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Abstract  

We present snow observations and a validated daily gridded snowpack dataset that was 15 

simulated from downscaled reanalysis of data for the Iberian Peninsula. The Iberian 

Peninsula has long-lasting seasonal snowpacks in its different mountain ranges, and 

winter snowfalls occur in most of its area. However, there are only limited direct 

observations of snow depth (SD) and snow water equivalent (SWE), making it difficult 

to analyze snow dynamics and the spatiotemporal patterns of snowfall. We used 20 

meteorological data from downscaled reanalyses as input of a physically based snow 

energy balance model to simulate SWE and SD over the Iberian Peninsula from 1980 to 

2014. More specifically, the ERA-Interim reanalysis was downscaled to 10 ×10 km 

resolution using the Weather Research and Forecasting (WRF) model. The WRF 

outputs were used directly, or as input to other submodels, to obtain data needed to 25 

drive the Factorial Snow Model (FSM). We used lapse-rate coefficients and 

hygrobarometric adjustments to simulate snow series at 100 m elevations bands for each 

10 × 10 km grid cell in the Iberian Peninsula.  The snow series were validated using 

data from MODIS satellite sensor and ground observations. The overall simulated snow 

series accurately reproduced the interannual variability of snowpack and the spatial 30 

variability of snow accumulation and melting, even in very complex topographic 

terrains. Thus, the presented dataset may be useful for many applications, including land 

management, hydrometeorological studies, phenology of flora and fauna, winter 

tourism and risk management. The data presented here are available for free download 

from Zenodo (DOI: 10.5281/zenodo.854618).This paper fully describes the work flow, 35 

Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2017-106

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Discussion started: 20 October 2017
c© Author(s) 2017. CC BY 4.0 License.



2 

 

data validation, uncertainty assessment and possible applications and limitations of the 

database.  

1. Introduction 

Seasonal snowpack exerts an important control on the hydrology and 

economy,of many mountainous and cold regions worldwide (Barnett et al., 2005). Snow 40 

variability also affects different ecological processes, such as species composition, 

distribution, and phenology (Keller et al., 2000; Wipf et al., 2009). For example, 

snowpack on Mediterranean mountains is a crucial source of water during the dry 

season (Fayad et al., 2017; García-Ruiz et al., 2011; Viviroli et al., 2007). Long-term 

data are required to analyze the spatiotemporal dynamics of snowpack, to assess the 45 

importance of snow as resource, and understand the effect of climatic fluctuations. 

However, there are only limited in situ observations of snowpack for most mountain 

regions (Raleigh et al., 2016). Nowadays remote sensing techniques could only reliably 

provide information about snow cover  based on observations in the visible spectrum 

(Dietz et al., 2012). Current space-borne sensors do not provide accurate data on snow 50 

water equivalent (SWE) and/or snow depth (SD) in mountainous regions (Dozier et al., 

2016). Microwave imaging has a coarse resolution (grid cell size: ~25 km), so does not 

characterize snowpack variability in the Mediterranean mountains, which have a high 

spatial heterogeneity not captured with this resolution. There are also spatial and 

temporal limitations when attempting to estimate snowpack using close range remote 55 

sensing techniques such as light detection and ranging (LIDAR) (Revuelto et al., 2016).  

There are limited in-situ snow observations and meteorological data at high 

elevations in the Iberian Peninsula. Although the number of monitored sites has 

increased in recent years, there are no long-term series and there is insufficient 

characterization of snowpack dynamics at a regional scale. However, snowpack in the 60 

Iberian Peninsula is an important hydrological and also economical resource. An area of 

19456.4 km2 in the Iberian Peninsula lies above 1500 m.a.s.l., mostly in the five large 

mountain ranges (Pyrenees, Cantabrian Mountains, Central System, Iberian Range and 

Sierra Nevada). At this elevation, snowpack occurs for at least four months of the year 

