), pp.297–308. Available at: http://dx.doi.org/10.3724/SP.J.1261.2014.00057.
14	Sefelnasr, A. & Sherif, M., 2014. Impacts of Seawater Rise on Seawater Intrusion in the Nile Delta Aquifer, Egypt., 52(2), pp.264–276.
15	Singaraja, C. et al., 2015. A study on the status of saltwater intrusion in the coastal hard rock aquifer of South India. Environment, Development and Sustainability, 17(3), pp.443–475. Available at: http://dx.doi.org/10.1007/s10668-014-9554-5.
16	Khaki, M. et al., 2016. Integrated geoelectrical and hydrogeochemical investigation for mapping the aquifer at Langat Basin, Malaysia. Environmental Earth Sciences, 75(4), pp.1–14. Available at: "http://dx.doi.org/10.1007/s12665-015-5182-0.
17	Giresse, P. et al., 2000. Successions of sea-level changes during the Pleistocene in Mauritania and Senegal distinguished by sedimentary facies study and U / Th dating., 170. Sylla, M., Medou, J.O. & Samb, E, 1997. Contribution of the instaneous well logging to the study of the indurations. Bulletin of the International Association of Engineering Geology, (55).
18	Nicholas, C.J. et al., 2006. Stratigraphy and sedimentology of the Upper Cretaceous to Paleogene Kilwa Group, southern coastal Tanzania., 45, pp.431–466.
19	Y. Yechieli, O. Sivan (2010), Using geochemical tools to study the distribution of saline groundwater in aquifers separated by aquitards: examples from Israel, paper presented at the 21th Salt Water Intrusion Meeting, Azores, Portugal
20	Dirks et al. (1988), Groundwater in Bekasi district, West Java, Indonesia, paper presented at the 10th Salt Water Intrusion Meeting, Gent, Belgium
21	McPherson, A. & Jones, A., 2005. Appendix D: Perth Basin geology review and site class assessment. Natural Hazard Risk in Perth, pp.313–344. Available at: https://www.icsm.gov.au/image_cache/GA6548.pdf.
22	Ransley, T.R., Radke, B.M., Feitz, A.J., Kellett, J.R., Owens, R., Bell, J., Stewart, G. and Carey, H. 2015. Hydrogeological Atlas of the Great Artesian Basin, Geoscience Australia, Canberra.

	http://dx.doi.org/10.11636/9781925124668
23	Yeates, A.N. et al., 1984. Regional geology of the onshore Canning Basin, Western
	Australia. The Canning Basin, Western Australia, pp.23–56.
24	E. Custodio (1992), Preliminary outlook of saltwater intrusion conditions in the
	Donana National Park (southern Spain), paper presented at 12th Salt Water Intrusion
	Meeting, Barcelona, Spain
	J.L. Plata and F.M. Rubio (2004), Study of the salt water - fresh water interface in
	environments of low resistivity: Donana aquifer (Spain), paper presented at the 18th
25	Salt Water Intrusion Meeting, Cartagena, Spain Crystodia, F. V. Iriber, M. Mongana, A. Payé and A. Calafré (1986), Fredution of and
25	Custodio, E., V. Iribar, M. Manzano, A. Bayó and A. Galofré (1986), Evolution of sea water intrusion in the Llobregat Delta, Barcelona, Spain, paper presented at the 9th Salt
	Water Intrusion Meeting, Delft, The Netherlands
	Truck inclusion recoming, Borry The Trombriands
	E. Falgas, J. Ledo, T. Teixido, A. Gabas, F. Ribera, C. Arango, P. Queralt, J.L. Plata,
	F.M. Rubio, J.A. Pena, A. Marti, A. Marcuello (2004), Geophysical characterization of
	a mediterranean coastal aquifer: The Baixa Tordera fluvio-deltaic aquifer unit
	(Barcelona, NE Spain), paper presented at the 18th Salt Water Intrusion Meeting,
26	Cartagena, Spain
26	B. Aunay, C. Duvail, P. Le Strat, N. Dorfliger, P. Lachassagne and S. Pistre (2004), Importance of a high resolution lithological and geometrical knowledge for
	Mediterranean coastal sedimentary aquifers management. Application to the Roussillon
	basin, South of France, paper presented at the 18th Salt Water Intrusion Meeting,
	Cartagena, Spain
27	P. Cau, G. Lecca, L. Muscas, G. Barrocu and G. Uras (2002), Seawater intrusion in the
	plain of Oristano (Sardinia, Italy), paper presented at the 17th Salt Water Intrusion
•••	Meeting, Delft, The Netherlands
28	F. Ardau, R. Balia, G. Barbieri, G. Barrocu, E. Gavaudo and G. Ghiglieri (2002),
	Recent development in hydrogeological and geophysical research in the Muravera coastal plain (SE Sardinia, Italy), paper presented at the 17th Salt Water Intrusion
	Meeting, Delft, The Netherlands
29	V. Ferrara and A. Pennisi (2004), Salt water intrusion and its influence on groundwater
	use in the Siracusa area (south-eastern Sicily), paper presented at the 13th Salt Water
	Intrusion Meeting, Cagliari, Italy
30	A. Bencini & G. Pranzini (1992), The salinization of groundwaters in the Grosseto
	Plain (Tuscany, Italy), paper presented at the 12th Salt Water Intrusion Meeting,
21	Barcelona, Spain
31	G. Pranzini (2002), Groundwater salinization in Versilia (Italy), paper presented at
32	the 17 th Salt Water Intrusion Meeting, Delft, The Netherlands E. Van Houtte, L. Lebbe, L. Zeuwts and F. Vanlerberghe (2002), Concept for
32	development of sustainable drinking-water production in the Flemish coastal plain
	based on integrated water management, paper presented at the 17 th Salt Water Intrusion
	Meeting, Delft, The Netherlands
	Lebbe, L.C. and K. Pede (1986), Salt-fresh water flow underneath old dunes and low
	polders influenced by pumpage and drainage in the Western Belgian coastal plain,
	paper presented at 9th Salt Water Intrusion Meeting, Delft, The Netherlands
	Lebbe, L. and K. Walraevens (1988), Hydrogeological SWIM-excursion to the western
	coastal plain of Belgium, paper presented at the 10th Salt Water Intrusion Meeting, Gent, Belgium
33	Lotringen, I.G.J, van, and R. H. Boekelman (1986), Behaviour of circular fresh water
	lenses, paper presented at the 9th Salt Water Intrusion Meeting, Delft, The Netherlands
	Meerten, J.J. van, and R.H. Boekelman (1986), Well-infiltration in fresh-water pockets
	in sandy ridges in Zeeland, paper presented at the 9th Salt Water Intrusion Meeting,
	Delft, The Netherlands
	Walraevens et al. (1988), Hydrogeological SWIM-excursion to the Black-Sluice Polder