(López-Moreno et al., 2011) making it a critical resource for water management in the 65 

largest hydrological basins (Morán-Tejeda et al., 2014). Snowpack influences the 

interannual variability of water resources (López-Moreno and García-Ruiz, 2004) and 
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the timing of the winter low flows and spring peak flows (Sanmiguel-Vallelado et al., 

2017). Moreover, winter tourism (mainly skiing) has an increasing importance to the 

economy of mountain valleys during recent decades, and the large interannual 70 

fluctuations of snowpack in the different mountain regions of the Iberian Peninsula 

affect the economic viability of tourism (Gilaberte-Búrdalo et al., 2014, 2017).  

The importance of snow to the environment and economy of the Iberian 

Peninsula, and the lack of data on snowpack in this region, motivated us to use 

meteorological outputs from downscaled reanalysis data to simulate snowpack at 75 

different elevations in the Iberian Peninsula. Atmospheric reanalyses,  based on data 

assimilation and modeling (Saha et al., 2010), can provide important information about 

the temporal evolution of the atmosphere. Meteorological variables obtained from 

reanalysis data can be used as inputs for models of snow mass and energy balance 

which can be applied to describe the behavior of the snowpack over large areas (Brun et 80 

al., 2013; Krogh et al., 2015; Wegmann et al., 2017). However, the coarse resolution 

(cell size: ~10s of km) implies these simulations may have insufficient spatial resolution 

for characterizing the topographical complexity of mountain areas (Mass et al., 2002). 

To overcome this limitation, Regional Climate Models (RCMs) are often used to obtain 

better representations of surface climatology, because they downscale physically 85 

reanalysis products (García-Valdecasas Ojeda et al. 2017; Kryza et al. 2017; Warrach-

Sagi et al. 2013). Previous studies have used RCMs to study SD and SWE dynamics at 

finer resolutions (grid cell size: 5 to 11 km) when they are driven with reanalyses, and 

the resolution increases further (grid cell size: 1 km) when using forecasted data 

(Bellaire et al., 2011; van Pelt et al., 2016; Quéno et al., 2016; Wu et al., 2016).  90 

van Pelt et al. (2016) used the High Resolution Limited Area Model (HIRLAM) 

in Svalbard (Norway), with forcing by ERA-40 and ERA-Interim reanalysis, and then 

used the meteorological simulation as driving data for SnowModel (Liston et al., 

2006a). Their results support the usefulness of the methodology extracting snowpack 

trends from these data. Wu et al. (2016) used a similar procedure to describe the 95 

behavior of snowpack over the Altay Mountains in China. They coupled outputs from 

the Weather Research and Forecasting (WRF) model (Skamarock et al., 2008) driven by 

NCEP/NCAR reanalysis with a temperature index model (based on remote sensing), 

and their results had low error values. To increase the spatial resolution of the WRF 

outputs, they used the MICROMET model (Liston et al., 2006b), a submodel of 100 

SnowModel in which WRF outputs are interpolated to a new grid, and then corrected 
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physically according to topography. Wrzesien et al., 2017 tested the capability of  WRF 

to estimate SWE over complex terrain concluding that WRF simulations can be used 

over areas with few observational data.  

We used a different approach, in an effort to make our database more 105 

computationally practicable and to avoid the uncertainties of the statistical 

interpolations of climatological variables over complex areas. More specifically, we 

projected WRF outputs to different elevation bands to generate simulations for multiple 

elevations. This procedure allows to study the elevation-dependent characteristics of the 

snowpack over different mountain ranges, preserving the WRF output resolution. 110 

Our procedure uses the physically based Factorial Snow Model (FSM) (Essery, 

2015), which is fed by ERA-Interim reanalysis (Berrisford et al., 2011), and downscaled 

by the WRF model. The final products of our analysis are simulated daily time series of 

SD and SWE at different elevations from 1980 to 2014.  

2. Data and methods 115 

We used an existing WRF simulation (cell size: 10 km) for the whole Iberian 

Peninsula (Figure 1), with a 3 h time step from January 1979 to November 2014, as 

input data for the FSM. Most inputs of the FSM were extracted directly from the WRF 

simulation, but some were calculated using other submodels. We projected the WRF 

outputs and derived variables to different elevation bands, from 500 to 2900 m a.s.l. at 120 

steps of 100 m, from the WRF pixel elevation using several hygrometric and 

psychrometric formulas and elevation lapse rates. Validation was performed at different 

steps of the workflow using different observational data sources. Figure 2 shows the 

workflow completely, which is described in more detail below. Appendix A lists all the 

abbreviations used in this study. 125 

 

2.1. Meteorological driving data 

The meteorological variables were calculated using the WRF model, a 

mesoscale climate model. Previous researchers used this model to simulate climate at 

regional scales for analysis of past, present, and future conditions (Chen et al. 2011; 130 

Heikkilä, Sandvik, and Sorteberg 2011). The spatial resolution of our simulation is 

0.088º (~10 km) and the time step is 3 h. ERA-Interim reanalysis (Berrisford et al., 
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2011) was used as driving data for the WRF model. With this procedure all 

meteorological variables to run snowpack models were generated for the whole Iberian 

Peninsula. The WRF configuration was described in detail by García-Valdecasas Ojeda 135 

et al. (2017). This simulation provided the following variables: wind speed (Ua), surface 

temperature (T), precipitation (Pr), relative humidity (RH), short wave incoming 

radiation (SW), and atmospheric pressure (Ps). 

2.2. Snow energy and mass balance model 

SD and SWE time series were obtained using a mass and energy balance 140 

snowpack model. The Factorial Snow Model (FSM) is a multi-physics snow model that 

simulates the accumulation and melting of snow (Essery, 2015). This model allows 

selection of two options for parameterizations of five different process, thereby enabling 

32 different model configurations. The configuration used to develop our simulations 

decreases snow albedo and increases snow density at different rates for cold and melting 145 

snow, calculates thermal conductivity as a function of snow density, adjusts the 

turbulent exchange coefficient as a function of the bulk Richardson number, and allows 

retention and refreezing of liquid water inside the snowpack. 

The model works with different numbers and thicknesses of layers, depending 

on snowpack depth. Thus, it assumes a single layer when snow depth is less than 0.2 m, 150 

and a maximum of three layers when the depth is greater than 0.5 m. This configuration 

allows the model to characterize the highly variable climatological conditions of the 

Iberian mountains. In addition to the variables provided by the WRF simulation (listed 

in section 2.1), the FSM also needs estimates of snow rate (Sf), rain rate (Rf), and long 

wave incoming radiation (LW). To avoid the expense of rerunning WRF in this study, 155 

these variables have been reconstructed from available WRF simulation outputs.  

To calculate Sf and Rf, it was used a psychrometric energy balance method 

(PPPm) (Harder and Pomeroy, 2013), which uses relative humidity and air temperature 

to calculate the surface temperature of falling hydrometeors. From this value, the 

fraction of liquid precipitation is: 160 

𝑓𝑟(𝑇𝑖) =
1

1+𝑏𝑐𝑇𝑖
         (1) 

where 𝑓𝑟 is the percentage of liquid precipitation, 𝑇𝑖 is the temperature (ºC) of the 

falling hydrometeor, and 𝑏 and 𝑐 are derived from statistical fits (2.50286 and 0.125006, 
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respectively, for hourly time intervals). 𝑇𝑖 is calculated from Eq. (2), which it was 

solved numerically using the method described by Brent (1972): 165 

𝑇𝑖 = 𝑇𝑎 +
𝐷

𝜆𝑡
𝐿 (𝜌𝑇𝑎

− 𝜌𝑠𝑎𝑡(𝑇𝑖)
)       (2) 

where 𝑇𝑎 is the temperature (ºK), 𝐷 is the diffusivity of water vapour in air (m2 s-1), 𝜆𝑡 

is the thermal conductivity of air (W m-1 K-1), 𝐿 is the latent heat of sublimation or 

vaporization (J kg-1), and 𝜌𝑇𝑎
 and 𝜌𝑠𝑎𝑡(𝑇𝑖)

 (kg m-3) are respectively the vapor densities in 

free atmosphere and at the saturated hydrometeor surface. This methodology gives the 170 

percentage of liquid precipitation; the percentage of solid precipitation is directly 

calculated from 𝑓𝑟. 