	area in the Flemish Valley of Belgium, paper presented at the 10th Salt Water Intrusion					
34	Meeting, Gent, Belgium Delsman, J.R. et al., 2013. Palaeo-modeling of coastal salt water intrusion during the					
	Holocene: an application to the Netherlands. Hydrology and Earth System Sciences					
	Discussions, 10(11), pp.13707–13742. Available at: http://www.hydrol-earth-syst-sci-					
	discuss.net/10/13707/2013/hessd-10-13707-2013.html.					
	G.H.P. Oude Essink (2002), Salinization of the Wieringermeerpolder, The Netherlands, paper presented at the 17 th Salt Water Intrusion Meeting, Delft, The Netherlands					
	P.J. Stuyfzand (1992), Behaviour of major and trace consituents in fresh and salt					
	intrusion waters, in the western Netherlands, paper presented at the 12th Salt Water					
	Intrusion Meeting, Barcelona, Spain					
	Stuyfzand, P.J. (1988), Hydrochemical evidence of fresh- and salt-water intrusions in					
	the coastal dunes aquifer system of the western Netherlands, paper presented at the					
	10th Salt Water Intrusion Meeting, Gent, Belgium					
	Pomper, A.B. (1972), Evidence of the influence of man on the natural processes related					
	with salinization of groundwater in the western part of West-Netherlands, paper					
	presented at the 3rd Salt Water Intrusion Meeting, Copenhagen, Denmark Roebert, A.J. (1972), Salt water contamination of the wells along the Barnaart-Schuster					
	Canal in the Amsterdam Dune Water Catchment Area, paper presented at the 3rd Salt					
	Water Intrusion Meeting, Copenhagen, Denmark					
	Roebert, A.J. (1972), Salt water contamination of the wells along the Barnaart-Schuster					
	Canal in the Amsterdam Dune Water Catchment Area, paper presented at the 3rd Salt					
	Water Intrusion Meeting, Copenhagen, Denmark					
	Pomper, A.B. (1977), An estimation of chloride intrusion in the midwest					
	Netherlands during the Pleistocene epoch, paper presented at the 5th Salt Water					
	Intrusion Meeting, Medmenham, United Kingdom					
	De Vries, J.J. (1981), The distribution of fresh and salt groundwater in the Dutch					
	coastal area and the Quaternary-geological evolution, paper presented at the 7th Salt					
35	Water Intrusion Meeting, Uppsala, Sweden A. Rogge & V. Josopait (1992), Salinization caused by groundwater abstraction from					
33	an aquifer on the german North Sea coast, paper presented at the 12th Salt Water					
	Intrusion Meeting, Barcelona, Spain					
36	M.D. Fidelibus, E. Gimenez, I. Morell & L. Tulipano (1992), Salinization processes in					
	the Castellon plain aquifer (Spain), paper presented at the 12th Salt Water Intrusion					
	Meeting, Barcelona, Spain					
37	A. Bayo, C. Loaso, J.M. Aragones & E. Custodio (1992), Marine intrusion and					
	brackish water in coastal aquifers of Southern Catalonia and Castello (Spain): a brief survey of actual problems and circumstances, paper presented at the 12th Salt Water					
	Intrusion Meeting, Barcelona, Spain					
38	M. Fidelibus, F. Caporale and G. Spilotro (2004), Studies on different kinds of					
	salinisation in the ground waters of the Ionian coastal plain of the Basilicata region,					
	paper presented at the 18th Salt Water Intrusion Meeting, Cartagena, Spain					
39	(Planert & Williams 1995)					
40, 41	Olcott, P.G., 1995. Ground Water Atlas of the United States: Segment 12, Connecticut,					
	Maine, Massachusetts, New Hampshire, New York, Rhode Island, Vermont - ed.,					
12 12 14	Available at: http://pubs.er.usgs.gov/publication/ha730M.					
42, 43, 44	Trapp Jr., H. & Horn, M.A., 1997. Ground Water Atlas of the United States: Segment 11, Delaware, Maryland, New Jersey, North Carolina, Pennsylvania, Virginia, West					
	Virginia - ed.,					
45	Ryder, P.D., 1996. Ground Water Atlas of the United States: Segment 4, Oklahoma,					
	Texas - ed., Available at: http://pubs.er.usgs.gov/publication/ha730E.					
46, 47, 48 Renken, R.A., 1998. Ground Water Atlas of the United States: Segment 5, A						
	Louisiana, Mississippi - ed.,					
49, 50, 51	Whitehead, R.L., 1994. Ground Water Atlas of the United States: Segment 7, Idaho,					

	Oregon, Washington - ed.,						
52, 53, 54	Planert, M. & Williams, J.S., 1995. Ground Water Atlas of the United States: Segment						
	1, California, Nevada - ed.,						
55, 56, 57,	Miller, J.A., 1990. Ground Water Atlas of the United States: Segment 6, Alabama,						
58, 59	Florida, Georgia, South Carolina - ed., Available at:						
	http://pubs.er.usgs.gov/publication/ha730G.						
60	Tuttle, M.L.W., Charpentier, R. & Brownfield, M.E., 1999. The Niger Delta Petroleum						
	System: Niger Delta Province, Nigeria, Cameroon, and Equatorial Guinea, Africa.						
	World Energy Project, (99-50-H), p.64.						
61	M. Gennessaux, P.B. and E.W., 1998. Thickness of the Plio-Quaternary sediments						
	(IBCM-PQ). BOLLETTINO DI GEOFISICA TEORICA ED APPLICATA, 39(4),						
	pp.243–284.						
62	Al Farrah, N., Van Camp, M. & Walraevens, K., 2013. Deducing transmissivity from						
	specific capacity in the heterogeneous upper aquifer system of Jifarah Plain, NW-						
	Libya. Journal of African Earth Sciences, 85, pp.12–21. Available at:						
	http://dx.doi.org/10.1016/j.jafrearsci.2013.04.004.						
63	Van Camp, M. et al., 2014. Investigating seawater intrusion due to groundwater						
	pumping with schematic model simulations: The example of the Dar es Salaam coastal						
	aquifer in Tanzania. Journal of African Earth Sciences, 96, pp.71–78. Available at:						
	http://dx.doi.org/10.1016/j.jafrearsci.2014.02.012.						
64	Kumar, B. et al., 2011. Groundwater management in a coastal aquifer in Krishna River						
	Delta, South India using isotopic approach., 100(7).						