Incoming long wave radiation (W m-2) was estimated from the Stefan-

Boltzmann law: 

𝐿↓ = 𝜀𝜎𝑇𝑎
4          (3) 175 

where 𝜎 is the Stefan-Boltzmann constant and 𝜀 is the emissivity of the atmosphere. 

 Emissivity was calculated as a function of elevation and cloud cover, as 

proposed by Liston et al. (2006b), who use a variation of the methodology described by 

Iziomon et al. (2003). Thus, emissivity is calculated as: 

𝜀 = 1.083(1 + 𝑍𝑠𝑐𝑐2)[1 − 𝑋𝑠𝑒𝑥𝑝(−𝑌𝑠 𝑒 𝑇𝑎⁄ )]     (4) 180 

where 𝑒 (Pa) is the atmospheric vapour pressure, 𝑐𝑐 is de fractional cloud cover and 

𝑋𝑠, 𝑌𝑠 and 𝑍𝑠 are coefficients that are corrected with elevation: 

𝐶𝑆 = 𝐶1                                                   𝑧 < 200 𝑚. 𝑎. 𝑠. 𝑙  

𝐶𝑆 = 𝐶1 + (𝑧 − 𝑧1) (
𝐶2−𝐶1

𝑧2−𝑧1
)              200 𝑚. 𝑎. 𝑠. 𝑙 ≤ 𝑧 ≤ 3000 𝑚. 𝑎. 𝑠. 𝑙   (5) 

𝐶𝑆 = 𝐶2                                                 3000 𝑚. 𝑎. 𝑠. 𝑙. < 𝑧      185 

   

where 𝑧 (𝑚) is the elevation above sea level, and 𝑋𝑠, 𝑌𝑠 and 𝑍𝑠 can be substituted for 𝐶, 

with 𝑋1 =  0.35, 𝑋2 = 0.51, 𝑌1 =  0.100 𝐾 𝑃𝑎−1, 𝑌2 =  0.130 𝐾 𝑃𝑎−1, 𝑍1 =

 0.224, 𝑍2 = 1.100, 𝑧1 = 200 𝑚 . 𝑎. 𝑠. 𝑙.,  and 𝑧2 = 3000 𝑚. 𝑎. 𝑠. 𝑙.  

Different parameterizations using SW were tested to estimate 𝑐𝑐 ,from potential 190 

SW, a more accurate approach than the parameterization proposed by Liston et al. 

(2006b), according to Gascoin et al. (2013). This approach uses the relationship 

between SW and potential SW radiation that is restricted to daylight hours. Thus, in this 

work, it was used the parametrization proposed by Walcek (1994), which is the original 

parametrization proposed by Liston et al. (2006b). 195 
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𝑐𝑐 = 0.832𝑒𝑥𝑝 (
𝑅𝐻700−100

41.6
)        (6) 

where 𝑅𝐻700 is the relative humidity at 700 mb.  

The methodology used to project RH to 700 mb elevation is described below. To 

scale the snow simulations to different elevations, it was first used the internationally 

accepted standard air temperature lapse-rate (𝛽 = 0.0065º𝐾𝑚−1) (Barry and Chorley, 200 

1987; ISO, 1975) to project the surface air temperature. For RH, it was used the 

methodology proposed by Liston et al. (2006b), in which a lapse-rate is applied to the 

dew point temperature (HRm). First, it was calculated the dew point temperature from 

RH and the saturation vapor pressure. Then, it was applied the standard air temperature 

lapse-rate to the dew point temperature, and recalculated the RH at the target elevation 205 

from the scaled dew point temperature and the saturation vapor pressure. Once it was 

rescaled temperature and RH, it was calculated the precipitation phase and LW radiation 

at the different elevations.  