Table S3. Aquifer thickness information provided by the literature sources compared with the ATE values for each coastal area (column "id", corresponds to ID values in Figure S6). For each are the location is also given. The values from literature are shown in columns below the "Measured values" header while our ATE values are below the "ATE values" header. The "calc_avg" column represents the calculated average value in cases where only min., max. or both were given by the literature. The "calc_avg" is calculated as either the arithmetic average between the min. and max. values or as min./max, value +/- half of min./max.

max. values or as min./max. value +/- half of min./max.										
	<u> </u>		ATE values (m							
id	thick_max	thick_min	thick_avg	calc_avg	est_avg	est_min	est_max	location		
1	600		122	300	501.1	323.1	768.0	Godavari delta (IND)		
2			130 80	130	174.8	76.2	386.9	Digha (IND) Songkhla (THA)		
3 4			100	80 100	76.2 84.6	35.7 36.0	173.9 124.1	Wadi Ham (UAE)		
5			50	50	72.9	41.2	120.0	Carnavon (AUS)		
6	600		30	300	272.2	51.0	897.8	Mekong (VNM)		
7	100	20	70	70	116.9	30.6	244.3	Rabat (MAR)		
8	500	300	70	400	281.0	41.7	648.4	South Jangtze coast, NE (CHN)		
9	600	300		300	161.9	64.9	308.4	Goksu plain (TUR)		
10	20			10	34.9	22.3	51.2	Mar de Ajo (ARG)		
11			50	50	277.4	49.0	750.8	Falster island (DKN)		
12			50	50	215.6	2.1	5143.4	Riga gulf (EST)		
13			200	200	238.5	53.5	615.2	South Jangtze coast, SW (CHN)		
14	900			450	484.8	33.5	1394.4	Nile delta (EGY)		
15	45		25	25	210.1	83.8	333.9	Thamirabarani delta (IND)		
16	100			50	190.9	93.5	310.7	Kuala Lumpur (MYS)		
17	150			75	79.9	2.2	371.3	Saloum delta (SEN)		
18		1000			261.0	40.7	984.0	Kilwa group (TZA)		
19	250		200	200	278.9	44.8	649.5	Coastal aquifer (ISR)		
20	300		250	250	268.8	41.5	483.1	Bekasi (IDN)		
21	420			210	110.9	9.4	331.7	Perth Basin (AUS)		
22	1000	50	600	600	161.8	5.0	1091.9	Great artesian basin (AUS)		
23	120			60	106.8	1.1	496.4	Canning Basin (AUS)		
24	1000	150		575	166.0	53.4	399.6	Doñana National Park (ESP)		
25	180	50		115	109.7	67.3	186.5	Barcelona (ESP)		
26	200	80		140	119.0	39.8	163.9	Perpignan (FRA)		
27	218	18	120	120	104.2	0.4	247.3	Oristano (ITA)		
28	300			150	84.1	40.7	128.5	Muravera (ITA)		
29	100			50	177.6	89.2	236.5	Siracusa (ITA)		
30	200			100	150.8	81.1	201.2	Grosseto (ITA)		
31	450	100	100	200	153.4	2.1	317.0	Versilia (ITA)		
32	150	25	100	100	116.8	54.5	312.9	Coastal aquifer (BEL)		
33	315	30	90	90	185.2	62.1	436.4	Northern dutch coast (NLD)		
34 35	600 175	100 125	200	200 150	441.1 66.3	165.4 16.6	875.9 261.9	Zeeland (NLD) Wilhelmshaven (GER)		
36	200	80		140	125.7	58.4	180.0	Castellon de la Plana (ESP)		
37	200	80	200	200	187.8	91.5	429.0	Ebro delta (ESP)		
38			100	100	131.6	78.8	211.3	Scanzano (ITA)		
39	300		100	150	123.7	13.5	331.6	Eureka aquifer, CA (USA)		
40	300	30		165	165.8	28.3	520.4	Cape Cod (USA)		
41	600	170		385	260.8	1.4	1245.4	Long Island (USA)		
42	1200			600	285.0	33.7	815.5	North Atlantic coastal plain, NJ (USA)		
43	2400			1200	295.9	21.8	2028.6	North Atlantic coastal plain, MA (USA)		
44	3100			1550	444.8	6.4	4983.9	North Atlantic coastal plain, NC (USA)		
45	2000	300		1150	266.5	24.5	2652.5	Coastal lowlands aq. system, TX (USA)		
46	2400	1200		1800	83.9	72.9	94.8	Coastal lowlands aq. system SE, LA (USA)		
47	3600	1200		2400	367.7	120.6	1085.5	Coastal lowlands aq. system NW, LA (USA)		
48	1000			500	204.7	22.2	815.7	Mississippi emayment aq. (USA)		
49	1000			500	130.8	2.2	496.7	Puget-Williamette trough regional aq. system (USA)		
50	35	15		25	97.4	16.2	388.0	Washington coast N (USA)		
51	200	35		117.5	138.7	14.1	318.1	Washington coast S (USA)		
52	300			150	75.7	3.7	182.3	Santa Clara valley (USA)		
53	300			150	162.9	92.7	204.2	Salinas Valley (USA)		
54	1200	30		615	286.6	130.3	492.4	Los Angeles - Orange county (USA)		
55	1000	200		600	170.2	7.0	1762.3	FL - W and AL coast (USA)		
56	1050	850		950	95.5	1.9	1172.4	FL - S (USA)		
57	200	60		130	210.7	30.0	1293.4	SC - S (USA)		
58	850 850	200		525	167.0	52.0	723.7	Georgia coast (USA)		
59	850	700		775	189.5	6.1	2079.0	FL - N (USA)		
60	2000			1000	171.7	1.3	805.5	Niger delta (NGA)		
61	1200	20		600	415.4	46.3	929.4	Po delta (ITA) Jifarah Plain (LBY)		
62 63	180	30	150	105 150	247.3 295.2	4.7 88.0	490.5 1049.5	Dar es Salaam (TZA)		
64	450	40	150	245	286.6	65.2				
04	430	40		243	200.0	05.Z	608.0	Kirishna river delta (IND)		

Table S4 Parameter values for the three cross-sections, the values are given for models with minimum and maximum estimated sediment thickness at the coastline. The total length of simulation for the test case in Virginia, USA is larger than for the other two test cases due to the complexity and size of the aquifer system. This was done to ensure that the steady-state (or near steady-state) is reached, for the changes of fresh groundwater cells in time see Figure S10 in the Supplementary information.

	Italy		Israel		Virginia, USA			
Sediment thickness at coastline		500m	100m	1400m	200m	1500m		
Number of columns	1,060	1,588	385	494	547	578		
Number of layers		411	43	110	44	106		
Layer thickness (m)		3 10		1	10			
Column width (m)	25 100 5			50	00			
Top elevation (m asl.)	2	26		95	5	59		
Bottom elevation (m asl.)	-62	-1,002	-335	-1,005	-381	-1,001		
Length of simulation (years)		10	,000		100	,000		
Number of time steps		2,	500		10,000			
Total active cells	13,224	534,879	3,021	30,332	9,319	43,630		
Horizontal hydraulic conductivity aquifer (m/d)	10							
Vertical hydraulic conductivity aquifer (m/d)	1							
Horizontal hydraulic conductivity aquitard (m/d)	1.00)E-04	1.00E-04		1.00E-04			
Vertical hydraulic conductivity aquitard (m/d)	1.00	1.00E-07 1			1.00	.00E-07		
Layer type			COI	nfined				
Total amount of GHB cells	887	1415	200	321	274	431		
Recharge rate (m/d)	0.	001		0.00)05			
Head change criterion for convergence (m)			1.00E-04					
Residual criterion for convergence (m³/d)	10							
Porosity	0.35							
Solver type	Finite Difference							
Longitudinal dispersivity	1							
Ratio horizontal transverse disp./ long. disp.	0.1							
Diffusion coefficient (m²/d)	8.64E-05							

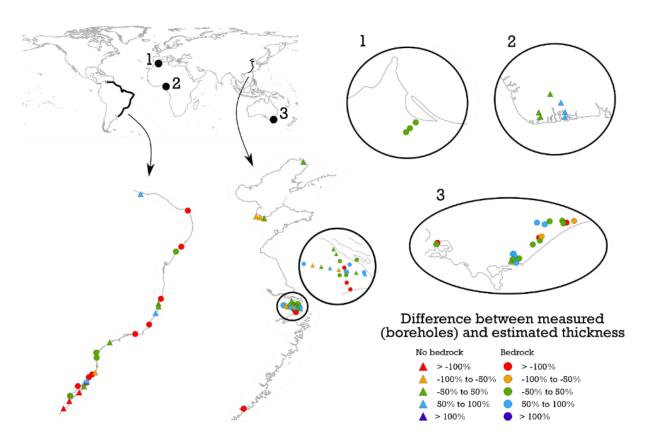


Figure S1. Schematization of borehole validation using the difference between the measured sediment thickness and an average estimated thickness in a radius of 2.5km around the borehole location. The boreholes are divided into two groups depending on any bedrock formation indicated in the borehole report.