Finally, to estimate the scaled surface air pressure it was used a generalization of 

the barometric formula for scenarios that consider air temperature lapse-rates (Bf) 210 

(Berberan-Santos et al., 1997): 

𝑝(𝑧) = 𝑝(0) (1 −
𝛽∗𝑧

𝑇𝑎
)

𝑚𝑔 𝑅𝛽⁄

        (7) 

where 𝑝(0) is the surface air pressure, 𝑧 is the elevation difference (m), 𝑚 is the 

molecular mass of air (0.0289644 kg mol-1), and 𝑅 is the universal gas constant 

(8.31432 J K-1 mol-1).  215 

2.3. Validation procedure 

Validation was performed at different resolutions and at different steps of the 

workflow, using all available observational data (Figure 2). Previous studies (Argüeso 

et al., 2012; García-Valdecasas-Ojeda et al., 2016) simulated temperature and 

precipitation using WRF at different time scales compared with the grids, based on 220 

observations from Spain02 (Herrera et al., 2012) and PT02 (Belo-Pereira et al., 2011), 

high-resolution precipitation and temperature gridded datasets for Spain and Portugal, 

respectively. The results indicated proper simulation of the major patterns of 

precipitation and temperature, even for extreme events. Subsequent research showed 

that the downscaling made by WRF provided improved accuracy compared to ERA-225 

Interim data, due to the higher resolution (García-Valdecasas Ojeda et al., 2017). 
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In this work, it was used the moderate-resolution imaging spectroradiometer 

(MODIS) satellite sensor to validate our snow cover product for the period September 

2000 to November 2014. Similarly data from telenivometers, which were available in 

the Pyrenees from October 2009 to June 2014. 230 

First, it was compared MODIS data with the SD and SWE time series (10 km 

resolution). MODIS snow maps were generated using the same workflow to each 

mountain range in the study area (Pyrenees, Cantabrian Mountains, Central System, 

Iberian Range, and Sierra Nevada). It was downloaded all the available MOD10A1 and 

MYD10A1 products (version 5) from the National Snow and Ice Data Center (Hall et 235 

al., 2006). The original granules were mosaicked and re-projected from the sinusoidal 

system to the Universal Transverse Mercator (UTM) reference system. Then, it was ran 

a gap filling algorithm, using the binary snow product to avoid data losses due to cloud 

cover (Gascoin et al., 2015). This provided gap-free daily maps showing the presence 

and absence of snow in each mountain range from 2000 to 2014. From these maps, the 240 

probability of snow was calculated as: 

𝑃(𝑆𝑛𝑜𝑤) =
𝑁𝑠

𝑁
∗ 100         (8) 

where 𝑃(𝑆𝑛𝑜𝑤) is the probability of snow (%), 𝑁𝑠 is the number of days with snow, and 

𝑁𝑠 is the total number of days of the period.  

Snow probability maps were also calculated from the FSM snow cover maps. In 245 

this work, it was chosen a threshold of 0.11 m for SD and a threshold of 40 mm for 

SWE (Gascoin et al., 2015) in the FSM time series. This allowed to generate snow 

cover maps from FSM outputs. Then, it was aggregated the MODIS pixels (500 m) to 

the simulation grid (~10 km), with averaging of the values of MODIS pixels to make 

them comparable. 250 

It was also used data from 9 telenivometers, which measure sub-hourly SWE 

and SD using gamma-ray attenuation and acoustic sensors. These data were provided by 

the ERHIN program (Estimación de Recursos Hídricos Procedentes de la Nieve) of the 

Hydrological Ebro River Basin Authority (Navarro-Serrano and López-Moreno, 2017). 