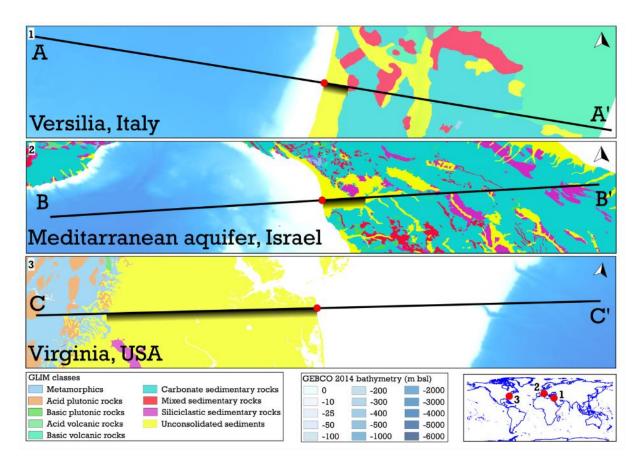


Figure S2. Location of the cross-sections used as examples to illustrate the ATE method. The black shadow represents the extent of the coastal plain in each cross-section while the whole black line indicates the span of the cross-section (in total 400km).

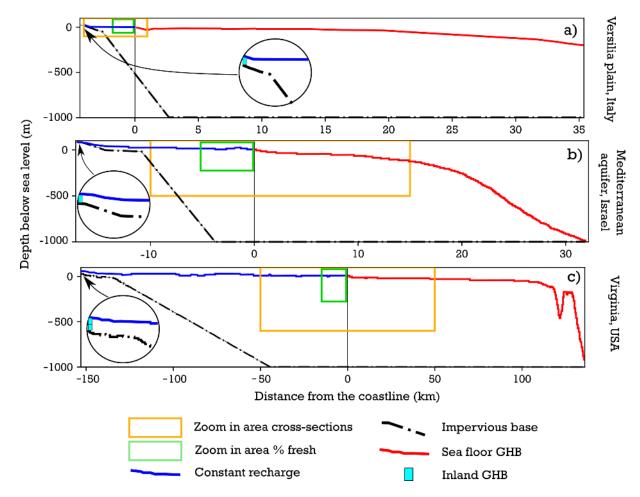


Figure S3. Model concept schematization for all three test cases. a) Versilia plain, Italy, b) Mediterranean aquifer, Israel and c) Virginia, USA. The zoom in area cross-section corresponds to the areas shown in Figures S8-S10 and Figure 4 in the main article.

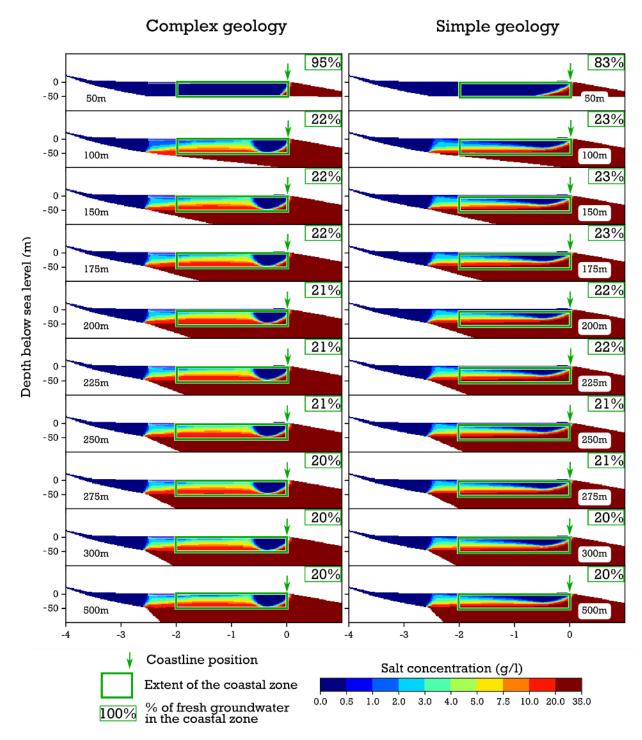


Figure S4. Simulation results for the cross-section located in Versilia plain, Italy. Salt concentration profiles are given for various sediment thicknesses at the coastline and two different geological scenarios (homogeneous and heterogeneous based on information provided by literature).