Eight telenivometers were in the Pyrenees, and one was in the Cantabric Range. It was 255 

also used an SD sensor in the Central System mountain range, which is from the 

National Meteorological Agency of Spain (AEMET). It was projected the 

meteorological variables from the WRF simulation to elevations of the different 
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telenivometers for simulations. Figure 3 shows a comparison of the modeled and 

observed SD time series at these 10 sites. 260 

It must be noted that it is challenging to validate gridded products from ground-

based data (Snauffer et al., 2016). Snowpack can have large variability over small 

distances (López-Moreno et al., 2015; Meromy et al., 2013). This implies that punctual 

measurements may not by representative of the 10 km resolution data, even when 

comparing a simulation at the same elevation as the telenivometer. In addition, snow 265 

measurements always include biases from the different measuring devices (Kinar and 

Pomeroy, 2015). Thus, we focused on the temporal patterns of snowpack during the 

season. More specifically, it was compared the accumulation patterns during the season, 

assuming that accumulation and melting rates were similar in the simulated and 

observational data, but that SD and SWE likely differ between the telenivometer and the 270 

simulation.  

Thus, in this work it was first compared different percentiles of SD and SWE in 

the telenivometer and the simulated time series. Then, using each percentile as a 

threshold for snow presence, it was converted the series into binary data, allowing use 

of the Kappa test (Cohen, 1960) for each percentile. The Kappa coefficient ranges from 275 

1 and <0, but it is difficult to assign an agreement criterion based on Kappa value. Thus, 

it was used the thresholds proposed by Landis and Koch (1977), which basically agree 

with values proposed by Fleiss et al. (1969) (<0.00: poor, 0.00-0.20: slight, 0.21-0.4: 

fair, 0.41-0.60: moderate, 0.61-0.80: substantial, and 0.81-1.00: almost perfect). Later, it 

was examined percentile values between 10% and 90%, as more representative of snow 280 

accumulation during the season. 

3. Results 

3.1. Validation 

Our analysis of the probability of snow presence from MODIS and FSM shows 

that the outputs had good correlations (Figure 4). This analysis compared the probability 285 

of snow at each pixel (~10 × 10 km) from MODIS and FSM outputs for the SWE and 

SD time series from September 2000 to November 2014. The mean coefficient (R2) was 

0.76, and a mean absolute error was 6.3%. This analysis also shows the correlations for 

each mountain range, and the distribution of errors for SWE and SD (simulated − 

observed).  290 
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These results also show there were no significant differences in the errors of 

𝑃(𝑆𝑛𝑜𝑤) for the different mountain ranges. However, the correlation was not strong for 

the Sierra Nevada range, probably due to its limited snow cover, although this remained 

inside the variability of the scatterplot. 

Validation of these results with telenivometers indicated Kappa values for 295 

thresholds in the 10th to 90th percentiles of each season (Figure 5). The Kappa values 

were mostly above 0.6, although accuracy declined for the highest percentiles. 

The Kappa coefficient does not account for the displacement magnitude of the 

different percentiles, and a difference of a few days in the time of peak accumulation 

may cause a sharp decrease in the Kappa value. This is the reason for the loss of 300 

accuracy at the highest percentiles. Thus, it was further analyzed these data to determine 

the time of the year when snowpack exceeded the 90th, 75th, and 50th percentiles at each 

telenivometer in the observed (OBS) and simulated (SIM) series (Figure 5C). This 

analysis shows that, despite small temporal shifts, the simulated snow series accurately 

represents the temporal patterns when different snow percentiles are exceeded.  305 

The biggest shift in the position of the 90th and 75th percentiles was during the 

2011/2012 season. This season was extremely dry on the Iberian Peninsula, and there 

were very few snowfall events (Figure 3). Thus, a small bias in the simulation of a 

single event during this time could lead to a large error in prediction of the magnitude 

and timing of SD and SWE maxima. 310 

3.2. Gridded snow dataset: applications and limitations 

The final products of the models are daily gridded datasets (resolution: 0.088º, 

~10 km) of SD and SWE at elevations from 500 to 2900 m.a.s.l. (100 m intervals) from 

1980 to 2014. The datasets (ncdf-4 format) cover the entire Iberian Peninsula, including 

the north side of the Pyrenees, in France. Each dataset contains information of the entire 315 

Iberian Peninsula and a mask that covers pixels that do not present areas at the 

elevations of the simulation estimated from a 250m resolution DEM. 

This snow database provides new opportunities for studies of snow in the Iberian 

Peninsula. In particular, the temporal resolution and the duration of the series are 

significant improvements over previous observational data. Also, the geographic data 320 

on SD and SWE generated provides the opportunity to obtain more snow and 

hydrologically relevant information than that available from remote sensing alone. It is 
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also possible to develop different snow products at different elevations, allowing 

comparison of different elevations and different regions. For example,  

Figure 7 shows examples of other snow variables that can be derived from the 325 

database: average number of snowfalls and percentage of days with snow cover at three 

elevations. These analyses are particularly useful for the development of different snow 

climatologies for the whole Iberian Peninsula, or for specific areas, in studies that rely 

on ecological data (e.g. phenology or distribution of plants and animals, forest growth, 

etc.), studies that require hydrological parameters for different catchments, and studies 330 

that determine risk maps for snow-related events. 

It is also possible to extract daily time series for different areas or elevations at 

each pixel. For example, Figure 8 compares SWE series at three elevations in the pixel 

at the highest peak of the Pyrenees (Aneto Peak, 3404 m.a.s.l.). Thus, these series allow 

study of different annual snow accumulation and melting patterns on a specific location 335 

and how elevation influence snow evolution. Similarly, it enables to study the existence 

of temporal trends or the occurrence of extreme snowfall and melting events. 

The database contains uncertainties that were not easy to quantify, due to the 

limited amount of observational data. Biases may be due to uncertainty of the boundary 

conditions from the ERA interim reanalysis (Chaudhuri et al., 2013) since errors from 340 

the WRF downscaling model are difficult to quantify in mountain areas (Gutmann et al., 

2012), and uncertainties that typically result from simulations of snow mass and energy 

balance from meteorological data (Essery et al., 1999, 2013; Magnusson et al., 2015). 

The use of the standard air temperature lapse-rate can be also a source of uncertainty. 

Despite other studies have observed a decrease in the lapse-rate during winter months, 345 

this effect is result of thermic inversions that are not considered due to the spatial 

resolution of the simulation. 

Despite these limitations, we had very satisfactory results when testing the 

duration and the interannual variability of the snowpack against MODIS and 

telenivometer data, which provided reliable observations during several snow seasons. 350 

This way, the database presents a reliable validation for more than a third of the time 

period generated. When using this database, it is important to consider that it was based 

on the assumption of flat topography within each 10 × 10 km pixel. Therefore, this 

dataset is not suitable for studies of snow variability due to terrain aspect, slope, and 

snow redistribution processes, such as avalanches and wind transport. 355 
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4. Conclusions 

It was presented a new daily gridded database of SD and SWE for the Iberian 

Peninsula from 1980 to 2014 period at a resolution of 0.088º (~10 km). The database 

consists of 50 ncfd-4 files for SD and SWE from 500 to 2900 m.a.s.l., and another 2 at 

WRF simulations DEM, summing more than 652,000 maps. A mask label as “no data” 360 

is included if the grid is not found at the elevation of the simulated elevation band. 

The scarcity of snow observations in the Iberian Peninsula made it necessary to 

couple a dynamical downscaling of Era-Interim reanalysis using the WRF model by use 

of a snow energy and mass balance model (FSM). Input data of FSM provided directly, 

or estimated from WRF outputs, were available for the average elevation of each 10 × 365 

10 km pixel, and these data were transformed to achieve an elevation offset at 100 m 

intervals.  