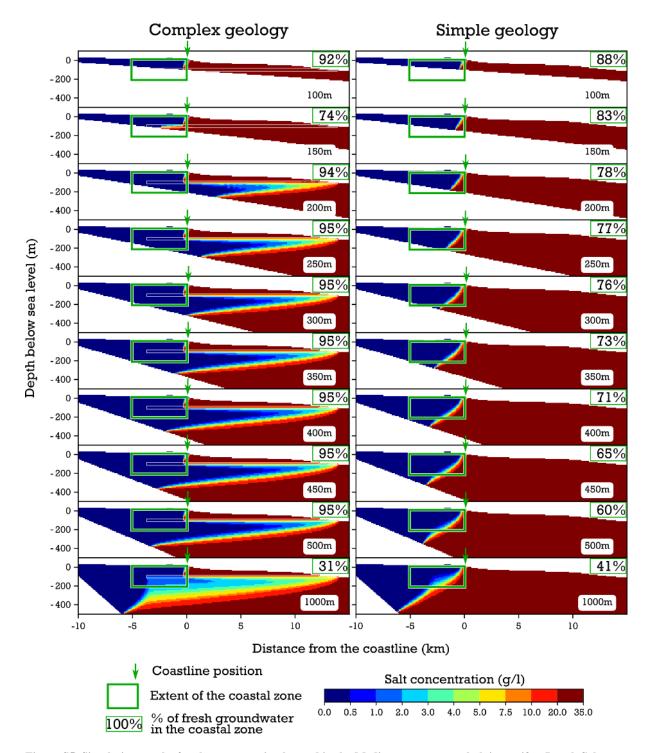


Figure S5. Simulation results for the cross-section located in the Mediterranean coastal plain aquifer, Israel. Salt concentration profiles are given for various sediment thicknesses at the coastline and two different geological scenarios (homogeneous and heterogeneous based on information provided by literature).

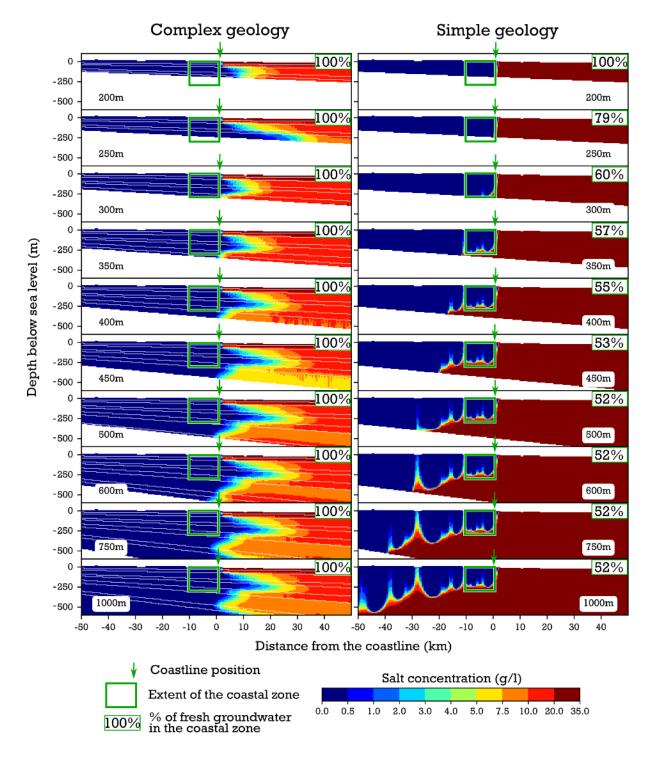


Figure S6. Simulation results for the cross-section located in North Atlantic Coastal Plain, Virginia, USA. Salt concentration profiles are given for various sediment thicknesses at the coastline and two different geological scenarios (homogeneous and heterogeneous based on information provided by literature).