Despite some uncertainties, the database is consistent with available 

observational data. More specifically, validation with MODIS data indicated an error of 

6.07% and an R2 of 0.76 in analysis of the mean presence of snow. The database also 370 

provides good representation of the temporal patterns of the telenivometers, with Kappa 

values generally over 0.6, and above 0.4 for all analyzed percentiles. 

This database will be an important resource for studies of many different 

hydrological, environmental, and economic processes in Mediterranean areas. Thus, we 

expect the database presented here will be useful for future snow-related studies at 375 

regional scales in the Iberian Peninsula, and for a broad community of researchers and 

land managers working in areas where snow occurs.  

5. Data Availability 

The data presented here are available for free download from Zenodo 

(https://zenodo.org/record/854619). SD and SWE datasets are in ncdf4 format, with one 380 

file for each elevation band. The observational information used to validate the main 

data is also available for download. All telenivometer data are in .csv format. Daily 

snow cover (derived from MODIS) is provided as 5 multiband GeoTiff files (one file 

for each mountain range, each band is a date), and a .csv file indicates the date of each 

band. 385 

The FSM code is freely available from https://github.com/RichardEssery/FSM 
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Appendix A: Variable summary 

Models and elevation correction technics: 

Name Acronym Function 

Weather research and 
forecasting 

WRF Regional Climate Modelling 

Factorial snow model FSM Snowpack Modelling 
Relative humidity projection HRm Project the relative humidity 
Barometric formula Bf Project the atmospheric pressure 
Precipitation-phase partitioning PPPm Divide precipitation phase (Snow/Rain) 
Long wave model LWm Estimate Long wave incoming radiation 

 

Variables: 390 

Name Acronym 

Wind speed Ua 
Precipitation Pr 
Temperature T 
Relative humidity RH 
Atmospheric pressure Ps 
Short wave incoming radiation SW 
Long wave incoming radiation LW 
Snowfall rate Sf 
Rainfall rate Rf 
Snow depth SD 
Snow water equivalent SWE 
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Figure 1: Digital elevation model of the Iberian Peninsula and locations of the 

telenivometers, Cotos Pass SD sensor and MODIS study areas. 

 

 615 

Figure 2: Simulation workflow. Squared boxes represent modelling steps and 

rounded boxes represent meteorological variables. Variables that are not inputs or 

outputs of a model are indicated by dotted lines (see a glossary of used 

abbreviations in Appendix A). 
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 620 

Figure 3: Comparison between modeled (red) and observed (black) SD time series 

for each telenivometer and the Cotos SD sensor.  
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Figure 4: Correlation between the long-term (2000-2015) mean probability of snow 

depth (left) and snow water equivalent (right) from MODIS data and from FSM 625 

output. Box plot insets show the frequency distributions of errors (%), with the 

central red lines indicating average errors, boxes indicating the 25th and 75th 

percentiles, bars indicating the 10th and 90th percentiles, and dots indicating the 

5th and 95th percentiles. 

 630 

Figure 5: Kappa values derived from comparison of observed and simulated series 

for different percentiles of snow depth (A) and snow water equivalent (B), and 

periods of the year (blue) when snowpack exceeds the 90th, 75th, and 50th 
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percentiles (C). In C, each pair of bands show the times when the different 

percentiles in the observed (OBS) and simulated (SIM) series at each telenivometer 635 

exceeded the indicated percentile. 

Figure 6: Long-term (1980-2014) average maximum SWE and SD grids at 1500, 

2000, and 2500 m.a.s.l.  

 640 

Figure 7: Long-term (1980-2014) average number of snowfall events and 

percentage of snow presence at 1500, 2000 and 2500 m.a.s.l. 
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Figure 8: Comparison of SWE time series at 1500, 2000, and 2500 m.a.s.l. at Aneto 

Peak. 645 
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